
Provably Efficient
Two-Level Adaptive Scheduling

Yuxiong He1, Wen-Jing Hsu1, and Charles E. Leiserson2

1 Nanyang Technological University, Nanyang Avenue 639798, Singapore,
yxhe@mit.edu, hsu@ntu.edu.sg

2 Massachusetts Institute of Technology, Cambridge, MA 02139, USA,
cel@mit.edu

Abstract. Multiprocessor scheduling in a shared multiprogramming en-
vironment can be structured in two levels, where a kernel-level job sched-
uler allots processors to jobs and a user-level thread scheduler maps the
ready threads of a job onto the allotted processors. This paper presents
two-level scheduling schemes for scheduling “adaptive” multithreaded
jobs whose parallelism can change during execution. The AGDEQ al-
gorithm uses dynamic-equipartioning (DEQ) as a job-scheduling policy
and an adaptive greedy algorithm (A-Greedy) as the thread scheduler.
The ASDEQ algorithm uses DEQ for job scheduling and an adaptive
work-stealing algorithm (A-Steal) as the thread scheduler. AGDEQ
is suitable for scheduling in centralized scheduling environments, and
ASDEQ is suitable for more decentralized settings. Both two-level sched-
ulers achieve O(1)-competitiveness with respect to makespan for any set
of multithreaded jobs with arbitrary release time. They are also O(1)-
competitive for any batched jobs with respect to mean response time.
Moreover, because the length of the scheduling quantum can be adjusted
to amortize the cost of context-switching during processor reallocation,
our schedulers provide control over the scheduling overhead and ensure
effective utilization of processors.

1 Introduction
Multiprocessors are often used for multiprogrammed workloads where many par-
allel applications share the same machine. As Feitelson points out in his excellent
survey [27], schedulers for these machines can be implemented using two levels:
a kernel-level job scheduler which allots processors to jobs, and a user-level
thread scheduler which maps the threads belonging to a given job onto the
allotted processors. The job schedulers may implement either space-sharing ,
where jobs occupy disjoint processor resources, or time-sharing , where differ-
ent jobs may share the same processor resources at different times. Moreover,
both the thread scheduler and the job scheduler may be either adaptive (called
“dynamic” in [19]), allowing the number of processors allotted to a job to vary

This research was supported in part by the Singapore-MIT Alliance and NSF Grants
ACI-0324974 and CNS-0540248.

while the job is running, or nonadaptive (called “static” in [19]), where a job
runs on a fixed number of processors over its lifetime. A clairvoyant schedul-
ing algorithm may use knowledge of the jobs’ execution time, whereas a non-
clairvoyant algorithm assumes nothing about the execution time of the jobs.
This paper presents two provably efficient two-level adaptive schedulers, each of
which schedules jobs nonpreemptively and without clairvoyance.

With adaptive scheduling [4] (called “dynamic” scheduling in many other
papers [27,37,41,58,60]), the job scheduler can change the number of processors
allotted to a job while the job executes. Thus, new jobs can enter the system, be-
cause the job scheduler can simply recruit processors from the already executing
jobs and allot them to the new jobs. Without an adequate feedback mechanism,
however, both adaptive and nonadaptive schedulers may waste processor cycles,
because a job with low parallelism may be allotted more processors than it can
productively use.

If individual jobs provide parallelism feedback to the job scheduler, waste
can be avoided. When a job does not require many processors, it can release the
excess processors to the job scheduler to be reallotted to jobs in need. When a
job needs more processors, it can make a request to the job scheduler. Based
on this parallelism feedback, the job scheduler can adaptively change the allot-
ment of processors according to the availability of processors and the system
administrative policy.

A two-level scheduler communicates the parallelism feedback by each job re-
questing processors from a job scheduler at regular intervals, called quanta . The
quantum length is typically chosen to be long enough to amortize the schedul-
ing overheads, including the cost of reallotting processors among the jobs. The
job scheduler uses the parallelism feedback to assign the available processors to
the jobs according to its administrative policy. During the quantum, the job’s
allotment does not typically change. Once a job is allotted processors, the job’s
thread scheduler maps the job’s threads onto the allotted processors, reallocating
them if necessary as threads are spawned and terminated.

Various researchers [20,21,29,41,59] have proposed the use of instantaneous
parallelism — the number of processors the job can effectively use at the cur-
rent moment — as the parallelism feedback to the job scheduler. Unfortunately,
using instantaneous parallelism as feedback can either cause gross misallocation
of processor resources [49] or introduce significant scheduling overhead. For ex-
ample, the parallelism of a job may change substantially during a scheduling
quantum, alternating between parallel and serial phases. Depending on which
phase is currently active, the sampling of instantaneous parallelism may lead the
task scheduler to request either too many or too few processors. Consequently,
the job may either waste processor cycles or take too long to complete. On the
other hand, if the quantum length is set to be small enough to capture frequent
changes in instantaneous parallelism, the proportion of time spent reallotting
processors among the jobs increases, resulting in a high scheduling overhead.

A-Greedy [1] and A-Steal [2, 3] are two adaptive thread schedulers that
provide the parallelism feedback to the job scheduler. Rather than using instan-

taneous parallelism, these thread schedulers employ a single summary statistic
and the job’s behavior in the previous quantum to make processor requests of
the job scheduler. Even though this parallelism feedback is generated based on
the job’s history and may not be correlated to the job’s future parallelism, A-
Greedy and A-Steal still guarantee to make effective use of the available
processors.

Intuitively, if each job provides good parallelism feedback and makes pro-
ductive use of available processors, a good job scheduler should ensure that all
the jobs perform well. In this paper, we affirm this intuition for A-Greedy and
A-Steal in the case when the job scheduler implements dynamic equipartition-
ing (DEQ) [41, 55]. DEQ gives each job a fair allotment of processors based on
the job’s request, while allowing processors that cannot be used by a job to be
reallocated. DEQ was introduced by McCann, Vaswani, and Zahorjan [41] based
on earlier work on equipartitioning by Tucker and Gupta [55], and it has been
studied extensively [20,21,24,25,29,36,40–42,45,46,59].

This paper shows that efficient two-level adaptive schedulers can ensure that
all jobs can perform well. AGDEQ, which couples DEQ with A-Greedy, is
suitable for centralized thread scheduling, such as might be used to schedule
data-parallel jobs, wherein each job’s thread scheduler can dispatch all the ready
threads to the allotted processors in a centralized manner. ASDEQ, which cou-
ples DEQ with A-Steal, is suitable when each job distributes threads over the
allotted processors using decentralized work-stealing [13,16,31,47].

The main contributions of this paper are as follows. In a centralized environ-
ment, AGDEQ guarantees O(1)-competitiveness against an optimal clairvoyant
scheduler with respect to makespan. For any set of batched jobs, where all jobs
have the same release time, AGDEQ also achieves O(1)-competitiveness with
respect to mean response time. In a decentralized settings where the scheduler
has no knowledge of all the available threads at the current moment, ASDEQ
guarantees O(1)-competitiveness with respect to makespan for any set of jobs
with arbitrary job release time. It is also O(1)-competitive with respect to the
mean response time for batched jobs. Unlike many previous results, which ei-
ther assume clairvoyance [18, 33, 34, 38, 43, 48, 50, 56, 57] or use instantaneous
parallelism [14, 21, 22], our schedulers remove these restrictive assumptions. We
generate parallelism feedback after each quantum based on the job’s behavior
in the past quantum. Even though job’s future parallelism may not be corre-
lated with its history of parallelism, our schedulers can still guarantee constant
competitiveness for both the makespan and the mean response time. Moreover,
because the quantum length can be adjusted to amortize the cost of context-
switching during processor reallocation, our schedulers provide control over the
scheduling overhead and ensure effective utilization of processors.

The remainder of this paper is organized as follows. Section 2 describes the
job model, scheduling model, and objective functions. Section 3 describes the
AGDEQ algorithm. Sections 4 and 5 analyze the competitiveness of AGDEQ
with respect to makespan and mean response time, respectively. Section 6 presents
the ASDEQ algorithm and analyzes its performance. Section 7 gives a lower

bound on the competitiveness for mean response time. Section 9 concludes the
paper by raising issues for future research.

2 Models and Objective Functions
This section provides the background formalisms for two-level scheduling, which
will be used to study AGDEQ and ASDEQ. We formalize the job model, define
the scheduling model, and present the optimization criteria of makespan and
mean response time.

Job Model
A two-level scheduling problem consists of a collection of independent jobs
J =

{
J1, J2, . . . , J|J |

}
to be scheduled on a collection of P identical processors.

This paper restricts its attention to the situation where |J | ≤ P , that is, the
number of jobs does not exceed the number of processors. (The situation where
the parallel computer may sometimes be heavily loaded with jobs remains an
interesting open problem.) Like prior work on scheduling of multithreaded jobs
[8, 10–13, 26, 32, 44], we model the execution of a multithreaded job Ji as a
dynamically unfolding directed acyclic graph (dag) such that Ji = (V (Ji), E(Ji))
where V (Ji) and E(Ji) represent the sets of Ji’s vertices and edges, respectively.
Similarly, let V (J) =

⋃
Ji∈J V (Ji). Each vertex v ∈ V (J) represents a unit-time

instruction. The work T1(i) of the job Ji corresponds to the total number of
vertices in the dag, that is, T1(i) = |V (Ji)|. Each edge (u, v) ∈ E(Ji) represents
a dependency between the two vertices. The precedence relationship u ≺ v holds
if and only if there exists a path from vertex u to vertex v in E(Ji). The critical-
path length T∞(i) corresponds to the length of the longest chain of precedence
dependencies. The release time r(i) of the job Ji is the time immediately after
which Ji becomes first available for processing. For a batched job set J , all jobs
in J have the same release time. (Without loss of generality, we assume that
r(i) = 0 for all Ji ∈ J .)

Scheduling Model
Our scheduling model assumes that time is broken into a sequence of equal-sized
scheduling quanta 1, 2, . . ., each of length L, where each quantum q includes
the interval [Lq, Lq +1, . . . , L(q +1)−1] of time steps. The quantum length L is
a system configuration parameter chosen to be long enough to amortize schedul-
ing overheads. These overheads might include the time to reallocate processors
among the various jobs and the time for the thread scheduler to communicate
with the job scheduler, which typically involves a system call.

