
Evolving Toward the Perfect Schedule:
Co-scheduling Job Assignments and Data Replication in

Wide-Area Systems Using a Genetic Algorithm

Thomas Phan
IBM Almaden Research Center

phantom@us.ibm.com

Kavitha Ranganathan
IBM T.J. Watson Research Center

kavithar@us.ibm.com

Radu Sion
Stony Brook University
sion@cs.stonybrook.edu

Abstract

Traditional job schedulers for grid or cluster systems
are responsible for assigning incoming jobs to compute
nodes in such a way that some evaluative condition is
met. Such systems generally take into consideration the
availability of compute cycles, queue lengths, and ex-
pected job execution times, but they typically do not ac-
count directly for data staging and thus miss significant
associated opportunities for optimisation. Intuitively, a
tighter integration of job scheduling and automated data
replication can yield significant advantages due to the
potential for optimised, faster access to data and de-
creased overall execution time. In this paper we con-
sider data placement as a first-class citizen in scheduling
and use an optimisation heuristic for generating sched-
ules. We make the following two contributions. First, we
identify the necessity for co-scheduling job dispatching
and data replication assignments and posit that simul-
taneously scheduling both is critical for achieving good
makespans. Second, we show that deploying a genetic
search algorithm to solve the optimal allocation problem
has the potential to achieve significant speed-up results
versus traditional allocation mechanisms. Through sim-
ulation, we show that our algorithm provides on average
an approximately 20-45% faster makespan than greedy
schedulers.

1 Introduction

Traditional job schedulers for grid or cluster systems
are responsible for assigning incoming jobs to compute
nodes in such a way that some evaluative condition is

met, such as the minimisation of the overall execution
time of the jobs or the maximisation of throughput or
utilisation. Such systems generally take into consid-
eration the availability of compute cycles, job queue
lengths, and expected job execution times, but they typi-
cally do not account directly for data staging and thus
miss significant associated opportunities for optimisa-
tion. Indeed, the impact of data and replication manage-
ment on job scheduling behaviour has largely remained
unstudied. In this paper we investigate mechanisms that
simultaneously schedule both job assignments and data
replication and propose an optimised co-scheduling al-
gorithm as a solution.

This problem is especially relevant in data-intensive grid
and cluster systems where increasingly fast wide-area
networks connect vast numbers of computation and stor-
age resources. For example, the Grid Physics Network
[10] and the Particle Physics Data Grid [18] require ac-
cess to massive (on the scale of petabytes) amounts of
data files for computational jobs. In addition to tra-
ditional files, we further anticipate more diverse and
widespread utilisation of other types of data from a va-
riety of sources; for example, grid applications may use
Java objects from an RMI server, SOAP replies from a
Web service, or aggregated SQL tuples from a DBMS.

Given that large-scale data access is an increasingly im-
portant part of grid applications, it follows that an intel-
ligent job-dispatching scheduler must be aware of data
transfer costs because jobs must have their requisite data
sets in order to execute. In the absence of such aware-
ness, data must be manually staged at compute nodes
before jobs can be started (thereby inconveniencing the
user) or replicated and transferred by the system but
with the data costs neglected by the scheduler (thereby

1



producing sub-optimal and inefficient schedules). Intu-
itively, a tighter integration of job scheduling and auto-
mated data replication potentially yields significant ad-
vantages due to the potential for optimised, faster ac-
cess to data and decreased overall execution time. How-
ever, there are significant challenges to such an integra-
tion, including the minimisation of data transfers costs,
the placement scheduling of jobs to compute nodes with
respect to the data costs, and the performance of the
scheduling algorithm itself. Overcoming these obstacles
involves creating an optimised schedule that minimises
the submitted jobs’ time to completion (the “makespan”)
that should take into consideration both computation and
data transfer times.

Previous efforts in job scheduling either do not consider
data placement at all or often feature “last minute” sub-
optimal approaches, in effect decoupling data replication
from job dispatching. Traditional FIFO and backfilling
parallel schedulers (surveyed in [8] and [9]) assume that
data is already pre-staged and available to the applica-
tion executables on the compute nodes, while workflow
schedulers consider only the precedence relationship be-
tween the applications and the data and do not consider
optimisation, e.g. [13]. Other recent approaches for co-
scheduling provide greedy, sub-optimal solutions, e.g.
[4] [19] [16].

This work includes the following two contributions.
First, we identify the necessity for co-scheduling job
dispatching and data replication and posit that simulta-
neously scheduling both is critical for achieving good
makespans. We focus on a massively-parallel computa-
tion model that comprises a collection of heterogeneous
independent jobs with no inter-job communication. Sec-
ond, we show that deploying a genetic search algorithm
to solve the optimal allocation problem has the potential
to achieve significant speed-up results. In our work we
observe that there are three important variables within
a job scheduling system, namely the job order in the
global scheduler queue, the assignment of jobs to com-
pute nodes, and the assignment of data replicas to local
data stores. There exists an optimal solution that pro-
vides the best schedule with the minimal makespan, but
the solution space is prohibitively large for exhaustive
searches. To find the best combination of these three
variables in the solution space, we provide an optimisa-
tion heuristic using a genetic algorithm. By represent-
ing the three variables in a “chromosome” and allow-
ing them to compete and evolve, the algorithm naturally
converges towards an optimal (or near-optimal) solution.

