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Abstract

Irregular and iterative I/O-intensive jobs need a differ-
ent approach from parallel job schedulers. The focus in this
case is not only the processing requirements anymore: mem-
ory, network and storage capacity must all be considered
in making a scheduling decision. Job executions are irreg-
ular and data dependent, alternating between CPU-bound
and I/O-bound phases. In this paper, we propose and im-
plement a parallel job scheduling strategy for such jobs,
called AnthillSched, based on a simple heuristic: we map
the behavior of an parallel application with minimal re-
sources as we vary its input parameters. From that map-
ping we infer the best scheduling for a certain set of input
parameters given the available resources. To test and ver-
ify AnthillSched we used logs obtained from a real system
executing data mining jobs. Our main contributions are the
implementation of a parallel job scheduling strategy, called
AnthillSched in a real system, and a performance analy-
sis of AnthillSched, which allowed us to discard some other
scheduling alternatives considered previously.

1. Introduction

Increasing processing power, network bandwidth, main
memory, and disk capacity has been enabling efficient and
scalable parallelizations of a wide class of applications that
include data mining [10, 21], scientific visualization [5, 17],
and simulation [18]. These applications are not only de-
manding in terms of system resources, but also a paral-
lelization challenge, since they are usually irregular, I/O-
intensive, and iterative. We refer to them as I3 applications
or jobs. As irregular jobs, their execution time is not re-
ally predictable, and pure analytical cost models are usu-

ally not accurate. The fact that they are I/O intensive make
them even less predictable, since their performance is sig-
nificantly affected by the system components and by the
amount of overlap between computation and communica-
tion that is achieved during the job execution. Further, I3

jobs perform computations spanning several data domains,
not only consuming data from those domains, but also gen-
erating intermediary them, increasing the volume of infor-
mation to be handled in real time. Finally, iterativeness
raises two issues that affect the parallelization: locality of
reference and degree of parallelism. The locality of refer-
ence is important because of the access patterns vary over
time with each iteration. The degree of parallelism is a func-
tion of the data dependencies among iterations. As a con-
sequence of these characteristics, scheduling of I3 jobs is
quite a challenge, and determining optimal scheduling for
them is a very complex task, since it must consider local-
ity, input size, data dependences, and parallelization oppor-
tunities.

Generally speaking, parallel job schedulers have been
designed to deal with CPU-intensive jobs [4, 6, 7, 8, 13, 14,
15, 16, 20, 23, 25]. Some researches have proposed strate-
gies to deal with I/O-intensive and irregular jobs [2, 3, 17,
18, 19, 22, 24], but not with I3 jobs.

In this paper we investigate the scheduling of I3 jobs,
in particular filter-labeled stream programs [5]. Those pro-
grams are structured as filters that communicate using
streams, where parallelism is achieved by the instantiation
of multiple copies of any given filter. Consistent address-
ing among filter instances is guaranteed by the use of la-
bels associated with any data that traverses a stream. These
programs are fundamentally asynchronous and imple-
mented using an event-based paradigm. In the scope of this
work, a job is the execution of a program with specific in-
put parameters on specific data using a number of filter



instances for each filter. The main issue is that each fil-
ter demands a different amount of CPU and I/O and, in
order to be efficient, there must be a continuous and bal-
anced data flow between filters. Our premise is that the bal-
ance of the data flow between filters may be achieved
by scheduling the proper number of filter copies or in-
stances. In this paper we propose, implement, and evalu-
ate a parallel job scheduling strategy called AnthillSched,
which determines the number of filter instances accord-
ing to each filter’s CPU and I/O demands and sched-
ules them. We evaluate AnthillSched using logs derived
from actual workloads submitted to the Tamanduá1 sys-
tem, which is a data mining service that executes data
mining I3 jobs on Anthill, our filter-stream run time sys-
tem.

This paper is organized as follows. We present the re-
lated work in Section 2. The following section introduces
the Anthill programming environment, and Section 4 de-
scribes our proposed scheduling strategy. We then present
the workload, metrics, experimental design, results and the
performance analysis of AnthillSched in the remaining sec-
tions. Finally, we present our conclusions and future work.

