
Co-Scheduling with User-Settable Reservations
Kenneth Yoshimoto, Patricia Kovatch, Phil Andrews

San Diego Supercomputer Center
University of California, San Diego

kenneth@sdsc.edu, pkovatch@sdsc.edu, andrews@sdsc.edu

Abstract
As grid computing becomes more

commonplace, so does the importance of co-
scheduling these geographically distributed
resourcest. Negotiating resource
management and scheduling decisions for
these resources is similar to making travel
arrangements: guesses are made and then
remade or confirmed depending on the
availability of resources. This “Travel Agent
Method” serves as the basis for a production
scheduler and metascheduler suitable for
making travel arrangements for a grid. This
strategy is more easily implemented than a
centralized metascheduler because
arrangements can be made without requiring
control over the individual schedulers for each
resource: the reservations are set by users or
automatically by negotiating with each local
scheduler’s user-settable interface. The
Generic Universal Remote is a working
implementation of such a system and proves
that a user-settable reservation facility on
local schedulers in a grid is sufficient to
enable automated metascheduling.

1. Introduction

A grid is a distributed computing and resource
environment connected via software and
hardware. The resources can be as diverse as
electron microscopes or Terabyte-sized
databases. Computational resources that are a
component of a grid usually have many
processors available for the use of scientists
and researchers. These resources often have
unique characteristics like a “large” amount of
memory or access to “large” amounts of disk.
Generally the compute resources have a local
resource manager and scheduler to allow

sharing of resources between the different
users of the system.

In the case of this project, development was
done within the context of a specific Grid, the
TeraGrid[1], an NSF-funded project to create
and link several supercomputer class systems
across one of the world’s fastest networks. The
initial middleware suite used for coordination
has been Globus[2,3], while recently there has
been significant work done on the use of a
Global File System[4], initially based on the
General Purpose File System, GPFS[5], from
IBM. A similar approach is being investigated
by the European Grid community, DEISA[6].

A prior study by another group evaluated
multi-site submission of single jobs [7]. This
article describes a strategy for scheduling a
single job over multiple sites.

A variety of applications can make use of these
grid resources. Some applications use loosely-
coupled communication resources while others
require tightly-coupled communication
resources. Some need to stage data from one
location to another before it can compute and
process additional data. Some applications can
make use of distributed resources but
synchronize some communications between
the sites. Because of this synchronization,
resources need to be available at multiple sites
at the same time. Some applications want to
run at the earliest time possible regardless of
the machine type or geographical location of
the resources.

Often the grid is compared to an electric
utility: always available. But this does not
necessarily apply to High Performance
Computing (HPC) and grid computing, where

demand exceeds supply. The electrical grid is
planned to always have more electrical supply
than demand. If demand ever exceeds supply,
there are rolling brownouts. In this situation
where supply exceeds demand, “on-demand”
is easy: just plug into a wall outlet, because
there’s enough slack in the system to provide
the power necessary to run a radio. This can
be contrasted with HPC and grid computing,
where demand often exceeds supply. There
are always more applications, more compute,
more data and other resources needed to
further the never -ending stream of research.
The continual demand for capability requires
the commitment of resources for specific jobs.
The electric grid/”on demand” analogy breaks
down for HPC. The scheduling strategies for
these two situations are entirely different.

A better analogy is an industry where complex
workflows cause excess demand for limited
resources: travel. Every day, travel agents
create multi-resource itineraries. An itinerary
with round-trip airplane flights, rental car and
hotel reservations corresponds very well to that
of a grid job that needs to do pipeline
computation. The travel agent works with a
number of different independent resource
providers to generate a valid itinerary. One
thing that’s interesting about this model is that
there is no requirement for global
coordination. The airline does not need to
know that there are rental cars available at the
destination, for example. For the travel
industry, there is a many-to-many supplier-to-
consumer market. For the electric grid, there
is one supplier through which all consumers in
a region must go. The economics of the travel
industry is a better model for HPC/grid
computing.

