
Enhancing Security of Real-Time Applications on Grids                                 
through Dynamic Scheduling  

 
 

Tao Xie     Xiao Qin*   
Department of Computer Science 

New Mexico Institute of Mining and Technology 
801 Leroy Place, Socorro, New Mexico 87801-4796 

{xietao, xqin}@cs.nmt.edu 
 

 
Abstract 

 
Real-time applications with security requirements are 

emerging in various areas including government, 
education, and business. The security sensitive real-time 
applications can take full advantage of a grid environment 
that allows grid participants to exercise a fine-grained 
control and allocation of computational resources. 
However, conventional real-time scheduling algorithms 
failed to fulfil the security requirements of real-time 
applications. In this paper we propose a dynamic real-
time scheduling algorithm, or SAREG, which is capable of 
enhancing quality of security for real-time applications 
running on Grids. To make SAREG practical, we present 
a mathematical model to formally describe a scheduling 
framework, security-sensitive real-time applications, and 
security overheads. We leverage the model to measure 
security overheads incurred by an array of security 
services, including encryption, authentication, integrity 
check, etc. The SAREG algorithm seamlessly integrates 
security requirements into real-time scheduling by 
employing the security overhead model. To evaluate the 
effectiveness of SAREG, we conducted extensive 
simulations using a real world trace from a 
supercomputing centre. Our experimental results show 
that SAREG significantly improves system performance in 
terms of quality of security and schedulability over three 
existing scheduling algorithms. 

 
 

1. Introduction 
 

A computational grid is a collection of geographically 
dispersed computing resources, providing a large virtual 
computing system to users. With rapid advances in 
processing power, network bandwidth, and storage 
capacity, Grids are emerging as next generation 
computing platforms for large-scale computation and data 
intensive problems in industry, academic, and government 
organizations. As typical scientific simulation and 
computation require a large amount of compute power, it 
becomes crucial to take advantage of application 

scheduling to enable the sharing and aggregation of 
geographically distributed resources to meet the needs of 
highly complex scientific problems [32].  

Recently there have been some efforts devoted to the 
development of real-time applications on Grids [9]. Real-
time applications depend not only on results of 
computation, but also on time instants at which these 
results become available [13]. The consequences of 
missing deadlines of hard real-time systems may be 
catastrophic, whereas such consequences for soft real-time 
systems are relatively less damaging. Examples of hard 
real-time applications include distributed defense and 
surveillance applications [38], and distributed medical 
data systems [20]. On-line transaction processing systems 
are examples of soft real-time applications [26].  

There exist a growing number of systems that have real 
time and security considerations [36], because sensitive 
data and processing require special safeguard and 
protection against unauthorized access. In particular, a 
variety of motivating real-time applications running on 
Grids require security protections to completely fulfill 
their security-critical needs. Unfortunately, conventional 
wisdom on real time systems is inadequate for 
applications with real-time and security requirements. This 
is mainly because traditional real-time systems are 
developed to guarantee timing constraints while possibly 
posing unacceptable security risks.  

To tackle the aforementioned problem, we proposed a 
real-time scheduling algorithm (referred to as SAREG) 
with security awareness, which is intended to seamlessly 
integrate security into real-time scheduling for 
applications running on Grids. In this paper we use trace-
driven simulation to compare the performance of the 
SAREG algorithm against three baseline scheduling 
algorithms for Grids. Our simulator combines 
performance and security overhead estimates using a 
security overhead model based on three most commonly 
used security services. We have used a real world trace 
from a supercomputing centre to drive our simulations. 
Also, we concentrate on three security services, namely, 
authentication, integrity, and encryption. Our empirical 
results demonstrate that the SAREG scheduling algorithm 
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is able to achieve high quality of security while 
guaranteeing timing constraints posed by real-time 
applications.  

To put our work in a large perspective, in the next 
section we summarize related work in the areas of 
computer security and real-time systems. Section 3 
describes the preliminary system architecture and task 
model. In Section 4 we propose a real-time scheduling 
algorithm for parallel applications on Grids. We present in 
Section 5 the experimental results based on real world 
traces from a supercomputing centre. We also provide 
insight into system parameters that ultimately affect 
performance potential of SAREG. Finally, Section 6 
concludes the paper with summary and future directions.  