2. Related Work

While we are not aware of works on scheduling I3 jobs,
other researchers have addressed the issue of scheduling
parallel I/O-intensive jobs. Wiseman et al. [22] presented
Paired-Gang Scheduling, in which I/O-intensive and CPU-
intensive jobs share the same time slots. Thus, when an I/O-
intensive job waits for an I/O request, the CPU-intensive
job uses the CPU, increasing utilization. This approach in-
dicates that processor sharing is a good mechanism to in-
crease performance in mixed loads.

Another work [24] shows three versions of an I/O-Aware
Gang Scheduling (IOGS) strategy. The first one, for each
job, looks for the row in the Ousterhout Matrix (time-space
matrix) with the least number of free slots where job file
nodes are available, considering a serverless file system.
This approach is not efficient for workloads with lower I/O
intensity. The second version, called Adaptive-IOGS, uses
IOGS, but also tries the traditional gang scheduling ap-
proach. It fails to deal with high I/O-intensive workloads.
The last version, called Migration-Adaptive IOGS, includes
the migration of jobs to their associated file nodes during
execution. This strategy outperformed all the other ones.

A job scheduling strategy for data mining applications
in a cluster/grid is proposed in [19]. It groups independent
tasks that use the same data to form a bigger job and sched-
ules it to the same group of processors. Thus, the amount of

1 Tamanduá means anteater in Portuguese.

transferred data is reduced and the jobs performance is in-
creased.

Storage Affinity is a job scheduling strategy that exploits
temporal and spatial data locality for bag-of-tasks jobs [18].
It schedules jobs close to their data according to the storage
affinity metric it defines (distance from data) and also uses
task replication when necessary. It has presented better per-
formance than XSufferage (a priori informed) and WQR
(non-informed).

Finally, a very closely related work is LPSched, a job
scheduling strategy that deals with asynchronous data flow
I/O-intensive jobs using linear programming [17]. It as-
sumes that information about job behavior is available a pri-
ori and it dynamically monitors cluster/grid resources at run
time. It maximizes the data flow between tasks and mini-
mizes the number of processors used per job. AnthillSched
differs from LPSched in many points: it supports labeled
streams and iterative data flow communication; it uses a
simple heuristic and does not use run-time monitors.

3. The Programming Environment

A previous implementation of the Filter-Stream pro-
gramming model [1] is DataCutter, a middleware that en-
ables efficient application execution on distributed hetero-
geneous environments [5]. DataCutter allows the instanti-
ation of several copies of each filter (transparent copies)
at runtime so that the application can balance the different
computation demands of different filters as well as achieve
high performance. The stream abstraction maintains the il-
lusion of point-to-point communication between filters, and
when a given copy outputs data to the stream, the middle-
ware takes care of delivering the data to one of the transpar-
ent copies on the other end. Broadcast is possible, but select-
ing a particular copy to receive the data is tricky, since Dat-
aCutter implements automatic destination selection mecha-
nisms based on round-robin or demand driven models.

We extend that programming model in the Anthill envi-
ronment by providing a mechanism named labeled stream
which allows the selection of a particular copy as destina-
tion based on some information related to the data (the la-
bels). Such extension provides a richer programming envi-
ronment, making it easier for transparent copies to partition
global state. Besides that, Anthill provides a task-oriented
framework, in which the application execution can be mod-
eled as a collection of tasks and that represent iterations over
the input data that may or may not be dependent on one an-
other. In that way, Anthill explores parallelism in time and
space, as well as it makes it easy to exploit asynchrony.

As we see in Figure 1, a job in Anthill explores time par-
allelism like a pipeline, since it is composed of N filters
(processing phases or stages) connected by streams (com-
munication channels). This job model explicitly forces the



Figure 1. Anthill programming model.

programmer to divide the job in well defined phases (fil-
ters), in which input data is transformed by each filter into
another data domain that is required by the next filter.

The Anthill programming model also explores spacial
parallelism, as each filter can have multiple copies, or in-
stances, executing in different compute nodes. Each com-
munication channel between filters can be defined as point-
to-point, to direct each piece of data to a specific filter
copy (either round-robin or by defining a labeled stream)
or broadcast, where data is copied to all filter copies of the
filter in next level. A consequence of spacial parallelism is
data parallelism, because a dataset is automatically parti-
tioned among filter copies. Together with streams, data par-
allelism provides an efficient mechanism to divide I/O de-
mand among filters, while labeling allows data delivery to
remain consistent when necessary.