We use simulations to evaluate our genetic algorithm ap-
proach against traditional greedy algorithms. Our ex-
periments find that our approach provides on average

an approximately 20-45% faster makespan than greedy
schedulers. Furthermore, our work provides an initial
promising look at how fine-tuning the genetic algorithm
can lead to better performance for co-scheduling.

This paper is organised in the following manner. In Sec-
tion 2 we discuss related work. We describe our model
and assumptions in Section 3, present our genetic algo-
rithm methodology in Section 4 and present the results
of our simulation experiments in Section 5. We conclude
the paper in Section 6.

2 Related Work

The need for scheduling job assignment and data place-
ment together arises from modern clustered deploy-
ments. The work in [24] suggests I/O communities can
be formed from compute nodes clustered around a stor-
age system. Other researchers have considered the high-
level problem of precedence workflow scheduling to en-
sure that data has been automatically staged at a compute
node before assigned jobs at that node begin comput-
ing [7] [13]. Such work assumes that once a workflow
schedule has been planned, lower-level batch schedulers
will execute the proper job assignments and data repli-
cation. Our work fits into this latter category of job and
data schedulers.

Other researchers have looked into the problem of job
and data co-scheduling, but none have considered an in-
tegrated approach or optimisation algorithms to improve
scheduling performance. The XSufferage algorithm [4]
includes network transmission delay during the schedul-
ing of jobs to sites but only replicates data from the orig-
inal source repository and not across sites. The work in
[19] looks at a variety of techniques to intelligently repli-
cate data across sites and assign jobs to sites; the best
results come from a scheme where local monitors keep
track of popular files and preemptively replicate them
to other sites, thereby allowing a scheduler to assign
jobs to those sites that already host needed data. How-
ever, this work only considers jobs that use a single in-
put file and assumes homogeneous network conditions.
The Close-to-Files algorithm [16] assumes that single-
file input data has already been replicated across sites
and then uses an exhaustive algorithm to search across
all combinations of compute sites and data sites to find
the combination with the minimum cost, including com-
putation and transmission delay. The Storage Affinity
algorithm [21] treats file systems at each site as a pas-
sive cache; an initial job executing at a site must pull
in data to the site, and subsequent jobs are assigned to

2



Figure 1: A high-level overview of a job submission system in a generalised distributed grid. Note that although our work can be extended to
multiple LANs containing clusters of compute nodes and local data stores (as is depicted here), for simplicity in this paper we consider only a single
LAN.

sites that have the most amount of needed residual data
from previous application runs. The work in [5] decou-
ples jobs scheduling from data scheduling: at the end of
periodic intervals when jobs are scheduled, the popular-
ity of needed files is calculated and then used by the data
scheduler to replicate data for the next set of jobs, which
may or may not share the same data requirements as the
previous set.

Although these previous efforts have identified and ad-
dressed the problem of job and data co-scheduling, the
scheduling is generally based on decoupled algorithms
that schedule jobs in reaction to prior data schedul-
ing. Furthermore, all these previous algorithms per-
form FIFO scheduling for only one job at a time, re-
sulting in typically locally-optimum schedules only. On
the other hand, we suggest a methodology to provide
simultaneous co-scheduling in an integrated manner us-
ing global optimisation heuristics. In our work we ex-
ecute a genetic algorithm that converges to a schedule
by looking at the jobs in the scheduler queue as well as
replicated data objects at once. While other researchers
have looked at global optimisation algorithms for job
scheduling [3] [22], they do not consider job and data
co-scheduling. In the future, we plan to use simulations
to compare the performance and benefits of our genetic
algorithm with the other scheduling approaches listed
above.

3 Job and Data Co-scheduling
Model

Consider the scenario illustrated in Figure 1 that depicts
a typical distributed grid or cluster deployment. Jobs are
submitted to a centralised scheduler that queues the jobs
until they are dispatched to distributed compute nodes.
This scheduler can potentially be a meta-scheduler that
assigns jobs to other local schedulers (to improve scal-
ability at the cost of increased administration), but in
our work we consider only a single centralised scheduler
responsible for assigning jobs; in future work we look
to extend this model to a decentralised meta-scheduling
system.

The compute nodes are supported by local data stores ca-
pable of caching read-only replicas of data downloaded
from remote data stores. These local data stores, de-
pending on the context of the applications, can range
from web proxy caches to data warehouses. We assume
that the compute nodes and the local data stores are con-
nected on a high-speed LAN (e.g. Ethernet or Myrinet)
and that data can be transferred across the stores. (The
model can be extended to multiple LANs containing
clusters of compute nodes and data stores, but for sim-
plicity we assume a single LAN in this paper.) Data
downloaded from the remote store must cross a wide-
area network such as the Internet. In the remainder of
this paper, we use the term “data object” [23] to encom-
pass a variety of potential data manifestations, includ-

3



ing Java objects and aggregated SQL tuples, although its
meaning can be intuitively construed to be a file on a file
system.

Our model relies on the following key assumptions on
the class of jobs being scheduled and the facilities avail-
able to the scheduler:

√
The jobs are from a collection of heterogeneous in-
dependent jobs with no inter-job communication.
As such, we do not consider jobs with parallel tasks
(e.g. MPI programs).

√
Data retrieved from the remote data stores is read-
only. We only consider the class of applications that
do not write back to the remote data store; for these
applications, computed output is typically directed
to the local file system at the compute nodes, and
such output is commonly much smaller and negli-
gible compared to input data.

√
The computation time required by a job is known
to the scheduler. In practical terms, when jobs are
submitted to a scheduler, the submitting user typi-
cally assigns an expected duration of usage to each
job [17].

