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Abstract

We describe an open job management architecture of the Blue Gene/L supercomputer. The architecture
allows integration of virtually any job management system with Blue Gene/L with minimal effort. The
architecture has several "openness” characteristics. First, any job management system runs outside the
Blue Gene/L core (i.e. no part of the job management system runs on Blue Gene/L resources). Second, the
logic of the scheduling cycle (i.e. when to match jobs with resources) can be retained without modifications.
Third, job management systems can use different scheduling and resources allocation models and algorithms.

We describe the architecture, its main components, and its operation. We discuss in detail two job
management systems, one based on LoadLeveler, the other — on SLURM, that have been successfully
integrated with Blue Gene/L, independently of each other. Even though the two systems are very different,
Blue Gene/L’s open job management architecture naturally accommodated both.



1 Introduction

Blue Gene/L is a highly scalable parallel supercom-
puter developed by IBM Research for the Lawrence
Livermore National Laboratory [1]. The supercom-
puter is intended to run highly parallel computational
jobs developed using the popular MPI programming
model [2, 3]. The computational core of the full Blue
Gene/L consists of 64 x 32 x 32 = 65536 = 2'6 nodes
connected by a multi-toroidal interconnect [5]. A
Blue Gene/L prototype of a quarter of the full size
(16 x 32 x 32 = 16384 = 2! nodes) is currently rated
the fastest supercomputer in the world [4]. The com-
putational core is augmented by an I/O subsystem
that is comprised of additional nodes and an internal
control subsystem.

An essential component of parallel computers is
a job management system that schedules submitted
jobs for execution, allocates computational and com-
munications resources for each job, launches the jobs,
tracks their progress, provides infrastructure for run-
time job control (signaling, user interaction, debug-
ging, etc.), and handles job termination and resource
release. A typical job management system consists of
a master scheduling daemon and slave daemons that
launch, monitor, and control the running parallel jobs
upon instructions from the master and periodically
report the jobs’ state. Quite a few such systems are
available: the Portable Batch System (PBS, see [6]),
LoadLeveler [7], Condor, [8], and SLURM [9], are but
a few examples.

Job management systems are usually tightly inte-
grated with the multicomputers they run on. Often
the architectural details (such as the hardware and
the OS, the interconnect type and topology, etc.) of
the machine are exposed to — and hardwired into —
the job management system. Even if this is not the
case, there is still the problem that the slave daemons
run on the same nodes that execute the user jobs.
This means that the machine architecture and the
requirements of the applications put restrictions on
the job management system that can be used on the
particular machine: a job management system that
has not been ported to the particular architecture

cannot be used. On the other hand, an application
that needs, for example, a particular version of an
operating system can only be run if there is a corre-
sponding port of the slave job management daemons
available.

This paper describes the open job management ar-
chitecture we developed for Blue Gene/L. By “open”
we mean that virtually any job management system,
be it a third party product or an in-house develop-
ment, can be integrated with Blue Gene/L without
architectural changes or a major porting effort. In
other words, our architecture decouples the job man-
agement system from Blue Gene/L’s core, thus re-
moving the restrictions mentioned above. The par-
ticular “openness characteristics” of Blue Gene/L’s
job management architecture are:

1. The whole job management system runs out-
side of Blue Gene/L’s core, keeping Blue Gene/L
clean of any external software and removing the
traditional dependency of the job management
system on the core architecture.

2. The job management system logic can be re-
tained without modifications. For instance,
while one job management system may search for
available resources each time it schedules a job,
another may partition the machine in advance
and match the static partitions with submitted
jobs. Our architecture allows both schemes, as
well as many others.

3. The job management system can access and
manipulate Blue Gene/L’s resources in a well-
defined manner that allows using different
scheduling and resource allocation schemes. For
instance, a job management system can use any
scheduling policy (first come first served, back-
filling, etc.),)!  and any algorithm for match-
ing resources to the job (first fit, best fit, and so
on), since Blue Gene/L presents raw information

LAt present, Blue Gene/L does not support check-
point/restart, and therefore cannot preempt running jobs.
This is not a limitation of our job management architecture:
once the core support is added it will be simple to add the
corresponding functionality to the job management system de-
scribed here.



on its components without imposing a particular
model of allocation of available resources.