The task-oriented interface is what allows Anthill to ef-
ficiently exploit the asynchrony of the application. Each job
is seen as a set of work slices (WS) to be executed which
may represent each iteration of an algorithm and may be
created dynamically, as input data is being processed (that
is particularly useful for data-dependent, iterative applica-
tions). A work slice WSi is created, its data dependencies
to any previous sliceWSj is explicitly indicated. That gives
Anthill information about all synchronization that is really
required by the application, allowing it to exploit all asyn-
chrony in slices that already had their dependencies met.

4. Anthill Scheduler

It should be noted that Anthill’s programming model
deals with only qualitative aspects of I3 jobs. As we pre-

sented, Anthill allows asynchrony, iterativeness, spacial and
data parallelism, but it does not deal with quantitative as-
pects such as the number of filter copies, number of trans-
mitted bytes during an iteration etc. Thus, to deal with quan-
titative aspects, we need a job scheduling strategy that can
be compute the number of filter copies, considering filter
execution times, filter I/O demands, data complexity, etc.
It is important to notice that the overall application perfor-
mance is highly dependent on such scheduling decisions.

We propose AnthillSched, a parallel job scheduling strat-
egy, implemented as Anthill’s job scheduler. It focuses on
the proper scheduling of a I3 job on a cluster, that is, the
decision about the number of copies of each filter, based
on the job input parameters. These parameters are specific
of the algorithm to be executed in each job; for a cluster-
ing algorithm, for example, it might be the number of clus-
ters to be considered, for example. Based on those parame-
ters, AnthillSched must output the number of instances for
each filter in the algorithm. There are two possible schedul-
ing alternatives: analytical modeling, which is very complex
and can be infeasible to our problem, or a simpler solution,
such as an experimental heuristic.

Our approach is based on a simple experimental heuris-
tic to solve a very complex problem in a efficient, although
possibly not optimal, way. Our decision to use a heuris-
tic was based on the fact that the I3 applications in which
we are interested have very complex interactions, for the
processing is iterative and the applications themselves are
iterative (users may run a same algorithm multiple times
with different input parameters, trying to get a better re-
sult for their particular problems). Going for a full analyt-
ical model would most often be a very complex task. Al-



function AnthillSched (i, p : integer) : array of integer
for 1 to m do

for j = 1 to n do

Cij = p×

(
Bij∑n

k=1
Bik

+
Eij∑n

k=1
Eik

)

2
endfor;

for j = 1 to n do
q = (j + 1)mod(n)
if(broadcast(Sij , Siq))

Biq = Biq × Ciq
endfor;

endfor;
return Ci

end.

Figure 2. AnthillSched’s algorithm.

though we may not be able to get to an optimal solution,
with the simpler scheduling strategy, however, we still ex-
pect to eliminate possible bottlenecks and provide a contin-
uous data flow with high asynchrony to I3 jobs.

Given a program that must be scheduled, the domain
of its input parameters must be first identified and clearly
mapped. AnthillSched requires q controlled executions, one
for each possible permutation of the input parameters. For
example, if we have input parameters A and B, and each pa-
rameter can assume 10 different values, we have 100 pos-
sible permutations. A controlled execution is the execution
of a job with one copy of each filter (sequential pipeline)
with certain combination of input parameters (say, combi-
nation i). For each job execution, we collect the number of
input bytes Bij and the execution time Eij for each filter j.

In Anthill, each job is executed according to a FCFS
strategy with exclusive access to all processors in the clus-
ter. When a new job arrives, Anthill executes AnthillSched
with the job’s set of input parameters (i) and the number
of available processors (p) as input. The scheduler outputs
the number of filter copies Cij for each filter j (represented
as a whole as Ci), after m iterations. First, for each itera-
tion, the number of copies of each filter Cij is calculated
according to Fig. 2, where n is the number of filters in the
pipeline for that application. In this step, we normalize the
number of input bytes Bij and the execution time Eij di-
viding them by the total sum of bytes and execution times,
respectively. Then, we sum the normalized values and di-
vide it by two, in order to obtain the relative resource re-
quirements of each filter. For example, if we had a job with
3 filters, we might find that filter1, filter2 and filter3, respec-
tively, utilize 0.6, 0.2 and 0.2 of the total of resources to ex-
ecute the job. Finally, according to the number of available
processors p, we calculate the number of copiesCij propor-
tionally to the relative requirements of each filter.