The job scheduler and thread schedulers interact as follows. The job scheduler
may reallocate processors between quanta. Between quantum q−1 and quantum
q, the thread scheduler (for example, A-Greedy or A-Steal) of a given job
Ji determines the job’s desire d(i, q), which is the number of processors Ji

wants for quantum q. The thread scheduler provides the desire d(i, q) to the job
scheduler as its parallelism feedback. Based on the desire of all running jobs, the
job scheduler follows its processor-allocation policy (for example, dynamic equi-
partitioning) to determine the allotment a (i, q) of the job with the constraint

that a (i, q) ≤ d(i, q). Once a job is allotted its processors, the allotment does not
change during the quantum. Consequently, the thread scheduler must do a good
job in estimating how many processors it will need in the next quantum, as well
as scheduling the ready threads on the allotted processors. Moreover, the thread
scheduler must operate in an online and nonclairvoyant manner, oblivious to the
future characteristics of the dynamically unfolding dag.

A schedule χ = (τ, π) of a job set J on P processors is defined as two
mappings τ : V (J) → {1, 2, . . . ,∞} and π : V (J) → {1, 2, . . . , P}, which map
the vertices in the job set J to the set of time steps and to the set of processors
in the machine, respectively. A valid mapping must preserve the precedence
relationship of each job: for any two vertices u, v ∈ V (J), if u ≺ v, then τ(u) <
τ(v), that is, the vertex u must be executed before the vertex v. A valid mapping
must also ensure that a processor is only assigned to one job at any time: for
any two distinct vertices u, v ∈ V (J), we have τ(u) 6= τ(v) or π(u) 6= π(v).

Objective Functions
We can now define the objective functions that a two-level scheduler should
minimize.

Definition 1 Let χ be a schedule of a job set J on P processors. The comple-
tion time a job Ji ∈ J is

Tχ(i) = max
v∈Vi

τ(v) ,

and the makespan of J is

Tχ(J) = max
Ji∈J

Tχ(i) .

The response time of a job Ji ∈ J is

Rχ(i) = Tχ(i)− r(i) ,

the total response time of J is

Rχ(J) =
∑

Ji∈J
Rχ(i) ,

and the mean response time of J is

Rχ(J) = Rχ(J)/ |J | .

That is, the completion time of Ji is simply the time at which the schedule
completes the execution of Ji. The makespan of J is the time taken to complete
all jobs in the job set. The response time of a job Ji is the duration between
its release time r(i) and the completion time Tχ(i). The total response time
of a job set is the sum of the response times of the individual jobs, and the
mean response time is the arithmetic average of the jobs’ response times. For
batched jobs where r(i) = 0 for all Ji ∈ J , the total response time simplifies to
Rχ(J) =

∑
Ji∈J Tχ(i).

Competitiveness
The competitive analysis of an online scheduling algorithm compares the algo-
rithm against an optimal clairvoyant algorithm. Let T∗(J) denote the makespan
of the jobset J scheduled by an optimal clairvoyant scheduler, and χ(A) denote
the schedule produced by an algorithm A for the job set J . A deterministic
algorithm A is said to be c-competitive if there exist constants c > 0 and b ≥ 0
such that Tχ(A)(J) ≤ c ·T∗(J) + b holds for the schedule χ(A) of each job set.
A randomized algorithm A is said to be c-competitive if there exists constants
c > 0 and b ≥ 0 such that E

[
Tχ(A)(J)

] ≤ c · T∗(J) + b holds for the schedule
χ(A) of each job set. Thus, for each job set J , a c-competitive algorithm is
guaranteed to have makespan (or expected makespan) within a factor c of that
incurred in the optimal clairvoyant algorithm (up to the additive constant b).
We shall show that AGDEQ and ASDEQ are c-competitive with respect to
makespan, where c > 0 is a small constant. For the mean response time, we shall
show that our algorithm is O(1)-competitive for batched jobs.

3 The AGDEQ Algorithm
AGDEQ is a two-level adaptive scheduler, which uses A-Greedy [1] as its
thread scheduler and DEQ [41] as its job scheduler. Given a set J of jobs and P
processors, DEQ works at the kernel level, partitioning the P processors among
the jobs. Within each job, A-Greedy schedules threads at user level onto the
allotted processors. The interactions between DEQ and A-Greedy follow the
scheduling model described in Section 2. At the beginning of each quantum
q, the A-Greedy thread scheduler for each job Ji ∈ J provides its desire
d(i, q) as parallelism feedback to the DEQ job scheduler. DEQ collects the desire
information from all jobs and decides the allotment a (i, q) for each job Ji. In
this section, we briefly overview the basic properties of A-Greedy and DEQ.

The Adaptive Greedy Thread Scheduler
A-Greedy [1] is an adaptive greedy thread scheduler with parallelism feedback.
In a two-level adaptive scheduling system, A-Greedy performs the following
functions.
• Between quanta, it estimates its job’s desire and requests processors from

the job scheduler using its desire-estimation algorithm .

• During the quantum, it schedules the ready threads of the job onto the
allotted processors using its thread-scheduling algorithm .

We now describe each of these algorithms.
A-Greedy’s desire-estimation algorithm is parameterized in terms of a uti-

lization parameter δ > 0 and a responsiveness parameter ρ > 1, both
of which can be tuned to affect variations in guaranteed bounds for waste and
completion time.

Before each quantum, A-Greedy for a job Ji ∈ J provides parallelism
feedback to the job scheduler based on the Ji’s history of utilization for the
previous quantum. A-Greedy classifies quanta as “satisfied” versus “deprived”
and “efficient” versus “inefficient.” A quantum q is satisfied if a (i, q) = d(i, q),

in which case Ji’s allotment is equal to its desire. Otherwise, the quantum is
deprived . The quantum q is efficient if A-Greedy utilizes no less than a δ
fraction of the total allotted processor cycles during the quantum, where δ is
the utilization parameter. Otherwise, the quantum is inefficient . Of the four
possibilities of classification, however, A-Greedy only uses three: inefficient,
efficient-and-satisfied, and efficient-and-deprived.

Using this three-way classification and the job’s desire for the previous quan-
tum, A-Greedy computes the desire for the next quantum using a simple
multiplicative-increase, multiplicative-decrease strategy. If quantum q − 1 was
inefficient, A-Greedy decreases the desire, setting d(i, q) = d(i, q − 1)/ρ, where
ρ is the responsiveness parameter. If quantum q − 1 was efficient and satis-
fied, A-Greedy increases the desire, setting d(i, q) = ρd(i, q − 1). If quantum
q − 1 was efficient but deprived, A-Greedy keeps desire unchanged, setting
d(i, q) = d(i, q − 1).

A-Greedy’s thread-scheduling algorithm is based on greedy scheduling [12,
15,28]. After A-Greedy for a job Ji ∈ J receives its allotment a (i, q) of proces-
sors from the job scheduler, it simply attempts to keep the allotted processors
as busy as possible. During each time step, if there are more than a (i, q) ready
threads, A-Greedy schedules any a (i, q) of them. Otherwise, it schedules all of
them.

The Dynamic-Equipartitioning Job Scheduler
DEQ is a dynamic-equipartitioning job scheduler [41,55] which attempts to give
each job a fair share of processors. If a job cannot use its fair share, however,
DEQ distributes the extra processors across the other jobs. More precisely, upon
receiving the desires {d(i, q)} from the thread schedulers of all jobs Ji ∈ J , DEQ
executes the following processor-allocation algorithm :
1. Set n = |J |. If n = 0, return.

2. If the desire for every job Ji ∈ J satisfies d(i, q) ≥ P/n, assign each job
a (i, q) = P/n processors.

3. Otherwise, let J ′ = {Ji ∈ J : d(i, q) < P/n}. Allot a (i, q) = d(i, q) proces-
sors to each Ji ∈ J ′. Update J = J −J ′. Go to Step 1.
Accordingly, for a given quantum all jobs receive the same number of proces-

sors to within 1, unless their desire is less. To simplify the analysis in this pa-
per, we shall assume that all deprived jobs receive exactly the same number of
processors, which we term the mean deprived allotment for the quantum.
Relaxing this assumption may double the execution-time bound of a job, but
our algorithms remain O(1)-competitive. A tighter but messier analysis retains
the constants of the simpler analysis presented here.

4 Makespan of AGDEQ
This section shows that AGDEQ is c-competitive with respect to makespan for
a constant c ≥ 1. The exact value of c is related to the choice of the utilization
parameter and responsiveness parameter in A-Greedy. In this section, we first

review lower bounds for makespan. Then, we analyze the competitiveness of
AGDEQ in the simple case where all jobs are released at time step 0 and the
scheduling quantum length is L = 1. Finally, we analyze the competitiveness of
AGDEQ for the general case.

Lower Bounds
Given a job set J and P processors, lower bounds on the makespan of any job
scheduler can be obtained based on release time, work, and critical-path length.
Recall that for a job Ji ∈ J , the quantities r(i), T1(i), and T∞(i) represent the
release time, work, and critical-path length of Ji, respectively. Let T∗(J) denote
the makespan produced by an optimal scheduler on a job set J scheduled on P
processors. Let T1(J) =

∑
Ji∈J T1(i) denote the total work of the job set. The

following two inequalities give two lower bounds on the makespan [14]:

T∗(J) ≥ max
Ji∈J

{r(i) + T∞(i)} , (1)

T∗(J) ≥ T1(J)/P . (2)

Analysis of a Simple Case
To ease the understanding of the analysis, we first consider the simple case where
all jobs are released at time step 0 and the quantum length L = 1. We show that
in this case, AGDEQ is O(1)-competitive with respect to makespan. Afterward,
we shall extend the analysis to the general case.

The next two lemmas, proved in [1], bound the satisfied steps and the waste
of any single job scheduled by A-Greedy when the quantum length is L = 1.
We restate them as a starting point for our analysis.

Lemma 1 [1] Suppose that A-Greedy schedules a job Ji with critical-path
length T∞(i) on a machine with P processors. Let ρ = 2 denote A-Greedy’s
responsiveness parameter, δ = 1 its utilization parameter, and L = 1 the quan-
tum length. Then, A-Greedy produces at most 2T∞(i)+lg P +1 satisfied steps.

ut
Lemma 2 [1] Suppose that A-Greedy schedules a job Ji with work T1(i) on
a machine. If ρ = 2 is A-Greedy’s responsiveness parameter, δ = 1 is its
utilization parameter, and L = 1 is the quantum length, then A-Greedy wastes
no more than 2T1(i) processor cycles in the course of the computation. ut

The next lemma shows that for the simple case, AGDEQ is O(1)-competitive
with respect to makespan. Let χ = (τ, π) be the schedule of a job set J produced
by AGDEQ. For simplicity we shall use the notation T(J) = Tχ(J) for the
remaining of the section.

Lemma 3 Suppose that a job set J is scheduled by AGDEQ on a machine
with P processors, and suppose that all jobs arrive at time 0. Let ρ = 2 denote
A-Greedy’s responsiveness parameter, δ = 1 its utilization parameter, and L
the quantum length. Then, the makespan of J is bounded by

T(J) ≤ 5T∗(J) + lg P + 1 ,

where T∗(J) is the makespan produced by an optimal clairvoyant scheduler.