In this paper we present the basic structure of Blue
Gene/L’s open job management architecture below,
discuss its main features, and describe an implemen-
tation of a job management system based on IBM’s
LoadLeveler [7] for Blue Gene/L. We also describe
a very different job management system based on
SLURM [9] that has recently been integrated success-
fully with Blue Gene/L. The sequence of job and re-
source management operations in the two systems dif-
fers very significantly. Nevertheless the architecture
is capable of naturally accommodating both schemes.

The rest of the paper is organized as follows. Sec-
tion 2 describes Blue Gene/L’s open job management
architecture in detail. Section 3 describes our im-
plementation of LoadLeveler for Blue Gene/L. Sec-
tion 4 shows how a very different SLURM-based job
management system can be integrated into the same
framework. Section 5 presents some experiments and
performance measurements we conducted, and Sec-
tion 6 concludes the paper.

2 The Open Job Management
Architecture

The core of the job management infrastructure of
Blue Gene/L consists of two main components. One
is a portable API we developed to interact with the
Blue Gene/L’s internal control system. The control
system is responsible for everything that happens in-
side the Blue Gene/L core, from boot to shutdown. In
particular, it implements all the low level operations
that are necessary for managing the Blue Gene/L’s
resources and the parallel jobs that run in the core.
The API provides an abstraction for the job man-
agement functionality, namely access to information
on the state of Blue Gene/L (which computational
and communications resources are busy or free, which
components are faulty or operational, what jobs are
running, what resources are allocated to them, etc.)
and a set of job and resource management primitives

(such as allocation of resources, booting the nodes,
launching, signaling, and terminating jobs, and so
on), while hiding the internals of Blue Gene/L from
the job management system. We called the API
the Job Management Bridge API, or Bridge API for
short, since it provides a “bridge” between the job
management system and the internal Blue Gene/L
control system.

The Bridge API is essential for providing Blue
Gene/L with the openness characteristics 1 and 3 de-
scribed above. Moreover, the implementation of the
APT does not impose any restrictions on the order in
which the primitives can be invoked, which is what
provides property 2 (see also Section 2.2.4 below).

The second component is a special program called
mpirun, instances of which run on a cluster of des-
ignated machines outside of the Blue Gene/L core.
Each instance of mpirun is a “proxy” of the real paral-
lel job running on the Blue Gene/L core, and commu-
nicates with it using the Bridge API. The slave dae-
mons of the job management system run on the same
dedicated cluster and interact only with the mpiruns
(see Figure 1). All the job control operations such as
launching, signals, and termination are passed from
a daemon to the corresponding mpirun, and from the
mpirun to the real parallel job it controls. All the
feedback from the running parallel job is delivered
to the mpirun and passed to the job management
system. Thus, the traditional job management ar-
chitecture is preserved: the job management system
sees Blue Gene/L as a cluster running mpiruns. This
provides a clean separation between the Blue Gene/L
core and the job management system satisfying the
openness property 1 above.

From the point of view of the slave daemons the
mpiruns represent the real jobs. The mpiruns com-
municate with Blue Gene/L’s internal control system
via the Bridge API, which provides the necessary ab-
straction. The master daemon that manages a queue
of submitted jobs?, schedules jobs, and allocates re-
sources, communicates with the slaves and uses the

2There may be more than one such queue, as is the case
in Condor [8]. This is internal to the job management system
and is transparently supported by our architecture.



Bridge API to query the machine state and determine
which resources are available (cf. Figure 1).
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Figure 1: Blue Gene/L’s open job management ar-
chitecture

2.1 Resource Management on Blue
Gene/L

A central part of the job management system is
allocating resources for each scheduled job. On
Blue Gene/L each job requests — and is allocated
— several classes of resources, namely computa-
tional nodes, interconnect resources such as network
switches and links, and I/O resources. For reasons of
protection and security Blue Gene/L does not allow
messages belonging to one job pass through hardware
allocated to another job (this also helps avoiding con-
tention on network resources and simplifies routing).
Thus, all the resources allocated to a job are dedi-
cated.