√
The data objects required to be downloaded for a
job are known to the scheduler and can be specified
at the time of job submission.

√
The communication cost for acquiring this data can
be calculated for each job. The only communica-
tion cost we consider is transmission delay, which
can be computed by dividing a data object’s size by
the bottleneck bandwidth between a sender and re-
ceiver. As such, we do not consider queueing delay
or propagation delay.

– If the data object is a file, its size is typically
known to the job’s user and specified at sub-
mission time. On the other hand, if the object
is produced dynamically by a remote server,
we assume that there exists a remote API that
can provide the approximate size of the ob-
ject. For example, for data downloads from
a web server, one can use HTTP’s HEAD
method to get the requested URI’s size prior
to actually downloading it.

– The bottleneck bandwidth between two net-
work points can be ascertained using known
techniques [12] [20] that typically trade off
accuracy with convergence speed. We assume
such information can be periodically updated
by a background process and made available
to the scheduler.

√
Finally, we do not include arbitrarily detailed de-
lays and costs in our model (e.g. database access
time, data marshalling, or disk rotational latency),
as these are dominated by transmission delay and
computation time.

Given these assumptions, the lifecycle of a submitted
job proceeds as follows. When a job is submitted to
the queue, the scheduler assigns it to a compute node
(using a traditional load-balancing algorithm or the al-
gorithm we discuss in this paper). Each compute node
maintains its own queue from which jobs run in FIFO
order. Each job requires data objects from remote data
stores; these objects can be downloaded and replicated
on-demand to one of the local data stores (again, using a
traditional algorithm or the algorithm we discuss in this
paper), thereby obviating the need for subsequent jobs to
download the same objects from the remote data store.
In our work we associate a job to its required data ob-
jects through a Zipf distribution. All required data must
be downloaded before a job can begin, and objects are
downloaded in parallel at the time that a job is run. (Al-
though parallel downloads will almost certainly reduce
the last hop’s bandwidth, for simplicity we assume that
the bottleneck bandwidth is a more significant concern.)
A requested object will always be downloaded from a
local data store, if it exists there, rather than from the
remote store. If a job requires an object that is currently
being downloaded by another job executing at a differ-
ent compute node, the job either waits for that down-
load to complete or instantiates its own, whichever is
faster based on expected download time maintained by
the scheduler.

Intuitively, it can be seen that if jobs are assigned to com-
pute nodes first, the latency incurred from accessing data
objects may vary drastically because the objects may or
may not have been already cached at a close local data
store. On the other hand, if data objects are replicated
to local data stores first, then the subsequent job exe-
cutions will be delayed due to these same variations in
access costs. Furthermore, the ordering of the jobs in
the queue can affect the performance. For example, if
job A is waiting for job B (on a different compute node)
to finish downloading an object, job A blocks any other
jobs from executing on its compute node. Instead, if we
rearrange the job queue such that other shorter jobs run
before job A, then these shorter jobs can start and fin-
ish by the time job A is ready to run. (This approach is
similar to backfilling algorithms [14] that schedule par-
allel jobs requiring multiple processors.) The resulting
tradeoffs affect the makespan.

With this scenario as it is illustrated in Figure 1, it can

4



be seen that there are three independent variables in the
system, namely (1) the ordering of the jobs in the global
scheduler’s queue, which translates to the ordering in
the individual queue at each compute node, (2) the as-
signment of jobs in the queue to the individual compute
nodes; and (3) the assignment of the data object replicas
to the local data stores. The number of combinations can
be determined as follows:

√
Suppose there are J jobs in the scheduler queue.
There are then J ! ways to arrange the jobs.

√
Suppose there are C compute nodes. There are then
CJ ways to assign the J jobs to these C compute
nodes.

√
Suppose there are D data objects and S local data
stores. There are then SD ways to replicate the D

objects onto the S stores.

There are thus J ! · CJ · SD different combinations of
these three assignments. Within this solution space there
exists some tuple of {job ordering, job-to-compute node
assignment, object-to-local data store assignment} that
will produce the minimal makespan for the set of jobs.
However, for any reasonable deployment instantiation
(e.g. J=20 and C=10), the number of combinations be-
comes prohibitively large for an exhaustive search.

Existing work in job scheduling can be analysed in the
context presented above. Prior work in schedulers that
dispatch jobs in FIFO order eliminate all but one of the
J ! job orderings possible. Schedulers that assume the
data objects have been preemptively assigned to local
data stores eliminate all but one of the SD ways to repli-
cate. Essentially all prior efforts have made assumptions
that allow the scheduler to make decisions from a drasti-
cally reduced solution space that may or may not include
the optimal schedule.

The relationship between these three variables is inter-
twined. Although they can be changed independently of
one another, adjusting one variable will have an adverse
or beneficial effect on the schedule’s makespan that can
be counter-balanced by adjusting another variable. We
analyse this interplay in Section 5 on results.

4 Methodology: a Genetic Algo-
rithm

With a solution space size of J ! · CJ · SD, the goal is to
find the schedule in this space that produces the shortest

Procedure genetic algorithm
{

t = 0;
initialise P(t);
evaluate P(t);
while (! done)
{

alter P(t);
t = t + 1;
select P(t) from P(t - 1);
evaluate P(t);

}
}

Figure 2: Pseudocode for a genetic search algorithm. In this code,
the variable t represents the current generation and P(t) represents the
population at that generation.

makespan. To achieve this goal, we use a genetic algo-
rithm [2] as a search heuristic. While other approaches
exist, each has its limitations. For example, an exhaus-
tive search, as mentioned, would be pointless given the
potentially huge size of the solution space. An iterated
hill-climbing search samples local regions but may get
stuck at a local optima. Simulated annealing can break
out of local optima, but the mapping of this approach’s
parameters, such as the temperature, to a given problem
domain is not always clear.