Proof. Suppose that the job Jk is the last job completed in the execution of the
job set J scheduled by AGDEQ. Since the scheduling quantum length is L = 1,
we can treat each scheduling quantum as a time step. Let S(k) and D(k) denote
the set of satisfied steps and the set of deprived steps respectively for job Jk.
Since Jk is the last job completed in the job set, we have T(J) = |S(k)|+ |D(k)|.
We bound |S(k)| and |D(k)| separately.

By Lemma 1, we know that the number of satisfied steps for job Jk is |S(k)| ≤
2T∞(i) + lg P + 1.

We now bound the number of deprived steps for Jk. If a step t is deprived for
job Jk, the job gets fewer processors than it requested. On such a step t ∈ D(k),
DEQ must have allotted all the processors, and so we have

∑
Ji∈J a (i, t) = P ,

where a (i, t) denotes the allotment of the job Ji on step t. Let a (J , D(k)) =∑
t∈D(k)

∑
Ji∈J a (i, t) denote the total processor allotment of all jobs in J

over Jk’s deprived steps D(k). We have a (J , D(k)) =
∑

t∈D(k)

∑
Ji∈J a (i, t) =∑

t∈D(k) P = P |D(k)|. Since any allotted processor is either working on the
ready threads of the job or wasted because of insufficient parallelism, the to-
tal allotment for any job Ji is bounded by the sum of its total work T1(i) and
its total waste w(i). By Lemma 2, the waste for the job Ji is w(i) ≤ 2T1(i),
which is at most twice its work. Thus, the total allotment for job Ji is at most
3T1(i), and the total allotment for all jobs is at most

∑
Ji∈J 3T1(i) = 3T1(J).

Therefore, we have a (J , D(k)) ≤ 3T1(J). Given that a (J , D(k)) ≤ 3T1(J) and
a (J , D(k)) = P |D(k)|, we have |D(k)| ≤ 3T1(J)/P .

Thus, we have T(J) = |S(k)| + |D(k)| ≤ 3T1(J)/P + 2T∞(k) + lg P + 1.
Combining this bound with Inequalities (1) and (2), we obtain T(J) ≤ 5T∗(J)+
lg P + 1. ut

Since P is the number of processors on the machine, which is an independent
variable with respect to any job set J , Lemma 3 indicates that AGDEQ is
5-competitive with respect to makespan.

Analysis of the General Case
With the intuition from the simple case in hand, we now generalize the makespan
analysis of AGDEQ to job sets with arbitrary job release times and scheduled
with any quantum length L. First, we state two lemmas from [1] that describe
the satisfied steps and the waste of a single job scheduled by A-Greedy. Then,
we show that AGDEQ is O(1)-competitive with respect to makespan in the
general case.

Lemma 4 [1] Suppose that A-Greedy schedules a job Ji with critical-path
length T∞(i) on a machine with P processors. Let ρ denote A-Greedy’s re-
sponsiveness parameter, δ its utilization parameter, and L the quantum length,.
Then, A-Greedy produces at most 2T∞(i)/(1−δ)+L logρ P +L satisfied steps.

ut
Lemma 5 [1] Suppose that A-Greedy schedules a job Ji with work T1(i) on a
machine. Let ρ denote A-Greedy’s responsiveness parameter, δ its utilization

parameter, and L the quantum length. Then, A-Greedy wastes at most (1 +
ρ− δ)T1(i)/δ processor cycles in the course of the computation. ut

The following theorem analyzes the makespan of any job set J with arbitrary
release times, when J is scheduled by AGDEQ with quantum length L. The
makespan bound is based on the release time r(i), critical-path length T∞(i),
and work T1(i) of individual job Ji, and the total work T1(J) of the job set J .

Theorem 6 Suppose AGDEQ schedules a job set J on a machine with P
processors. Let ρ denote A-Greedy’s responsiveness parameter, δ its utiliza-
tion parameter, and L the quantum length. Then, AGDEQ completes the job
set in

T(J) ≤ ρ + 1
δ

T1(J)
P

+
2

1− δ
max
Ji∈J

{T∞(i) + r(i)}+ L logρ P + 2L

time steps.

Proof. The proof is similar to that in the simple case for Lemma 3. Let job Jk be
the last job to complete among the jobs in J . Let S(k) and D(k) denote the set of
satisfied steps and the set of deprived steps for Jk, respectively. The earliest that
the job Jk can start its execution is at the beginning of the quantum immediately
after Jk’s release, which is the quantum q satisfying Lq < r(k) ≤ L(q+1). Thus,
we have T(J) < r(k) + L + |S(k)|+ |D(k)|. From Lemma 4, we know that the
number of satisfied steps is |S(k)| ≤ 2T∞(k)/(1− δ) + L logρ P + L. It remains
to bound the quantity |D(k)|.

By definition, DEQ must have allotted all processors to jobs on any step
t ∈ D(k) where Jk is deprived. Thus, the total allotment of J over Jk’s deprived
steps D(k) is a (J , D(k)) =

∑
t∈D(k)

∑
Ji∈J a (i, t) = P |D(k)|. Since any allot-

ted processor is either working or wasted, the total allotment for any job Ji is
bounded by the sum of its total work T1(i) and total waste w(i). By Lemma 5,
the waste for the job Ji is at most (ρ− δ + 1)/δ times its work, and hence, the
total allotment for job Ji is at most T1(i) + w(i) ≤ (ρ + 1)T1(i)/δ, and the total
allotment for all jobs is at most

∑
Ji∈J (ρ+1)T1(i)/δ = ((ρ+1)/δ)T1(J). Conse-

quently, we have a (J , D(k)) ≤ ((ρ + 1)/δ)T1(J). Since a (J , D(k)) = P |D(k)|,
it follows that

|D(k)| < ρ + 1
δ

T1(J)
P

.

Combining these bounds, we obtain

T(J) < r(k) + L + |D(k)|+ |S(k)|
≤ r(k) + L +

ρ + 1
δ

T1(J)
P

+
2

1− δ
T∞(k) + L logρ P + L

≤ ρ + 1
δ

T1(J)
P

+
2

1− δ
(r(k) + T∞(k)) + L logρ P + 2L

≤ ρ + 1
δ

T1(J)
P

+
2

1− δ
max
Ji∈J

{T∞(i) + r(i)}+ L logρ P + 2L .

ut
Since both T1(J)/P and maxJi∈J {T∞(i) + r(i)} are lower bounds of T∗(J),

we obtain the following corollary.

Corollary 7 Suppose that AGDEQ schedules a job set J on a machine with P
processors. Let ρ denote A-Greedy’s responsiveness parameter, δ its utilization
parameter, and L the quantum length. Then, AGDEQ completes the job set in

T(J) ≤
(

ρ + 1
δ

+
2

1− δ

)
T∗(J) + L logρ P + 2L

time steps, where T∗(J) is the makespan of J produced by an optimal clairvoyant
scheduler. ut

When δ = 0.5 and ρ is approaching 1, the competitiveness ratio (ρ + 1)/δ +
2/(1−δ) approaches its minimum value 8. Thus, AGDEQ is (8+ ε)-competitive
with respect to makespan for any constant ε > 0.

5 Mean Response Time of AGDEQ for Batched
Jobs

This section shows that AGDEQ is O(1)-competitive for batched jobs with
respect to the mean response time, an important measure for multiuser environ-
ments where we desire as many users as possible to get fast response from the
system. To analyze the mean response time of job sets scheduled by AGDEQ, we
first describe lower bounds and some preliminary concepts. Then, we prove that
AGDEQ is O(1)-competitive with respect to mean response time for batched
jobs.

Lower Bounds and Preliminaries
Before stating the lower bounds on mean response time for a batched job set,
we first define some terms.

Definition 2 Given a finite list A = 〈αi〉 of n = |A| integers, define f :
{1, 2, . . . , n} → {1, 2, . . . , n} to be a permutation satisfying αf(1) ≤ αf(2) ≤
· · · ≤ αf(n). The squashed sum of A is defined as

sq-sum(A) =
n∑

i=1

(n− i + 1)αf(i) .

The squashed work area of a job set J on a set of P processors is

swa (J) =
1
P

sq-sum(〈T1(i)〉) ,

where T1(i) is the work of job Ji ∈ J . The aggregate critical-path length of
J is

T∞(J) =
∑

Ji∈J
T∞(i) ,

where T∞(i) is the critical-path length of job Ji ∈ J .

The research in [22,56,57] establishes two lower bounds for the mean response
time:

R∗(J) ≥ T∞(J)/ |J | , (3)
R∗(J) ≥ swa (J) / |J | , (4)

where R∗(J) denotes the mean response time of J scheduled by an optimal
clairvoyant scheduler. Both the aggregate critical-path length T∞(J) and the
squashed work area swa (J) are lower bounds for the total response time R∗(J)
under an optimal clairvoyant scheduler.

We extend the classification of “satisfied” versus “deprived” from quanta to
time steps. A job Ji is satisfied at step t ∈ [Lq, Lq + 1, . . . , L(q + 1) − 1] if Ji

is satisfied at the quantum q. Otherwise, the time step t is deprived . At time
step t, let JS(t) denote the set of jobs that are satisfied, and let JD(t) denote
the set of jobs that are deprived. According to DEQ, all deprived jobs receive
the mean deprived allotment.

To assist in the analysis of the mean response time, we now define some
auxiliary concepts.

Definition 3 Suppose that a job set J is scheduled by AGDEQ on P proces-
sors. For any job Ji ∈ J , let S(i) and D(i) denote the sets of satisfied and
deprived time steps, respectively. The total satisfied time of J is

sat (J) =
∑

Ji∈J
|S(i)| .

The accumulated allotment of Ji is

a(i) =
∞∑

t=1

a (i, t) .

The accumulated deprived allotment of Ji is

a (i,D(i)) =
∑

t∈D(i)

a (i, t) .

The squashed deprived allotment area of J is

sdaa (J) =
1
P

sq-sum(〈a (i,D(i))〉) .

Thus, sat (J) is the total number of satisfied steps of all jobs in J , a(i) is the job
Ji’s total allotment on all time steps, a (i,D(i)) is its total allotment during all
its deprived steps, and sdaa (J) is 1/P of the squashed sum of the accumulated
deprived allotments for all jobs in J .