The rest of the paper is organized in the following 
way. Section 2 includes a summary of related work in this 
area. Section 3 discusses the system architecture and task 
model with security requirements. Section 4 proposes a 
security overhead model. Section 5 presents the security-
aware real-time scheduling strategy. Performance analysis 
of the SAREC-EDF algorithm is explained in Section 6. 
Section7 concludes the paper with summary and future 
research directions. 

  
2. Related work 

 
Scheduling algorithms for Grids have been extensively 

studied in the past both experimentally and theoretically. 
Wu and Sun considered memory availability as a 
performance factor and introduced memory-aware 
scheduling in Grid environments [42]. Li compared the 
performance of a variety of scheduling and processor 
allocation algorithms for grid computing [21]. In et al. 
proposed a framework for policy based scheduling in 
resource allocation of grid computing [18]. However, 
these scheduling algorithms are not suitable for real-time 
applications, because there is no guarantee to finish real-
time tasks in specified time intervals.  

The issue of scheduling for real-time applications was 
previously reported in the literature. Conventional real-
time scheduling algorithms such as Rate Monotonic (RM) 
algorithm [23], Earliest Deadline First (EDF) [37], and 
Spring scheduling algorithm [33] were successfully 
applied in real-time systems. We proposed both static [30] 
and dynamic [31] scheduling schemes for real-time 
systems. Unfortunately, none of the above real-time 
scheduling algorithms can be directly applied to the Grid 
environments. 

Real-time scheduling is a key factor in obtaining high 
performance and predictability for Grids. Various aspects 
of complicated real-time scheduling problems in the 
context of Grids were addressed in the literature. He et al. 
proposed a dynamic scheduling for parallel jobs with soft-
deadlines in Grids [16]. Caron et al. developed an 
algorithm that considers both priority and deadlines of 

tasks on Grids [6]. However, most of existing real-time 
scheduling algorithms perform poorly for security-
sensitive real-time applications on Grids due to the 
ignorance of security requirements imposed by the 
applications. 

Recently increasing attention has been drawn toward 
security-awareness in Grids, because efficient and flexible 
security has become a baseline requirement. Humphrey et 
al. examined the current state of the art in securing a group 
of activities and introduced new technologies that promise 
to meet the security requirements of Grids [17]. Azzedin 
and Maheswaran integrated the notion of “trust” into 
resource management of a grid computing systems [3]. 
Wright et al. proposed a security architecture for a 
network of computers bound together by an overlying 
framework used to provide users a powerful virtual 
heterogeneous machine [41]. Connelly and Chien 
proposed an approach to protecting tightly coupled, high-
performance component communication [7]. However, the 
above security techniques are not appropriate for real-time 
applications due to the lack of ability to express and 
handle timing constraints. 

Some work has been done to incorporate security into a 
variety of real-time applications. George and Haritsa 
proposed concurrency control protocols to support 
applications with real-time and security requirements [12]. 
Ahmed and Vrbsky developed a secure optimistic 
concurrency control protocol that can make trade-offs 
between security and real-time requirements [2]. Son et al. 
proposed an approach to trading off quality of security to 
achieve required real-time performance [35]. In [36], a 
new scheme was developed to improve timeliness by 
allowing partial violations of security. Our work is 
fundamentally different from the above approaches 
because they are focused on concurrency control protocols 
whereas ours is intended to develop a security-aware real-
time scheduling algorithm, which can meet security 
constraints in addition to real-time requirements of tasks 
running on Grids. 

Most recently, we proposed a dynamic security-aware 
scheduling algorithm for a single machine [43] and 
clusters [44]. We conducted simulations to show that 
compared with three heuristic algorithms, the proposed 
algorithm can consistently improve overall system 
performance in terms of quality of security and system 
schedulability under a wide range of workload conditions. 