The set of resources that belong to a job is called
a partition. A partition consists of a set of compu-
tational nodes® connected according to the job’s re-

3We assume below that a partition is a logical rectangle of
nodes with dimensions that are specified by the job to which
the partition is allocated. There may be other policies that
specify the partitions’ shapes: the jobs may specify the over-

quirements and the corresponding network and I/O
resources. Before a job can run its partition must be
“booted.” By booting a partition we mean the pro-
cess of booting and configuring all the nodes that be-
long to the partition, wiring all the network switches
as required, and performing all the initialization re-
quired to start a job. This process is not instanta-
neous in general, and after issuing the appropriate
command the system should monitor the partition’s
status until the partition is ready (cf. Section 2.2.2
below). Destroying a partition is the reverse process.

In what follows we will treat Blue Gene/L partition
management as an integral part of the job manage-
ment system.

2.2 The Bridge API

The Bridge APIis logically divided into several major
areas: the data retrieval part, the partition manage-
ment part, and the job management part. The API
can be called directly from C or C++ code. All the
Bridge API functions return a status code that indi-
cates success or failure of each operation.

2.2.1 Machine State Query

To allocate resources for a job, the scheduler must
have access to the current state of Blue Gene/L.
There is a number of accessor functions that will fetch
the information on the machine as a whole or parts
thereof from Blue Gene/L itself. Each accessor will
allocate memory for the structure retrieved and fill it
with data. This arrangement allows using the struc-
tures in name only, rather than in size, keeping the
details hidden from the client. This means, however,
that client code must free the memory when a data
structure is no longer needed, and the API provides
the corresponding functions.

all number of nodes only, letting the job management system
determine the dimensions; the partition sizes may be predeter-
mined and not related to job sizes at all (cf. Section 4 below);
in general, partitions don’t even have to be rectangular. All
these options are supported by our architecture.



The highest-level function that provides access
to the machine state is get BGL() that brings the
full snapshot of the current state of all the Blue
Gene/L resources into the scheduler. Once the snap-
shot is available, a generic data retrieval function,
get_data() can be called to retrieve various com-
ponents, properties, and fields: it accepts a pointer
to the queried structure, a field specification, and a
pointer to memory where the query result is written.
This is the only mechanism to access the machine
resources, and the implementation details are not ex-
posed to the client.

2.2.2 Partition Management

The partition management API facilitates adding and
removing partitions, boot and shutdown of partition
components, and queries of the partition state. The
basic functions are:

1. add_partition() — aggregate some of the Blue
Gene/L resources into a partition and add the
partition to the system. This operation, as well
as the complementary remove partition() (cf.
item 2 below) does not cause any physical side
effects in the Blue Gene/L core but only creates
a logical association of resources. Each resource,
for instance a compute node or a network link,
can belong to more than one partition as long
as no more than one of the partitions is active
(cf. item 3 below). Partitions may be added
without reference to a particular job. This facil-
itates such operations as partition reservation.
A job management system can limit the num-
ber of partitions that a resource can belong to,
and, once add _partition() is called, consider
the partition components “allocated” and un-
available until the partition is removed, but this
is not mandatory.

2. remove_partition() — remove a partition from
the system. This does not necessarily mean that
the resources that belonged to that partition are
free — some or all of them may belong to other
partitions, one of which may be active. Just like
add_partition(), remove partition() does

not have any physical consequences, it only re-
moves a logical association of resources.

3. create partition() — activate a partition, i.e.
boot all the nodes that belong to it, connect
all the switch ports according to the partition
topology specification, and prepare the partition
to run a job. This operation, together with the
complementary destroy_partition() (cf. item
4 below) cause real changes in the Blue Gene/L
core. In particular, any core resource, e.g. a
node or a network link, can belong only to one
active partition at a time, and no other partition
that shares one or more resources with an active
partition can be activated until the active parti-
tion is destroyed (cf. item 4 below). Executing
create partition() does not necessarily mean
that the partition is allocated to a job — it is a
policy decision left to the job management sys-
tem. A partition that is already active but not
allocated to a particular job can be used to run a
job from the submit queue, if it fits the require-
ments.

