
Unfairness Metrics for Space-Sharing Parallel Job Schedulers

Gerald Sabin and P. Sadayappan

Dept. of Computer Science and Engineering
The Ohio State University

395 Dreese Lab., 2015 Neil Ave.
Columbus, OH 43210–1277, USA

{sabin, saday}@cse.ohio-state.edu

Abstract

Sociology, computer networking and operations re-
search provide evidence of the importance of fair-
ness in queuing disciplines. Currently, there is no
accepted model for characterizing fairness in paral-
lel job scheduling. We introduce two fairness metrics
intended for parallel job schedulers, both of which
are based on models from sociology, networking, and
operations research. The first metric is motivated
by social justice and attempts to measure deviation
from arrival order, which is perceived as fair by the
end user. The second metric is based on resource
equality and compares the resources consumed by a
job with the resources deserved by the job. Both of
these metrics are orthogonal to traditional metrics,
such as turnaround time and utilization.

The proposed fairness metrics are used to measure
the unfairness for some typical scheduling policies
via simulation studies. We analyze the fairness of
these scheduling policies using both metrics, identi-
fying similarities and differences.

1 Introduction

There has been a large body [1, 2, 3, 4, 5] of re-
search focused on the performance of job schedulers
for parallel machines, much of it being reported at
the annual Workshop on Job Scheduling Strategies
for Parallel Processing [6]. These studies have gen-
erally focused on user metrics (such as turnaround

time and slowdown) and system metrics (such as uti-
lization and loss of capacity).

Scheduling algorithms have been developed with
the intent of providing users better functionality and
enhanced performance, while improving system uti-
lization. But the issue of fairness has not been much
addressed in the context of job scheduling. We be-
lieve that this is in large part due to the lack of ac-
cepted metrics for characterizing fairness. Whereas
performance metrics such as wait time, response
time, slowdown and utilization are widely accepted
and used by the job scheduling research community,
fairness metrics are not well established. Researchers
have analyzed worst case and 95th percentile perfor-
mance data for the more standard user metrics [7, 8]
in an attempt to indirectly characterize scheduling
schemes with respect to the issues of starvation and
fairness. However, there has been very little work
which proposes direct fairness metrics for job sched-
ulers.

In contrast to the work in the job scheduling com-
munity, there is a body of existing work on the topic
of fairness in fields such as sociology, computer net-
work scheduling and queuing theory. The Resource
Allocation Queuing Fairness Metric (RAQFM) [9,
10, 11] is a model for assessing fairness in queuing
systems. RAQFM evenly divides available resources
amongst all jobs to determine the “fair” amount of
resources which should have been assigned to each
job.

Studies [12, 13] show that fairness in queues is criti-

1

cally important to humans. For instance, a long wait
at a supermarket is made more tolerable if all cus-
tomers are served in order. Further, it has been ob-
served that customers get upset if they are treated
unfairly, even if the absolute wait time is short. Re-
search by Larson [13] has shown that fast food restau-
rant customers prefer a longer, single queue rather
than a multiple queue system with a shorter wait
time. This can be attributed to a perceived increase
in fairness due to the knowledge that the users are
served in arrival order. Mann [12] studied queues
for long over night waits at multiple events. He
and his associates note the importance of preserv-
ing the FCFS queuing order. They analyze the im-
pact of queue position on “queue jumping” and re-
port that the response to “queue jumping” can range
from “jeering and verbal threats” to physical alter-
cations. While these queuing situations have signifi-
cant differences from a non-preemptive space sharing
parallel job scheduler, there also exist important sim-
ilarities. For instance, it is postulated that the hu-
man responses to unfairness result from contention
for “valued” resources (such as the event tickets in
the previous example and the compute cycles in job
scheduling) and the perception that a user who has
waited longer somehow deserves the resources more.

Thus it is important that fairness be considered
in addition to common user metrics (such as turn
around time and wait time). By characterizing a cen-
ter’s scheduling policy through suitable fairness met-
rics, system administrators could assure their users
that they are being treated fairly. In this paper, we
present two rather distinctly different approaches to
quantifying fairness in job scheduling, and assess sev-
eral standard job scheduling strategies by use of these
fairness metrics.

The remainder of this paper is organized as follows:
section 2 provides a motivation for fairness by intro-
ducing past fairness work in other disciplines. Section
3 introduces the proposed fairness metrics for paral-
lel job schedulers. Sections 4 and 5 provide a simula-
tion study showing the relative fairness of prevalent
scheduling schemes. Section 6 provides possible di-
rections for future work, and section 7 concludes the
paper.

2 Motivation and Related

Work

Networking, sociology and operational research pro-
vide two broad categories of fairness. The first is
based on social justice and is centered on the user’s
perception of fairness in terms of expected order of
service (arrival order). This type of fairness model is
common in sociology and operations research stud-
ies. The second fairness category is based on equally
dividing the resources (servers) amongst all active
users. This concept is based on the fundamental be-
lief that all users equally deserve the resources when-
ever they are present. Resource equality based met-
rics are prevalent in both computer networking and
queuing systems.

Social justice is the foundation for the “slips and
skips” view of fairness [13, 14, 15] in queuing sys-
tems. They introduce “slips and skips” as a means
to measure “social justice” in queuing systems. A slip
occurs when the queuing position is worsened due to
being overtaken by a later arriving entity. A skip is
the result of an improved queue position due to the
act of overtaking an earlier arriving entity. Rafaeli
et. al. [16] performed studies which concluded that
perceived fairness in queues is essential and can ac-
tually be more important than wait time. Therefore,
it seems that it would be helpful to show users how
fair a system is and more specifically how fairly an
individual’s jobs were treated.

The RAQFM [9, 10, 11] is an example of the sec-
ond class of fairness categories. It calculates fairness
in queuing systems by taking the difference between
the “deserved” service attributed to a job and sub-
tracting the actual service provided to the job. The
deserved service is computed by equally dividing all
resources amongst all active users in the system at
each time quantum. The deserved resources (δ) are

defined as
∫ di

ai
1/N(t)dt, where Nt is the number of

jobs in the system, at is the arrival time and dt is the
departure or completion time. The discrimination is
defined as Di = δi − si, where si is the service time
of job i. Border cases are shown to follow intuition
when using this metric; if service times are equal then
FCFS is the most fair non-preemptive policy, if ar-
rivals times are the same then SJF is the most fair
queuing priority, and a processor sharing scheme is

2

the only ideally fair queuing policy.
There is also queuing fairness work in the context

of streaming networks [17, 18, 19]; much of this work
is based on max-min fairness, which is similar in spirit
to RAQFM. This approach attempts to “evenly” di-
vide bandwidth amongst active flows or packets such
that a job no job can receive more resources without
reducing the resources of the least serviced job.