 
3. Mathematical Model  
 

A mathematical model of security-aware real-time 
scheduling for Grids is presented in this section. This 
model, which describes a scheduling framework, security-
sensitive real-time jobs, and security overheads, allows the 
SAREG algorithm to be formally presented in Section 4. 
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3.1. Scheduling Framework   
 

A Grid can be specified as G = {M1, M2, …, Mn}, where 
Mi, 1 ≤ i ≤ n, is a site or cluster [27]. The n sites are 
connected by wide-area networks (See Figure 1). The 
scheduling framework is general in the sense that it can be 
applied to small-scale grids where computational sites are 
connected by LAN or MAN. Each site Mi is represented as 
a vector, e.g., Mi = (Pi, Ni,, Ti, Qi), where Pi is the peek 
computational power measured by an overall CPU 
capacity (e.g., BIPS), Ni is the number of machines in the 
site, Ti is a set of accepted jobs running on Mi, and Qi is a 
scheduler. Note that there exists a scheduler in each site, 
and we advocate the use of a distributed scheduling 
framework rather than a centralized one. This is mainly 
because a centralized scheduler in a large-scale grid 
inevitably becomes a severe performance bottleneck, 
resulting to a significant performance drop when workload 
is high. The distributed scheduling infrastructure makes a 
system portable, secure, and capable of distributing 
scheduling workload among an array of computational 
sites in the system [28][29]. 

Each site continues to receive reasonably up-to-date 
global load information by monitoring resource utilization 
of the Grid, and periodically broadcasts it local load 
information to other sites of the Grid. When a real-time 
job is submitted by a user to a local site, the corresponding 
scheduler assigns the job to a group of local machines or 
migrate the job to a remote site within in the Grid. The 
scheduler consists of a schedule queue used to 
accommodate incoming real-time jobs. The scheduler 
queue is maintained by an admission controller. If the 
incoming real-time jobs can be scheduled, the admission 
controller will place the tasks in the accepted queue for 
further processing. In case no site can guarantee the 

deadline of the submitted real-time job, it will be dropped 
into a local rejected list. The scheduler processes all the 
accepted tasks by its scheduling policy before transmits 
them into the dispatch queue, where the quality of security 
of accepted jobs are maximized. After the quality of 
security is enhanced, the real-time job is dispatched to one 
of the designated site Mi ∈ G. The machines in site Mi can 
execute a number of real-time tasks in parallel. 

  
3.2. Security-Sensitive Real-time Jobs  

 
A real-time job is specified as a set of rational 

parameters, e.g., Ji = (ei, pi, di, li, Si), where ei is the 
execute time, pi is the number of machines required to 
execute Ji, di is the deadline, and li denotes the amount of 
data (measured in KB) to be protected. ei can be estimated 
by code profiling and statistical prediction [5]. A 
collection of security services required by Ji is specified as 
Si = ( , , …, ), where denotes the security 
level range of the jth security service. Our security-aware 
scheduler is intended to determine the most appropriate 
point si in space Si, e.g.,  si = ( , , …, ), where 

 1 ≤ j ≤ q. 

1
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A schedule of a job Ji is formally denoted as the 
following expression: 

  ( )),),...(,(),,( ,,2,2,1,1, piipiiiiiii sssx σσσ= ,         (1)                           

where Ji is divided into pi tasks, ji,σ  and are the start 
time and the security level of the jth task. 

jis ,

The SAREG algorithm is able to measure the security 
benefits gained by each admitted job. To implement this 
basic and valuable functionality, we quantitatively model 
the security benefit of the jth task of job Ji as a security 
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Figure 1. The Scheduling Framework for SAREG in a computational Grid. 
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level function denoted by SL: Si → ℜ, where ℜ is the set 
of positive real numbers: 

                         , (2) 

where , ,  

Note that  is the weight of the jth security service for 
the task. Users specify in their requests the weights to 
reflect relative priorities given to the required security 
services. The security benefit of job Ji is computed as the 
summation of the security levels of all its tasks. Thus, we 
have the following equation:                                                   

∑
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where .                                      

∑
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The scheduling decision of the job Ji is feasible if (1) 

all its tasks can be completed before the deadline di, and 
(2) the corresponding security requirements are satisfied. 
Specifically, given a real-time job  that consists of pi 
tasks, we can obtain the following non-linear optimization 
problem formulation to compute the optimal security 
benefit of Ji: 

iJ

              maximize ,            (4)      

subject to                  
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where fi,j is the finish time of the jth task of Ji, and 
and are the minimum and maximum 

security requirements of . 