4.1 Overview

A genetic algorithm (GA) simulates the behaviour of
Darwinian natural selection and converges toward an op-
timal solution through successive generations of recom-
bination, mutation, and selection, as shown in the pseu-
docode of Figure 2 (adapted from [15]). A potential so-
lution in the problem space is represented as a chromo-
some. In the context of our problem, one chromosome
is a schedule that consists of string representations of a
tuple of {queue order, job assignments, object assign-
ments}.

Initially a random set of chromosomes is instantiated as
the population. The chromosomes in the population are
evaluated (hashed) to some metric, and the best ones
are chosen to be parents. In our context, the evalu-
ation produces the makespan that results from execut-
ing the schedule of a particular chromosome. The par-
ents recombine to produce children, simulating sexual
crossover, and occasionally a mutation may arise which
produces new characteristics that were not present in ei-
ther parent; for simplification, in this work we did not
implement the optional mutation. The best subset of the
children is chosen, based on an evaluation function, to
be the parents of the next generation. We further imple-

5



mented elitism, where the best chromosome is guaran-
teed to be included in each generation in order to accel-
erate the convergence to an optimum, if it is found. The
generational loop ends when some criteria is met; in our
implementation we terminate after 100 generations (this
value is an arbitrary number, as we had observed that it
is large enough to allow the GA to converge). At the end,
a global optimum or near-optimum is found. Note that
finding the global optimum is not guaranteed because
the recombination has probabilistic characteristics.

Using a GA is naturally suited in our context. The job
queue, job assignments, and object assignments can be
intuitively represented as character strings, which allows
us to leverage prior genetic algorithm research in how to
effectively recombine string representations of chromo-
somes (e.g. [6]).

It is important to note that a GA is most effective when
it operates upon a large collection of possible solutions.
In our context, the GA should look at a large window of
jobs at once in order to achieve the tightest packing of
jobs into a schedule. In contrast, traditional FIFO sched-
ulers consider only the front job in the queue. The opti-
mising scheduler in [22] uses dynamic programming and
considers a large group of jobs called a “lookahead,” on
the order of 10-50 jobs. In our work we call the collec-
tion of jobs a snapshot window. The scheduler takes this
snapshot of queued jobs and feeds it into the scheduling
algorithm.

Our simulation thus only models one static batch of jobs
in the job queue. In the future, we will look at a more dy-
namic situation where jobs are arriving even as the cur-
rent batch of jobs is being evaluated and dispatched by
the GA. In such an approach, there will be two queues,
namely one to hold incoming jobs and another to hold
the latest snapshot of jobs that had been taken from the
first queue. Furthermore, note that taking the snapshot
can vary in two ways, namely by the frequency of tak-
ing the snapshot (e.g. at periodic wallclock intervals or
when a particular queue size is reached) or by the size of
the snapshot window (e.g. the entire queue or a portion
of the queue starting from the front).

4.2 Workflow

The objective of the genetic algorithm is to find a
combination of the three variables that minimises the
makespan for the jobs. The resulting schedule that cor-
responds to the minimum makespan will be carried out,
with jobs being executed on compute nodes and data ob-
jects being replicated to data stores in order to be ac-

cessed by the executing jobs. At a high level, the work-
flow proceeds as follows:

i. Jobs requests enter the system and are queued by
the job scheduler.

ii. The scheduler takes a snapshot of the jobs in the
queue and gives it to the scheduling algorithm.

iii. Given a snapshot, the genetic algorithm executes.
The objective of the algorithm is to find the mini-
mal makespan. The evaluation function, described
in subsection 4.5, takes the current instance of the
three variables as input and returns the resulting
makespan. As the genetic algorithm executes, it
will converge to the schedule with the minimum
makespan.

iv. Given the genetic algorithm’s output of an optimal
schedule consisting of the job order, job assign-
ments, and object assignments, the schedule is ex-
ecuted. Jobs are dispatched and executed on the
compute nodes, and the data objects are replicated
on-demand to the data stores so they can be ac-
cessed by the jobs.

4.3 Chromosomes

As mentioned previously, each chromosome consists of
three strings, corresponding to the job ordering, the as-
signment of jobs to compute nodes, and the assignment
of data objects to local data stores. We can represent
each one as an array of integers. For each type of
chromosome, recombination and mutation can only oc-
cur between strings representing the same characteristic.
The initial state of the GA is a set of randomly initialised
chromosomes.

Job ordering. The job ordering for a particular snap-
shot window can be represented as a queue (vector) of
job unique identifiers. Note that the jobs can have their
own range of identifiers, but once they are in the queue,
they can be represented by a simpler range of identifiers
going from job 0 to J-1 for a snapshot of J jobs. The
representation is simply a vector of these identifiers. An
example queue is shown in Figure 3.

Assignment of jobs to compute nodes. The assign-
ments can be represented as an array of size J, and each
cell in the array takes on a value between 0 and C-1 for C
compute nodes. The ith element of the array contains an
identifier for the compute node to which job i has been
assigned. An example assignment is shown in Figure 4.