4. destroy partition() — deactivate, (i.e. shut
down) a partition, usually after the job running
in the partition terminates. This does not de-
stroy logical associations between Blue Gene/L

resources and partitions — the partition still
exists and its resources remain appropriately
marked.

5. get_partition() — retrieves the full informa-
tion about a partition. This function is use-
ful for various queries, the most important of
which is checking the partition’s state, for in-
stance whether the partition is active or not.

2.2.3 Job Management

The job management API facilitates control of the
jobs running on Blue Gene/L. The basic job manage-
ment functions are:

1. add_job() — adds a job to Blue Gene/L. This
is a purely logical operation that does not mean



that the job starts to run, or has been scheduled,
or has been allocated resources. It is, however,
a necessary step before a job can run on Blue
Gene/L.

2. remove_job() — removes a job from Blue
Gene/L. This normally happens after the job ter-
minates, whether normally or abnormally.

3. start_job() — launches the job. This does not
necessarily mean that the job starts running im-
mediately, nor is it implied that the job’s parti-
tion is active: the job can remain “pending,” i.e.
waiting for its partition to boot, and it will start
when the boot is completed.

4. signal_job() — send a signal to a job. The job
does not have to be running. However, there is
not much sense in sending a signal to a job that
is not running: the signal will either be ignored
or an error code will be returned that can be
handled by the caller.

5. cancel_job() — cancel a job. This is a special
case of signal_job() used to terminate a run-
ning job. Again, there is no sense is canceling
a job that is not yet running — one should use
remove_job() (item 2 above).

6. get_job() — retrieves the full information
about the job. The most important use is to
query the job’s status, for instance whether or
not it has terminated.

2.2.4 Order of Operations

It is important to note that very few restrictions are
placed on the order of the above Bridge API func-
tions. Consider the following scenarios that show how
few dependencies there are:

e Partitions can be created in advance, i.e. not
as a result of a request from a particular
job. Thus, some or all of add partition(),
create partition(), and get _partition()
(items 1, 3, and 5 from Section 2.2.2) may pre-
cede the scheduling cycle that will consist of

job management operations (Section 2.2.3) only.
For instance, the SLURM-based job manage-
ment system described in Section 4 below takes
advantage of this.

e A job can be started before a partition is ready
and will wait for the partition to boot, providing
a “launch and forget” functionality. In princi-
ple there is nothing that prevents monitoring of
the status of such “pending” job, or even ter-
minating it before it starts executing — thus
calls to add_job(), start_job(), and get_job ()
(items 1, 3, and 6 from Section 2.2.3) can pre-
cede calls to functions create_partition() and
get_partition() (items 3 and 5 from Section
2.2.2).

e In off-line (batch) scheduling systems, when the
job list is known in advance, one can populate
the system with all the needed partitions and
jobs. The scheduling system will just need to
start each job in its designated partition when
the time comes. Thus add partition() and
add_job() can be called in the preparation phase
and only create_partition() and start_job()
will be called for each job.

There are some trivial exceptions, of course, e.g., a
job must be added to the system with add_job())
before it can start via start_job(), a partition
must be added with add_partition() before it
can be queried with get_partition(), and call-
ing destroy partition() will have no effect unless
create partition() has been called.

In general, there are purely logical operations, such
as

e add partition(),
e remove partition(),
e add_job(),

e remove_job(),

physical operations like



e create partition(),
e destroy partition(),
e start_job(),

e signal_job(),

e cancel_job(),
and query operations like

e get partition(),

e get_job().

The logical operations have no real side effects (apart
from storing or erasing information), and accordingly
add_partition() and add_job() can be called virtu-
ally any time. The physical and query operations can
be performed only on objects that logically exist, and
one cannot destroy an inactive partition of signal or
cancel a job that is not running.

