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Abstract

There are many choices to make when evaluating the per-
formance of a complex system. In the context of parallel
job scheduling, one must decide what workload to use and
what measurements to take. These decisions sometimes
have subtle implications that are easy to overlook. In this
paper we document numerous pitfalls one may fall into,
with the hope of providing at least some help in avoiding
them. Along the way, we also identify topics that could
benefit from additional research.
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1 Introduction

Parallel job scheduling is a rich and active field of research
that has seen much progress in the last decade [31]. Bet-
ter scheduling algorithms and comparative studies contin-
ually appear in the literature as increasingly larger scale
parallel systems are developed and used [70]. At the
same time, parallel job scheduling continues to be a very
challenging field of study, with many effects that are still
poorly understood. The objective, scientific difficulties
in evaluating parallel job schedulers are exacerbated by a
lack of standard methodologies, benchmarks, and metrics
for the evaluation [9, 27].

Throughout the years, the authors have encountered
(and sometimes committed) a variety of methodological
leaps of faith and mistakes that are often recurring in many
studies. In this paper we attempt to sum up the experience
gleaned from ten years of the workshop on job schedul-
ing strategies for parallel processing (JSSPP).1 Our main
goal is to expose these topics in a single document with
the hope of helping future studies avoid some of these pit-
falls.

1www.cs.huji.ac.il/~feit/parsched/

To limit this paper to a reasonable size, we chose to
exclude from the scope of this paper topics in static and
DAG scheduling, which is a separate field that is not gen-
erally covered by the JSSPP workshop. Additionally, grid
scheduling is not specifically targeted, although many of
the topics that are covered bear relevance to grid schedul-
ing.

Naturally, not all pitfalls are relevant to all classes of
evaluation or scheduling strategies (e.g., time slicing vs.
space slicing). Others, such as those related to the choice
of workload, affect almost any quantitative evaluation. As
a notational convention, we marked each pitfall with one
to three lightning bolts, representing our perception of the
severity of each item.

Several of the pitfalls we list may not always represent
a methodological mistake. Some choices may be correct
in the right context, while others may represent necessary
compromises. Some of these suggestions may even seem
contradictory, depending on their context. Many topics
and methodological choices remain open to debate and
beg for further research. But it is necessary that we remain
cognizant of the significance of different choices. We
therefore recommend not to consider our suggestions as
instructions but rather as guidelines and advisories, which
are context-dependent.

We have made a deliberate choice not to point out what
we perceive as mistakes in others’ work. Instead, we de-
scribed each pitfall in general terms and without pointing
to the source of examples. When detailing suggestions,
however, we attempted to include positive examples from
past works.

The list of pitfalls we present in this paper is by no
means exhaustive. The scope of this paper is limited to is-
sues specific to our field, and does not cover methodolog-
ical topics in general. For example, we exclude general
problems of statistics, simulation techniques, or presenta-
tion. Similarly, issues that are are not very significant to
parallel job scheduling evaluation and minor methodolog-
ical problems were left out. Still, we wish to enumerate at
this point the following general principles, that should be
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considered for any performance evaluation study:

• Provide enough details of your work to allow others
to reproduce it.

• Explore the parameter space to establish generality
of results and sensitivity to parameters.

• Measure things instead of assuming they are so, even
if you are sure.

The designer of a parallel job scheduler is faced with
myriad choices when reaching the evaluation stage. First,
the researcher must choose a workload (or more than one)
on which the scheduler is evaluated. This workload may
reflect choices typical for a researcher’s site or could try
to capture the salient properties of many sites. Either
way, the choice of a good workload structure entails many
tricky details. Inexorably related to the workload structure
are the workload applications that must next be chosen.
The evaluation applications, whether modeled, simulated,
or actually run, also have a large impact’s on the evalua-
tion’s results, and must be chosen carefully. Next, exper-
iments must be designed, and in particular, a researcher
must choose the factors (input parameters) to be evaluated
and the metrics against which the scheduler is measured.
Here too, different choices can have radically different re-
sults. For example, scheduler A might have lower average
response time than scheduler B, but also be more unfair. A
different choice of input parameters could reverse this pic-
ture. A good choice of input parameters and metrics can
typically not be done in isolation of the measurements,
but rather, after careful examination of the effect on each
of the evaluated system. Lastly, the measurement process
itself entails many traps for the unwary researcher, which
could be averted with a systematic evaluation.

We group pitfalls into groups that loosely reflect the or-
der of choices made for a typical job scheduling study.
We start in Section 2 with pitfalls relating to workload
structure. Section 3 delves into what comprises the work-
load, namely, the applications. The input parameters for
the evaluation are considered in Section 4. Next, Sec-
tions 5 and 6 discuss methodological issues relating to
measurement and metric choices. Finally, we conclude
in Section 7.

2 Workload Structure

Workload issues span all methods of parallel job schedul-
ing evaluation. The choices and assumptions represented
in the tested workloads may even determine the outcome
of the evaluation [21, 30]. With experimental evaluations
on real systems, our choice of workload is often limited

by practical issues, such as time or machine availability
constraints. Analysis may be limited by considerations of
mathematical tractability. Simulation studies are typically
less limited in their choice of workload [75].

As a general rule of thumb, we recommend using mul-
tiple different workloads, each of which is long enough
to produce statistically meaningful results. Several work-
load traces and models can be obtained from the Parallel
Workload Archive [54]. Whether using an actual trace or
a workload model, care must be given to specific work-
load characteristics. For example, a workload dominated
by power-of-two sized jobs will behave differently from
one containing continuously sized jobs [47]. It is impor-
tant to understand these workload characteristics and their
effect on the evaluation’s results, and if possible, choose
different workload models and compare their effect on the
evaluation [1, 21].