The second step in Fig. 2 handles broadcast operations,
since when a broadcast occurs between two filters, the num-

ber of input bytes of the destination filter will increase ac-
cording to it’s number of copies. For every filter j, we must
consider its stream to the next filter q (q = (j+1)mod(n));
that stream is identified as Sjq . If Sjq is a broadcast stream,
the number of input bytes received by the destination fil-
ter Biq must be multiplied by its number of copies Ciq .
Thus, AnthillSched must recalculate the number of input
bytes Biq .

If we have a large number of possible input permuta-
tions, it is not feasible to run all controlled executions and
store them. A solution in this case is to consider only a sam-
pling of the possible permutations. When a new, or not con-
sidered, combination of input parameters of a job is found,
an interpolation between the two nearest combinations can
approximate the number of copies for each filter for that job.

For each new submitted job, Anthill calls AnthillSched
with the job’s permutation of input parameters. The
scheduling process overhead is negligible, because
AnthillSched’s scheduling heuristic is very simple and
can be solved in polynomial time as we see in Fig-
ure 2, since it defines a limit for the iterations, m.

During to preliminary tests, we verified that controlled
executions that spent less than 5 seconds do not need to
be parallelized. This threshold can vary according to the
jobs and input data, but as a general rule, short sequential
jobs do not need to be parallelized to improve performance.
Thus, we created an optimized version of AnthillSched that
determines if a certain job must execute in parallel (more
than one copy per filter). Otherwise, it executes a sequen-
tial version of the job. We named this version Optimized
AnthillSched (OAS).

5. Results

In this section we evaluate our scheduling strategy by
applying it to a data mining application: the ID3 algorithm
for building decision trees. In particular, we want to inves-
tigate whether the number of filter copies Ci for a I3 job
depends equally to the number of input bytes Bij and exe-
cution time Eij of each filter j. Thus, if the number of each
filter’s copies Cij is uniformly distributed according to Bij
and Eij , we eliminate possible bottlenecks and provide a
continuous data flow with high asynchrony for a job.

To test and analyze our hypothesis, we compared two
versions of AnthillSched (non-optimized and optimized) to
other two job scheduling strategies: Balanced Strategy (BS)
and All Strategy(AS). The proposed strategies use the max-
imum number of processors available. The BS tries to bal-
ance the number of processors assigned to each filter, con-
sidering that each filter has an equal load. For example, if
we have a job with 3 filters and a cluster of 15 processors,
each filter will have 5 copies. In AS, every filter has one
copy on every processor, executing concurrently.



5.1. Experimental Setup

For the workload we used real logs of data mining jobs
executed in Tamanduá platform by its users. As previously
mentioned, Tamanduá is a scalable, service-oriented data
mining platform executing on different clusters and that
uses efficient algorithms with large databases. The logs used
are from clusters were Tamanduá is being used to mine gov-
ernment databases (one on public expenditures, another on
public safety — 911 calls). Today, there are various data
mining algorithms implemented in Anthill such as A pri-
ori, K-Means, etc. In our experiments, we are concerned
with ID3 (a decision tree algorithm for classification) [10].
The main input parameter that influences ID3 is the mini-
mum node size, which determines the minimum number of
homogeneous points needed to create a node in the tree.
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Figure 3. Workload characterization.

Based on real logs from Tamanduá, we characterized the
inter-arrival time between jobs as shown in Fig. 3(b) and
the minimum node size pattern all jobs in Fig. 3(a). As we
see in Fig. 3(a), the majority of minimum node size val-
ues are concentrated between 0 and 10. In ID3, as an ap-
proximation, the minimum node size may be considered in-
versely proportional to the execution time, so it means that
long-running jobs are predominant over short jobs.

Based on the characterization of Tamanduá logs, we cre-
ated a workload model that uses the inter-arrival time pat-
tern between jobs and the minimum node size pattern. It was
verified that the inter-arrival time (Fig. 3(b)) fits in an expo-
nential distribution with parameter λ = 0.00015352, with
chi-square test value equal to 0. The minimum node size can
fit in a Pareto distribution with parameters θ = 0.61815 and
a = 0.00075019, where θ is the continuous shape parame-
ter and a is the continuous scale parameter (Fig. 3(a)). Us-
ing a workload generator, we generated 10 workloads, each
one composed of 1000 jobs executing the ID3 algorithm
with minimum node size and submission time derived from
the distribution in Figure 3.