These restrictions will be satisfied by any sane job
management system. No other restrictions are im-
posed on the logic of the job management system,
and any job cycle model can be used.

2.3 mpirun

A typical job management system consists of a mas-
ter scheduling daemon running on the central man-
agement node and slave daemons that execute on the
cluster or multicomputer nodes. The master dae-
mon accepts the submitted jobs and places them in
a queue. When appropriate, it chooses the next job
to execute from that queue and the nodes where that
job will execute, and instructs the slave daemon on
that machine to launch the job. The slave daemon
forks and executes the job, which can be serial or
parallel. It continuously monitors the running job
and periodically reports to the master that the job is
alive. Eventually, when the job terminates, the slave
reports the termination event to the master, signaling
the completion of the job’s lifecycle.

The slave daemons are not allowed to run inside
the Blue Gene/L core, any action they perform has
a corresponding Bridge API function that delegates
the action to Blue Gene/L’s internal control system.
The slave daemons run on designated machines out-
side the Blue Gene/L core, and instead of forking the
real user job they execute mpirun, which starts the
real job in Blue Gene/L’s core via the Bridge API (as
shown in Figure 1). A slave daemon needs monitor
only the state of the corresponding mpirun, not the
state of the real parallel job, while mpirun queries the
state of the real job via the Bridge API and commu-
nicates the result to the slave daemon.

When mpirun detects that the job has terminated
— normally or abnormally — it exits with the return
code of the job. The slave reports the termination
event and the exit code to the master, signaling the
completion of that job’s lifecycle.

On the other hand, a failure of mpirun is no-
ticed by Blue Gene/L’s internal control system via
the usual socket control mechanisms. The parallel job
the mpirun controlled is orphaned, loses its commu-
nication channel with the job management system,
and, in general, dies. Thus, a parallel job and the
corresponding mpirun do indeed form a single logical
entity with the same lifespan.

The role of mpirun is not limited to just querying
the state of the parallel job. It can actively perform
other actions such as allocating and booting a parti-
tion for the job, as well as cleaning and halting the
partition when the job terminates. Obviously, in this
case the master daemon should not concern itself with
these additional tasks.

This flexibility allows different job management
system to optimize their performance by designating
a different set of responsibilities to mpirun. For ex-
ample, in our LoadLeveler port to Blue Gene/L (see
Section 3 below), the booting of the partition is ini-
tiated by the LoadLeveler master daemon, but it is
the mpirun that waits for the partition to boot and
launches the job on it. This allows the single schedul-
ing thread of LoadLeveler to consider the next jobs in
the queue, even if the partition for the previous job
is not yet ready.



Redirection of standard input and output to and
from the parallel job is an additional important role
of mpirun. Any input that is received on mpirun’s
standard input, is forwarded to the parallel job run-
ning on the Blue Gene/L core. When the parallel
job writes to standard output or error, its output is
forwarded back to mpirun’s standard output or error
respectively.

This redirection is important because it is simi-
lar to the way job management systems handle their
jobs’ I/O. When the slave daemons fork and execute
jobs, they redirect the jobs standard input and out-
put to files. For a Blue Gene/L job, this means that
the files used for mpirun’s standard output and er-
ror will actually contain the parallel job’s standard
output and error, and the file used as an input for
mpirun will be forwarded to the parallel job.

2.4 Related Work

There are other efforts to provide open architectures
for resource and job management, notably in the
realm of grid computing, e.g. GRAM [10], DRMAA
[11]. The main focus in those efforts lies in man-
agement of heterogeneous resources and providing
consistent, standardized APIs in heterogeneous sys-
tems. While there are similarities with our Bridge
API, our focus is quite different. We have a homo-
geneous machine, and we are interested in allowing
any job management system to be integrated with
it, while GRAM and DRMAA aim to allow a single
job management system to operate on heterogeneous
resources, or to facilitate co-operation between local
schedulers and global meta-schedulers.