This section lists the challenges that we believe should
be considered when defining the workload structure.
Many of these pitfalls can be summarized simply as “em-
ploying overly-simplistic workload models”. Given that
better data is often available, there is no justification to do
so. Therefore, whenever possible we would suggest to use
realistic workloads, and moreover, to use several different
ones.

Pitfall 1 EEE

Using invalid statistical models

Problem Workload models are usually statistical models.
Workload items are viewed as being sampled from
a population. The population, in turn, is described
using distributions of the various workload attributes.

A model can be invalid, that is, not representative of
real workloads, in many different ways. The most
obvious is using the wrong distributions. For exam-
ple, many researchers use the exponential distribu-
tion for interarrival times, assuming that arrivals are
a Poisson process. This ignores data about self sim-
ilarity (pitfall 4), and also ignores irregularities and
feedback effects, as well as job resubmittals [22, 38].
Some studies even use uniform distributions, e.g., for
the parallelism (size) of jobs, which is entirely unrep-
resentative; a more representative distribution favors
small jobs (e.g. the log-uniform), and moreover is
modal, emphasizing powers of two [16, 47, 14].

To be fair, finding the “right” distribution is not al-
ways easy, and there are various methodological op-
tions that do not necessarily produce the same re-
sults. For example, even distributions that match sev-
eral moments of the workload data may not match
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the shape of the distributions, especially the tail. The
story does not end with distributions either: it is
also important to model correlations between differ-
ent attributes, such as job size, interarrival time, and
length [47, 14, 20].

SuggestionsIf a workload model is used, one must en-
sure that it is a good one. The alternative is to use
a real trace. This has the advantage of including ef-
fects not known to modelers, but also disadvantages
like abnormal data (pitfall 5).

Research Workload modeling is still in its infancy. There
is much more to learn and do, both in terms of mod-
eling methodology and in terms of finding what is re-
ally important for reliable performance evaluations.
Some specific examples are mentioned in the follow-
ing pitfalls.

Pitfall 2 EEE

Using only static workloads

Problem Static workloads are sets of jobs that are made
available together at the beginning of the evaluation,
and then executed with no additional jobs arriving
later — akin to off-line models often assumed in the-
oretical analyses. This is significantly different from
real workloads, where additional jobs continue to ar-
rive all the time.

Static workloads are used for two reasons. One is
that they are easier to create (there is no need to con-
sider arrivals), and are much smaller (fewer jobs take
less time to run). The other is that they are easier
to analyze, and one can in fact achieve a full under-
standing of the interaction between the workload and
the system (e.g. [33]). While this may be useful, it
cannot replace a realistic analysis using a dynamic
workload. This is important because when a static
workload is used, the problematic jobs tend to lag
behind the rest, and in the end they are left alone and
enjoy a dedicated system.

SuggestionsIt is imperative to also use dynamic work-
loads, whether from a trace or a workload model.

Research An interesting question is whether there are
any general principles regarding the relationship of
static vs. dynamic workloads. For example, are static
workloads always better or worse?

Pitfall 3 EE

Using too few different workloads

Problem Workloads from different sites or different ma-
chines can be quite different from each other [68].
Consequently, results for one workload are not nec-
essarily valid for other workloads. For example, one
study of backfilling based on three different work-
loads (one model and two traces) showed EASY
and conservative to be similar [32], but a subsequent
study found that this happens to be a nonrepresenta-
tive sample, as other workloads bring out differences
between them [51].

SuggestionsWhenever possible, usemany different
workloads, and look for invariants across all of them;
if results differ, this is a chance to learn something
about either the system, the workload, or both [21].

Research It is important to try to understand the inter-
action of workloads and performance results.Why
are the results for different workloads different? This
can be exploited in adaptive systems that learn about
their workload.

Pitfall 4 EE

Ignoring burstiness and self-similarity

Problem Job arrivals often exhibit a very bursty nature,
and realistic workloads tend to have high variance of
interarrival times [22, 67]. This has a strong effect
on the scheduler, as it sometimes has to handle high
transient loads. Poisson models make the scheduler’s
life easier, as fluctuations tend to cancel out over rel-
atively short time spans, but are not realistic.

SuggestionsBurstiness is present in workload traces, but
typically not in models. Thus real traces have an ad-
vantage in this regard.

Research One obvious research issue is how to incorpo-
rate burstiness and self-similarity in workload mod-
els. This has been done in network traffic models
(e.g. [76]), but not yet in parallel job models.

Another issue is the effect of such burstiness on the
evaluation. If a model creates bursts of activity ran-
domly, some runs will lead to larger bursts than oth-
ers. This in turn can lead to inconsistency in the re-
sults. The question then is how to characterize the
performance concisely.

Pitfall 5 EE

Ignoring workload flurries and other polluted data

Scope When using a real workload trace.
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Problem We want workload traces to be “realistic”.
What we mean is that they should be representative
of what a scheduler may be expected to encounter.
Regrettably, real traces often include subsets of data
that cannot be considered representative in general.
Examples include:

• Heavy activity by system administrators [24].
• Heavy activity by cleanup scripts at night.
• Heavy and unusual activity by a single user that

dominates the workload for a limited span of
time (a workload flurry) [73].

SuggestionsData needs to be sanitized before it is used,
in the sense of removing obvious outlier data points.
This is standard practice in statistical analysis. Logs
in the Parallel Workloads Archive have cleaned ver-
sions, which are recommended.

Research The question of what to clean is not trivial. At
present, this is done manually based on human judg-
ment, making it open to debate; additional research
regarding considerations and implications can enrich
this debate. Another interesting question is the de-
gree to which cleaning can be automated.