6



Figure 3: An example queue of 8 jobs.

Figure 4: An example mapping of 8 jobs to 4 compute nodes.

Figure 5: An example assignment of 4 data objects to 3 local data
stores.

Assignment of data object replicas to local data store.
Similarly, these assignments can be represented as an
array of size D for D objects, and each cell can take on a
value between 0 and S-1 for S local data stores. The ith

element contains an integer identifier of the local data
store to which object i has been assigned. An example
assignment is shown in Figure 5.

4.4 Recombination and mutation

Recombination is applied only to strings of the same
type to produce a new child chromosome. In a two-
parent recombination scheme for arrays of unique ele-
ments, we can use a 2-point crossover scheme where a
randomly-chosen contiguous subsection of the first par-
ent is copied to the child, and then all remaining items
in the second parent (that have not already been taken
from the first parent’s subsection) are then copied to the
child in order [6]. In a uni-parent mutation scheme, we
can choose two items at random from an array and re-
verse the elements between them, inclusive. Note that
in our experiments, we did not implement the optional
mutation scheme, as we wanted to keep our GA as sim-
ple as possible in order to identify trends resulting from
recombination. In the future we will explore ways of us-
ing mutation to increase the probability of finding global
optima. Other recombination and mutation schemes are
possible (as well as different chromosome representa-
tions) and will be explored in future work.

4.5 Evaluation function

A key component of the genetic algorithm is the eval-
uation function. Given a particular job ordering, set of
job assignments to compute nodes, and set of object as-
signments to local data stores, the evaluation function
returns the makespan calculated deterministically from
the algorithm described below. The rules use the lookup
tables in Table 1. We note that the evaluation function is
easily replaceable: if one were to decide upon a different
model of job execution (with different ways of manag-
ing object downloads and executing jobs) or a different
evaluation metric (such as response time or system sat-
uration), a new evaluation function could just as easily
be plugged into the GA as long as the same function is
executed for all the chromosomes in the population.

At any given iteration of the genetic algorithm, the eval-
uation function executes to find the makespan of the jobs
in the current queue snapshot. The pseudocode of the
evaluation function is shown in Figure 6. We provide an
overview of this function here.

The evaluation function considers all jobs in the queue
over the loop spanning lines 6 to 37. As part of the
randomisation performed by the genetic algorithm at a
given iteration, the order of the jobs in the queue will be
set, allowing the jobs to be dispatched in that order.

In the loop spanning lines 11 to 29, the function looks at
all objects required by the currently considered job and
finds the maximum transmission delay incurred by the
objects. Data objects required by the job must be down-
loaded to the compute node prior to the job’s execution
either from the data object’s source data store or from a
local data store. Since the assignment of data object to
local data store is known during a given iteration of the
GA, we can calculate the transmission delay of moving
the object from the source data store to the assigned local
data store (line 17) and then update the NAOT table entry
corresponding to this object (lines 18-22). Note that the
NAOT is the next available time that the object is avail-
able for a final-hop transfer to the compute node regard-
less of the local data store. The object may have already
been transferred to a different store, but if the current job
can transfer it faster to its assigned store, then it will do
so (lines 18-22). Also note that if the object is assigned
to a local data store that is on the compute nodes’ LAN,
then the object must still be transferred across one more
hop to the compute node (see line 23 and 26).

Lines 31 and 32 compute the start and end computation
time for the job at the compute node. Line 36 keeps track
of the largest completion time seen so far for all the jobs.
Line 38 returns the resulting makespan, i.e. the longest

7



Lookup table Comment

REQUIRES (Job Ji, DataObject Oi) 1 if Job Ji requires/accesses Object Oi.
COMPUTE (Job Ji, ComputeNode Ci) The time for Job Ji to execute on compute node Ci.
BANDWIDTH (Site a, Site b) The bottleneck bandwidth between two sites. The sites can be data stores or compute nodes.
SIZE (DataObject Oi) The size of object Oi (e.g. in bytes).
NACT (ComputeNode Ci) Next Available Compute Time: the next available time that a job can start on compute node Ci.
NAOT (Object Oi) Next Available Object Time: the next available time that an object Oi can be downloaded.

Table 1: Lookup tables used in the GA’s evaluation function.

01: int evaluate(Queue, ComputeNodeAssignments, DataStoreAssignments)
02: {
03: makespan = 0;
04: clock = getcurrenttime();
05:
06: foreach job J in Queue
07: {
08: // This job J is assigned to compute node C.
09:
10: maxTD = 0; // maximum transmission delay across all objects
11: foreach object Oi required by this job
12: {
13: // This data object O resides originally in Ssource and is
14: // assigned to Sassigned.
15:
16: // calculate the transmission delay for this object
17: TD = SIZE(Oi) / BANDWIDTH(Ssource, Sassigned);
18: if ((clock+TD) < NAOT(Oi))
19: {
20: NAOT(Oi) = clock + TD;
21: // file transfer from Ssource to Sassigned would occur here
22: }
23: finalHopDelay = SIZE(Oi) / BANDWIDTH(Sassigned, C); // optional
24:
25: // keep track of the maximum transmission delay
26: maxTD = MAX(maxTD, NAOT(Oi) + finalHopDelay);
27:
28: // file transfer from Sassigned to compute node C would occur here
29: }
30:
31: startComputeTime = NACT(C)+ maxTD;
32: completionTime = startComputeTime + COMPUTE(J, C);
33: NACT(C) = MAX(NACT(C), completionTime);
34:
35: // keep track of the largest makespan across all jobs
36: makespan = MAX(makespan, completionTime);
37: }
38: return makespan;
39: }

Figure 6: Evaluation function for the genetic algorithm.