RAQFM is a metric which balances job seniority
and a job’s service time, as opposed to other queuing
fairness [20, 21, 22] metrics based on a job’s slow-
down which, do not explicitly take both job seniority
and the job’s service time into account. Weirman
and Balter use the max mean fairness of all jobs,
and consider a policy fair if all job categories have
a mean slowdown of no more than 1/(1 − ρ), where
ρ is the load. They show that using this method no
non-preemptive schedule is fair, processor sharing is
fair, and SJF is more fair the FCFS. [23] introduce
a parallel job scheduling algorithm that can bound a
job’s slowdown.

Finally, Sabin et. al.[24] measure the fairness of
individual sites in a multi-site job scheduling envi-
ronment. The focus of the multi-site fairness work
is to ensure that lightly loaded local sites are not
too adversely affected by joining a job sharing con-
sortium. The work is not interested in the relative
ordering (and fairness) of individual jobs, as we are
in the paper. The metric suggested in [24] compares
the performance of each job with job sharing to the
performance of each job without job sharing. The
authors conclude that the lack of focus on fairness
may have lead to unfair decisions in current meta-
schedulers, and suggests techniques to improve fair-
ness.

3 Unfairness Metrics

We introduce two fairness metrics. The first met-
ric is related to “slips” and “skips” discussed earlier,
and the second metric is based on an equal distribu-
tion of system resources amongst all active jobs in
the system, similar to RAQFM [9, 10, 11] and net-
work flow scheduling. The metrics are very different
in nature and quantify significantly different notions
of fairness in the schedule. However, both metrics ap-
pear very appropriate to consider when performing a

fairness analysis for a schedule. We compare different
scheduling schemes against both fairness metrics, to
identify commonalities and differences.

These metrics are intended to be orthogonal to the
traditional performance metrics. There may be cases
where a more fair scheme also exhibits better user
metrics such as turnaround time. However, there
may be scenarios where a more fair scheme has worse
performance metrics. For instance, a non-backfilling
FCFS policy will be entirely socially just, but has a
very poor average turnaround time. To fully evaluate
a scheduling strategy, the fairness should be evalu-
ated in addition to more traditional user and system
metrics. There is a large body of research [8] which
evaluates the other user and system metrics for the
scheduling policies studied in this paper, therefore
this paper focuses on fairness and not on the varia-
tions in the other metrics. This balance is not unlike
balancing wait time and fairness in physical queues
as done in [13] and more formally in [16]. Rafaeli’s
studies [16] showed that anger due to queuing is more
closely related to the perception of unfairness rather
than the absolute wait time.

3.1 Fair Start Time Analysis

Fair start time (FST) [25] based metrics are proposed
as a means to measure social justice for parallel job
schedulers. In order to motivate our approach, we
use an analogy. Consider a deli line, having many
workers, each performing only one task. Would it be
fair for a person who arrived later to have access to
the cashier earlier than the first person in the line?
In general, this would be considered unfair and so-
cially unjust. But if the later person is only ordering
a soda, and arrives at the cashier in time to have the
sale completed before the earlier person’s sandwich
order is ready, there isn’t really any social injustice.
The later person obtained a resource “out of order”,
but did not delay the earlier arriving person. This is
analogous to a later arriving job that backfills but has
no negative effect on the start time of earlier arriv-
ing jobs. We will refer to this situation as a “benign
backfill”. Therefore, this metric is similar to measur-
ing the “slips”, as we are trying to measure the effect
of jobs being run out of the preferred order (FCFS).
However, as demonstrated in the analogy, there are
significant differences which alter how we define this

3

P
ro

ce
ss

or
s

Current Schedule
jobA

Time

jobB

Xt

Bt
B

n
X

n

A
n

At

Figure 1: An example of a benign backfill due to
multiple resources where the apparent skip by jobB
does not affect jobA

metric.
Parallel job schedulers must inherently deal with

multi-resource jobs and multiple “servers” (proces-
sors). In this context jobs inherently use multiple re-
sources (processors); this fundamentally means that
all “skips” are not necessarily harmful. It is possi-
ble that a job can “skip” ahead and not effect any
other job in the schedule. In a single resource queu-
ing system, any job receiving service “out of order”
inherently delays all other jobs with a higher priority.
In a multi-resource job scenario, this is not always the
case. It is possible that the “skip” can be a benign
backfill. For instance, if we have 1−Xn free resources
(nodes) for Xt seconds, jobA needs An nodes for At
time, and jobB needs Bn nodes for Bt time. Assume
Bt < Xt and Bn < (1−Xn) < An and jobA arrived
before jobB. The start time of jobA is not affected
by jobB running before jobA, even though jobB ar-
rived later (see figure 1). Therefore, jobB running
early is a benign backfill and is not unfair.

Informally, how fairly a job is treated depends on
whether the job could have run at an earlier time
had no later arriving job been serviced. If it is de-
layed because of a later arriving job, it is considered
to be treated unfairly. This is analogous to the deli
line, and answers the question “did any later arriving
job affect my start time”. Based on the previous dis-
cussion, benign backfilling is obviously possible, and
is in fact the desired result of backfilling. Therefore,
simply counting how many jobs leapfrogged ahead of
a particular job is not an adequate metric to char-
acterize unfairness. Further, it is difficult to identify

the benign backfills, as a backfill may only adversely
effect some of the active jobs, due to inexact users es-
timates and the dynamic nature of online job schedul-
ing.