Pitfall 6 E

using oblivious open models with no feedback

Problem The common way to use a workload model or
trace is to “submit” the jobs to the evaluated sched-
uler as defined in the model or trace, and see how the
scheduler handles them. This implicitly assumes that
job submittals are independent of each other, which
in fact they are not.

Real workloads have self-throttling. When users see
the system is not responsive, they reduce the genera-
tion of new load. This may help spread the load more
evenly.

SuggestionsUse a combination of open and closed
model. A possible example is the repeated jobs in the
Feitelson model where each repetition is only sub-
mitted after the previous one terminates [16].

Research Introducing feedback explicitly into workload
models is an open question. We don’t know how to
do it well, and we don’t know what its effects will
be.

Pitfall 7 E

Limiting machine usage assumptions

Problem A related issue to pitfall 3 is the embedding
of workload assumptions that are too specific to
the workload’s site typical usage. Some sites run
the same applications (or class of applications) for
months, opting to use the machine as a capability
engine [36, 58]. Others use far more heterogeneous
workloads representing a machine running in capac-
ity mode [47, 54]. The application and workload
characteristics of these two modes can be quite dif-
ferent, and not all evaluations can address both.

SuggestionsIf a specific usage pattern is assumed, such
as a site-specific or heterogeneous workload, it
should be stated, preferably with an explanation or
demonstration of where this model is valid [39].
Whenever possible, compare traces from different
sites [10, 15, 47]

3 Applications

The application domain of parallel job schedulers is com-
posed of, by definition, parallel jobs. This premise pred-
icates that applications used for the evaluation of sched-
ulers include some necessary aspects of parallel programs.
An obvious minimum is that the use several processors
concurrently. But there are others too.

Virtually all parallel applications rely on communica-
tion, but the communication pattern and granularity can
vary significantly between applications. The degree of
parallelism of an application also varies a lot (depending
on application type) between sequential applications—
with zero parallel speedup—to highly parallel and dis-
tributed applications—with near-linear speedup. Other
parameters where parallel applications show high vari-
ability include services time, malleability, and resource
requirements, such as memory size and network band-
width. In addition, typical applications for a parallel envi-
ronment differ from those of a grid environment, which in
turn differ from distributed and peer-to-peer applications.
This high variability and wide range of possible applica-
tions can translate to very dissimilar results for evalua-
tions that differ only in the applications they evaluate. It
is therefore vital to understand the different factors that
applications imply on the evaluation.

Many job scheduling studies regard parallel jobs as
rectangles in processors×time space: they use a fixed
number of processors for a certain interval of time. This
is justifiable when the discussion is limited to the work-
ings of the scheduler proper, and jobs are assumed not to
interact with each other or with the hardware platform.
In reality, this is not always the case. Running the same
jobs on different architectures can lead to very different
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run times, changing the structure of the workload [78].
Running applications side by side may lead to contention
if their partitions share communication channels, as may
happen for mesh architectures [45]. Contention effects are
especially bad for systems using time slicing, as they may
also suffer from cache and memory interference.

On the other hand, performing evaluations using de-
tailed applications causes two serious difficulties. First,
it requires much more detailed knowledge regarding what
application behaviors are typical and representative [30],
and suffers the danger of being relevant to only a small
subset of all applications. Second, it requires much more
detailed evaluations that require more time and effort. The
use of detailed application models should therefore be
carefully considered, including all the tradeoffs involved.

Pitfall 8 EEE

Using black-box applications

Scope When contention between jobs and interactions
with the hardware platform are of importance.

Problem An evaluation that models applications as us-
ing P processors forT time is oblivious of any-
thing that happens in the system. This assumption
is reasonable for jobs running in dedicated partitions
that are well-isolated from each other. However, it
does not hold in most systems, where communica-
tion links and I/O devices are shared. Most contem-
porary workload models do not include such detailed
data [9], so the interaction between different applica-
tions with different properties and the job scheduler
are virtually impossible to capture from the workload
model alone.

In a simulation context that does not employ a de-
tailed architecture simulator that runs real applica-
tions (often impractical when testing large parallel
machines), shortcut assumptions are regularly made.
For example, assuming that applications are all bag-
of-tasks.

If synthetic applications are measured or simulated,
the benchmark designer is required to make many
application-related choices, such as memory require-
ments and degree of locality, communication granu-
larity and pattern, etc. [18]. Another example is the
role of I/O in parallel applications, that is often ig-
nored but may actually be relevant to a job sched-
uler’s performance [42, 81], and present opportuni-
ties for improved utilization [77].

SuggestionsOffer descriptions or analysis of relevant ap-
plication properties, like network usage [3, 42], par-
allelism [79], I/O [42, 53], or memory usage [17, 57,

61]. If approximating the applications with synthetic
benchmark programs or in a simulator, application
traces can be used [79]. Based on these traces, a
workload space can be created where desired param-
eters are varied to test the sensitivity of the scheduler
to those parameters [81]. In the absence of traces,
stochastic models of the relevant applications can be
used [17, 35, 53, 57].

Research Current knowledge on application characteris-
tics and correlations between them is rudimentary.
More good data and models are required.

Pitfall 9 EEE

Measuring biased, unrepresentative, or overly homoge-
neous applications

Problem Many evaluations use applications that are site-
specific or not very demanding in their resource re-
quirements. Even benchmarks suites such as the
NAS parallel benchmarks (NPB) [6] or ESP [78] can
be representative mostly of the site that produced
them (NASA and NERSC respectively for these ex-
amples), or ignore important dynamic effects, such
as realistic job interarrival time [18].