The Generic Universal Remote (GUR)
provides distributed resource management
capabilities that make efficient use of
HPC/grid computing resources based on a
travel agent’s methods. It provides automatic
negotiation of coordinated cross-site (pipeline
and co-scheduled) and first possible run-time

(Disneyland or load balanced) reservations
allowing these types of jobs to run efficiently.
These types of jobs are scheduled in an
automatic way by taking advantage of local
scheduler’s user-settable reservation
capabilities. GUR requests and confirms
reservations from independent local schedulers
to generate a grid reservation. It uses a simple
heuristic to generate a valid, but not
necessarily optimal schedule. GUR does not
require centralized control over all the grid
resources, unlike other metascheduling
solutions. GUR automatically reserves
resources from a scientists’ laptop that not
only makes it easier for the scientist, but it
reduces load on the remote “login” nodes.
This decentralized local scheduler works like a
“universal remote” where it commands and
coordinates access to multiple, heterogeneous
distributed resources based on where you
“point it”, much like a universal electronics
remote.

.

2. Grid Scheduling Strategies

Many different types of applications make use
of grid resources. Some typical scenarios
include communication-, compute-intensive
and combination-type jobs. Communication-
intensive applications launch jobs to run on a
single remote cluster. Computation –intensive
jobs run on geographically distributed clusters.
Communication- and computation-intensive
jobs run on a single remote cluster and then
possibly transfer the data to another site for
visualization.

These applications represent three types of job
scheduling scenarios that are common to grid
computing:

1) Run x job on n nodes, where all n
nodes are located at any one of a set

of sites, at the earliest possible time
(Disneyland)

2) Run x job on n nodes, where n
nodes may be distributed across
multiple sites at the same time (co-
scheduled)

3) Run x job at site A, then move
output to site B for additional
computation, visualization or
database access (pipeline)

In the first scenario, a user wants to run as
quickly as possible. For instance, the user has
a communication-intensive type of job and
doesn’t care which single compute resource
(out of a set of compute resources) the job runs
on. For example, when you visit Disneyland
with your friends, the object is to get on as
many rides as possible. Since the rides are
popular, there is a wait to get on the rides.
Which means you and your friends will wait in
line for a ride and then move to the next ride in
sequential fashion. A more efficient way to
get on more rides would be to split up with
your friends and have each of you wait in line
at different rides. Then, whoever gets to the
front of the line first “wins” and you and your
friends leave their different lines to join the
“winning” person. This method allows you
and your friends to ride as many rides as
possible. Many scientific computation
applications exhibit this behavior. A brain
imaging application renders images from raw
data is an example of a kind of application that
uses this kind of scheduling scenario. It has
been shown that this strategy does not
necessarily reach the optimal solution, if the
resources are heterogenous [7]. We have also
not studied the effect on global and local
utilization with such a strategy. Intuitively, a
“market” of resource consumers and resource
providers might be expected to emerge.
Information, in the form of submitted jobs,
would be available to resource providers. We
speculate that this dissemination of
information might allow more efficient global

utilization, without a centralized scheduling
mechanism.

Some kinds of computation-intensive jobs
make use of geographically distributed
resources. These jobs run within each separate
site and communicate between sites. For
example, to develop a full weather model for
the ocean’s atmosphere, one part of the job
computes the ocean’s effects on the
atmosphere at one site and the other part of the
model computes the effects of the atmosphere
on the ocean. The distributed jobs then
communicate at the end of the model to share
the data to develop a complete model. This
kind of job needs resources to be available
simultaneously (co-scheduled).

Different sites offer different capabilities.
Because of this, users want to compute at one
site, move data to another site, visualize the
data at another site and finally store the output
at a last site. The storing of data can’t start
until the data is visualized. And the
visualization can’t start until the data is moved
and so on. The space for the data needs to be
available at the remote site. So a schedule of
reservations is needed on resources to
complete the job workflow. Each step in the
process depends on the previous step. An
example of this kind of job is an astronomy
model that needs specific compute resources at
one site and the data and visualization
resources at another site. Another instance is a
database server with a limited amount of
space. In this limited amount of space, users
can bring up their own database and stage data
into it. A resource manager and scheduler for
the database can grant space reservation
requests to user. These reservations can be
coordinated with regular compute reservations
on a separate system. This staging of events
is called a pipeline.