To test the scheduling strategies under different condi-
tions, we varied the load (job arrival rate) between low,
medium and maximum. The low load considered the inter-
arrival time between jobs based on all points shown in 3(b),
so it has long periods of inactivity and a few peak periods,
in which the inter-arrival time between jobs is small. To cre-
ate the medium load workload, we used for the inter-arrival
time only a subset of Fig 3(b) with the peak periods. Finally,
the maximum load assumes that all jobs of the workload ar-
rive at same time; in this case we just ignore the inter-arrival
time between jobs.

WorkloadExecT ime =
∑n

i=1
JobExecT imei (1)

WorkloadIdleT ime = TotalT ime −
∑n

i=1
JobExecT imei

(2)
MeanJobWaitT ime =

∑n

i=1
JobWaitTimei
NumberOfJobs

(3)

MeanJobRespT ime =
∑n

i=1
JobWaitTimei+JobExecTimei

NumberOfJobs

(4)

MeanJobSlowdown =
∑n

i=1

JobRespTimei
JobExecTimei
NumberOfJobs

(5)

To evaluate our proposal, we used 5 performance met-
rics: workload execution time (Eq. 1), workload idle time
(Eq. 2), mean job response time (Eq. 4), mean job wait time
(Eq. 3) and mean job slowdown (Eq. 5). As the parallel
computer, we used a Linux cluster composed of 16 nodes
with 3.0 GHz Pentium 4 processors, 1 GB main memories
and 120 GB secondary memories each, interconnected by a
Fast Ethernet Switch.

5.2. Experimental Results

Using the workload derived from the previous char-
acterization, we present some experimental results in or-
der to evaluate the effectiveness of the scheduling strate-
gies discussed. More specifically, we evaluate how well the
scheduling strategies work when the system is submitted to
varying workload and number of processors.

In order to evaluate the impact of the variability of the
workload on the effectiveness of the strategies, we increased



Strategy Average Min Max Std. Dev c1 c2
AS 2065488.41 2029272.33 2155312.68 36921.23 2042604.83 2088371.99
BS 2065463.77 2029279.84 2155222.41 36903.64 2042591.09 2088336.45
NOAS 2065464.68 2029245.12 2155317.20 36930.32 2042575.47 2088353.90
OAS 2065410.48 2029242.96 2155136.99 36896.76 2042542.06 2088278.89

(a) Execution time for each strategy under low load.

Strategy Average Min Max Std. Dev c1 c2
AS 1189.08 61.86 3980.32 1309.36 377.54 2000.61
BS 1214.08 57.10 4070.59 1321.27 395.17 2033.00
NOAS 1209.70 90.26 3975.80 1304.82 400.98 2018.43
OAS 1263.55 90.19 4156.01 1328.39 440.22 2086.88

(b) Idle time for each strategy under a low load.

Strategy Average Min Max Std. Dev c1 c2
AS 9.61 7.07 11.82 1.49 8.69 10.53
BS 7.87 5.77 9.32 1.15 7.16 8.59
NOAS 8.13 6.01 10.24 1.33 7.30 8.95
OAS 4.84 3.64 5.89 067 4.43 5.25

(c) Mean job wait time for each strategy under a low load.

Strategy Average Min Max Std. Dev c1 c2
AS 189.28 186.76 191.46 1.50 188.35 190.21
BS 162.16 158.03 164.50 2.04 160.89 163.42
NOAS 168.28 166.28 170.67 1.36 167.44 169.44
OAS 107.82 101.68 110.65 2.63 106.45 109.19

(d) Mean job response time for each strategy under low load.

Table 1. Scheduling strategies performance for different workloads under low load.

the load on each experiment to test which scheduling strat-
egy presents a better performance to each situation and
which strategies are impossible to use in practice. In the first
three experiments (low, medium and maximum load), we
used a cluster configuration composed of only 8 processors.
With the maximum load, we saturated the system to test the
alternatives. In our final experiment (scalability under max-
imum load), we compare the two best strategies with the
same optimizations and analyze the scalability of the strate-
gies for different cluster configurations (8, 12 and 16 pro-
cessors). We used a 0.95 confidence level and approximate
visual tests to compare all alternatives. The confidence in-
tervals are represented by c1, c2 (lower, upper bound).