Analysis
We now turn to show that AGDEQ is O(1)-competitive with respect to mean
response time for batched jobs. Let χ = (τ, π) be the schedule of a job set J
produced by AGDEQ. For simplicity we shall use the notations R(J) = Rχ(J)
and R(J) = Rχ(J). Let ρ and δ be A-Greedy’s responsiveness and utilization
parameters, respectively. We shall establish the bound

R(J) ≤
(

2− 2
|J |+ 1

)((
ρ + 1

δ
+

2
1− δ

)
R∗(J) + L logρ P + L

)
,

where R∗(J) is the mean response time produced by an optimal clairvoyant
scheduler.

Our analysis comprises four major steps. First, we prove three technical lem-
mas concerning squashed sums. Second, we prove that

R(J) ≤
(

2− 2
|J |+ 1

)
(sdaa (J) + sat (J)) , (5)

thereby relating the total response time R(J) to the squashed deprived allotment
area sdaa (J) and the total satisfied time sat (J). Third, we relate the squashed
deprived allotment area sdaa (J) and the squashed work area swa (J). Finally,
we relate the total satisfied time sat (J) to the aggregate critical-path length
T∞(J). Since both swa (J) and T∞(J) are lower bounds on the total response
time, we can derive an upper bound of the mean response time against the
optimal.

We begin with three technical lemmas that describe properties of the squashed
sum.

Lemma 8 Let 〈αi〉 and 〈βi〉 be two lists of nonnegative integers with m elements
each, and suppose that αi ≤ βi for i = 1, 2, . . . ,m. Then, we have sq-sum(〈αi〉) ≤
sq-sum(〈βi〉).

Proof. Let f : {1, 2, . . . ,m} → {1, 2, . . . ,m} be the permutation satisfying
αf(1) ≤ αf(2) ≤ · · · ≤ αf(m), and let g : {1, 2, . . . ,m} → {1, 2, . . . ,m} be the
permutation satisfying βg(1) ≤ βg(2) ≤ · · · ≤ βg(m).

We first show that αf(i) ≤ βg(i) for i = 1, 2, . . . , m. Suppose for the purpose
of contradiction that there exists a j ∈ {1, 2, . . . , m} such that αf(j) > βg(j).
Then, there must be at least j integers smaller than αf(j) in 〈βi〉, namely
βg(1), βg(2), . . . , βg(j). Since αi ≤ βi for i = 1, 2, . . . , m, we have αg(i) ≤ βg(i)

for i = 1, 2, . . . , j. Thus, there are at least j elements smaller than αf(j) in 〈αi〉,
namely αg(1), αg(2), . . . , αg(j). But, since αf(j) is the jth smallest number in 〈αi〉,
we obtain the contradiction that there are at most j − 1 integers smaller than
αf(j) in 〈αi〉, thereby establishing that that αf(i) ≤ βg(i) for i = 1, 2, . . . ,m.

Consequently, by Definition 2, we have

sq-sum(〈αi〉) =
m∑

i=1

(m− i + 1)αf(i)

≤
m∑

i=1

(m− i + 1)βg(i)

= sq-sum(〈βi〉) .

ut

Lemma 9 Let l, h, and m be nonnegative integers such that l ≤ m. Suppose
that a list 〈αi〉 of m nonnegative integers has total value

∑m
i=1 αi = lh and that

each αi satisfies αi ≤ h. Then, the list’s squashed sum satisfies sq-sum(〈αi〉) ≥
hl(l+1)/2, and its minimum occurs when α1 = α2 = · · · = αl = 0 and αm−l+1 =
αm−l+2 = · · · = αm = h.

Proof. Suppose for the purpose of contradiction that a given list 〈αi〉 of integers
minimizes the function sq-sum(〈αi〉) but does not satisfy α1 = α2 = · · · = αl = 0
and αm−l+1 = αm−l+2 = · · · = αm = h. Then, there must exist at least one
integer αx > 0 with index x < m − l + 1 and at least one integer αy < h with
index y ≥ m− l + 1.

Define another list 〈α′i〉 of integers such that α′x = αx − 1, α′y = αy + 1, and
α′i = αi if i 6= x and i 6= y. We know that

∑m
i=1 α′i = lh and α′i ≤ h for each

index i = 1, 2, . . . , m. The squashed sum difference of these two lists is given by

sq-sum(〈α′i〉)− sq-sum(〈αi〉)
= (m− x + 1)α′x + (m− y + 1)α′y − ((m− x + 1)αx + (m− y + 1)αy)
= (m− x + 1)(α′x − αx) + (m− y + 1)(α′y − αy)
= −(m− x + 1) + (m− y + 1)
= x− y .

Since x < m− l + 1 and y ≥ m− l + 1, we have x < y, and thus we obtain the
contradiction sq-sum(〈α′i〉) < sq-sum(〈αi〉). Since the minimum of the squashed
sum occurs when α1 = α2 = · · · = αl = 0 and αm−l+1 = αm−l+2 = · · · =
αm = h, the minimum value of the squashed sum is

∑m
i=1(m − i + 1)αi =∑m

i=m−l+1(m− i + 1)h = hl(l + 1)/2. ut

Lemma 10 Let 〈αi〉 be a list of m nonnegative integers, and let h ≥ 0 be another
integer. Generate another list of integers 〈βi〉 by choosing any l integers from
〈αi〉 and increasing each of their values by h. Then, we have

sq-sum(〈βi〉) ≥ sq-sum(〈αi〉) + hl(l + 1)/2 .

Proof. Assume that the elements in both 〈αi〉 and 〈βi〉 are sorted such that
α1 ≤ α2 ≤ · · · ≤ αm and β1 ≤ β2 ≤ · · · ≤ βm. Observe that when viewed in
sorted order, if an element of 〈βi〉 was produced by increasing an element of 〈αi〉
by h, their indexes may now no longer correspond.

First, we show by contradiction that βi ≥ αi. If there exists an index j such
that βj < αj , there must exist at least j integers strictly less than αj in the
list 〈βi〉, namely β1, β2, . . . , βj . Each βx among these j integers corresponds to

a distinct αy ∈ 〈αi〉, where βx = αy or βx = αy + h. Thus, there are at least j
integers strictly less than αj in the list 〈αi〉. But, there can be only at most j−1
integers less than αj in the list 〈αi〉, namely α1, α2, . . . , αj−1. Contradiction.

Second, we show by contradiction that βi ≤ αi +h. If there exists an index j
such that βj > αj +h, there must exist at least m−j +1 integers strictly greater
than βj + h in the list 〈βi〉, namely βj , βj+1, . . . , βm. Each βx of these m− j + 1
integers corresponds to a distinct αy ∈ 〈αi〉, where βx = αy or βx = αy + h.
Thus, there are at least m − j + 1 integers strictly greater than αj in the list
〈αi〉. But, there can be at most m − j integers greater than αj in 〈αi〉, namely
αj+1, αj+2, . . . , αm. Contradiction.

Now, define another list 〈γi〉 of integers by γi = βi − αi for i = 1, 2, . . . ,m.
From Definition 2 we have

sq-sum(〈βi〉)− sq-sum(〈αi〉) =
m∑

i=1

(m− i + 1)(βi − αi)

=
m∑

i=1

(m− i + 1)γi

= sq-sum(〈γi〉) .

Since we obtain 〈βi〉 from 〈αi〉 by choosing l numbers and increasing each of
them by h, we have

m∑

i=1

γi =
m∑

i=1

βi −
m∑

i=1

αi

= lh .

Because we have 0 ≤ βi−αi ≤ h, it follows that 0 ≤ γi ≤ h. From Lemma 9, we
know that the squashed sum of the list 〈γi〉 is sq-sum(〈γi〉) ≥ hl(l+1)/2, and its
minimum occurs when γ1 = γ2 = · · · = γm−l = 0 and for γm−l+1 = γm−l+2 =
· · · = γm = h. Thus, we have sq-sum(〈βi〉)− sq-sum(〈αi〉) ≥ hl(l +1)/2, and the
minimum occurs when

βi =
{

αi if i = 1, 2, . . . , m− l,
αi + h if i = m− l + 1, m− l + 2, . . . , m.

ut
The second step of our analysis bounds the total response time R(J) of

AGDEQ in terms of the squashed deprived allotment area sdaa (J) and total
satisfied time sat (J).

Lemma 11 Suppose that a job set J is scheduled by AGDEQ. The total re-
sponse time of J can be bounded as

R(J) ≤
(

2− 2
|J |+ 1

)
(sdaa (J) + sat (J)) , (6)

where sdaa (J) is the squashed deprived allotment area of J and sat (J) is the
total satisfied time of J .

Proof. Suppose that AGDEQ produces a schedule χ = (τ, π) for J . Let T =
Tχ(J) be the completion time of the job set J .

First, let us define some notation. For any time step t, represent set of time
steps from t to the completion of J by −→

t = {t, t + 1, . . . , T}. We shall be
interested in “suffixes” of jobs, namely, the portions of jobs that remain after
some number of steps have been executed. To that end, define the t-suffix of a
job Ji ∈ J to be the job Ji

(−→
t

)
induced by those vertices in V (Ji) that execute

on or after time t, that is,

Ji

(−→
t

)
=

(
V

(
Ji

(−→
t

))
, E

(
Ji

(−→
t

)))
,

where v ∈ V
(
Ji

(−→
t

))
if v ∈ V (Ji) and τ(v) ≥ t, and (u, v) ∈ E

(
Ji

(−→
t

))
if

(u, v) ∈ E(Ji) and u, v ∈ V
(
Ji

(−→
t

))
. The t-suffix of the job set J is

J
(−→

t
)

=
{
Ji

(−→
t

)
: Ji ∈ J and V

(
Ji

(−→
t

)) 6= ∅} .

Thus, we have J = J
(−→1)

, and the number of incomplete jobs at time step t is
the number

∣∣J
(−→

t
)∣∣ of nonempty jobs in J

(−→
t

)
. Since we only consider batched

jobs, the number of incomplete jobs is decreasing monotonically, and hence, we
have ∣∣J

(−−→
t + 1

)∣∣ ≤ ∣∣J
(−→

t
)∣∣ . (7)

The total response times of J
(−→

t
)

and J
(−−→
t + 1

)
can also be related using this

notation. Since each incomplete job of J
(−→

t
)

adds one time step into its total
response time during step t, we have

R
(
J

(−→
t

))
= R

(
J

(−−→
t + 1

))
+

∣∣J
(−→

t
)∣∣ . (8)

We shall prove the lemma by induction on the remaining execution time of
the job set J

(−→
t

)
.

Basis: t = T+1. Since we have J
(−−−→
T + 1

)
= ∅, it follows that R

(
J

(−−−→
T + 1

))

= 0, sdaa
(
J

(−−−→
T + 1

))
= 0, and sat

(
J

(−−−→
T + 1

))
= 0. Thus, the claim holds

trivially.
Induction: 1 ≤ t ≤ T . Suppose that the lemma holds for J

(−−→
t + 1

)
. We shall

prove that it holds for J
(−→

t
)
.