3 LoadLeveler for Blue Gene/L

To validate our design we implemented our own job
management system on the basis of LoadLeveler, a
job scheduling system developed by IBM [7], and inte-
grated it with Blue Gene/L. LoadLeveler is a classical
scheduling system that consists of a master schedul-
ing daemon and slave daemons that launch and mon-

itor jobs on cluster nodes. We successfully deployed
LoadLeveler on a 16 x 32 x 32 = 2 node Blue
Gene/L prototype [4]. LoadLeveler launches and con-
trols mpiruns on the job management cluster of 4
nodes, and the mpiruns, in turn, control the real par-
allel jobs running on the Blue Gene/L core.

Adapting LoadLeveler to work with Blue Gene/L
included development of a partition allocator that
used the Bridge API and was called by the
LoadLeveler scheduler, and making the slave dae-
mons call mpirun with the proper arguments. The
difficulty of creating a partition allocator depends
primarily on the sophistication of the associated al-
gorithms, which may vary according to the needs of
the customer. The actual integration with the Bridge
APT and mpirun is simple.

3.1 LoadLeveler Job Cycle Model

LoadLeveler does not make any assumptions regard-
ing Blue Gene/L’s workload. It is an on-line system
where jobs of any size and priority can arrive at any
time. The lifecycle of a job on Blue Gene/L starts
when a user submits the job to the job management
system. The job is placed on a queue, and the sched-
uler picks a job from the queue periodically and at-
tempts to schedule it.

The scheduler’s task is to allocate a partition to the
chosen job and launch the job on the partition. The
job carries a set of requirements that the partition
must satisfy. In particular, the job may specify its
total size or a particular shape (a three-dimensional
rectangle of specified size x X y X z), and the required
partition topology — a mesh or a torus (cf. [5]). It
may happen that no partition that can accommodate
the job can be found, then the scheduler may choose
another job from the queue, according to some algo-
rithm (e.g. backfilling, cf. [12]). The details of pos-
sible scheduling algorithms are beyond the scope of
this paper — we focus on the general architecture of
the job management system that can accommodate
different schedulers.

In general, the input for the scheduler of the job
management system consists of the job requirements



and the current state of Blue Gene/L’s resources. A
partition that contains the necessary resources (com-
putational nodes, communication, and I/0) is cre-
ated, and the job is launched. For each terminating
job the corresponding partition is destroyed, thus re-
turning the resources to the system for further reuse.

Down to a finer level of details, the typical job life-
cycle in Blue Gene/L looks as follows:

1. The scheduler obtains the full information on
the machine state to make a decision whether
to launch or defer the job and how to allocate
resources for it. The information is obtained via
the get BGL() function of the Bridge API (cf.
Section 2.2.1).

2. If suitable resources cannot be found another job
may be picked from the submissions queue. Once
resources are found they are aggregated into a
partition, and the Blue Gene/L’s control system
is informed via the add _partition() function of
the Bridge API (item 1 in Section 2.2.2).

3. The new partition (i.e. all the computa-
tional and I/O nodes that belong to it) is
booted next. This is accomplished via the
create_partition() function of the Bridge API
(item 3 in Section 2.2.2). From this moment on
the resources included in the partition are con-
sidered effectively “allocated” by LoadLeveler.

4. The boot is not instantaneous, so the job man-
agement system will monitor the partition’s state
until the partition is ready to run the job.
The probing functionality is provided by the
get_partition() function of the Bridge API
(item 5 in Section 2.2.2).

5. Once the partition is up and ready, the sched-
uled job is added to Blue Gene/L’s control sys-
tem. The add_job() of the Bridge API (item 1
in Section 2.2.3) is used for this task.

6. The next logical task is launching the job on
the prepared partition. This is achieved via the
start_job() function of the Bridge API (item 3
in Section 2.2.3).

7. The system then keeps monitoring the running
job, checking its status periodically using the
get_job() function (item 6 in Section 2.2.3) un-
til the job terminates, normally or abnormally.

8. Once the job terminates, it is removed from the
system via the remove_job() (item 2 in Section
2.2.3) and steps can be taken to release the re-
sources.