Using "toy" and benchmark applications can be use-
ful for understanding specific system properties and
for conducting a sensitivity analysis. However, writ-
ing and experimenting with toy applications that
have no relevant properties such as specific mem-
ory, communication, or parallelization requirements
(e.g., a parallel Fibonnacci computation) helps lit-
tle in the evaluation of a parallel job scheduler. Ac-
tual evaluations of scientific applications with repre-
sentative datasets often take prohibitively long time.
This problem is exacerbated when evaluating longer
workloads or conducting parameter space explo-
rations [8]. In some cases, researchers prefer to use
application kernels instead of actual applications, but
care must be taken to differentiate those from the real
applications [5].

The complexity of evaluating actual applications of-
ten leads to compromises, such as shortening work-
loads, using less representative (but quicker to pro-
cess) datasets, and selecting against longer-running
applications, resulting in a more homogeneous work-
load that is biased toward shorter applications. On
the other hand, a researcher from a real-site instal-
lation may prefer to use applications that have more
impact on the site [36, 39]. This choice results in

5



an analysis that may be more meaningful to the re-
searcher’s site than to the general case.

SuggestionsIf possible, evaluate more applications. If
choice of applications is limited, qualify the discus-
sion to those limits. Identify (and demonstrate) the
important and unimportant aspects of chosen appli-
cations. When possible, use longer evaluations or
use more than one architecture [39].

Conversely, some situations call for using simple,
even synthetic applications in experiments. This is
the case for example when we wish to isolate a select
number of application characteristics for evaluation,
without the clutter of irrelevant and unstudied param-
eters, or when an agreed benchmark for the stud-
ied characteristics is unavailable [7]. To make the
workload more heterogeneous, while still maintain-
ing reasonable evaluation delays, a researcher may
opt to selectively shorten the run time of only a por-
tion of the applications (for example, by choosing
smaller problem sizes).

Research Research on appropriate benchmarks is never
ending.

Pitfall 10 EE

Ignoring or oversimplifying communication

Problem Communication is one of the most essential
properties that differentiates parallel jobs from se-
quential (and to some extent, distributed) applica-
tions. Using a single simplistic communication
model, such as uniform messaging, can hide signif-
icant contention and resource utilization problems.
Assuming that communication takes a constant pro-
portion of the computation time is often unrealis-
tic, since real applications can be latency-sensitive,
bandwidth-sensitive, or topology-sensitive. In addi-
tion, contention over network resources with other
applications can dramatically change the amount of
time an application spends communicating.

In a simulation or analysis context where communi-
cation is modeled, one should consider that commu-
nication’s effect on application performance can vary
significantly by the degree of parallelism and interac-
tion with other applications in a dynamic workload.
This is only important when communication is a fac-
tor, e.g., in coscheduling methods.

SuggestionsWhenever possible, use real and representa-
tive applications. If communication is a factor, eval-
uate the effect of different assumptions and models

on the measured metrics [42, 64], before possibly
neglecting factors that don’t matter. If a parameter
space exploration is not feasible, model the commu-
nication and detail all the assumptions made [26, 60],
preferably basing the model on real workloads or
measurements. Confidence intervals can also be used
to qualify the results [69].

Research How to select representative communication
patterns? Can we make do with just a few? A nega-
tive answer can lead to an explosion of the parame-
ter space. Some preliminary data about communica-
tion patterns in real applications is available [12], but
much more is needed to be able to identify common
patterns and how often each one occurs.

Pitfall 11 EE

Using Coarse-grained applications

Scope Time slicing systems.

Problem Fine-grained application are the most sensitive
to scheduling [25]. Omitting them from an evalu-
ation of a time slicing scheduler will probably not
produce credible results. This pitfall may not be rel-
evant for schedulers where resources are dedicated to
the job, such as space slicing methods.

SuggestionsMake sure that fine-grained applications are
part of the workload. Alternately, conduct a sensi-
tivity analysis to measure how the granularity of the
constituent applications affects the scheduler.

Research What are representative granularities? What is
the distribution? Again, real data is sorely needed.

Pitfall 12 EE

Oversimplifying the memory model

Problem Unless measuring actual applications, an eval-
uation must account for applications’ memory us-
age. For example, allowing the size of malleable
jobs to go down to 1 may be great for the job sched-
uler in terms of packing and speedup, but real par-
allel applications often require more physical mem-
ory than is available on one node [58] (see pitfall
16). Time slicing evaluations must take particular
care to address memory requirements, since the per-
formance effects of thrashing due to the increased
memory pressure can easily offset any performance
gains from the scheduling technique. A persistent
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difficulty with simulating and analyzing memory us-
age in scientific applications is that it does not lend
itself to easy modeling, and in particular, does not of-
fer a direct relation between parallelism and memory
usage [17].

SuggestionsState memory assumptions e.g., that a
certain multiprogramming level (MPL) is always
enough to accommodate all applications. Perform a
parameter-space exploration, or use data from actual
traces [17, 43]. Malleable jobs may require that an
assumption be made and stated on the minimal par-
tition size for each job so that it still fits in memory.

Research Collecting data on memory usage, and using it
to find good memory-usage models.

Pitfall 13 E

Assuming malleable or moldable jobs and/or linear
speedup

Problem Malleable or moldable jobs can run on an arbi-
trary number of processors dynamically or at launch
time, respectively. While many jobs are indeed
moldable, some jobs have strict size requirements
and can only take a limited range of sizes, corre-
sponding to network topology (e.g., torus, mesh,
hypercube), or application constraints (e.g., NPB’s
applications [6]). Another unlikely assumption for
most MPI jobs is that they can change their size dy-
namically (malleableor evolvingjobs [29]).