8



Experimental parameter Comment

Queue size Varies by experiment; 40-160
Number of compute nodes Varies; 5-20
Number of local data stores Varies; 5-20
Number of remote data stores 20
Number of data objects 50
Data object popularity Based on Zipf distribution
Average object size Uniformly distributed, 50-1500 MB
Average remote-to-local store bandwidth Uniformly distributed, 700-1300 kbps
Average local store-to-compute node bandwidth Uniformly distributed, 7000-13000 kbps
GA: number of parents Varies; typically 10
GA: number of children Varies; typically 50
GA: number of generations 100

Table 2: Experimental parameters

completion time for the current set of jobs.

5 Experiments and results

To show the effectiveness of the GA in improving the
scheduling, we simulated our GA and a number of tra-
ditional greedy FIFO scheduler algorithms that dispatch
jobs (to random or to least-loaded compute nodes) and
replicate data objects (no replication or to random lo-
cal data stores). We used a simulation program devel-
oped in-house that maintains a queue for the scheduler,
queues for individual compute nodes, and simulation
clocks that updates the simulation time as the experi-
ments progressed. We ran the simulations on a Fedora
Linux box running at 1 Ghz with 256 MB of RAM.

5.1 Experimental setup

Our aim is to compare the performance of different al-
gorithms to schedule jobs. Since all the algorithms use
some randomisation in their execution, it was impor-
tant to normalise the experiments to achieve results that
could be compared across different schemes. We thus
configured the algorithm simulations to initially read in
startup parameters from a file (e.g. the jobs in the queue,
the job assignments, the object assignments, etc.) that
were all randomly determined beforehand. All experi-
ments were performed with three different initialisation
sets with ten runs each and averaged; the graphs rep-
resent this final average for any particular experiment.
The experimental parameters were set according to val-
ues shown in Table 2.

The simulations use a synthetic benchmark based on
CMS experiments [11] that are representative of the
heterogeneous independent tasks programming model.
Jobs download a number of data objects, perform execu-

tion, and terminate. Data objects are chosen based on a
Zipf distribution [1]. The computation time for each job
is kD seconds, where k is a unitless coefficient and D is
the total size of the data objects downloaded in GBytes;
in our experiments k is typically 300 (although in sub-
section 5.2.3 this value is varied).

5.2 Results

We first wanted to compare the GA against several
greedy FIFO scheduling algorithms. In the experiments
the naming of the algorithms is as follows:

√
Genetic algorithms (2 variations):

– all varying: the genetic algorithm with all
three variables allowed to evolve

– rep-none: the genetic algorithm with the job
queue and the job assignments allowed to
evolve, but the objects are not replicated (a job
must always download the data object from
the remote data store)

√
Greedy algorithms (2x2 = 4 variations):

Job dispatching strategies

– jobs-LL: jobs are dispatched in FIFO order to
the compute node with the shortest time until
next availability

– jobs-rand: jobs are dispatched in FIFO order
to a random compute node

Data Replication strategies

– rep-none: objects are not replicated (a job
must always download the data object from
the remote data store)

– rep-rand: objects are replicated to random lo-
cal data stores

9



Figure 7: Makespans for various algorithms using 20 compute nodes and 20 local data stores.

Figure 8: Makespans for various algorithms using 5 compute nodes and 5 local data stores.

5.2.1 Makespans for various algorithms

In this experiment, we ran the six algorithms with 20
compute nodes, 20 local data stores, and 100 jobs in
the queue. Two results, as shown in Figure 7, can be
seen. First, as expected, data placement/replication has
a strong impact on the resulting makespan. Compar-
ing the three pairs of experiments that vary by having
replication activated or deactivated, namely (1) GA all
varying and GA rep-non, (2) Greedy, jobs-LL, rep-non
and Greedy, jobs-LL, rep-rand, and (3) Greedy, jobs-
rand, rep-none and Greedy, jobs-rand, rep-rand, we can
see that in the absence of an object replication strategy,
the makespan suffers. Adding a replication strategy im-
proves the makespan because object requests can be ful-
filled by the local data store instead of by the remote data
store, thereby reducing access latency as well as actual
bandwidth utilisation (this latter reduction is potentially
important when bandwidth consumption is metered).

The second result from this experiment is that the GA
with all varying parameters provides the best perfor-

mance of all the algorithms. Its resulting makespan is
22% faster than the best greedy algorithm (Greedy, jobs-
LL, rep-rand) and 47% faster than the worst greedy al-
gorithm (Greedy, jobs-rand, rep-none). To better explain
the result of why the GA is faster than the greedy algo-
rithm, we ran another experiment with 5 compute nodes
and 5 local data stores, as shown in Figure 8.

As can be seen, the performance of the GA is compa-
rable to that of the greedy algorithms. This result is
due to the fact that with the reduced number of com-
pute nodes and local data stores, the solution space be-
comes smaller, and both types of algorithms become
more equally likely to come across an optimum solution.
If we restrict our attention to just the assignment of the
100 jobs in the queue, in the previous experiment with
20 compute nodes there are 20100 possible assignments,
whereas with 5 compute nodes there are only 5100 possi-
ble assignments, a difference in the order of 1060. With
the larger solution space in the previous experiment, the
variance of makespans will be larger, thus allowing the
GA to potentially find a much better solution. It can

10



Figure 9: Makespans for different queue lengths. Figure 10: Makespans for different computation coefficients.

be seen that in these scenarios where the deployment
configuration of the grid system contains a large number
of compute nodes and local data stores, a GA approach
tends to compute better schedules.