3. Grid User-settable Reservations and
Catalina Scheduling

A local scheduler called “Catalina,” was
developed to provide a user-settable
reservation facility for IBM’s LoadLeveler,
Portable Batch System (PBS) or any local
resource manager that has an interface for an
external scheduler. Catalina is a reservations-
based, single-queue scheduler, much like the
Maui scheduler. It prioritize jobs, based on a
number of different characteristics. It

calculates the expansion factor for how long a
job is waiting and adjusts the priority on the
job so it won’t starve. It also has backfill
capabilities to keep the processors busy until
the right number of nodes are available for a
larger job with higher priority. When a system
reservation is made, jobs that will complete
before the system

SDSC
TG Linux

Job FileA*

B*
GUR

workstation

SDSC
DataStar

p690s

SDSC
DataStar

p655

Purdue
SP

Reservation
11/9/2004 7AM
Clerk
Clerk
Clerk
Clerk

Reservation
11/9/2004 7AM
Ds114
Ds115
Ds116
Ds117
Ds119
Ds120
Ds137
Ds246
Ds257

Reservation
11/9/2004 7AM
Ds009

Reservation
11/9/2004 7AM
Tg-c194

A* User creates meta job file
B* GUR requests coordinated
reservations on clusters
C* Local schedulers respond to GUR
requests
D* Coordinated reservations for
nodes are created

C*

D*

Flow

Figure 1. Job Flow Schematic

reservation starts are scheduled to run. It can
schedule any kind of resource including data,
database or compute. Catalina consists of
10,000 lines of Python with some functions
written in C. The user-settable reservation
facility consists of a command-line client run
by an unprivileged user. Parameters provided
to the user include:

1) Allocation charge account

2) Exact or maximum number of
nodes requested

3) Duration of the reservation
4) Earliest time at which the

reservation can start
5) Latest time at which reservation

may end
6) Email address for failure

notification

To keep users from severely disrupting the
batch schedule, reservations are restricted by
the following policies:

1) User-settable reservations are made
only after all currently queued jobs
are scheduled

2) Number of reservations per account
can be limited

3) Number of nodes and duration of
each reservation can be limited

4) Global limit on the number of
node-seconds devoted to user-
settable reservations in a
configurable time window

Catalina is the scheduler running on the
production supercomputers at the San Diego
Supercomputer Center. For instance, it’s the
scheduler for Blue Horizon, an 1100 processor
IBM SP2. It interfaces with LoadLeveler,
IBM’s proprietary resource manager. It’s
been running successfully for over three years.
In this time, none of the 2000+ user accounts
on Blue Horizon interrupted, interfered or
delayed the overall batch scheduling process
with user-settable reservation capability.
Catalina is consistent with the Global Grid
Forum Advanced Reservations API. More
information on Catalina can be found at
http://www.sdsc.edu/catalina .

User 1

• Diversity of producers: each agent
can be configured to use a different
set of clusters
• Diversity of scheduling: each agent
can be independently designed

Travel Agent

User 2 User 3
User 4

Cluster A

Cluster B

Cluster C

Cluster D
Cluster E

Agent 1 Agent 2 Agent 3

Figure 2. Scheduling Communication

3. Travel Agent Method

When a travel agent makes reservations for a
trip, the agent starts with specific dates and

start/end point locations in mind. Then the
agent makes a starting guess based on those
dates and locations for a specific time for the
reservation. The agent may check several

airlines (resources) for availability that match
the traveler’s parameters. If the flight meets
the traveler’s needs, the reservation is made. If
several flights meet the traveler’s needs, the
first available flight in those times is booked.
If no flights meet the traveler’s need, the agent
makes another guess about flight times to
match the traveler’s next best time. If the
traveler’s needs are met, the reservation is
made. If not, another guess is made, and so
on. This trial and error strategy generates
resource reservations in an acceptable amount
of time since there are a finite number of
resources available in a specific time period.