We first define some notation. At any time step t, the incomplete jobs can
be partitioned as J

(−→
t

)
= JS(t) ∪ JD(t), representing the set of satisfied and

deprived jobs at time t, respectively. For any job Ji ∈ J and time t, define

S (i, t) =
{{t} if Ji ∈ JS(t) ,
∅ if Ji 6∈ J S(t) ;

and similarly, define

D (i, t) =
{{t} if Ji ∈ JD(t) ,
∅ if Ji 6∈ JD(t) .

We can extend these definitions to suffix ranges:

S
(
i,
−→
t

)
=

T⋃

t′=t

S (i, t′) ,

D
(
i,
−→
t

)
=

T⋃

t′=t

D (i, t′) .

We now relate the total satisfied times of J
(−→

t
)

and J
(−−→
t + 1

)
. By definition

of total satisfied time and using the fact that
∑

Ji∈J |S (i, t)| = |J S(t)|, we have

sat
(
J

(−→
t

))
=

∑

Ji∈J

∣∣S (
i,
−→
t

)∣∣

=
∑

Ji∈J
|S (i, t)|+

∑

Ji∈J

∣∣S (
i,
−−→
t + 1

)∣∣

= |J S(t)|+ sat
(
J

(−−→
t + 1

))
. (9)

We next relate the accumulated deprived allotments a
(
i,D

(
i,
−→
t

))
and

a
(
i,D

(
i,
−−→
t + 1

))
. Job Ji’s accumulated deprived allotment on −→t is given by

a
(
i, D

(
i,
−→
t

))
=

∑

t′∈D(i,−→t)
a (i, t′) .

We consider two cases depending on whether Ji ∈ JS(t) or Ji ∈ JD(t). If
Ji ∈ JS(t), we have D (i, t) = ∅ and D

(
i,
−→
t

)
= D

(
i,
−−→
t + 1

)
, and thus, Ji’s

accumulated deprived allotment is

a
(
i,D

(
i,
−→
t

))
=

∑

t′∈D(i,−→t)
a (i, t′)

=
∑

t′∈D(i,
−→
t+1)

a (i, t′)

= a
(
i,D

(
i,
−−→
t + 1

))
. (10)

If Ji ∈ JD(t), we have D (i, t) = {t} and D
(
i,
−→
t

)
= D

(
i,
−−→
t + 1

)∪{t}. Moreover,
Ji has allotment a (i, t) = p (t), where p (t) denotes the mean deprived allotment
at time step t. Thus, Ji’s accumulated deprived allotment is

a
(
i,D

(
i,
−→
t

))
=

∑

t′∈D(i,−→t)
a (i, t′)

=
∑

t′∈D(i,
−→
t+1)

a (i, t′) + a (i, t)

= a
(
i,D

(
i,
−−→
t + 1

))
+ a (i, t)

= a
(
i,D

(
i,
−−→
t + 1

))
+ p (t) . (11)

Thus, going backwards from step t + 1 to step t, the accumulated deprived
allotment either stays the same or increases by p (t), depending on whether step
t is satisfied or deprived, respectively.

We now use Lemma 10 to relate the squashed deprived allotment areas
of J

(−→
t

)
and J

(−−→
t + 1

)
. Let n =

∣∣J
(−→

t
)∣∣ denote the number of incomplete

jobs before step t. For i = 1, 2, . . . , n, let αi = a
(
i,D

(
i,
−−→
t + 1

))
, and let βi =

a
(
i,D

(
i,
−→
t

))
. If Ji ∈ JS(t), Equation (10) implies that βi = αi. If Ji ∈ JD(t),

Equation (11) implies that βi = αi+p (t). Thus, the list 〈βi〉 can be generated by
choosing l = |JD(t)| integers from 〈αi〉 and increasing each of them by h = p (t).
Applying Lemma 10 and the definition of squashed deprived allotment area, we
obtain

sdaa
(
J

(−→
t

))

=
1
P

sq-sum
(〈

a
(
i,D

(
i,
−→
t

))〉)

≥ 1
P

(
sq-sum

(〈
a

(
i,D

(
i,
−−→
t + 1

))〉)
+ p (t) |JD(t)| (|JD(t)|+ 1) /2

)

= sdaa
(
J

(−−→
t + 1

))
+ p (t) |JD(t)| (|JD(t)|+ 1) /2P . (12)

We now can complete the proof of the lemma by using Inequality (7), Equa-
tions (8) and (9), and Inequality (12) to bound the total response time of J

(−→
t

)
:

R
(
J

(−→
t

))

= R
(
J

(−−→
t + 1

))
+

∣∣J
(−→

t
)∣∣

≤
(

2− 2∣∣J
(−−→
t + 1

)∣∣ + 1

)
(
sdaa

(
J

(−−→
t + 1

))
+ sat

(
J

(−−→
t + 1

)))
+

∣∣J
(−→

t
)∣∣

≤
(

2− 2∣∣J
(−→

t
)∣∣ + 1

)
(
sdaa

(
J

(−−→
t + 1

))
+ sat

(
J

(−−→
t + 1

)))
+

∣∣J
(−→

t
)∣∣

≤
(

2− 2
n + 1

)(
sdaa

(
J

(−→
t

))− p (t) |JD(t)| (|JD(t)|+ 1)
2P

)

+
(

2− 2
n + 1

) (
sat

(
J

(−→
t

))− |J S(t)|) + n

≤
(

2− 2
n + 1

) (
sdaa

(
J

(−→
t

))
+ sat

(
J

(−→
t

)))

−
(

2− 2
n + 1

)(
p (t) |JD(t)| (|JD(t)|+ 1)

2P
+ |J S(t)|

)
+ n

We must show that

(
2− 2

n + 1

)(
p (t) |JD(t)| (|JD(t)|+ 1)

2P
+ |J S(t)|

)
− n ≥ 0

Using the facts that p (t) ≥ P/n, |JD(t)| = n − |J S(t)|, |J S(t)| is an integer,
and 0 ≤ |J S(t)| ≤ n, we obtain

(
2− 2

n + 1

)(
p (t) |JD(t)| (|JD(t)|+ 1)

2P
+ |J S(t)|

)
− n

≥ n

n + 1

(
p (t)
P

|JD(t)| (|JD(t)|+ 1) + 2 |J S(t)| − (n + 1)
)

≥ n

n + 1

(|JD(t)| (|JD(t)|+ 1)
n

+ 2 |J S(t)| − n− 1
)

=
1

n + 1
(|JD(t)| (|JD(t)|+ 1) + 2n |J S(t)| − n2 − n

)

=
1

n + 1
(
(n− |J S(t)|) (n− |J S(t)|+ 1) + 2n |J S(t)| − n2 − n

)

=
1

n + 1
|J S(t)| (|J S(t)| − 1)

≥ 0 .

ut
The third step of our analysis bounds the squashed deprived allotment area

in terms of the squashed work area.

Lemma 12 Suppose that a job set J is scheduled by AGDEQ, where ρ and
δ are A-Greedy’s responsiveness and utilization parameters, respectively. The
squashed deprived allotment area of J can be bounded as

sdaa (J) ≤ ρ + 1
δ

swa (J) ,

where swa (J) is the squashed work area of the job set J .

Proof. We first show that a (i,D(i)) ≤ cT1(i) for every job Ji ∈ J , where
a(i) and a (i,D(i)) are Ji’s accumulated allotment and accumulated deprived
allotment, respectively, and c = (ρ+1)/δ. By Definition 3, we have a (i, D(i)) =∑

t∈D(i) a (i, t) ≤ ∑∞
t=0 a (i, t) = a(i), since D(i) ⊆ {1, 2, . . . ,∞} and a (i, t) ≥ 0.

The processor allotments to any job are either used to make progress on the
total work T1(i) or wasted. According to Lemma 5, any job Ji wastes at most
w(i) = ((ρ + 1− δ)/δ)T1(i) processor cycles. For each job Ji, we have

a (i,D(i)) ≤ a(i)
= T1(i) + w(i)
≤ ((ρ + 1− δ)/δ)T1(i) + T1(i)
= cT1(i) .

To complete the proof, we use Definition 2 and apply Lemma 8:

sdaa (J) = (1/P) sq-sum(〈a (i,D(i))〉)
≤ (1/P) sq-sum(〈cT1(i)〉)
= c · (1/P) sq-sum(〈T1(i)〉)
= c · swa (J) .

ut
The fourth step of our analysis relates the total satisfied time to the aggregate

critical-path length.

Lemma 13 Suppose that a job set J is scheduled by AGDEQ, where ρ and
δ are A-Greedy’s responsiveness and utilization parameters, respectively. The
total satisfied time of J can be bounded as

sat (J) ≤ 2
1− δ

T∞(J) + |J | (L logρ P + L) ,

where T∞(J) is the aggregate critical-path length of J .

Proof. We bound the total satisfied time using Lemma 4:

sat (J) =
∑

Ji∈J
|S(i)|

≤
∑

Ji∈J

(
2T∞(i)
1− δ

+ L logρ P + L

)

=
2

1− δ
T∞(J) + |J | (L logρ P + L) .

ut
We can now apply the results of our four-step analysis to obtain a bound on

total response time.

Theorem 14 Suppose that a job set J is scheduled by AGDEQ. Let ρ be A-
Greedy’s responsiveness parameter, δ its utilization parameter, and L the quan-
tum length. The total response time R(J) of the schedule is at most

R(J) ≤
(

2− 2
|J |+ 1

)(
ρ + 1

δ
swa (J) +

2
1− δ

T∞(J) + |J |L(logρ P + 1)
)

,

where swa (J) is the squashed work area of J , and T∞(J) is the aggregate
critical-path length of J .

Proof. Combine Lemmas 11, 12, and 13. ut
Since both swa (J) / |J | and T∞(J)/ |J | are lower bounds on R(J), we

obtain the following corollary.

Corollary 15 Suppose that a job set J is scheduled by AGDEQ. Let ρ be A-
Greedy’s responsiveness parameter, δ its utilization parameter, and L the quan-
tum length. The mean response time R(J) of the schedule satisfies

R(J) ≤
(

2− 2
|J |+ 1

)((
ρ + 1

δ
+

2
1− δ

)
R∗(J) + L logρ P + L

)
,

where R∗(J) denotes the mean response time of J scheduled by an optimal
clairvoyant scheduler.

Proof. Combine Theorem 14 with Inequalities (3) and (4). ut
Since both the quantum length L and the processor number P are indepen-

dent variables with respect to any job set J , Corollary 15 shows that AGDEQ
is O(1)-competitive with respect to mean response time for batched jobs. Specif-
ically, when δ = 1/2 and ρ approaches 1, AGDEQ’s competitiveness ratio ap-
proaches the minimum value 16. Thus, AGDEQ is (16 + ε)-competitive with
respect to mean response time for any constant ε > 0.