5.2.2 Effect of queue length

In this experiment we ran the same application but with
varying numbers of jobs in the queue and with 20 com-
pute nodes and 20 local data stores; Figure 9 shows the
results. For conciseness, we show only the best GA (GA
all varying) and the best greedy algorithm (Greedy, jobs-
LL, rep-rand). It can be seen that the GA performs con-
sistently better than the greedy algorithm, although with
an increasing number of jobs in the queue, the difference
between the two algorithms decreases. We suspect that
as more jobs are involved, the number of permutations
increases dramatically (from 40! to 160!), thereby pro-
ducing too large of a solution space for the GA to explore
in 100 generations. Although in the previous subsection
we observed that increasing the solution space provides
a more likely chance of finding better solutions, we con-
jecture that there is a trade-off point somewhere; we are
continuing to investigate this issue.

5.2.3 Effect of computation ratio coefficients

In previous experiments we set the computation coeffi-
cient to be 300 as mentioned in subsection 5.1. In Fig-
ure 10 we show the effect of changing this value. With
a smaller coefficient, jobs contain less computation with
the same amount of communication delay, and with a
larger coefficient, jobs contain more computation. As
can be seen, as the coefficient increases, the difference

between the GA and the greedy algorithms decreases.
This result stems from the fact that when there are more
jobs with smaller running times (which includes both
computation and communication), the effect of permut-
ing the job queue is essentially tantamount to that of
backfilling in a parallel scheduler: when a job is delayed
waiting, other smaller jobs with less computation can
be run before the long job, thereby reducing the overall
makespan.

5.2.4 Effect of population size

In Figure 11 we show the effect of population size on the
makespan produced by the GA. In all previous experi-
ments, we had been running with a population compris-
ing 10 parents spawning 50 children per generation. We
can change the population characteristics by varying two
parameters: the number of children selected to be par-
ents per generation and the ratio of parents to children
produced. The trend shown in the figure is that as the
population size increases, there are more chromosomes
from which to choose, thereby increasing the probabil-
ity that one of them may contain the optimum solution.
As expected, the best makespan results from the largest
configuration in the experiment, 50 parents and a ratio
of 1 parent to 50 children.

However, this accuracy comes at the cost of increased
running time of the algorithm. As the population size
increases, the time to execute the evaluation function on
all members increases as well. As can be seen in Fig-
ure 12, the running time accordingly increases with the
population size. This tradeoff of running time against
the desire to find the optimal solution can be made by
the scheduler’s administrator. For completeness, we note

11



Figure 11: Makespans for different GA ratios of parents to chil-
dren.

Figure 12: GA running times for different ratios of parents to chil-
dren.

that the greedy algorithms typically executed in under 1
second. While this performance is faster than that of the
GA, this distinction is dwarfed by the difference between
the makespans produced by greedy algorithms and the
GA; as was shown in Figure 4 for this benchmark, the
makespan difference can be on the order of thousands of
seconds.

6 Conclusion and Future Work

In this paper we looked at the problem of co-scheduling
job dispatching and data replication in wide-area dis-
tributed systems in an integrated manner. In our model,
the system contains three variables, namely the order
of the jobs in the global scheduler queue, the assign-
ment of jobs to the individual compute nodes, and the
assignment of the data objects to the local data stores.
The solution space is enormous, making an exhaustive
search to find the optimal tuple of these three variables
prohibitively costly. In our work we showed that a ge-
netic algorithm is a viable approach to finding the opti-
mal solution. Our simulations show our implementation
of a GA produces a makespan that is 20-45% faster than
traditionally-used greedy algorithms.

For future work, we plan to do the following:

√
More comprehensive comparisons. We look to sim-
ulate other approaches that can be used to per-
form co-scheduling, including those found in the
related work section as well as other well-known
scheduling algorithms, such as traditional backfill-
ing, shortest-job-first, and priority-based schedul-
ing.

√
Handling inaccurate estimates. Our evaluation
function used in the GA relies on the accuracy of
the estimates for the data object size, bottleneck
bandwidth, and job computation time. However,
these estimates may be extremely inaccurate, lead-
ing the GA to produce inefficient schedules. In the
future we will look into implementing a fallback
scheduling algorithm, such as those in the related
work, when the scheduler detects widely fluctuat-
ing or inaccurate estimates. Additionally, we will
research different evaluation functions and metrics
that may not be dependent on such estimates.

√
Improved simulation. We plan to run a more de-
tailed simulation with real-world constraints in our
model. For example, we are looking at nodal
topologies, more accurate bandwidth estimates,
and more detailed evaluation functions that con-
sider finer-grained costs and different models of job
execution.

√
More robust GA. Alternative genetic algorithm
methodologies will also be explored, such as dif-
ferent representations, evaluation functions, alter-
ations, and selections. Furthermore, we conjecture
that since all three variables in the chromosome
were independently evolved, there may be conflict-
ing interplay between them. For instance, as the
job queue permutations evolves to an optimum, the
job assignments may have evolved in the opposite
direction; the latter situation might occur because
the job queue evolution has a greater impact on
the evaluation function. In the future we will look
into ways of hashing all three variables into a sin-
gle string for the chromosome so that there will be
reduced interplay.