Once the airline is reserved, the agent will
make the car reservation based on the airline
arrival and departure times. And the hotel
reservation is dependent on the airline and car
rentals times and so on. A draft itinerary is
created and checked with the traveler before
being booked permanently.

Making reservations for distributed grid
resources can be done in a similar way:
resources can be scheduled sequentially for
jobs requiring staged multiple resources or in
parallel for co-scheduled resources. Both user-
controlled (manual) and automatic reserved
resource acquisitions make efficient use of grid
resources since system administrator time is
not required to check and make reservations at
different sites. This strategy makes
reservations for the three different types of
jobs requests outlined in the Grid Usage
Scenarios section.

4. Generic Universal Remote (GUR)

Traditionally, only system administrators make
reservations for resources with local
schedulers. With this approach, creating
Disneyland, co-scheduled or pipeline
reservations require communication with the

local system administrators at each of the sites
the user wants to run. Contacting individual
system administrators at each site is a time
consuming process that undoubtedly requires
multiple iterations Traditional approaches to
metascheduling require a centralized scheduler
that controls the schedulers at each of the sites.
This is an impractical approach on the grid,
where each site has it’s own security and local
scheduling policies.

When the user-settable reservation capability
is available to users, then users can “self-
schedule” and request resources when needed.
Users act as their own travel agent and reserve
co-scheduled jobs without manual system
administrator intervention. This manual
process is automated with GUR.

Using the Travel Agent Method, the GUR
negotiates reservations with local schedulers.
It probes the local schedulers to find potential
suitable times and then makes a guess at
possible times for the job to execute. Once a
time is found, the reservation is made. In
order for this to happen, user settable
reservations need to be available on the local
schedulers.

GUR is a metascheduler that was developed to
automatically created coordinated reservations
on local schedulers, using the user-settable
reservation facility. A user submits a metajob
to GUR providing information such as:

1) Total number of nodes needed
2) Minimum and maximum number of

nodes needed for each local system
3) Job duration
4) Earliest start time
5) Latest end time
6) Usage scenario

a) Single system (Disneyland)
b) Multiple systems (co-

scheduled)
c) Multiple systems (pipeline)

A GUR job request would look something like
this:
[metajob]
total_nodes=12
machine_preference=datastar655,purduesp
machine_preference_reorder=yes
duration=7200
earliest_start=07:00_11/09/2004
latest_end=09:30_11/09/2004
usage_pattern=multiple
machines_dict_string = {
 'datastar655' : {
 'username_string' : 'kenneth',
 'account_string' : 'sys200',
 'email_notify' : 'kenneth@sdsc.edu',
 'min_int' : 1,
 'max_int' : 158
 },
 'purduesp' : {
 'username_string' : 'kenneth',
 'account_string' : 'TG-STA040001N',
 'email_notify' : 'kenneth@sdsc.edu,
 'min_int' : 1,
 'max_int' : 2
 }
 }

For job submission, architecture-specific
requirements are abstracted into a GUR
configuration file. Jobs request required
resource features by specifiying a 'machine',
such as 'datastar655'.This would mean p655
nodes on DataStar. At least one node must be
used on each cluster. No more than 158 can be
used on 'datastar655', and no more than 2 can
be used on 'purduesp'.

Then GUR probes each system to make a
rough guess at each system’s queue load. It
does this by setting test reservations on each
system and checking the delay for each
reservation. This approach is not optimal for
all possible queue states, but it does provide
usable information on the status of each
system.

In order of the least loaded system, GUR
makes reservations consistent with the

minimum and maximum nodes for each
system and the total number of nodes
requested. Nodes are preferentially distributed
to the least loaded systems. If the initial
distribution of nodes to systems is not possible
in the requested time frame, a new distribution
is generated, giving more nodes to the more
heavily loaded clusters. As soon as a solution
is found, GUR stops. GUR does not have a 24
hour hold on reservations or a two phase
commit. It makes reservations and cancels
them, if they are no longer required. While
finding the initial optimal distribution of times
and nodes, GUR makes a “sliding reservation
window” time based on the requested running
parameters of the earliest start time and latest
end time. It binds the job to the reservation
and vise versa.