3.1.1 Strict Fair Start Time

Since we can not directly measure the number of
“skips” and/or “slips”, we decide to measure the ef-
fect of later arriving jobs on the start time of each
job. To measure this effect we run a “what if” sim-
ulation after all jobs have completed. Therefore the
“what if” simulation has all the necessary data (ac-
tual runtimes, resource constraints, etc.) to deter-
mine exactly what would have happened had no later
arriving jobs been in the system. This allows us to
determine if, and by how much, the job was affected
by later arriving jobs. This simulation takes into ac-
count the state of the schedule (running jobs and idle
resources) when the job arrived. We are able to start
the simulation from this state and determine when
the job would have started if no later arriving jobs
were ever in the system. We call the start time in
this “what if” schedule the Fair Start Time (FST)
for this job. If the actual start time of the job is not
greater than this FST, the job was not delayed by
any later arriving jobs, and any backfills (out of or-
der executions) must have been benign with respect
to this job.

It is possible that, due to the dynamics of later ar-
riving jobs, that the job actually had an earlier start
time in the actual trace. This is because later arriv-
ing jobs could have created “holes” in the schedule
for this job to backfill into (see figure 2). Therefore,
if the job’s FST is less than is actual start time is has
been treated unfairly (see figure 3), however if the
jobs FST is greater than the actual start time, the
job has been given preferential treatment.

3.1.2 Relaxed Fair Start Time

We next define a less strict notion of the FST, mo-
tivated by a couple of issues pertaining to the strict
FST metric defined above:

• In the process of generating a job’s strict FST,
it may have skipped ahead via backfilling. If in
actual execution, the job was not able to leapfrog
ahead of earlier jobs via backfilling, but was not

4

Pr
oc

es
so

rs

R2

Q1
Q3

Q2

Time

R1

Q5

Pr
oc

es
so

rs

R2

Q1
Q3

Q2

Time

R1

Q5

Figure 2: An example of a job starting before it’s
fair start time. Job Q5 backfills in the top figure.
In the bottom figure, job R1 and R2 complete early,
allowing Q3 to start earlier than it would have if Q5
were not allowed to backfill

otherwise delayed, should it really be considered
to be unfairly treated?

• If the job backfills when computing its strict
FST, and again during actual execution, this
backfilling might force an earlier arrived job to
violate its strict FST. Thus it may be the case
that the collection of strict FST’s for the jobs of
a trace implies an inherently infeasible schedule
(see figure 4).

In figure 4 a fair start time for each job (Q1, Q2,
Q3 and Q5) are created by removing all later arriving
jobs, and then performing the simulation (where R1
and R2 complete early, as in the previous examples).
In the example, if Q5 is to start by it’s fair start time,
job Q1 must be delayed (there is no feasible schedule
to meet all FSTs).

Therefore, we define a “relaxed” FST metric, very
similar to the strict FST in most ways. The only
difference is that the job we are determining the FST
for is not allowed to backfill (it can not start until
all other jobs submitted before it have started). This

Pr
oc

es
so

rs

R2

Q1

Q3

Q2

Time

R1

Q5

Pr
oc

es
so

rs

Time

Q5

R1

R2

Q1
Q2

Q3

Figure 3: A latter arriving job (Q5) delaying earlier
arriving jobs (Q1). The delay is caused by the inac-
curate estimates of R1 and R2. The top figure shows
job Q5 backfilling into the scheduling window and
the bottom figure shows the schedule after R1 and
R2 complete early.

gives an FST that is strictly greater than or equal to
the Strict FST, thus we call this the Relaxed FST.
Figure 5 shows the FSTs for all jobs using the relaxed
metric.

The pseudo-code below shows a possible implemen-
tation to compute the strict and relaxed fair start
time. This would need to be added to the sched-
uler. The code assumes that a snapshot of the sched-
ule (with information sufficient to start a simula-
tion) is taken upon job arrival. This snapshot is
retrieved with the getScheduleSnapshotAtArrival()
method. As can be seen, the only difference between
the relaxed and strict metric is when the newly arriv-
ing job is added to the “what if” simulation. It should
be noted that this must be performed after all jobs
which arrived before j have completed, so that the
scheduler can perform an accurate simulation using
the actual runtime of the jobs.

A consequence of both of the proposed approaches
(Strict and Relaxed) to characterizing fairness is that
the FST of a particular job in a trace will generally be

5

Paramaters:
j - the job we are computing the FST for
isRelaxed - should the relaxed or strict metric be computed
#
Return:
The FST for job j

public long calcFST(Job j, boolean isRelaxed){
#Get the state of the scheduler when job j arrived
Schedule schedule = getScheduleSnapshotAtArrival(j)

If we are calucating the strict FST, insert job j into
the scheduler so that it is allowed to backfill. If we are
calulating the relaxed FST, we need to allow all jobs in
the schedule to backfill and start before job j is added
if !isRelaxed
schedule.addJob(j)

Run the simulation to completetion
schedule.simulateUntilAllJobsHaveStarted()

if(not isRelaxed)
Simply return when the job started
return j.getStartTime()

else #isRelaxed
All jobs which arrived before j have already been forced
to start, add j to the schedule to see when it will start

schedule.add(j);
Run the simulation to completetion
schedule.simulateUntilAllJobsHaveStarted()
return j.getStartTime()

}

Figure 6: This method calculates the fair start time (relaxed or strict) for a given job

6

Pr
oc

es
so

rs

Q1

Time

R1

R2

FST Q1

Pr
oc

es
so

rs

Q3

Time

R1R1

R2

Q1

FST
Q1

Q2

FST
Q2

Pr
oc

es
so

rs

R2

Q1

Q3

Q2

Time

R1

FST
Q1

FST
Q2

FST
Q3

FST
Q5

Q5

Figure 4: An infeasible set of FST due to the original
strict metric.

different under different scheduling strategies. Con-
sider a job X that arrives at t=60 minutes. It is possi-
ble for it to have a fair-start time of 100 minutes and
an actual start time of 120 minutes with scheduling
strategy A, and a fair-start time of 200 minutes and
an actual start time of 180 minutes with scheduling
scheme B. Under our model of fairness, the job is un-
fairly treated by scheduling scheme A, but is fairly
treated by scheduling scheme B, although the actual
start time for scheme B is much worse. Is this rea-
sonable? We believe that the conclusion regarding
fairness is not inappropriate, since fairness and per-
formance are orthogonal considerations. Although
the user might prefer scheduling scheme A because
it provides a better response time, it does not mean
that it is a fairer scheme. Moreover, there has been
sociological research that suggests users might actu-

Pr
oc

es
so

rs

Time

R1R1

R2

Q1

FST
Q1

FST
Q2

Q2

Q3

Q5

FST
Q3 & Q5

Figure 5: The set of FST’s are now feasible

ally prefer the fair scheme, similar to the longer wait
times in the fast food restaurant [13].