12



7 Acknowledgments

We would like to thank the anonymous paper reviewers
for their invaluable comments and insight.

References

[1] L. Adamic. “Zipf, Power-laws, and Pareto – a rank-
ing tutorial,” www.hpl.hp.com/research/idl/
papers/ranking/ranking.html

[2] T. Baeck, D. Fogel, and Z. Michalewicz (eds). “Evo-
lutionary Computation 1: Basic Algorithms and Oper-
ators,” Institute of Physics Publishing, 2000.

[3] T. Braun, H. Siegel, N. Beck, L. Boloni, M. Mah-
eswaran, A. Reuther, J. Robertson, M. Theys, B. Yao,
D. Hengsen, and R. Freund. “A Comparison of Eleven
Static Heuristics for Mapping a Class of Independent
Tasks onto Heterogeneous Distributed Computing Sys-
tems,” Journal of Parallel and Distributed Computing,
vol. 61, no. 6, June 2001.

[4] H. Casanova, A. Legrand, D. Zagorodnov, F. Berman.
“Heuristics for Scheduling Parameter Sweep Applica-
tions in Grid Environments,” In Proceedings of the 9th
Heterogeneous Computing Workshop, May 2000.

[5] A. Chakrabarti, D. R. A., and S. Sengupta. “Integration
of Scheduling and Replication in Data Grids,” In Pro-
ceedings of the International Conference on High Per-
formance Computing, 2004.

[6] L. Davis. “Job Shop Scheduling with Genetic Algo-
rithms,” In Proceedings of the International Conference
on High Performance Computing, 2004.

[7] E. Deelman, T. Kosar, C. Kesselman, and M. Livny.
“What Makes Workflows Work in an Opportunistic En-
vironment?” Concurrency and Computation: Practice
and Experience, 2004.

[8] D. Feitelson. “A Survey of Scheduling in Multipro-
grammed Parallel Systems,” IBM Research Report RC
19790 (87657), 1994.

[9] D. Feitelson, L. Rudolph, and U. Schwiegelshohn. “Par-
allel Job Scheduling – A Status Report,” In Proceedings
of the 10th Workshop on Job Scheduling Strategies for
Parallel Processing, 2004.

[10] The Grid Physics Project. www.griphyn.org
[11] K. Holtman. “CMS Requirements for the Grid,” In Pro-

ceedings of the International Conference on Computing
in High Energy and Nuclear Physics, 2001.

[12] N. Hu, L. Li, Z. Mao, P. Steenkiste, and J. Wang. “Lo-
cating Internet Bottlenecks: Algorithms, Measurements,
and Implications,” In Proceedings of SIGCOMM, 2004.

[13] T. Kosar and M. Livny. “Stork: Making Data Placement
a First Class Citizen in the Grid,” In Proceedings of IEEE
International Conference on Distributed Computing Sys-
tems, 2004.

[14] D. Lifka. “The ANL/IBM SP Scheduling System,” In
Job Scheduling Strategies for Parallel Processing, Lec-
ture Notes on Compute Science, Springer-Verlag 1995.

[15] Z. Michaelewicz and D. Fogel. How to Solve It: Modern
Heuristics, Springer-Verlag, 2000 ,

[16] H. Mohamed and D. Epema. “An Evaluation of the
Close-to-Files Processor and Data Co-Allocation Policy
in Multiclusters,” In Proceedings of the IEEE Interna-
tional Conference on Cluster Computing, 2004.

[17] A. Mu’alem and D. Feitelson. “Utilization, Predictabil-
ity, Workloads,and User Runtime Estimates in Schedul-
ing the IBM SP2 with Backfilling,” IEEE Transactions
on Parallel and Distributed Systems, June 2001.

[18] The Particle Physics Data Grid, www.ppdg.net
[19] K. Ranganathan and I. Foster. “Computation Schedul-

ing and Data Replication Algorithms for Data Grids,”
Grid Resource Management: State of the Art and Fu-
ture Trends, J. Nabrzyski, J. Schopf, and J. Weglarz, eds.
Kluwer Academic Publishers, 2003.

[20] V. Ribeiro, R. Riedi, and R. Baraniuk. “Locating Avail-
able Bandwidth Bottlenecks,” IEEE Internet Computing,
September-October 2004.

[21] E. Santos-Neto, W. Cirne, F. Brasileiro, and A. Lima.
“Exploiting Replication and Data Reuse to Efficiently
Schedule Data-Intensive Applications on Grids,” In Pro-
ceedings of the 10th Workshop on Job Scheduling Strate-
gies for Parallel Processing, 2004.

[22] E. Schmueli and D. Feitelson. “Backfilling with Looka-
head to Optimize the Packing of Parallel Jobs,” Springer-
Verlag Lecture Notes in Computer Science, vol. 2862,
2003.

[23] H. Stockinger, A. Samar, B. Allcock, I. Foster, K. Holt-
man, and B. Tierney. “File and Object Replication in
Data Grids,” In Proceedings of the 10th International
Symposium on High Performance Distributed Comput-
ing, 2001.

[24] D. Thain, J. Bent, A. Arpaci-Dusseau, R. Arpaci-
Dusseau, and M. Livny. “Gathering at the Well: Cre-
ating Communities for Grid I/O”, In Proceedings of Su-
percomputing, 2001.

13