For cases where malleabilityis assumed (e.g. for
the evaluation of dynamic scheduling) linear speedup
is sometimes assumed as well. This assumption is
wrong. Real workloads have more complex speedup
behavior. This also affects the offered load, as using
a different number of processors leads to a different
efficiency [30].

SuggestionsIf job malleability is assumed, state it [10],
and model speedup and efficiency realistically [13,
52, 66]. If real applications are simulated based on
actual measurements, use an enumeration of applica-
tion speedup for all different partition sizes.

Pitfall 14 E

Ignoring interactive jobs

Problem Interactive jobs are a large subset of many par-
allel workloads. Interactive jobs have a significant

effect on scheduling results [55] that needs to be ac-
counted for if they are mixed with the parallel jobs.
Some machines however have separate partitions for
interactive jobs, so they don’t mix with the parallel
workload.

SuggestionsAn evaluator needs to be aware of the spe-
cial role of interactive jobs and make a decision if
they are to be incorporated in the evaluation or not.
To incorporate them, one can use workload traces or
models that include them (e.g., [48]). If choosing
not to incorporate them, the decision should be stated
and explained. A model or a trace can then be used
from a machine with a noninteractive partition [60].
It should be noted that the presence (or lack) of in-
teractive jobs should also affect the choice of metrics
used. More specifically, response time (or flow) is of
lesser importance for batch jobs that it is for inter-
active ones. Moreover, interactive jobs account for
many of the short jobs in a workload, and removing
those will have a marked effect on the performance
of the chosen scheduling algorithm and metric [33].

Pitfall 15 E

Using actual runtime as a user estimate

Scope Evaluating backfilling schedulers that require user
estimates of runtime.

Problem User estimates are rarely accurate predictions
of program run times [51, 41]. If an evaluation uses
actual run times from the trace as user estimates,
the evaluation results may differ significantly from
a comparable evaluation with the actual user esti-
mates [21].

SuggestionsEvaluators should strive to use actual user
estimates, when available in the trace (these are cur-
rently available in 11 of the 16 traces in the work-
load archive). Lacking user estimates, the evaluator
can opt to use a model for generating user estimates
[72]. Another alternative is to test a range of esti-
mates (using a model or by multiplying the run times
with different factors [51]), and either describe their
effect on the result, or demonstrate that no significant
effect exists.

4 Evaluation Parameters

Even after meticulously choosing workloads and applica-
tions, an evaluation is only as representative as the input
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parameters that are used in it. Different scheduling al-
gorithms can be very sensitive to parameters such as in-
put load, multiprogramming level, and machine size. It is
therefore important to understand the effect of these pa-
rameters and the reasonable ranges they can assume in
representative workloads.

Pitfall 16 EEE

Unrealistic multiprogramming levels

Problem Increasing the multiprogramming level in time
slicing schedulers also increases the memory pres-
sure. High MPLs have value when studying the ef-
fect of the MPL itself on scheduling algorithms, and
as a limiting optimal case. But for actual evalua-
tions, high MPLs are unrealistic for many parallel
workloads, especially in capability mode, where jobs
could potentially use as much memory as they can
possibly allocate. For many time slicing studies it is
not even required to assume very high MPLs: several
results show that increasing the MPL above a certain
(relatively low) value offers little additional benefit,
and can in fact degrade performance [33, 50, 65].

Since MPL can be interpreted as the allowed de-
gree of resource oversubscribing, with space slic-
ing scheduling a higher MPL translates to more jobs
waiting in the scheduler’s queues. In this case, the
MPL does not have an effect on memory pressure,
but could potentially increase the computation time
of the space allocation algorithm.

SuggestionsIdeally, a comprehensive model of applica-
tion memory requirements can be incorporated into
the scheduler, but this remains an open research
topic. For time slicing algorithms, bound the MPL
to a relatively low value [80], say 2–4. Alternately,
use a technique such as admission control to dynami-
cally bound the MPL based on memory resources [7]
or load [79]. Another option is to incorporate a
memory-conscious mechanism with the scheduler,
such as swapping [2] or block paging [75].

Research More hard data on memory usage in parallel
supercomputers is required. Desirable data includes
not only total memory usage, but also the possible
correlation with runtime, and the questions of local-
ity, working sets, and changes across phases of the
computation.

Pitfall 17 EE

Scaling traces to different machine sizes

Problem The parameters that comprise workloads and
traces do not scale linearly with machine size. Addi-
tionally, scaling down workloads by trimming away
the jobs that have more processors than required can
distort the workload properties and affect scheduling
metrics [39].

SuggestionsIf using simulation or analysis, adjust sim-
ulated machine size to the one given in trace [10].
If running an experimental evaluation or for experi-
mental reasons the workload’s machine size needs to
be fixed (e.g., to compare different workloads on the
same machine size), use a scaling model to change
the workload size [15]. If possible, verify that the
scaling preserves the metrics being measured. Alter-
natively, use a reliable workload model to generate a
synthetic workload for the desired machine size. For
example, Lublin postulated a piecewise log-uniform
distribution of job sizes, and specified the parameters
of the distribution as a function of the machine size
[48].

Research No perfect models for workload scaling exist
yet. Such models should be checked against various
real workloads. Specifically, what happens with very
large systems? does it depend on the machine’s us-
age? e.g., do capability machines have more large
jobs than general usage machines?

Pitfall 18 EE

Changing a single parameter to modify load

Problem It is often desired to repeat an experiment with
various offered loads, in order to evaluate the sensi-
tivity and saturation of a job scheduler. This is often
done by expanding or condensing the distribution of
one of these parameters: job interarrival time, job run
time, and degree of parallelism [47, 68]. In general
however, the following problems arise:

• changingP (job size) causes severe packing
problems that dominate the load modification,
especially since workloads tend to have many
powers of 2, and machines tend to be powers
of 2.