Is it possible to use a common reference fair-start
time for each job when comparing the fairness of dif-
ferent scheduling schemes? We believe not, since the
relative performance of the base scheme would con-
found the evaluation. A strict FCFS policy (i.e. with
no backfilling) is a completely fair scheduling scheme,
in terms of social justice. So this might seem to be a
logical choice for a reference scheme. However, FCFS
no-backfill generates an inherently poor schedule with
very high average response time due to low utiliza-
tion. Therefore, backfilling scheduling schemes would
likely result in most jobs having better response times
than that with FCFS no-backfill. This would be true
even with schedules that are blatantly unfair. For
example, consider an FCFS-aggressive schedule on a
trace with many pairs of identically shaped jobs that
arrive in close proximity. With most implementa-
tions of aggressive backfilling, these pairs of identi-
cal, close proximity jobs would start in arrival or-
der, i.e. be treated fairly. Now consider a modi-
fied schedule where we swap the positions of the job
pairs in the aggressive backfill schedule - i.e. have
the later job run in the earlier job’s slot and vice
versa. This modified schedule is unquestionably un-
fair with respect to these job pairs. But in the corre-
sponding FCFS-no-backfill schedule, it is very likely
that all jobs would have later start times than the
FCFS-aggressive schedule. So if we just compare a
job’s start-time with its reference start-time under
the FCFS-no-backfill schedule, all jobs would be con-
sidered to be fairly treated for this contrived schedule
that is obviously unfair.

7

Thus it is problematic to use a single reference
schedule in comparing fairness of different schedul-
ing schemes. The metric for fairness should be in-
dependent of the performance (from the classical
user/system metrics) of the scheduling policies. The
goal of characterizing fairness is not to determine
whether one policy is more effective than another
with respect to user/system performance metrics.
Fairness and performance are both important in de-
termining the attractiveness of a scheduling strategy,
but they are independent factors.

3.1.3 Cumulative Metric

Above we have defined ways to measure the FST for
each job. We can then determine the unfairness for
each job by subtracting the FST from the actual start
time. If the ActualStartT ime − FST is less than
zero, the job has been given preferential treatment;
if it equals zero the job has been treated fairly; and
if it is greater than zero it has been treated unfairly.

We define the overall average unfairness as the sum
of the unfairness divided by the number of jobs.

OverallUnfairness =∑
i∈jobs

max(ActualStartT imei−FSTi,0)∑
j∈jobs

1

Therefore, jobs which are given preferential treat-
ment can not bring down the metric, as we only sum
over unfairly treated jobs. Also, we divide the sum
by the total number of jobs. So if only one job is
treated unfairly by X, the overall unfairness is X/N,
while a scheme where all jobs are treated unfairly by
X will have an overall unfairness of X.

3.2 Resource Equality

The FST metrics explained above measure effects
similar to “skips” and “slips” in queues. A very dif-
ferent model for fairness is that over any period of
time, ideally an equal fractional time slice should be
provided for each job in the system. The idea be-
hind the Resource Equality (RE) based metric is to
evenly divide the resources amongst all jobs which
are active in the system. Active jobs are defined as
jobs which have arrived but have not exited the sys-
tem (completed), i.e. running and queued jobs. In a
single resource context (i.e. all sequential jobs), each
job simply deserves 1/N (where N is the number of

active jobs in the system) of the resources for each
time quantum (the length of which is defined by job
arrival and departures). However, in a multi-resource
context (i.e. with parallel jobs), some jobs are able
to use more resources in a time quantum than other
jobs. For instance, if there are a 5-processor and a 15-
processor job active in a 20 processor system, it does
not make sense to insist that each job deserves 1/2
of the system for the time quantum. The 5 processor
job could not use more than 1/4th of the system, and
is not being treated unfairly if it only receives 1/4th
of the system.

Conceptually, the resource equality based metric
can be viewed as an ideal virtual time slicing scheme
in a round robin fashion (processor sharing). Here
each job receives an infinitesimally narrow time slice,
and a width that equals the number of actual re-
quested nodes. It is an idealized time slicing scheme,
because we ignore packing issues by allowing jobs to
fill fragmented slices and complete in the next time
slice. We add the condition that no job can deserve
more cycles than it is able to consume (a 8 process
job, in a t length time quantum, deserves a maximum
of 8t cycles). Further, we follow the model that only
the total used resources should be divided amongst
active jobs, rather than the total system resources,
as proposed in RAQFM in a multi-server context.
Therefore, it is feasible for a scheme to be fair even
if resources are wasted and the resource equality un-
fairness metric is independent of utilization and loss
of capacity.

The deserved time for job i is more formally defined
as below:

di =∫ ci

ai
min(nodesi∑

j∈ActiveJobs
nodesj

×used Nodes, nodesi)dt

The unfairness for each individual job is defined
as the deserved resources (di) minus the consumed
resources (si = runtimei × processorsi):

Di = di − si

We then define the overall unfairness in a man-
ner similar to the FST based metrics:

OverallUnfairness =

∑
i∈jobs

(max(Di,0))∑
j∈jobs

1

This metric is partially independent of the actual
scheduling policy used. The metric is based solely
on when a job arrives and departs and how many

8

other jobs are active in the system. Therefore, this
metric can easily be computed using post process-
ing, by using the scheduler output trace in the Stan-
dard Workload Format [26]. This is different from the
FST based algorithm that explicitly uses the current
scheduling policy and needs the state of the schedule
in order to generate the FST when each jobs arrives.

4 Simulation Environment

We used the proposed fairness metrics to analyze sev-
eral standard space sharing, parallel job scheduling
schemes. We analyzed three depths of reservations:
no guarantees (no reservations), EASY/aggressive
backfilling (1 reservation), and conservative backfill-
ing (all jobs have a reservation). For each of the reser-
vation depths, we simulated three queuing orders,
First Come First Served (FCFS), Shortest Job First
(SJF), and Largest eXpansion Factor (LXF)[27]. For
each queuing order the queue is dynamically sorted
by the specified criterion.