9. The partition is shut down — a task performed
using the destroy_partition() of the Bridge
API (item 4 in Section 2.2.2).

10. The now idle partition can be removed — the
remove partition() (item 2 in Section 2.2.2)
provides the necessary facilities — and the cor-
responding resources can be reused for other jobs
from this moment on.

Note that if a job fails the system releases the
resources in exactly the same way as in the case of
normal termination, except that the failure is han-
dled as appropriate by mpirun. Note also that Blue
Gene/L kills a parallel job if any of its processes fails
for any reason. This is a characteristic of the Blue
Gene/L itself, and not a limitation of the job man-
agement architecture.

The job cycle described above is depicted as a flow
chart in Figure 2. The chart shows how the machine
state query, the partition management, and the job
management components of the Bridge APT are used.

3.2 mpirun for LoadLeveler

In our architecture, the actual communication with
Blue Gene/L’s internal control system is a function of
the mpirun proxy job. In our implementation mpirun
handles stages 4 through 8 (cf. Section 3.1 above). In
other words, LoadLeveler handles job scheduling and
creation and destruction of partitions, while mpirun
is responsible for monitoring the partitions’ boot,
adding, starting, monitoring jobs, and removing ter-
minated jobs from the system.
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Figure 3 shows the same job cycle flow chart as
Figure 2, showing the separation of concerns between
LoadLeveler and mpirun.
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Figure 3: mpirun for LoadLeveler

This division of labor between LoadLeveler and
mpirun is by no means the only one possible.
For instance an implementation of mpirun may be
passed the job and partition structures (or references
thereof) and handle all the stages starting from 2 to
the final 10 (cf. Section 3.1). Alternatively, the role
of mpirun may be reduced to stages 6 and 7 only: if
the scheduler is invoked each time a job terminates it

can handle stages 8 through 10 before picking another
job from the queue.

Our LoadLeveler scheduler is single-threaded, so
any additional tasks, e.g. synchronous waiting for a
partition to boot (stage 4 in Section 3.1), will pre-
vent it from scheduling another job from the queue
while it is busy. A multi-threaded scheduler will be
free of this disadvantage, at the expense of added
complexity. Our design lets the scheduler process a
job and allocate resources to it, and delegates all the
tasks performed on a job and its allocated partition,
including get_partition(), to mpirun.

4 SLURM and Blue Gene/L

In this section we describe another — very differ-
ent — implementation of a job management system
for Blue Gene/L based on SLURM (Simple Linux
Utility for Resource Management, [9]). SLURM is
an open source resource manager designed for Linux
clusters. Like other classic job management systems,
it consists of a master daemon on one central ma-
chine and slave daemons on all the cluster nodes.
SLURM for Blue Gene/L was successfully deployed
and tested on a 32K node Blue Gene/L machine [14]:
like LoadLeveler, it launches and controls mpirun in-
stances that in turn control parallel jobs running on
Blue Gene/L. SLURM’s job cycle, however, is very
different from that of LoadLeveler (cf. Section 3.1).

4.1 Partitioning and Job Cycle in

SLURM

SLURM operates under a number of assumptions re-
garding the expected workload that lead to a very dif-
ferent job cycle model and hence a different resource
management scheme from LoadLeveler. In particu-
lar, SLURM assumes that

e most jobs are short enough for the partition boot
time overhead to be substantial (see Section 5 for
relevant performance measurements);

e all job sizes are powers of 2;

10



/ r TN
\ WV
o

\ 0|0

Figure 4: Possible SLURM partitions

e jobs do not request a specific shape, specifying
the total size only; the system is free to choose a
partition of arbitrary shape and does so, picking
a partition from the prepared set;

e jobs that require the full machine have low prior-
ity and thus can be delayed (e.g. until the next

weekend).
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Figure 5: Job cycle in SLURM

SLURM takes advantage of the fact that the Bridge
APT allows resources belonging to different inactive
partitions to overlap. Each resource can belong to a

11

set of partitions. The system will not consider the
resource allocated until a job starts in one of the par-
titions the resource belongs to. Accordingly, SLURM
adds a set of partitions of various sizes to the system
(using add_partition(), cf. Section 2.2.2) in ad-
vance. The partition set covers all resources and the
partitions may overlap. For example, SLURM may
divide the machine into partitions of size 1/2*, i.e.
there will be partitions containing halves, quarters,
eighths of the machine, etc., as well as a partition
that contains the entire machine (cf. Figure 4).