)min( j
iS )max( j

iS

iJ
The SAREG scheduling algorithm to be presented in 

the next section strives to enhance quality of security, 
which is defined by the sum of the security levels of all 
the admitted jobs. Thus, the following security value 
function needs to be optimized, subjecting to certain 
timing and security constraints: 

   maximize ,             (5)                        

A where Tj is a set of accepted jobs running on site Mj, yi,j 
is set to 1 if job Ji is accepted by the jth site, and is set to 0 
otherwise. Substituting Equation (4) into (5) yields the 
following security value objective function. Thus, our job 
scheduling problem for Grid environments can be 
formally defined as follows: given a Grid G = {M1, M2, …, 
Mn} and a list of jobs submitted to the Grid, find a 
schedule 
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is maximized.  
 

3.3. Security Overhead 
 

Since security is achieved at the cost of performance 
degradation, it is critical and fundamental to quantitatively 
measure overhead caused by various security services. 
Unfortunately, less attention has been paid to models used 
to measure security overheads. Recently Irvine and Levin 
proposed a security overhead framework, which can be 
used for a variety of purposes [19]. However, security 
overhead model for each security services in the context of 
real-time computing remains an open issue. To enforce 
security in real-time applications while making security-
aware scheduling algorithms predictable and practical, in 
this section we proposed an effective model that is capable 
of approximately, yet reasonably, measuring security 
overheads experienced by tasks with an array of security 
requirements. With the security overhead model in place, 
schedulers are enabled to be aware of security overheads, 
thereby incorporating the overheads into the process of 
scheduling tasks. Particularly, the model can be employed 
to compute the earliest start times and the minimal 
security overhead (see Equation 12 and Equation 13). 

Without loss of generality, we consider three security 
services widely deployed in real-time systems, namely, 
encryption, integrity, and authentication. 

 

(a) Encryption                                        (b) Integrity                                         (c) Authentication      
 

Figure 2. CPU overhead of security services. 
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• Encryption Overhead 

Encryption is used to encrypt real-time applications 
(executable file) and the data they produced such that a 
third party is unable to discover users’ private algorithms 
embedded in the executable applications or understand the 
data created by the applications. Suppose each site has ten 
optional encryption algorithms, which are listed in Table 
1. Based on their performance, each cryptographic 
algorithm is assigned a corresponding security level in the 
range from 0.1 to 0.9. For example, level 0.9 implies that 
we use 3DES, which is the strongest yet slowest 
encryption function among the alternatives. Since 
computation overhead caused by encryption mainly 
depends on the cryptographic algorithms used and the size 
of the data to be protected, Figure 2 (a) shows encryption 
time in seconds as a function of encryption algorithms and 
size of data to be secured measured on a 175 MHz Dec 
Alpha600 machine [25].  

Table 1. Cryptographic Algorithms Used for 
Encryption Service 

Cryptographic e
is : SL )( e

i
e sµ :MB/s 

      SEAL 0.1 168.75 
RC4 0.2 96.43 
Blowfish 0.3 37.5 
Knufu/Khafre 0.4 33.75 
RC5 0.5 29.35 
Rijndael 0.6 21.09 
DES 0.7 15 
IDEA 0.8 13.5 
3DES 0.9 6.25 

Let  be the encryption security level of ti, and the 
computation overhead of the encryption service can be 
calculated using Equation (7), where li is the amount of 
data whose confidentiality must be guaranteed, and 

 is a function used to map a security level to its 
corresponding encryption method’s performance.  

e
is

)( e
i

e sµ

             )()( e
i

e
i

e
i

e
i slsc µ= .                                 (7) 

• Integrity Overhead 

Integrity services make it possible to ensure that no 
one can modify or tamper applications while they are 
executing on clusters. This can be accomplished by using 
a variety of hash functions [4]. Ten commonly used hash 
functions and their performance (evaluated on a 90 MHz 
Pentium machine) are shown in Table 2. Based on their 
performance, each hash function is assigned a 
corresponding security level in the range from 0.1 to 1.0. 
For example, level 0.1 implies that we use MD4, which is 
the weakest yet fastest hash function among the 

alternatives. Level 1.0 means that Snefru-256 is employed 
for integrity, and Snefru-256 the slowest yet strongest 
function among the competitors. 