We performed simulations on 5000 job subsets from
each of the following machines: 128 node SDSC SP2,
the 512 node CTC SP2 (with 430 batch nodes), the
1152 SDSC Blue, and the 178 node OSC machines
available from the Feitelson workload archives [26].
We modified the traces to simulate offered loads of
70%, 80%, 90%, 95%, and 98%. We show representa-
tive data using the 80% (medium load) and 95% (high
load) simulations using the CTC SP2 and SDSC Blue
input traces.

To modify the workload of an input trace, we mul-
tiplied both the user supplied runtime estimate and
the actual runtime by a suitable factor to achieve a
desired offered load. For instance, let us assume that
the original trace had a utilization of 65%. To achieve
an offered utilization of 90%, the actual runtime and
estimated wallclock limit is multiplied by 0.9/0.65.
Thus we used runtime expansion to increase the mean
load. Using runtime expansion in lieu of shrinking the
inter-arrival keeps the duration of a trace consistent.
When shrinking the inter-arrival times, the duration
of the input trace is proportional to the change in the
offered load. When using runtime expansion, the du-
ration of a long simulation remains roughly same. We
note that the schedule generated by each method is
identical. Let i be the basic time unit when shrinking

CTC - Medium Load

0

500

1000

1500

2000

2500

3000

NoGuar Agg Cons

S
tr

ic
t

F
S

T
 U

n
fa

ir
n

es
s

FCFS

LXF

SJF

SDSC Blue - Medium Load

0

500

1000

1500

2000

2500

3000

3500

NoGuar Agg Cons

S
tr

ic
t

F
S

T
 U

n
fa

ir
n

es
s

FCFS

LXF

SJF

Figure 7: Average strict fair start miss time under
medium load

inter-arrival time, r be the basic time unit when using
runtime expansion, and x be the factor by which the
run times were expanded and the inter-arrival times
were shrunk. Simply letting x∗ i == r gives identical
simulation states.

5 Evaluation

Figures 7 and 8 show the overall average unfairness
using the strict FST based metric. These figures show
that no-guarantee backfilling is worse than aggressive
or conservative backfilling, especially for the SDSC
Blue trace. There are cases where SJF no-guarantee
is better than SJF conservative and SJF aggressive
backfilling; however SJF is generally more unfair than
FCFS and LXF. There are no consistent trends show-
ing LXF or FCFS to be more unfair than the other.

9

Table 1: The number of jobs for width (processor) categories presented
1 2 3-4 5-8 9-16 17-32 33-64 65-128 > 128

CTC SP2 2209 435 722 487 609 309 157 45 30
SDSC Blue 3 0 0 2489 653 569 616 396 277

CTC - Heavy Load

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

NoGuar Agg Cons

S
tr

ic
t

F
S

T
 U

n
fa

ir
n

es
s

FCFS

LXF

SJF

SDSC Blue - Heavy Load

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

NoGuar Agg Cons

S
tr

ic
t

F
S

T
 U

n
fa

ir
n

es
s

FCFS

LXF

SJF

Figure 8: Average strict fair start miss time under
high load

Figures 9 and 10 show the strict FST based unfairness
metric categorized by job width (number of nodes).
Only figures for FCFS data are shown, as the rela-
tive results for comparing no guarantee, aggressive
and conservative backfilling remain similar for LXF
or SJF queuing priority. Table 1 shows the number of
jobs in each category. These figures show that wide
jobs (i.e. jobs which need many nodes) are treated
extremely unfairly using a no-guarantee backfilling
scheme. Therefore, even though the overall unfair-

CTC - Medium Load

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

1 2
3-

4
5-

8
9-

16
17

-3
2

33
-6

4

65
-1

28

>=
12

8

Nodes

S
tr

ic
t

F
S

T
 U

n
fa

ir
n

es
s

FCFS NoGuar

FCFS Agg

FCFS Cons

SDSC - Medium Load

0

1000

2000

3000

4000

5000

6000

7000

1 2
3-

4
5-

8
9-

16
17

-3
2

33
-6

4

65
-1

28

>=
12

8

Nodes

S
tr

ic
t

F
S

T
 U

n
fa

ir
n

es
s FCFS NoGuar

FCFS Agg

FCFS Cons

Figure 9: Average strict fair start miss time for dif-
ferent width jobs under medium load

ness for no-guarantee backfilling may look acceptable
using the strict FST metric for the CTC trace, wide
jobs are treated very unfairly. Therefore, we can con-
clude that the strict FST metric shows that SJF is
an unfair queuing order and no-guarantee backfilling
is unfair. However, no conclusive evidence can be
drawn regarding the relative unfairness of an LXF
and an FCFS queuing priority or between aggressive
and conservative backfilling.

Figures 11 and 12 show the overall average unfair-

10

CTC - Heavy Load

0

5000

10000

15000

20000

25000

30000

1 2
3-

4
5-

8
9-

16
17

-3
2

33
-6

4

65
-1

28

>=
12

8

Nodes

R
el

ax
ed

 F
S

T
 U

n
fa

ir
n

es
s

FCFS NoGuar

FCFS Agg

FCFS Cons

SDSC - Heavy Load

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

1 2
3-

4
5-

8
9-

16
17

-3
2

33
-6

4

65
-1

28

>=
12

8

Nodes

R
el

ax
ed

 F
S

T
 U

n
fa

ir
n

es
s

FCFS NoGuar

FCFS Agg

FCFS Cons

Figure 10: Average strict fair start miss time for dif-
ferent width jobs under high load

ness using the relaxed FST based metric. The relaxed
metric shows that no-guarantee backfilling or a SJF
queuing priority are unfair, similar to the conclusions
with the strict metric. However, for all simulations,
the relaxed metric more clearly shows no-guarantee
backfilling to be unfair than does the strict metric.
Also, the relaxed metric is able to show a clearer sep-
aration between an LXF and FCFS queuing priority,
and between an aggressive and conservative backfill-
ing policy. Using this metric, FCFS is either less
unfair or extremely close to LXF and conservative
backfilling is less unfair than aggressive backfilling;
however they are both close in some situations. Fig-
ures 13 and 14 show the relaxed FST based unfairness
metric for width categories. Again only FCFS data
is shown, as the trends for different depths of reser-
vation are consistent for LXF and SJF. These figures

CTC - Medium Load

0

100

200

300

400

500

600

700

800

900

1000

NoGuar Agg Cons

R
el

ax
ed

 F
S

T
 U

n
fa

ir
n

es
s

FCFS

LXF

SJF

SDSC Blue - Medium Load

0

500

1000

1500

2000

2500

3000

NoGuar Agg Cons

R
el

ax
ed

 F
S

T
 U

n
fa

ir
n

es
s

FCFS

LXF

SJF

Figure 11: Average relaxed fair start miss time under
medium load

further show the unfairness of no-guarantee backfill-
ing, as the wide jobs are treated extremely unfairly.
The conclusions that can be drawn from this met-
ric are that an SJF queuing policy or no guaranteed
backfilling are unfair scheduling policies. Further,
LXF appears to be slightly more unfair than FCFS
and aggressive backfilling appears to be slightly more
unfair than conservative backfilling.