In addition, GUR is “generic” and works with
any local scheduler (with user-settable or
manually-settable reservations) that schedules
any kind of compute, data or instrumental
resource. GUR can perform a series of
scripted tasks. For instance, a job can
automatically compile and execute based on
GURs instructions. It can also stage data or an
executable. This enables a “universal” grid
roaming capability, where jobs can be
launched from a laptop regardless of the
operating system on the destination resource.
It also reduces the load on “login” nodes
because users don’t need to login to submit
jobs. If the user performs a grid-proxy-init and
specifies a GSI-enabled SSH, then GUR will
use that to contact the remote systems. If no
GSI-enabled SSH is available, or the remote
system’s gatekeeper is down, GUR will use
regular SSH, setting up an agent for the user.

If a reservation cannot be fulfilled, perhaps due
to hardware failure or unplanned
maintenance,then the local scheduler is
expected to email notification to the user.

If any local scheduler is unable to provide the
minimum number of nodes within the sliding
reservation window, GUR informs the user

that the reservation is not possible. The user
may then expand the time window, reduce the
number of resources requested or both and
resubmit.

GUR also gives your local computer the
capacity to act like a television “remote”
where it can control the geographically
distributed resources on the grid behind it by
providing a single, uniform, easy-to-use
interface for the user.

GUR works with any local scheduler that takes
user-settable reservations (such as Catalina) or
has an interface for reservations. It can also
work with the Maui Scheduler with manual
system administrative assistance. GUR
conforms to Global Grid Forum Advance
Reservations API. GUR does not currently
support pipeline jobs, but it would be easy to
extend the multiple usage pattern to pipeline
by providing a time offset to each resource so
they happen in sequential rather than
simultaneous order.

More information on GUR can be found at
http://www.sdsc.edu/~kenneth/gur.html .
GUR can be downloaded from
http://www.sdsc.edu/scheduler/gur.html .

Real-Life Experiences with Metascheduling
and GUR

Several previous experiences explored the use
of coordinated reservations. At a previous
SuperComputing conference, a user manually
created reservations through the General-
purpose Architecture for Reservation and
Allocation (GARA) to the Portable Batch
System Professional (PBSPro). The co-
scheduled metajob ran across sites using
MPICH-G.

 In another demonstration, a user made
reservations on an SDSC IA-32 Linux cluster
running the Portable Batch System (PBS)
resource manager and on SDSC’s Blue
Horizon, an 1100 processor SP, running the

LoadLeveler resource manage r. The co-
scheduled metajob ran between the machines
using MPICH.

Co-scheduled reservations were made with the
Silver metascheduler on Blue Horizon’s
LoadLeveler/Maui and an SP at Pacific
Northwest Laboratories running
LoadLeverl/Maui. ECCE/NWChem was the
application. Silver is a centralized
metascheduler that only works with the Maui
scheduler.

Additionally, SP clusters at SDSC, University
of Michigan – Ann Arbor and University of
Texas – Austin were reserved and scheduled a
centralized metascheduler during a separate
SuperComputing demonstration. These
clusters all shared the same UID/GID space.
All the clusters used LoadLeveler and the
Maui scheduler. Again, the centralized
metascheduler made the reservations from a
privileged account for a co-scheduled metajob.

In a new approach, GUR was used to
automatically schedule jobs with various
characteristics on several heterogeneous
compute platforms. At SDSC, Disneyland
and co-scheduled jobs were scheduled between
Blue Horizon and a Linux cluster. Both of
these resources are working, production
supercomputers with real user jobs scheduled
and running at the time of the tests.

User job requests were made from each
compute platform to GUR. These jobs
requested a various number of processors, run
times and executables. Some jobs requested to
run at the same time on both platforms. And
other jobs requested to run at the earliest
possible time. All of these tests worked. This
tests shows that grid metascheduling can be
performed with local schedulers with user-
settable reservations and a decentralized
metascheduler.