The competitive ratio of 16 for AGDEQ is a worst-case bound. We ex-
pect that in practice, however, AGDEQ should perform closer to optimal. In
particular, when the job set J exhibits reasonably large total parallelism, we
have swa (J) À T∞(J), and thus, the term involving swa (J) in Theorem 14
dominates the total response time. More importantly, the job scheduler DEQ is
not actually an adversary of A-Greedy, and simulations of A-Steal [2] sug-
gest that in practice A-Greedy should produce waste closer to (1/δ − 1)T1(i).
From the proof of Lemma 12, one can determine that the coefficient on the term
swa (J) becomes (2−2/(|J |+1))/δ when a job’s waste is no more than (1/δ−1)
times its work. That is to say, in this scenario, the mean response time of a job
set scheduled by AGDEQ is about (2/δ) swa (J). Since δ is typically in the
range of 0.5 to 1, if the job set has reasonably large total parallelism, AGDEQ
is likely to achieve the mean response time of less than 4 times the optimal.

6 ASDEQ Algorithm and Performance
ASDEQ is a distributed two-level adaptive scheduler that uses the A-Steal
algorithm [2, 3] as its thread scheduler and DEQ as its job scheduler. A-Steal
is a decentralized thread scheduler that employs randomized work stealing [4,13,
16,31,47] to schedule and execute a job without central knowledge of all available
threads. The interactions between A-Steal and DEQ follow the scheduling
model described in Section 2. In this section, we briefly overview the A-Steal
algorithm. We show that ASDEQ is O(1)-competitive with respect to makespan
for jobs with arbitrary release time and O(1)-competitive with respect to mean
response time for batched jobs.

The Adaptive Stealing Thread Scheduler
The A-Steal algorithm is a decentralized adaptive thread scheduler with paral-
lelism feedback, and like A-Greedy, A-Steal performs two functions. Between
quanta, it estimates its job’s desire and requests processors from the job sched-
uler. A-Steal applies the same desire-estimation algorithm as A-Greedy to
calculate its job’s desire. During the quantum, A-Steal schedules the ready
threads of the job onto the allotted processors using an adaptive work-stealing
algorithm.

Each processor allotted to a job whose threads are scheduled by A-Steal
maintains a deque (double-ended queue) of those threads that are ready to ex-
ecute. To handle an increase in allotment, A-Steal creates an empty deque for
each newly allotted processor. When the allotment decreases, A-Steal marks
the deques from deallotted processors as muggable deques. An allotted proces-
sor works on only one ready thread at a time. When the current thread spawns

a new thread, the processor pushes the current thread onto the top of the deque
and begins working on the new thread. When the current thread completes or
blocks, the processor pops the topmost thread off the deque and begins working
on it. If the deque of a processor becomes empty, however, the processor be-
comes a thief . The thief first looks for a muggable deque. If one is found, the
thief mugs the deque by taking over the entire deque as its own. Otherwise, it
randomly picks a victim processor and steals work from the bottom of the vic-
tim’s deque. If the victim has no available work, then the steal is unsuccessful ,
and the thief continues to steal at random from the other processors until it is
successful and finds work. At all time steps, every processor is either working,
stealing, or mugging.

Analysis
We now show that ASDEQ is O(1)-competitive with respect to both makespan
and mean response time. The methods used to analyze ASDEQ are similar
to those for AGDEQ. Since ASDEQ is a randomized scheduling algorithm,
however, we show that its makespan (or its expected mean response time) is
within a factor c of that incurred in an optimal clairvoyant algorithm in ex-
pectation, not in the worst case. Let χ = (τ, π) be the schedule of a job set J
produced by ASDEQ. For simplicity we shall use the notations T(J) = Tχ(J)
and R(J) = Rχ(J).

The next two lemmas, proved in [3], bound the expected satisfied steps and
the waste of any single job scheduled by A-Steal. They provide a starting point
for the analysis.

Lemma 16 [3] Suppose that A-Steal schedules a job Ji with critical path
length T∞(i) on a machine with P processors. Let ρ denote A-Steal’s respon-
siveness parameter, δ its utilization parameter, and L the quantum length. Then,
A-Steal produces at most 48T∞(i)/(1− δ) + L logρ P + L satisfied steps in ex-
pectation. ut

Lemma 17 [3] Suppose that A-Steal schedules a job Ji with work T1(i) on a
machine with P processors. Let ρ denote A-Steal’s responsiveness parameter, δ
is its utilization parameter, and L is the quantum length. Then, A-Steal wastes
at most

W ≤
(

1 + ρ− δ

δ
+

(1 + ρ)2

δ(Lδ − 1− ρ)

)
T1(i) (13)

processor cycles in the course of the computation. ut

The next theorem shows that ASDEQ is O(1)-competitive with respect to
makespan for a job set J with arbitrary release time. The following bound is
based on the release time r(i), critical-path length T∞(i), and work T1(i) of an
individual job Ji ∈ J , as well as on the total work T1(J) of the job set J .

Theorem 18 Suppose that ASDEQ schedules a job set J on a machine with P
processors. Let ρ denote A-Steal’s responsiveness parameter, δ its utilization

parameter, and L the quantum size. Then, we expect ASDEQ to complete J in

E [T(J)] ≤
(

ρ + 1
δ

+
(1 + ρ)2

δ(Lδ − 1− ρ)

)
T1(J)

P

+O

(
maxJi∈J {r(i) + T∞(i)}

1− δ

)
+ L logρ P + 2L (14)

time steps.

Proof. The proof is similar to that of Theorem 6. Let job Jk be the last job to
complete among the jobs in J . Let S(k) denote the set of satisfied steps for Jk,
and let D(k) denote the set of deprived steps for Jk. The earliest that the job
Jk can start its execution is at the beginning of the quantum immediately after
Jk’s release, which is the quantum q satisfying Lq < r(k) ≤ L(q + 1). Therefore,
we have

T(J) < r(k) + L + |S(k)|+ |D(k)| . (15)

Since Lemma 16 bounds the number of Jk’s satisfied steps, we focus on
bounding the quantity the number |D(k)| of Jk’s deprived steps. DEQ must al-
lot all processors to jobs on any deprived step, and hence we have a (J , D(k)) =∑

t∈D(k)

∑
Ji∈J a (i, t) = P |D(k)|. The allotted processor cycles are either work-

ing or wasted. Define the constant c to be

c =
ρ + 1

δ
+

(1 + ρ)2

δ(Lδ − 1− ρ)
.

Lemma 17 shows that the waste w(i) for any job Ji is at most (c−1)T1(i). Since
the total allotment a (J , D(k)) is at most the sum of the total work and total
waste, we have P |D(k)| = a (J , D(k)) ≤ ∑

Ji∈J (T1(i)+w(i)) ≤ ∑
Ji∈J cT1(i) =

cT1(J), which gives us |D(k)| ≤ cT1(J)/P .
Combining this bound, the bound E [|S(k)|] ≤ 48T∞(k)/(1−δ)+L logρ P +L

from Lemma 16, and the bound E [T(J)] < r(k) + L + E [|S(k)|] + |D(k)| from
Inequality (15) completes the proof. ut

The next theorem shows that ASDEQ is O(1)-competitive with respect to
mean response time for batched jobs.

Theorem 19 Suppose that a job set J is scheduled by ASDEQ. Let ρ de-
note A-Steal’s responsiveness parameter, δ its utilization parameter, and L
the quantum length. Then, the expected response time of the schedule satisfies

E [R(J)] ≤
(

2− 2
|J |+ 1

)(
ρ + 1

δ
+

(1 + ρ)2

δ(Lδ − 1− ρ)

)
swa (J)

+O

(
T∞(J)
1− δ

)
+ 2 |J |L(logρ P + 1) ,

where swa (J) is the squashed work area, and T∞(J) is the aggregate critical-
path length.

Proof. The proof of the theorem follows closely on that of Theorem 14. It turns
out that Lemma 11 holds for any two-level scheduler that uses DEQ, irrespective
of the thread scheduler. Lemma 12 holds with the new constant

c =
ρ + 1

δ
+

(1 + ρ)2

δ(Lδ − 1− ρ)
.

Lemma 13 can be adapted by using Lemma 16 in place of Lemma 4 to produce
the bound

E [sat (J)] = O

(
T∞(J)
1− δ

)
+ L logρ P + L .

Combining these bounds yields the theorem. ut
Theorems 18 and 19 show that ASDEQ is O(1)-competitive for both makespan

and, in the batch setting, mean response time. We anticipate that ASDEQ’s
competitive ratios would be small in practical settings, especially when many
jobs have total work much larger than critical-path length and the machine is
moderately or highly loaded. In this case, the term on T1(J)/P in Inequality (14)
is much larger than the term maxJi∈J {T∞(i) + r(i)}, which is to say, the term
on T1(J)/P generally dominates the makespan bound. The proof of Theorem 18
calculates the coefficient of T1(J)/P in Inequality (14) as the ratio of the to-
tal allotment (total work plus total waste) versus the total work. When the job
scheduler is DEQ, which is not a true adversary, empirical results [2] indicate
that each job Ji only wastes about (1/δ − 1)T1(i) processor cycles, which is not
as large as the worst-case waste in Lemma 17. Therefore, when we use DEQ
as the job scheduler, the coefficient of T1(J)/P seems more likely to approach
1/δ. In other words, the makespan of a job set J scheduled by ASDEQ might
more typically be about T1(J)/δP . Since δ is typically in the range of 0.5 to 1,
ASDEQ may exhibit makespans that are only about 2 times optimal when the
jobs have reasonably large parallelism and the machine is moderately or heavily
loaded. Similarly, ASDEQ may exhibit only 4 times optimal with respect to
mean response time for batched jobs under the same conditions.

7 Competitiveness of Mean Response Time for
Nonbatched Jobs

This section studies the competitiveness of deterministic algorithms for mini-
mizing mean response time for nonbatched job sets where jobs can be released
at arbitrary times. Let n = |J | be the number of jobs in a job set J , and let
P be the number of processors on which the jobs are scheduled. For jobs with
arbitrary release times, Motwani, Phillips, and Torng [42] study the scheduling
of serial jobs on single processor, and show that every deterministic algorithm
has competitiveness Ω(n1/3), and any randomized algorithm has competitive-
ness Ω(log n) by implicitly assuming that n > P . We extend their result for
deterministic scheduling of nonbatched jobs by showing that any deterministic
algorithm is Ω(n1/3)-competitive with respect to mean response time no matter
what the relation between n and P . Thus, our results for batched job sets in

Section 5 cannot be extended to yield strong results for nonbatched job sets,
except possibly if randomization is employed.