The relaxed and strict metric show similar results;
however the relaxed metric gives a clearer picture
with respect to the differences between LXF and
FCFS, and between conservative and aggressive back-
filling.

Figures 15 and 16 show data for the resource equal-
ity based metric, for the CTC and SDSC traces, for
medium and high loads. This metric shows that a
no-guarantee backfilling scheduling policy is very un-
fair with respect to the RE based metric. However,

11

CTC - Heavy Load

0

500

1000

1500

2000

2500

3000

NoGuar Agg Cons

R
el

ax
ed

 F
S

T
 U

n
fa

ir
n

es
s

FCFS

LXF

SJF

SDSC Blue - Heavy Load

0

1000

2000

3000

4000

5000

6000

7000

8000

NoGuar Agg Cons

R
el

ax
ed

 F
S

T
 U

n
fa

ir
n

es
s

FCFS

LXF

SJF

Figure 12: Average relaxed fair start miss time under
high load

the RE based metric does not show any significant
distinction between aggressive and conservative back-
filling. Further, this metric does not show significant
differences between different queuing priority orders.
Thus, similar to the FST based metrics, there is little
difference between aggressive and conservative back-
filling and no-guarantee backfilling appears to be un-
fair. However, SJF does not appear to be an un-
fair scheme using the resources equality based met-
ric, which is very different from the conclusions drawn
from the FST based fairness metrics.

Figures 17 and 18 show the overall resource equal-
ity based metric for the CTC and SDSC traces at
the medium and high loads for varying width jobs,
again only FCFS figures are shown as LXF and SJF
shows similar trends. Again, it can be seen that no
guarantees treats wide job very unfairly.

CTC - Medium Load

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

1 2
3-

4
5-

8
9-

16
17

-3
2

33
-6

4

65
-1

28

>=
12

8

Nodes

R
el

ax
ed

 F
S

T
 U

n
fa

ir
n

es
s

FCFS NoGuar

FCFS Agg

FCFS Cons

SDSC - Medium Load

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

1 2
3-

4
5-

8
9-

16
17

-3
2

33
-6

4

65
-1

28

>=
12

8

Nodes

R
el

ax
ed

 F
S

T
 U

n
fa

ir
n

es
s

FCFS NoGuar

FCFS Agg

FCFS Cons

Figure 13: Average relaxed fair start miss time for
different width jobs under medium load

All three metrics show that no-guarantee backfill-
ing is an unfair scheduling policy, and has been shown
to treat wide jobs especially unfairly. This is not
a surprising result, as no guarantee backfilling does
not provide a mechanism for wide jobs to start in
a timely manner in the presence of narrower jobs.
Also, there is no consistent difference between ag-
gressive and conservative backfilling when using two
of the metrics; however the relaxed FST metric shows
that conservative backfilling may be slightly less un-
fair. An SJF queuing order is much more unfair in
the FST based metrics, while it is comparable to
FCFS and LXF with the RE based metric. There is
also little difference between LXF and FCFS: two of
the three fairness metrics do not show any consistent
trends, while the third metric (relaxed FST) shows
that FCFS may be slightly less unfair than LXF. The

12

CTC - Heavy Load

0

5000

10000

15000

20000

25000

30000

1 2
3-

4
5-

8
9-

16
17

-3
2

33
-6

4

65
-1

28

>=
12

8

Nodes

R
el

ax
ed

 F
S

T
 U

n
fa

ir
n

es
s

FCFS NoGuar

FCFS Agg

FCFS Cons

SDSC - Heavy Load

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

1 2
3-

4
5-

8
9-

16
17

-3
2

33
-6

4

65
-1

28

>=
12

8

Nodes

R
el

ax
ed

 F
S

T
 U

n
fa

ir
n

es
s

FCFS NoGuar

FCFS Agg

FCFS Cons

Figure 14: Average relaxed fair start miss time for
different width jobs under high load

apparent closeness of LXF and FCFS is a surprising
result, as FCFS attempts to run jobs in arrival order;
it appears that the inaccurate user estimates leads to
a significant amount of unfairness even with an FCFS
priority queue. This is due to the scheduler allow-
ing a job to backfill. The apparently benign backfill
can delay earlier jobs when other running jobs have
not accurately estimated their runtimes [25]. The
unfairness in a SJF schedule is possibly caused by
temporarily starving some of the longer jobs while
giving preferential treatment to shorter jobs. In con-
clusion, SJF and no-guarantee backfilling generally
exhibit greater unfairness, while there is little differ-
ence between FCFS vs. LXF and between conserva-
tive vs. aggressive backfilling.

CTC - Medium Load

0

50000

100000

150000

200000

250000

300000

350000

400000

NoGuar Agg Cons

R
E

 U
n

fa
ir

n
es

s

FCFS

LXF

SJF

SDSC Blue - Medium Load

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

NoGuar Agg Cons

R
E

 U
n

fa
ir

n
es

s

FCFS

LXF

SJF

Figure 15: Resource equality based unfairness under
medium load

5.1 Rank Correlation

Here we assess how sensitive these metrics are to the
choice of jobs in a trace. Each trace is divided into
10 “random” subsets, based solely on the arrival or-
der of the jobs. Table 2 shows the Spearman [28]
correlation between each subset and the overall re-
sults, using all 45 simulations for each trace (combi-
nations of load, backfilling policy, and queue priority
policy). The rank correlation is done between each of
the subsets and the overall average. The data points
being ranked are the 45 simulations on a trace by
trace basis. The 45 simulations are obtained from
5 offered loads, the three queuing priorities, and the
three backfilling policies. The simulations are ranked
(individually) between 1 and 45 for each of the 10
subsets and for the overall average. The Spearman
rank order correlation is than computed between each