• changingT (job runtime) causes a correlation
of load and response time.

• changingI (job interarrivals) changes the rela-
tive size of jobs and the daily cycle; in extreme
cases jobs may span the whole night.

In addition, changing any of these parameters alone
can distort the correlations between these parameters
and incoming load [68].
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SuggestionsOne way to avoid this problem is to use
model-derived workloads instead of trace data. Ide-
ally, a workload model should be able to produce a
representative workload for any desired load. How-
ever, if we wish to use an actual trace for added re-
alism or comparison reasons, we cannot suggest a
bulletproof method to vary load. To the best of our
knowledge, the question of adjusting traces load in a
representative manner is still open, so we may have
to compromise on changing a single parameter, and
advise the reader of the possible caveat.

If an evaluation nevertheless requires a choice of a
single-value parameter change to vary load, chang-
ing interarrivals is in our opinion the least objection-
able of these.

Research How to correctly modify the load is an open
research question.

Pitfall 19 E

Using FCFS queuing as the basis of comparison

Problem First-come-first-serve with no queue manage-
ment makes no sense for most dynamic workloads,
since many proven backfilling techniques exist and
offer better performance [31]. It only makes sense
when the workload is homogeneous with large jobs,
since backfilling is mostly beneficial when the work-
load has variety.

SuggestionsEmploy any reasonable backfilling method,
such as EASY or conservative [44, 51].

Pitfall 20 E

Using wall-clock user estimates for a time-slicing back-
filling scheduler

Problem Backfilling requires an estimate of run times to
make reservations for jobs. These run times cannot
be guaranteed however in a time-slicing scheduler,
even with perfect user estimates, because run times
change with the dynamic MPL.

SuggestionsOne heuristic to give an upper bound for
reservation times is to multiply user estimates by the
maximum MPL [33].

Research Come up with more precise heuristics for esti-
mating reservation times under time slicing.

5 Metrics

Different metrics are appropriate for different system
models [30]. Makespan is suitable for off-line scheduling.
Throughput is a good metric for closed systems. When
considering on-line open systems, which are the closest
model to how a real system operates, the metrics of choice
are response time and slowdown.

Pitfall 21 EEE

Using irrelevant/wrong/biased metrics

Problem Some metrics do not describe a real measured
value, such as utilization (see pitfall 22). Other met-
rics may not mean the same thing in different con-
texts (e.g., slowdown in a time slicing environment
vs. non-time-slicing [21, 82], or makespan for open
vs. closed workloads).

SuggestionsMetrics should be used in an appropriate
context of workload and applications [30]. Even
within the context of a workload, there is room to
measure metrics separately (or use different metrics)
for different classes of applications, e.g., based on
their type or resource requirements [33, 75].

Pitfall 22 EEE

Measuring utilization, throughput, or makespan for an
open model

Problem This is a special case of the previous pitfall, but
occurs frequently enough to merit its own pitfall.

“Open models” correspond to systems that operate
in an on-line mode [23]. This means that jobs ar-
rive in a continuous but paced manner. In this con-
text, the most significant problem with utilization
and throughput as metrics is that they are a measure
of the offered load more than of any effect the sched-
uler may have [30]. In fact, utilization shouldequal
the offered load unless the system is saturated (pit-
fall 25); thus measuring utilization is useful maily as
a sanity check. Makespan is also irrelevant for an
open model, as it is largely determined by the length
of the workload: how many jobs are simulated or
measured.

SuggestionsThe relevant metric in an open system is not
the utilization, but the saturation point: the maxi-
mum utilization that can be achieved. In practice,
this is reflected by the “knee” of the response-time
or slowdown curve [59]. However, identification of
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the knee is somewhat subjective. A more precise def-
inition is the limiting value of the asymptote, which
can also be identified by the departure from the di-
agonal of the utilization curve, where the measured
load becomes lower than the offered load. Somtimes
it can be found analytically based on the distribution
of job sizes [28].

For open systems, other metrics can and should also
be used, and are relevant for all loads up to the satura-
tion point. These include slowdown, response time,
and wait time. But note that measuring these metrics
beyond (and even close to) the saturation point leads
to meaningless results that reflect only the size of the
workload. Measuring utilization is may only be rel-
evant in the context of addmission controls (pitfall
25).

In a closed system, throughput is the most important
metric. For static workloads, where all the jobs are
assumed to arrive at the same time, makespan can
be used [30]. In this case, makespan and utilization
provide the same information.

Usage noteYet another difficulty with utilization is that
there are some variations in its definition. Basically,
utilization is that fraction of the available resources
that is actually used. One question is then what are
the available resources, and specifically, whether or
not to take machine inavailability into account [59];
we would suggest to do so, but availability data is not
always available.

Another issue is that “actually used” can be inter-
preted in different ways. A commonly used option
is to consider all nodes that areallocated to run-
ning jobs. However, some parallel machines allow
processor allocation only in fixed quanta, or specific
dimensions, thereby forcing the allocation of more
processors than the job actually requires. For ex-
ample, BlueGene/L allocates processors in units of
512 [40], and the Cray T3D allocates power-of-two
processors, starting from two [22]. The question then
arises, how to measure utilization in light of the fact
that many jobs in parallel workloads actually have
a very low degree of parallelism [43, 48], or just
different sizes than those of the machine’s allocated
sizes, and thus necessarily have unused processors
allocated to them.