This first experiment tests the scheduling strategies un-
der a low load for a cluster with 8 processors. As we see in
Table 1(a), the mean execution time for all workloads and
strategies was very close. A low load implies large inter-
arrival times; in this case, the intervals were larger than

the time necessary to execute a job. Thus, if a schedul-
ing strategy spends more time than another, for a low load,
it does not matter. In spite of that it, we observe in Ta-
ble 1(b) that system using Optimized AnthillSched (OAS)
spent more time idle than the other ones. This is a first indi-
cation that jobs executed with OAS strategy have a lower re-
sponse time, as we confirm in Table 1(d). When a job spends
less time executing, as the inter-arrival time is long, the sys-
tem stays idle for more time, waiting for a new job submis-
sion, than a system in which a job spends more time execut-
ing. As can be seen on Table 1(c), the mean job wait time,
and consequently the mean job response time for OAS, is
really lower than the other strategies.

As our first conclusions, this experiment shows that for
a low load, independent of scheduling strategy, the inter-
arrival time between jobs prevails over the workload exe-
cution time, because jobs are shorter than that. As we ex-
pected, a scheduling strategy that reduces the mean job wait



Strategy Average Min Max Std. Dev c1 c2
AS 179681.76 179401.58 179807.61 106.49 179615.75 179747.77
BS 154321.87 150995.24 155923.21 1394.01 153457.87 155185.87
NOAS 160181.04 159284.49 161230.22 548.70 159840.95 160521.12
OAS 103100.88 97447.90 106026.05 2413.90 101604.76 104597.01

(a) Execution time for each strategy under a medium load.

Strategy Average Min Max Std. Dev c1 c2
AS 11.40 0.00 86.56 27.22 -5.48 28.27
BS 10.42 0.00 84.74 26.52 -6.02 26.86
NOAS 21.01 0.00 120.53 39.66 -3.57 45.60
OAS 32.59 0.00 119.77 48.37 2.61 62.57

(b) Idle time for each strategy under medium load.

Strategy Average Min Max Std. Dev c1 c2
AS 56660.14 53618.32 58737.13 1442.26 55766.23 57554.05
BS 44165.69 41342.79 46325.72 1612.33 43166.37 45165.00
NOAS 46849.72 43929.01 49249.10 1449.23 45951.49 47747.95
OAS 18721.51 15228.08 21785.22 2032.29 17461.90 19981.11

(c) Mean job wait time for each strategy under medium load.

Strategy Average Min Max Std. Dev c1 c2
AS 56839.81 53798.01 58916.78 1442.28 55945.88 57733.73
BS 44319.97 41497.70 46481.64 1613.01 43320.23 45319.71
NOAS 47009.87 44089.37 49409.53 1449.21 46111.66 47908.09
OAS 18824.49 15325.52 21891.15 2033.92 17563.88 20085.10

(d) Mean job response time for each strategy under medium load.

Table 2. Scheduling strategies performance for different workloads under medium load.

time and consequently the response time, increases the idle
time of the system.

Under medium load, the results are shown in Table 2.
With medium load, the inter-arrival times are not always
larger than response times. In Table 2(a), AS presented
the worst execution time for all workloads. After that, BS
and Non Optimized AnthillSched (NOAS) presented simi-
lar performance, with a little advantage for BS. Table 2(b)
shows that on average, OAS achieved the higher idle time.
As we confirm in Table 2(c,d), the mean job wait and re-
sponse time are lower when the OAS is used, so the system
have more idle time waiting for another job arrival.

With this experiment, we observe that the All Strategy
(AS) is no a viable strategy based to all evaluated met-
rics. In our context, we cannot assume that all filters are
complementary (CPU-bound and I/O-bound), as AS does.
However, for other type of jobs or maybe a subgroup of
filters, resource sharing can be a good alternative [22].

Moreover, the Balanced Strategy (BS) and Non-Optimized
AnthillSched (NOAS) presented similar performance, so
we cannot discard both alternatives.