SLURM maintains two job queues: one for jobs of
size up to half the system and one for jobs larger than
half the machine. The latter jobs are only run dur-
ing specific time (e.g. on weekends). On job arrival,
SLURM picks a partition for it from the existing set
of partitions and boots it, if needed. Once booted,
a partition will remain booted until its resources are
required for another partition (i.e. the full machine
partition). This scheme is designed to minimize the
number of partition boots.

From a more general point of view we can say
that the entire system is divided into a set of already
booted partitions, and there is a job queue for each
job size. Since the partitioning is done in advance
the job cycle can be summarized as finding a suitable
partition, starting the job, and waiting for the job to
terminate, which corresponds to stages 5 through 8 in
Section 3.1 above (cf. Figure 5). The lightweight job
cycle is controlled by mpirun, while the preparation
phase is performed by SLURM proper.

SLURM maintains the partition information and
the job queues. For each job it chooses a partition
from the existing set and starts mpirun. The mpirun
in turn adds the job, starts it, monitors it, and re-
moves it upon termination.

Note how different this picture is from the
LoadLeveler model of Section 3. Note also that par-
tition management is not a part of the normal job
cycle. Only when jobs requiring the whole machine
are run over weekends need partitions be rebooted.
During normal operation they remain pre-allocated
and pre-initialized.



size stages | stage | stages | stages || total
(nodes) || 1 -3 4 5—8 | 9—10 || (sec)
512 1 26 14 10 51
1024 1 36 15 11 63
2048 2 38 19 11 70

Table 1: Times (in seconds) taken by different job
cycle stages of Section 3.1.

Nonetheless, both SLURM and LoadLeveler are ac-
commodated equally well by the open job manage-
ment architecture of Blue Gene/L.

5 Performance

We performed some experiments on a 4096-node Blue
Gene/L prototype in order to assess the performance
of our architecture. We intentionally ran jobs that do
nothing to isolate the overhead of adding, creating,
and destroying partitions, and launching jobs. Some
representative results are shown in Table 1 that lists
times (in seconds) taken by different stages of the
LoadLeveler job cycle (cf. Section 3.1). All the times
are averages of several experiments.

These results are not final. The system is still
under development, and the performance is contin-
uously being improved.

One can note that the dependency of partition boot
times (stage 4 of Section 3.1) and the rest of the oper-
ations on the size of the partition is rather weak. This
is expected since the boot process and the job load-
ing are parallelized. Resource management proper
(stages 1 — 3 and 9 — 10) takes even less time than
booting a partition. Overall, we can conclude that
for jobs longer than a few minutes the resource and
job management overhead (of the order of a minute,
according to Table 1) is small.
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6 Conclusions

We presented Blue Gene/L’s open job management
architecture that allows integration of virtually any
job management system with Blue Gene/L. The job
management system runs outside of Blue Gene/L
core, and the integration does not involve any archi-
tectural changes in the system, or affect its logic.

The two main components of the architecture are
the Bridge API that provides an abstraction on top of
Blue Gene/L’s internal control system, and a proxy
mpirun program that represents the real parallel job
to the job management system. The Bridge API im-
poses only the most trivial restrictions on the job life-
cycle model and logic used by the job management
system, and the division of labor between mpirun and
the job management system is also very flexible.

There are two implementations of job management
system that have been successfully integrated with
Blue Gene/L, one based on LoadLeveler, the other
— on SLURM. Blue Gene/L’s open job management
architecture accommodates both system equally well,
despite very significant differences. Work is now un-
der way to integrate yet another job management sys-
tem, PBS.
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