The following theorem provides the lower bound.

Theorem 20 Suppose that a nonbatched job set J is scheduled on P processors.
Any deterministic nonclairvoyant algorithm has competitive ratio Ω

(
n1/3

)
with

respect to the mean response time.

Proof. We exhibit a job set J on which any deterministic clairvoyant Algo-
rithm A must perform poorly with respect to the optimal offline clairvoyant
algorithm. We construct J with n = m3−m2 +m jobs in two phases as follows.
In the first phase, we allow Algorithm A to execute on m jobs released at time 0
for m(m−1) time steps during which no job completes no matter how Algorithm
A allocates the P processors. We give each of the m jobs the work it has executed
thus far plus P additional work. In the second phase, we release the remaining
jobs at times m(m−1),m(m−1)+1,m(m−1)+2, . . . ,m(m−1)+m3−m2−1,
each with work P . Every job Ji ∈ J has a critical-path length of T∞(i) = 1.

We now analyze the total response time for Algorithm A. For the m jobs
released in the first phase, none completes within the m(m− 1) time steps. Im-
mediately after time m(m−1), we have m+1 jobs, each with P work remaining.
To minimize total response time, the best that Algorithm A can do on time step
m(m − 1) + 1 is to use all P processors to complete one job. At that point,
however, another job is released, and we once again have m + 1 jobs, each with
P work remaining. This process continues until all m3 −m2 + m jobs complete.
Let χ denote the schedule of the job set J produced by the algorithm A. By
Definition 1 the total response time for Algorithm A is

Rχ(J) =
∑

Ji∈J
(Tχ(i)− r(i))

=
∑

Ji∈J
Tχ(i)−

∑

Ji∈J
r(i))

=
m3−m2+m∑

k=m(m−1)+1

k −
m3−m2−1∑

k=m(m−1)

k

= −m(m− 1) +
m3−m2+m∑

k=m3−m2

k

= −m(m− 1) +
1
2
(2m3 − 2m2 + m)(m + 1)

= Ω(m4) .

The optimal algorithm works differently, because it knows the future. During
the first m(m − 1) time steps, the optimal algorithm ignores the largest of the
m jobs released at time 0 and works on the other m − 1 jobs. The total work
that can be accomplished in the first m(m− 1) time steps is Pm(m− 1). Since
the total work of the jobs released at time 0 is Pm(m − 1) + Pm = Pm2, the

largest job must have at least Pm work, and thus the remaining m − 1 jobs
have at most Pm2 − Pm = Pm(m − 1) work among them. Thus, by ignoring
the largest jobs during the first phase, the optimal algorithm can complete all
but the largest job. Immediately after time m(m− 1), we have 2 jobs, one with
Pm work remaining, and one with P work remaining. The optimal algorithm
completes the smaller job in 1 time step, at which point a new job with P work
is released. The process repeats, and the optimal algorithm always schedules
the newly released job on all processors, which completes in just 1 time step.
Finally, at time m(m − 1) + m3 − m2 = m3 − m, only the large job remains,
which completes at time m3−m+(Pm)/P = m3, because the optimal algorithm
schedules its Pm work on all P processors.

The optimal algorithm’s response time for each of the m − 1 smaller jobs
released at time 0 is at most m(m − 1), for each of the m3 −m2 jobs released
in the second phase is 1, and for the largest job is m3. Thus, the total response
time is

R∗(J) ≤ (m− 1) ·m(m− 1) + (m3 −m2) · 1 + 1 ·m3

= O(m3) .

Hence, the competitive ratio is R(J)/R∗(J) = Ω(m4)/O(m3) = Ω(m) =
Ω(n1/3). ut

8 Related Work

This section discusses related work on the problem of scheduling to minimize
makespan and mean response time. In the offline version of the problem, all the
jobs’ resource requirments and release times are known in advance. In the online
clairvoyant version of the problem, the algorithm knows the resource require-
ments of a job when it is released, but it must base its decisions only on jobs
that have been released. In this paper, we have studied the online nonclairvoyant
version of the problem, where the resource requirements and release times are
unknown to the scheduling algorithm.

Extensive research [18,33,34,38,43,48,50,56,57] has been conducted on both
the offline and online clairvoyant versions of the problem. Since both adaptive
and nonadaptive task scheduling is strongly NP-hard even for a fixed number
(≥ 5) of processors [23], existing work has tended to focus either on finding
polynomial-time approximation algorithms or on the optimality of special cases.

The online nonclairvoyant version of the problem includes the scheduling of
a single parallel job, multiple serial jobs, and multiple parallel jobs.

Prior work on scheduling a single parallel job tends to focus on nonadap-
tive scheduling [9, 10, 13, 15, 28, 44] or adaptive scheduling without parallelism
feedback [4]. For jobs whose parallelism is unknown in advance and which may
change during execution, nonadaptive scheduling is known to waste processor
cycles [53], because a job with low parallelism may be allotted more processors
than it can productively use. Moreover, in a multiprogrammed environment, non-
adaptive scheduling may not allow a new job to start, because existing jobs may

already be using most of the processors. Although adaptive scheduling with-
out parallelism feedback allows jobs to enter the system, jobs may still waste
processor cycles if they are allotted more processors than they can use.

Adaptive thread scheduling with parallelism feedback has been studied em-
pirically [49, 52, 54] and theoretically [1–3]. Using an adaptive thread scheduler
with parallelism feedback, if a job cannot effectively use the allotted processors,
the job scheduler can repurpose those processors to the other jobs that can use
them. A-Greedy and A-Steal have been shown [1, 2] to achieve nearly linear
speedup and waste a relatively small number of processor cycles for individual
jobs. These algorithms model the job scheduler as the thread scheduler’s ad-
versary. An analytical technique called “trim analysis” shows that the thread
scheduler can perform poorly on at most a small number of time steps while ex-
hibiting near-optimal behavior on the vast majority. A-Greedy and A-Steal
focus on scheduling individual jobs well with respect to both time and waste,
but they do not offer any guarantee for the execution time of the overall job set.

Some researchers [5,7,17,30,35] have studied the online nonclairvoyant schedul-
ing of serial jobs to minimize the mean response time on single or multiple proces-
sors. For jobs with arbitrary release times, Motwani, Phillips, and Torng [42]
show that every deterministic algorithm has competitiveness Ω(n1/3) with re-
spect to mean response time, implicitly assuming that n > P . Moreover, any
randomized algorithm has competitiveness Ω(log n), also assuming that n > P .
They also show that round-robin is (2 − 2P/(n + P))-competitive. Becchetti
and Leonardi [7] present a version of the randomized multilevel feedback algo-
rithm (RMLF) and prove an O(log n log(n/P))-competitiveness result against
any oblivious adversary on a machine with P processors. This RMLF algorithm
achieves a tight O(log n) competitive ratio against an oblivious adversary on a
machine with a single processor, thereby matching the lower bound for this case.

Shmoys, Wein and Williamson in [51] study the lower bounds of online non-
clairvoyant scheduling of serial jobs with respect to makespan. They show that
the competitive ratio is at least (2−1/P) for any preemptive deterministic online
algorithm, and at least (2 − 1/

√
P) for any nonpreemptive randomized online

algorithm with an oblivious adversary.
Adaptive parallel job scheduling has been studied empirically [36,39,41,55,59]

and theoretically [6,20,24,25,29,42]. McCann, Vaswani, and Zahorjan [41] study
many different job schedulers and evaluated them on a set of benchmarks. They
also introduce the notion of dynamic equipartitioning, which gives each job a
fair allotment of processors based on the job’s request, while allowing processors
that cannot be used by a job to be reallocated to other jobs. Their studies
indicate that dynamic equipartitioning may be an effective strategy for adaptive
job scheduling. Brecht, Deng, and Gu [14] prove that dynamic equipartitioning
with instantaneous parallelism as feedback is 2-competitive with respect to the
makespan for jobs with multiple phases, where the parallelism of the job remains
constant during the phase and the phases are relatively long compared to the
length of a scheduling quantum. Their job execution model assumes that the
scheduler can achieve linear speedup during each phase as long as the allotted

processors are less than the instantaneous parallelism. With similar settings
and assumptions, Deng and Dymond [22] prove that DEQ with instantaneous
parallelism is 4-competitive for batched multiphase jobs with respect to the mean
response time.

9 Conclusion
Although the results in this paper are entirely theoretical, we are optimistic that
AGDEQ and ASDEQ will perform well in the real world. The original analyses
of A-Greedy [1] and A-Steal [2, 3] model the job scheduler as an adversary
and thereby produce pessimistic bounds. A more friendly job scheduler, such
as DEQ, should therefore allow jobs using A-Greedy and A-Steal to incur
less waste and shorter execution time than predicted by the theoretical bounds.
Since our analyses make use of these pessimistic bounds, we conjecture that in
practice the observed makespan and mean response time will be much smaller
than what the theoretical bounds predict. We are hopeful that our theoretical
work will be complemented by empirical research that can shed additional light
on the practicality of provably good two-level schedulers.

Acknowledgement
We would like to acknowledge Kunal Agrawal of MIT CSAIL for initiating the
original work on the adaptive thread scheduler A-Greedy, which has led to
fruitful collaborations with her, as well as the independent work reported in this
paper.

References
[1] Kunal Agrawal, Yuxiong He, Wen Jing Hsu, and Charles E. Leiserson. Adaptive

task scheduling with parallelism feedback. In PPoPP, 2006.
[2] Kunal Agrawal, Yuxiong He, and Charles E. Leiserson. An empirical evaluation

of work stealing with parallelism feedback. In ICDCS, 2006.
[3] Kunal Agrawal, Yuxiong He, and Charles E. Leiserson. Work stealing with paral-

lelism feedback. Unpublished manuscripts, 2006.
[4] Nimar S. Arora, Robert. D. Blumofe, and C. Greg Plaxton. Thread scheduling

for multiprogrammed multiprocessors. In SPAA, pages 119–129, Puerto Vallarta,
Mexico, 1998.

[5] Nir Avrahami and Yossi Azar. Minimizing total flow time and total completion
time with immediate dispatching. In SPAA, pages 11–18, New York, NY, USA,
2003. ACM Press.

[6] Nikhil Bansal, Kedar Dhamdhere, Jochen Konemann, and Amitabh Sinha. Non-
clairvoyant scheduling for minimizing mean slowdown. Algorithmica, 40(4):305–
318, 2004.

[7] Luca Becchetti and Stefano Leonardi. Nonclairvoyant scheduling to minimize the
total flow time on single and parallel machines. J. ACM, 51(4):517–539, 2004.