13

Table 2: Spearman correlation data between subsets of data and the overall unfairness
CTC SDSC

FST FST Resource FST FST Resource

Strict Relaxed Equality Strict Relaxed Equality

Subset 0 0.96 0.96 0.96 0.95 0.91 0.93
Subset 1 0.97 0.95 0.97 0.98 0.96 0.98
Subset 2 0.93 0.87 0.89 0.97 0.96 0.96
Subset 3 0.93 0.76 0.88 0.97 0.98 0.98
Subset 4 0.95 0.85 0.88 0.97 0.97 0.97
Subset 5 0.94 0.83 0.91 0.96 0.95 0.98
Subset 6 0.97 0.96 0.98 0.97 0.96 0.95
Subset 7 0.96 0.97 0.97 0.99 0.98 0.97
Subset 8 0.98 0.91 0.95 0.94 0.88 0.93
Subset 9 0.94 0.95 0.96 0.85 0.74 0.76

CTC - Heavy Load

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

NoGuar Agg Cons

R
E

 U
n

fa
ir

n
es

s

FCFS

LXF

SJF

SDSC Blue - Heavy Load

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

NoGuar Agg Cons

R
E

 U
n

fa
ir

n
es

s

FCFS

LXF

SJF

Figure 16: Resource equality based unfairness under
high load

CTC - Medium Load

0

2000000

4000000

6000000

8000000

10000000

1 2
3-

4
5-

8
9-

16
17

-3
2

33
-6

4

65
-1

28

>=
12

8

Nodes

R
E

 U
n

fa
ir

n
es

s

FCFS NoGuar

FCFS Agg

FCFS Cons

SDSC - Medium Load

0
2000000
4000000
6000000
8000000

10000000
12000000
14000000
16000000
18000000
20000000

1 2
3-

4
5-

8
9-

16
17

-3
2

33
-6

4

65
-1

28

>=
12

8

Nodes

R
E

 U
n

fa
ir

n
es

s

FCFS NoGuar

FCFS Agg

FCFS Cons

Figure 17: Resource equality based unfairness for dif-
ferent width jobs under medium load

14

CTC - Heavy Load

0

5000000

10000000

15000000

20000000

25000000

30000000

1 2
3-

4
5-

8
9-

16
17

-3
2

33
-6

4

65
-1

28

>=
12

8

Nodes

R
E

 U
n

fa
ir

n
es

s

FCFS NoGuar

FCFS Agg

FCFS Cons

SDSC - Heavy Load

0
5000000

10000000
15000000
20000000
25000000
30000000
35000000
40000000
45000000
50000000

1 2
3-

4
5-

8
9-

16
17

-3
2

33
-6

4

65
-1

28

>=
12

8

Nodes

R
E

 U
n

fa
ir

n
es

s

FCFS NoGuar

FCFS Agg

FCFS Cons

Figure 18: Resource equality based unfairness for dif-
ferent width jobs under high load

subseti and the overall average, to show the correla-
tion between job subsets and the overall average.

The high correlation indicates that the order of the
metrics would be similar even if we choose to only
rank schemes by the unfairness of a subset of the jobs.
Therefore, unfairness is similar for different subsets
and does not vary significantly.

6 Future Work

We hope to extend the FST based unfairness work
to be based on other fairness priorities (other than
FCFS). The current metric assumes that the fair or-
der is FCFS. The queue priority is able to change,
but the FST based schemes, run “what if” simula-
tions assuming that no later arriving jobs exist. We
would like to be able to use other fairness priorities,

so that system administrators can select a fair order
(possibly based on time in the queue or administra-
tive priorities) and measure the unfairness based on
these altered fairness priority assumptions. One issue
that is difficult when addressing this issue is handling
dynamic priorities and arriving jobs.

We would also like to expand these metrics and
ideas to other related areas beyond “simple” non-
preemptive space shared schedulers. For instance, we
plan on measuring unfairness and identifying other
fairness concerns for parameter sweep applications
and moldable job schedulers.

It would also be interesting to perform a compar-
ison of slowdown based metrics to the two metrics
defined in this paper. The slowdown based metrics
do not entirely fit into either of the two presented
categories (social justice or resource equality).

This work has focused on the fairness of individual
jobs. The metrics are based on related fields where
each job is treated individually and there is no dis-
tinction between users and jobs. However, in parallel
job scheduling, there are unique users who may sub-
mit many jobs. While job level fairness is reasonable,
and has a firm foundation in other fields, a user based
fairness metric would also seem reasonable. We be-
lieve that our work on job fairness will server as a
good foundation for our continued work in user based
fairness metrics.

7 Conclusion

In this paper, we introduced two fairness metrics
for job scheduling, each motivated by past fairness
research in sociology, computer networking, and/or
queuing systems. The first metric (Fair Start Time
based) is based on a deli-line notion of fairness or so-
cial justice, where jobs should be serviced in order.
We attempt to measure the effects of out-of-order ex-
ecution caused by backfilling and inaccurate user es-
timates. This is similar to measuring “skips” and
“slips”. The second metric is based on equally shar-
ing the resources amongst active jobs. This metric
compares the resources a job deserves during its life-
time to the resources it actually consumes. It exhibits
similarities to the RAQFM metrics used in queuing
systems and fairness amongst network flows.

These two types of metrics are based on differ-

15

ent principles and measure different features. Both
metrics are orthogonal to traditional user metrics
(turnaround time or slowdown) or system metrics
(utilization). The extent of similarities in the obser-
vations using the two metrics is somewhat surprising.
Both metrics indicate that LXF and FCFS have com-
parable unfairness, while SJF is more unfair. Further,
there is not a consistent difference in unfairness be-
tween aggressive and conservative backfilling, while
no-guarantee backfilling is consistently more unfair
(especially in regards to the unfairness towards wide
jobs).

Thus we have introduced unfairness metrics for
parallel job scheduling, and were able to draw
some consistent results across multiple traces and
multiple loads. The data shows that there may
not be significant unfairness concerns for some
previously reported schemes (LXF) which are often
not implemented due to unfounded unfairness con-
cerns. We hope these unfairness metrics are able to
improve the acceptance of other scheduling schemes,
where unfairness may be a concern. Further, these
metrics can be used to help alleviate user concerns
about unfairness of scheduling systems, hopefully
increasing user satisfaction.