The above leads to the alternative of only count-
ing nodes that are actuallyused, thus explicitly ac-
counting for effects such as the internal fragmenta-
tion cited above. An even more extreme definition
only considers actual CPU utilization, in an attempt

to factor out effects such as heavy paging that re-
duces CPU utilization [29]. However, the required
data is typically not available.

When referring to utilization, one should therefore
be specific about what exactly is measured.

Pitfall 23 EE

Using the mean for asymmetrically distributed (skewed)
results

Problem Some metrics are asymmetrically distributed,
sometimes even heavy tailed. One example is
slowdown, where short jobs have disproportionately
longer slowdowns than the rest of the workload.
Averaging these values yields a distorted picture,
since the mean is disproportionately affected by the
tail [11, 33].

SuggestionsTry to describe the distribution instead of
using a mean. Alternative metrics can often be de-
vised to bypass this problem, such as bounded slow-
down [19] and weighted response time [60]. Other
statistical tools can be used to describe the measure-
ments more accurately, such as median, geometric
mean, or box plot. Another alternative is to divide
the results into bins (e.g., short/long narrow/wide
jobs [33, 61]) and analyze each bin separately.

Pitfall 24 EE

Inferring scalability trends fromO(1) nodes

Problem Performance results rarely scale linearly [5].
Measuring a near-constant growth of a metric of a
small number of nodes and inferring scalability of
the property is risky. This generalization naturally
is even more applicable for simulation and analysis
based studies, that hide an assumption about the scal-
ability of the underlying hardware or mechanisms.

SuggestionsBarring actual measurement, use detailed
models or qualified estimates. In case of simulation,
the most reasonable approach is to simulate larger
machines.

Research Indeed, how can we learn about scalability
with minimal effort? what can we do if we cannot
get a 1000+ node machine to run on?
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6 Measurement Methodology

In both simulations and actual measurements, perfor-
mance is evaluated by having the scheduler schedule a
sequence of jobs. Previous sections have listed pitfalls
related to the workload itself, i.e. which jobs should ap-
pear in this sequence, and to the metrics used to measure
performance. This final section is about the context of the
measurements.

The considerations involved in these pitfalls are well-
known in the simulation literature, and can be summa-
rized as ensuring that we are simulating (and measuring)
the system in its steady state. The problem is that with
traces it may be hard to achieve a steady state, or easy to
overlook the fact that the state is not steady.

Pitfall 25 EEE

Measuring saturated workloads

Problem This is one of the most common errors com-
mitted in the evaluation of parallel job scheduling
schemes. In queuing theory terms, a system is sta-
ble only if the arrival rate is lower than the service
rate (λ < µ, or alternativelyρ = λ

µ < 1). If this
condition is violated the system is unstable — it has
no steady state.

The saturation point is the maximal load that the sys-
tem can handle. Keep in mind that many parallel
workloads and machines do not even get close to
100% utilization [39, 59], due to loss of resources to
fragmentation (pitfall 26). Evaluating the system for
loads beyond the saturation point is unrealistic and
typically leads to meaningless results.

Measuring the behavior of a parallel system with an
offered load that is higher than the saturation point
would yield infinitely-growing queues on a real sys-
tem, and metrics such as average wait time and slow-
down will grow to infinity. Thus the results of the
measurement woulddepend on the length of the mea-
surement— the longer your workload, the worse it
gets. However, it is easy to miss this situation in
a real measurement, because all the evaluations we
perform are finite, and finite workloads always con-
verge in the end. But results we measure on such
workloads are actually invalid.

SuggestionsIdentify the saturation point by comparing
the offered load to the achieved utilization (see pit-
fall 22) and discard data points from saturated exper-
iments, effectively limiting the experimental results
to the relevant domain [22, 33].

Transient saturation for a limited time should be
allowed, as it is a real phenomenon. How-
ever, if this happens toward the end of a simula-
tion/measurement, it may indicate a saturated exper-
iment.

The only case where measurement with an offered
load higher than the saturation point are relevant is
when we are considering admission policies. This
means that the system is designed to deal with over-
load, and does so by discarding part of its input (i.e.
some jobs are simply not serviced). In this case rele-
vant metrics are the fraction of jobs that are serviced
and the achieved utilization.

Pitfall 26 EE

Ignoring internal fragmentation

Problem Even an optimal scheduler that eliminates ex-
ternal fragmentation entirely (i.e., all processors are
always allocated) might suffer pitiful response times
and throughput if processor efficiency is not taken
into account. Most applications scale sublinearly
with processors and/or include inherent internal frag-
mentation (e.g., due to the "memory wall"). When
using such applications, measuring system-centric
metrics only (such as machine utilization in terms of
processor allocation, without considering efficiency)
can produce results that indeed favor the system
view, while specific applications suffer from poor re-
sponse times.

SuggestionsTo the extent that a scheduler’s designer can
alleviate these phenomena, reducing internal frag-
mentation should be given the same consideration as
reducing external fragmentation. For example, adap-
tive and dynamic partitioning can increase applica-
tion efficiency by matching the partition size to the
degree of parallelism of applications, although this
poses certain requirements on the scheduler and ap-
plications [52, 66]. If possible, include a dynamic
coscheduling scheme [4, 34, 63, 65] in the evalua-
tion, as these tend to reduce internal fragmentation.

Whether using any of these methods or not, an exper-
imental evaluator should remain cognizant of inter-
nal fragmentation, and address its effect on the eval-
uation.

Pitfall 27 EE

Using exceedingly short workloads
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Problem Some phenomena, including finding the satura-
tion point (pitfall 22) or fragmentation of resources
(such as contiguous processors or disk space in a file
system [62]), only appear with long enough work-
loads. Thus we need long workloads not only to
achieve a steady state, but even more so to see the
realistic conditions that a real system faces.