[8] Guy Blelloch, Phil Gibbons, and Yossi Matias. Provably efficient scheduling for
languages with fine-grained parallelism. Journal of the ACM, 46(2):281–321, 1999.

[9] Guy E. Blelloch, Phillip B. Gibbons, and Yossi Matias. Provably efficient schedul-
ing for languages with fine-grained parallelism. In SPAA, pages 1–12, Santa Bar-
bara, California, 1995.

[10] Guy E. Blelloch and John Greiner. A provable time and space efficient implemen-
tation of NESL. In ICFP, pages 213–225, 1996.

[11] Robert D. Blumofe. Executing Multithreaded Programs Efficiently. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA, USA, 1995.

[12] Robert D. Blumofe and Charles E. Leiserson. Space-efficient scheduling of mul-
tithreaded computations. SIAM Journal on Computing, 27(1):202–229, February
1998.

[13] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded compu-
tations by work stealing. Journal of the ACM, 46(5):720–748, 1999.

[14] T. Brecht, Xiaotie Deng, and Nian Gu. Competitive dynamic multiprocessor
allocation for parallel applications. In Parallel and Distributed Processing, pages
448 – 455. IEEE, 1995.

[15] R. P. Brent. The parallel evaluation of general arithmetic expressions. Journal of
the ACM, pages 201–206, 1974.

[16] F. Warren Burton and M. Ronan Sleep. Executing functional programs on a
virtual tree of processors. In FPCA, pages 187–194, Portsmouth, New Hampshire,
October 1981.

[17] C. Chekuri, R. Motwani, B. Natarajan, and C. Stien. Approximation techniques
for average completion time scheduling. In SODA, pages 609–618, Philadelphia,
PA, USA, 1997. Society for Industrial and Applied Mathematics.

[18] Jianer Chen and Antonio Miranda. A polynomial time approximation scheme
for general multiprocessor job scheduling (extended abstract). In STOC, pages
418–427, New York, NY, USA, 1999. ACM Press.

[19] Su-Hui Chiang and Mary K. Vernon. Dynamic vs. static quantum-based parallel
processor allocation. In JSSPP, pages 200–223, Honolulu, Hawaii, United States,
1996.

[20] Xiaotie Deng and Patrick Dymond. On multiprocessor system scheduling. In
SPAA, pages 82–88, 1996.

[21] Xiaotie Deng, Nian Gu, Tim Brecht, and KaiCheng Lu. Preemptive scheduling of
parallel jobs on multiprocessors. In SODA, pages 159–167. Society for Industrial
and Applied Mathematics, 1996.

[22] Xiaotie Deng, Nian Gu, Tim Brecht, and KaiCheng Lu. Preemptive scheduling
of parallel jobs on multiprocessors. In SODA, pages 159–167, Philadelphia, PA,
USA, 1996. Society for Industrial and Applied Mathematics.

[23] Jianzhong Du and Joseph Y.-T. Leung. Complexity of scheduling parallel task
systems. SIAM J. Discrete Math., 2(4):473–487, 1989.

[24] Jeff Edmonds. Scheduling in the dark. In STOC, pages 179–188, 1999.
[25] Jeff Edmonds, Donald D. Chinn, Timothy Brecht, and Xiaotie Deng. Non-

clairvoyant multiprocessor scheduling of jobs with changing execution character-
istics. Journal of Scheduling, 6(3):231–250, 2003.

[26] Zhixi Fang, Peiyi Tang, Pen-Chung Yew, and Chuan-Qi Zhu. Dynamic processor
self-scheduling for general parallel nested loops. IEEE Transactions on Computers,
39(7):919–929, 1990.

[27] Dror G. Feitelson. Job scheduling in multiprogrammed parallel systems (extended
version). Technical report, IBM Research Report RC 19790 (87657) 2nd Revision,
1997.

[28] R. L. Graham. Bounds on multiprocessing anomalies. SIAM Journal on Applied
Mathematics, pages 17(2):416–429, 1969.

[29] Nian Gu. Competitive analysis of dynamic processor allocation strategies. Mas-
ter’s thesis, York University, 1995.

[30] Leslie A. Hall, David B. Shmoys, and Joel Wein. Scheduling to minimize aver-
age completion time: off-line and on-line algorithms. In SODA, pages 142–151,
Philadelphia, PA, USA, 1996. Society for Industrial and Applied Mathematics.

[31] Robert H. Halstead, Jr. Implementation of Multilisp: Lisp on a multiprocessor.
In LFP, pages 9–17, Austin, Texas, August 1984.

[32] S. F. Hummel and E. Schonberg. Low-overhead scheduling of nested parallelism.
IBM Journal of Research and Development, 35(5-6):743–765, 1991.

[33] Klaus Jansen and Lorant Porkolab. Linear-time approximation schemes for
scheduling malleable parallel tasks. In SODA, pages 490–498, Philadelphia, PA,
USA, 1999. Society for Industrial and Applied Mathematics.

[34] Klaus Jansen and Hu Zhang. Scheduling malleable tasks with precedence con-
straints. In SPAA, pages 86–95, New York, NY, USA, 2005. ACM Press.

[35] Bala Kalyanasundaram and Kirk R. Pruhs. Minimizing flow time nonclairvoyantly.
J. ACM, 50(4):551–567, 2003.

[36] Scott T. Leutenegger and Mary K. Vernon. The performance of multiprogrammed
multiprocessor scheduling policies. In SIGMETRICS, pages 226–236, Boulder,
Colorado, United States, 1990.

[37] Steven Lucco. A dynamic scheduling method for irregular parallel programs. In
PLDI, pages 200–211, New York, NY, USA, 1992. ACM Press.

[38] Walter Ludwig and Prasoon Tiwari. Scheduling malleable and nonmalleable par-
allel tasks. In SODA, pages 167–176, Philadelphia, PA, USA, 1994. Society for
Industrial and Applied Mathematics.

[39] Shikharesh Majumdar, Derek L. Eager, and Richard B. Bunt. Scheduling in mul-
tiprogrammed parallel systems. In SIGMETRICS, pages 104–113, Santa Fe, New
Mexico, United States, 1988.

[40] Xavier Martorell, Julita Corbalán, Dimitrios S. Nikolopoulos, Nacho Navarro,
Eleftherios D. Polychronopoulos, Theodore S. Papatheodorou, and Jesús Labarta.
A tool to schedule parallel applications on multiprocessors: The NANOS CPU
manager. In Dror G. Feitelson and Larry Rudolph, editors, JSSPP, pages 87–112,
2000.

[41] Cathy McCann, Raj Vaswani, and John Zahorjan. A dynamic processor allocation
policy for multiprogrammed shared-memory multiprocessors. ACM Transactions
on Computer Systems, 11(2):146–178, 1993.

[42] Rajeev Motwani, Steven Phillips, and Eric Torng. Non-clairvoyant scheduling. In
SODA, pages 422–431, 1993.

[43] Gregory Mounie, Christophe Rapine, and Dennis Trystram. Efficient approxima-
tion algorithms for scheduling malleable tasks. In SPAA, pages 23–32, New York,
NY, USA, 1999. ACM Press.

[44] Girija J. Narlikar and Guy E. Blelloch. Space-efficient scheduling of nested par-
allelism. ACM Transactions on Programming Languages and Systems, 21(1):138–
173, 1999.

[45] Emilia Rosti, Evgenia Smirni, Lawrence W. Dowdy, Giuseppe Serazzi, and
Brian M. Carlson. Robust partitioning schemes of multiprocessor systems. Per-
formance Evaluation, 19(2-3):141–165, 1994.

[46] Emilia Rosti, Evgenia Smirni, Giuseppe Serazzi, and Lawrence W. Dowdy. Analy-
sis of non-work-conserving processor partitioning policies. In IPPS, pages 165–181,
1995.

[47] Larry Rudolph, Miriam Slivkin-Allalouf, and Eli Upfal. A simple load balancing
scheme for task allocation in parallel machines. In SPAA, pages 237–245, Hilton
Head, South Carolina, July 1991.

[48] Uwe Schwiegelshohn, Walter Ludwig, Joel L. Wolf, John Turek, and Philip S. Yu.
Smart smart bounds for weighted response time scheduling. SIAM J. Comput.,
28(1):237–253, 1998.

[49] Siddhartha Sen. Dynamic processor allocation for adaptively parallel jobs. Mas-
ter’s thesis, Massachusetts Institute of technology, 2004.

[50] Kenneth C. Sevcik. Application scheduling and processor allocation in multipro-
grammed parallel processing systems. Performance Evaluation, 19(2-3):107–140,
1994.

[51] D. B. Shmoys, J. Wein, and D. P. Williamson. Scheduling parallel machines online.
In FOCS, pages 131–140, 1991.

[52] B. Song. Scheduling adaptively parallel jobs. Master’s thesis, Massachusetts In-
stitute of Technology, 1998.

[53] Mark S. Squillante. On the benefits and limitations of dynamic partitioning in
parallel computer systems. In IPPS, pages 219–238, 1995.

[54] Kaushik Guha Timothy B. Brecht. Using parallel program characteristics in dy-
namic processor allocation policies. Performance Evaluation, 27-28:519–539, 1996.

[55] Andrew Tucker and Anoop Gupta. Process control and scheduling issues for
multiprogrammed shared-memory multiprocessors. In SOSP, pages 159–166, New
York, NY, USA, 1989. ACM Press.

[56] John Turek, Walter Ludwig, Joel L. Wolf, Lisa Fleischer, Prasoon Tiwari, Jason
Glasgow, Uwe Schwiegelshohn, and Philip S. Yu. Scheduling parallelizable tasks
to minimize average response time. In SPAA, pages 200–209, 1994.

[57] John Turek, Uwe Schwiegelshohn, Joel L. Wolf, and Philip S. Yu. Scheduling par-
allel tasks to minimize average response time. In SODA, pages 112–121, Philadel-
phia, PA, USA, 1994. Society for Industrial and Applied Mathematics.

[58] Peng Yang, Dirk Desmet, Francky Catthoor, and Diederik Verkest. Dynamic
scheduling of concurrent tasks with cost performance trade-off. In CASES, pages
103–109, New York, NY, USA, 2000. ACM Press.

[59] K. K. Yue and D. J. Lilja. Implementing a dynamic processor allocation pol-
icy for multiprogrammed parallel applications in the SolarisTMoperating system.
Concurrency and Computation-Practice and Experience, 13(6):449–464, 2001.

[60] John Zahorjan and Cathy McCann. Processor scheduling in shared memory mul-
tiprocessors. In SIGMETRICS, pages 214–225, Boulder, Colorado, United States,
May 1990.