In the latest demonstration of GUR
capability,at SC2004, co-scheduled

reservations were made across three platforms.
These were SDSC DataStar (IBM SP with
Catalina), SDSC Linux cluster (ia64/Myrinet
with Catalina), and Purdue SP (IBM SP with
PBSPro). The SDSC machines are running
production workload, while the Purdue
machine was a test system. GUR was able to
successfully create a set of synchronized
reservations across the three clusters. GUR
reserved 10 nodes on SDSC DataStar, one
node on SDSC Linux cluster, and one node on
the Purdue SP. These reservations were all
scheduled to start at 7am Nov 9, 2004 PST.

GUR is similar to Silver in that it depends on
reservations created on the local schedulers. It
differs in using user-settable reservations
rather than privileged reservations. GUR
resembles Condor-G, since GUR can submit
jobs to diverse compute resources. GUR
makes use of user-settable reservations to
provide synchronization of job starts, which
Condor-G[8] does not do.

5. Conclusion

Resources can be easily scheduled on a grid by
deploying an automatic scheduler that mimics
the human travel agent’s process for making
reservations. Reading the user’s request for
resources, making a guess at the best possible
times and sliding the window of those times
until a match is found reserves resources in a
reasonable amount of time. Various types of
typical HPC/grid computing jobs can be
scheduled in this manner, including
Disneyland, co-scheduled and pipeline jobs.

A working version of this metascheduler,
GUR, along with a local scheduler with user-
settable reservations, Catalina, proves that this
approach is possible. The Catalina-GUR
system demonstrates that a user-settable
reservation facility is sufficient to enable
automatic, coordinated metascheduling. User
settable reservations are practical since they
are controlled by policies that restrict users
from interrupting the flow of the batch system.

The ability to request any number of nodes up
to a maximum makes it much easier to explore
the node distribution space throughout the
grid.

This architecture allows many alternate
metaschedulers to participate in the grid. It
also allows additional flexibility since it can be
run from a laptop, giving unprecedented,
ubiquitous access to users of the grid. In
addition, it also removes the requirement for a
centralized metascheduler, which is difficult to
coordinate and make secure. The combination
of user-settable reservations along with an
automated, de-centralized metascheduler is an
approach that allows many new types of HPC
applications to run on a grid.

6. Acknowledgments

We wish to thank Wendy Lin of Purdue for
development of code to enable user-settable
reservations on the Purdue SP.

7. References

[1] Catlett, C. The TeraGrid: A Primer, 2002.
www. teragrid .org
§
[2] I. Foster and C. Kesselman, “Globus: A
Metacomputing Infrastructure Toolkit,”
Intl. J. Supercomputer Applications, Vol.
11, No. 2, pp. 115-128, 1997,

[3] Foster, I., Kesselman, C., Nick, J.M. and
Tuecke, S. Grid Services for Distributed
Systems Integration. IEEE Computer, 35 (6).
37-46. 2002

 [4] A Centralized Data Access Model for Grid
Computing, Phil Andrews, Tom Sherwin, and
Bryan Banister, Twentieth IEEE Symposium
on Mass Storage Systems, (April 2003)

[5]GPFS: A Shared-Disk File System for
Large Computing Clusters , Frank Schmuck

and Roger Haskin, Conference Proceedings,
FAST (Usenix) 2002

 [6] http://www.deisa.org/

[7]Scheduling of Parallel Jobs in a
Heterogeneous Multi-Site Environment,
Gerald Sabin, Rajkumar Kettimuthu, Arun
Rajan and P. Sadayappan, Proceedings of 9th
Workshop on Job Scheduling Strategies for
Parallel Processing (JSSPP 2003), June 2003

[8]"Condor-G: A Computation Management
Agent for Multi-Institutional Grids", James
Frey, Todd Tannenbaum, Ian Foster, Miron
Livny, and Steven Tuecke,Proceedings of the
Tenth IEEE Symposium on High Performance
Distributed Computing (HPDC10) San
Francisco, California, August 7-9, 2001.