Acknowledgments We would like to thank
Travis Earheart and Nancy Wilkins-Diehr for the
SDSC Blue workload logs, Victor Hazlewood from
HP Labs for the SDSC SP2 logs, and Dan Dwyer
and Steve Hotovy for the CTC workload logs.

References

[1] Talby, D., Feitelson, D.: Supporting priorities
and improving utilization of the IBM SP sched-
uler using slack-based backfilling. In: Proceed-
ings of the 13th International Parallel Processing
Symposium. (1999)

[2] Kurian, R., Balaji, P., Sadayappan, P.: Op-
portune job shredding: An effective approach
for scheduling parameter sweep applications. In:
Los Alamos Computer Science Institute Sympo-
sium, New Mexico (2003)

[3] Mu’alem, A.W., Feitelson, D.G.: Utilization,
predictability, workloads, and user runtime es-

timates in scheduling the IBM SP2 with back-
filling. In: IEEE Transactions on Parallel and
Distributed Systems. Volume 12. (2001) 529–543

[4] Sabin, G., Kettimuthu, R., Rajan, A., Sadayap-
pan, P.: Scheduling of parallel jobs in a heteroge-
neous multi-site environement. In Feitelson, D.,
Rudolph, L., Schwiegelshohn, U., eds.: Lecture
Notes in Computer Science, 9th International
Workshop. Volume 2862., Seattle, WA, USA,
Springer-Verlag Heidelberg (2003) 87 – 104

[5] Islam, M., Balaji, P., Sadayappan, P., Panda,
D.K.: QoPS: A QoS based scheme for parallel
job scheduling, Seattle, Washington (2003)

[6] Feitelson, D.: Workshops on job schedul-
ing strategies for parallel processing.
(www.cs.huji.ac.il/ feit/parsched/)

[7] Shmueli, E., Feitelson, D.G.: Backfilling with
lookahead to optimize the performance of paral-
lel job scheduling. In Feitelson, D.G., Rudolph,
L., Schwiegelshohn, U., eds.: Job Scheduling
Strategies for Parallel Processing. Springer-
Verlag (2003) 228–251 Lect. Notes Comput. Sci.
vol. 2862.

[8] Srinivasan, S., Kettimuthu, R., Subramani, V.,
Sadayappan, P.: Characterization of backfill-
ing strategies for job scheduling. In: 2002 Intl.
Workshops on Parallel Processing. (2002) held in
conjunction with the 2002 Intl. Conf. on Parallel
Processing, ICPP 2002.

[9] Raz, D., Levy, H., Avi-Itzhak, B.: A resource-
allocation queueing fairness measure. In: Pro-
ceedings of Sigmetrics 2004/Performance 2004
Joint Conference on Measurement and Model-
ing of Computer Systems, New York, NY (2004)
130–141 Also appears as Performance Evalua-

tion Review Special Issue 32(1):130-141.

[10] Avi-Itzhak, B., Levy, H., Raz, D.: Quantify-
ing fairness in queueing systems: Principles and
applications. Technical Report RRR-26-2004,
RUTCOR, Rutgers University (2004)

[11] Raz, D., , Levy, H., Avi-Itzhak, B.: RAQFM:
a resource allocation queueing fairness mea-
sure. Technical Report RRR-32-2004, RUT-
COR, Rutgers University (2004)

16

[12] Mann, L.: Queue culture: The waiting line as a
social system. The American Journal of Sociol-
ogy 75 (1969) 340–354

[13] Larson, R.C.: Perspectives on queues: Social
justice and the psychology of queueing. Opera-
tions Research 35 (1987) 895–905

[14] Gordon, E.S.: Slips and Skips in Queues. PhD
thesis, Massachusetts Institute of Technology
(1989)

[15] Whitt, W.: The amount of overtaking in a net-
work of queues. Networks 14 (1984) 411–426

[16] Rafaeli, A., Kedmi, E., Vashdi, D., Barron,
G.: Queues and fairness: A multiple study
experimental investigation. (http://queues-
fairness.rafaeli.net/)

[17] Greenberg, A.G., Madras, N.: How fair is fair
queueing? Association for Computing Machin-
ery 39 (1992) 568–598

[18] Demers, A., Keshav, S., Shenker, S.: Analysis
and simulation of a fair queueing algorithm. In-
ternetworking Research and Experience 1 (1990)
3–26

[19] Nandagopal, T., Lu, S., Bharghavan, V.: A uni-
fied architecture for the design and evaluation of
wireless fair queueing algorithms. Wireless Net-
works 8 (2002) 231–247

[20] Wierman, A., Harchol-Balter, M.: Classifying
scheduling policies with respect to unfairness in
an M/GI/1. In: Proceedings of the 2003 ACM
SIGMETRICS international conference on Mea-
surement and modeling of computer systems.
(2003) 238 – 249

[21] Bansal, N., Harcol-Balter, M.: Analysis of
SRPT scheduling: Investigating unfairness. In:
SIGMETRICS. (2001)

[22] Sigman, M.H.B.K., Wierman, A.: Asymptotic
convergence of scheduling policies with respect
to slowdown. In: IFIP WG 7.3 International
Symposium on Computer Modeling, Measure-
ment and Evaluation. (2002)

[23] Schwiegelshohn, U., Yahyapour, R.: Fairness in
parallel job scheduling. Journal of Scheduling”
(2000) 297–320

[24] Sabin, G., Sahasrabudhe, V., Sadayappan, P.:
On fairness in distributed job scheduling across
multiple sites. In: Cluster. (2004)

[25] Sabin, G., Kochhar, G., Sadayappan, P.: Job
fairness in non-preemptive job scheduling. In:
International Conference on Parallel Process-
esing. (2004)

[26] Feitelson, D.G.: Logs of real parallel workloads
from production systems. (URL: http://www.
cs.huji.ac.il/labs/parallel/workload/)

[27] Hansen, B.: An analysis of response ratio. In:
IFIP Congress. (1971)

[28] Weisstein, E.W.: Spearman rank correlation
coefficient. (http://mathworld.wolfram.com/
SpearmanRankCorrelationCoefficient.html)
From MathWorld–A Wolfram Web Resource.

17