Based on our previous experiment, we do not consider
AS an alternative from this point on. In the third experiment,
we evaluate the scheduling strategies under maximum load.
In this case we do not consider the system idle time, given
that all jobs are submitted at the same time. As we can see
in Fig. 4, for all metrics, OAS was the best scheduling strat-
egy, and NOAS the worst strategy. NOAS parallelizes short
jobs, creating unnecessary overhead and reducing perfor-
mance. In our data mining jobs, the first filter tends to have
much more work than the others. NOAS assigns more (use-
less) processors to the first filter and few processors to the
other ones. Thus, the other filters become bottlenecks. This
generates more overhead than a balanced distribution of fil-
ter copies or instances among processors.

Based on the confidence intervals, our results show that
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Figure 4. Scheduling strategies performance
for 10 different workloads.

NOAS is not a viable alternative, because for short jobs,
the parallelization of jobs leads to a high response time, as
we see in Fig. 4(b). Moreover, BS presented a lower perfor-
mance than OAS. Despite of the low performance achieved
with BS, we are not convinced yet that OAS is really better
than BS. Because of the considerable amount of short jobs
in the workloads, the optimization in AnthillSched takes ad-
vantage over BS. To solve this problem, we included the
same optimization in BS for the next experiment.

Our final experiment verifies whether OAS has a bet-
ter performance than OBS (Optimized Balanced Schedul-
ing) and if it scales up from 8 to 16 processors. We used
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Figure 5. OBS and OAS performance for all
workloads in a cluster with 8, 12 and 16 pro-
cessors.



the heavy load configuration and varied the number of pro-
cessors from 8, 12 to 16 while considering four perfor-
mance metrics (execution, response, wait and slowdown
times, mean values for all workloads). Moreover, we in-
cluded the same optimization in BS (OBS), as mentioned
before.

According to Fig. 5 and a visual test of the confidence in-
tervals, all metrics show that, even with the same optimiza-
tion, OAS has better performance. In Fig. 5(d), the large
slowdown is due to the short jobs, which have low execu-
tion times, but high job wait times (Fig. 5(c)) under the max-
imum load.

Finally, this last experiment showed that OAS is more
efficient than OBS. Moreover, OAS scaled up from 8 to 16
processors. Due to our limitations on computing resources,
we could not vary the number of processors beyond 16.
From the results, our main hypothesis that the number of
filter copies Ci for an I3 jobs depends equally to the num-
ber of input bytes Bi and execution time Ei of each filter
was verified. In preliminary tests, not shown in this paper,
we observed that the use of different weights for CPU and
I/O requirements in the AnthillSched algorithm (Fig. 2) did
not seem to be a good alternative as the execution time of
a controlled execution increased. However, as future work,
these experiments can be more explored to definitely dis-
card this alternative.

6. Conclusion

In this work we have proposed, implemented (in a real
system) and analyzed the performance of AnthillSched. Ir-
regular and Iterative I/O-intensive jobs have some features
that are not taken into account by parallel job schedulers.
To deal with those features, we proposed a scheduling strat-
egy based on simple heuristics.

Our experiments show that resource sharing among all
filters is not a viable alternative. They also show that a bal-
anced distribution of filter copies among processors is not
the best alternative either. Finally, we concluded that the
use of a scheduling strategy which considers jobs input pa-
rameters and distributes the filter copies according to each
job’s CPU and I/O requirements is a good alternative. We
named this scheduling strategy AnthillSched. It creates a
continuous data flow among filters, avoiding bottlenecks
and taking in account iterativeness. Our experiments show
that AnthillSched is also a scalable alternative.

Our main contributions are the implementation of our
proposed parallel job scheduling strategy in a real system
and a performance analysis of AnthillSched, which dis-
carded some other alternative solutions.

As future works we see, among others: the creation and
validation of a mathematical model to evaluate the per-
formance of parallel I3 jobs, the exploration of different

weights for CPU and I/O requirements in AnthillSched, and
the use of other applications types.
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[15] Góes, L. F. W., Martins, C. A. P. S.: Proposal and Devel-
opment of a Reconfigurable Parallel Job Scheduling Algo-
rithm. Master’s Thesis. Belo Horizonte, Brazil. (2004) (in Por-
tuguese)
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