SuggestionsFor an analysis or simulation study, use
thousands of jobs, e.g. use a rule of thumb of 30
batches of 5000 jobs each (but note that even this
may not suffice for some skewed distributions) [49].
This is more difficult for an experimental evaluation.
In this case, use as many jobs as practical and/or use
a higher load to pack more jobs into the same amount
of time (but note pitfall 18).

Research Immediate research issues are related to aging.
How to do aging quickly? How to quantify appropri-
ate aging?

At a broader level, these phenomena are related to
new research on software rejuvenation [71] — re-
booting parts of the system to restore a clean state.
In real systems this may also happen, as systems typ-
ically don’t stay up for extended periods. As each re-
boot causes the effects of aging to be erased, it may
be that short workloads are actually more representa-
tive! This would also imply that transient conditions
that exist when the system is starting up or shuting
down should be explicitly studied rather than being
avoided as suggested in pitfalls 28 and 29.

Pitfall 28 EE

Not discarding warm-up

Problem A special case of pitfall 27 that is important
enough to be noted separately.

Initial conditions are different in a consistent manner,
so even averaging over runs will be biased. Thus it is
wrong to include the initial part of a measurement or
simulation in the results, as it is not representative of
steady state conditions.

SuggestionsThe first few data points can be discarded to
account for warmup time. There are various statisti-
cal methods to decide how much to discard, based on
estimates of whether the system has entered a steady
state [56]. As an approximation, a running average
of the performance metric can be drawn to see when
it stabilizes (which will not necessarily be easy to
identify because of diverging instantaneous values).

Research Which statistical methods are specifically suit-
able to identify the steady state of parallel work-
loads? And is there really a steady state with real
workloads? Alternatively, is rebooting common
enough that it is actually important to study the initial
tranzient conditions?

Pitfall 29 EE

Not avoiding cool-down

Problem Another special case of pitfall 27.

Towards the end of a measurement/simulation run,
problematic jobs remain and enjoy a dedicated sys-
tem with less competition. This also causes the mea-
sured load to deviate from the intended one. There-
fore a good indication of this problem is that the sys-
tem appears to be saturated (pitfall 25).

SuggestionsStop the measurements at the last arrival at
the latest. Count terminations to decide when enough
jobs have been measured, not arrivals. Then, check
jobs left in queue, to see if there are systematic bi-
ases.

Pitfall 30 EE

Neglecting overhead

Problem Overhead is hard to quantify. Overhead and op-
eration costs come in many forms, not all of them
even known in advance. Some overhead effects are
indirect, such as cache and paging effects, or con-
tention over shared resources.

SuggestionsModel the distribution of overhead [66], in-
corporate data from traces or actual machines [37],
or use a range of overhead values [50].

Research What are overheads of real systems? not much
data on overhead is available, and it continuously
changes with technology.

Pitfall 31 E

Measuring all jobs

Problem One aspect of this pitfall has already been cov-
ered as pitfall 5: that some jobs are unrepresentative,
and the data should be cleaned. But there is more to
this.

As loads fluctuate, many of the jobs actually see an
empty or lightly loaded system. In these cases the
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scheduler has no effect, and including them just di-
lutes the actual measurements. Additionally, differ-
ent jobs may experience very different conditions,
and it is questionable whether it is meaningful to av-
erage all of them together.

Another aspect of this pitfall is the distinction be-
tween jobs that arrive during the day, at night,
and over the weekend. Many sites have policies
that mandate different levels of service for different
classes of jobs at different times [74, 46]. Obviously
evaluating such policies should take the characteris-
tics of the different job classes into account, and not
bundle them all together.

SuggestionsPartition jobs into classes according to con-
ditions, and look at performance of each class sepa-
rately. For example, only look at jobs that are high-
priority, prime-time, interactive, or belong to a cer-
tain user. The emphasis here is not on presenting re-
sults for all possible categories, but rather, on identi-
fying the important conditions or categories that need
to be taken into account, and then presenting the re-
sults accordingly.

Research To the best of our knowledge, nobody does this
yet. Many new pitfalls may be expected in doing it
right.

Pitfall 32 E

Comparing analysis to simulations

Problem Comparisons are important and welcome, but
we must be certain that we are validating the correct
properties: Both simulation and analysis could em-
body the same underlying hidden assumptions, espe-
cially if developed by the same researchers. Exper-
imental evaluations tend to expose unaccounted-for
factors.

SuggestionsCompare analysis and/or simulation to ex-
perimental data [1].

7 Conclusion

As the field of parallel job scheduling matures, it still in-
volves many poorly understood and often complex fac-
tors. Despite this situation, and perhaps because of it, we
need to approach the study of this field in a scientific, re-
producible manner. This paper concentrates on 32 of the
more common pitfalls in parallel job scheduling evalua-
tion, as well as a few of the more subtle ones. It is un-
likely that any study in this field will be able to follow all

the complex (and sometimes contradicting) methodologi-
cal suggestions offered in this paper. Nor is it likely that
any such study will be immune to other methodological
critique. Like other fields in systems research, parallel job
scheduling entails compromises and tradeoffs. Neverthe-
less, we should remain circumspect of these choices and
make them knowingly. It is the authors’ hope that by fo-
cusing on these topics in a single document, researchers
might be more aware of the subtleties of their evalua-
tion. Ideally, disputable assumptions that are taken in the
course of a study can be justified or at least addressed
by the researcher, rather than remain undocumented. By
promoting more critical evaluations and finer attention to
methodological issues, we hope that some of the “black
magic” in the field will be replaced by reliable and repro-
ducible reasoning.
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