Table 2. Ten Hash Functions Used for 
Integrity Service 

Hash g
is : SL  )( g

i
g sµ :KB/ms 

MD4 0.1 23.90 
MD5 0.2 17.09 
RIPEMD 0.3 12.00 
RIPEMD-128 0.4 9.73 
SHA-1 0.5 6.88 
RIPEMD-160 0.6 5.69 
Tiger 0.7 4.36 
Snefru-128 0.8 0.75 
MD2 0.9 0.53 
Snefru-256 1.0 0.50 

Let  be the integrity security level of ti, and the 
computation overhead of the integrity service can be 
calculated using Equation (8), where li is the amount of 
data whose integrity must be guaranteed, and  is 
a function used to map a security level to its 
corresponding hash function’s performance. The security 
overhead model for integrity is depicted in Figure 2 (b). 

g
is

)( g
i

g sµ

               )()( g
i

g
i

g
i

g
i slsc µ= .                             (8)                        

• Authentication Overhead 
Tasks must be submitted from authenticated users and, 

thus, authentication services are deployed to authenticate 
users who wish to access the Grid [8]. Table 3 enlists three 
authentication techniques: weak authentication using 
HMAC-MD5; acceptable authentication using HMAC-
SHA-1, and fair authentication using CBC-MAC-AES. 
Each authentication technique is assigned a security level 

 in accordance with the performance. Thus, 

authentication overhead  is a function of security 

level . The security overhead model for authentication 
is shown in Figure 2(c). 

a
is

)( a
i

a
i sc

a
is

Table 3. Four Authentication Methods 

Authentication 
Methods 

a
is : 

Security 
Level 

)( a
i

a
i sc : 

Computation 
Time (ms) 

HMAC-MD5 0.3 90 
HMAC-SHA-1 0.6 148 

CBC-MAC-AES 0.9 163 
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• Modeling Security Overheads 
Now we can derive security overhead, which is the 

sum of the three items above. Suppose task ti requires q 
security services, which are provided in sequential order. 
Let  and be the security level and overhead of 
the jth security service, the security overhead 

experienced by ti, can be computed using Equation (9). 
In particular, the security overhead of ti with security 
requirements for the three services above is modelled by 
Equation (10). 

j
is )( j

i
j

i sc

ic

       , where .                     (9)                                 ∑
=

=
q

j

j
i

j
ii scc

1
)( j

i
j

i Ss ∈                                                                                               

The SAREG algorithm is outlined in Figure 3. The goal 
of the algorithm is to deliver high quality of security under 
two conditions: (1) the security level promotion will not 
miss its deadline; and (2) the security level promotion will 
not result in any accepted subsequent task to be failed. To 
achieve the goal, SAREG strives to maximize security 
level (measured by Equation 5) of each accepted job (see 
Step 21) while maintaining reasonably high guarantee 
ratios (see Step 12).  

              , where .                  (10) ∑
∈

=
},,{

)(
geaj

j
i

j
ii scc j

i
j

i Ss ∈

It is to be noted that , , and  in 
Equation (10) are derived from Equations (7)-(8) and 
Table 2. In section 5, Equation (10) will be used to 
calculated the earliest start times and minimal security 
overhead. (See Equations 11 and Equation12). 

)( e
i

e
i sc )( g

i
g
i sc )( a

i
a
i sc

 
4. The SAREG Scheduling Algorithm 
  

1.  for each task tk of job Ji on site Mj do 
2.    Use Equation (11) to computer , the earliest start time of task Ji on site Mj; j

ki,σ
3.  Use Equation (12) to obtain the minimal security overhead c of task tk; min

ki,

l

l

4.  if  then (See Property 1) i
min

kiki
j
ki dce ≤++ ,,,σ

5.    Sort the security service weights in a decreasing order of their values, e.g., 
           , where v  321 v

i
v
i

v
i www << ;31},,,{ ≤≤∈ lgea

6.   for each security service v  do ,31},,,{ ≤≤∈ lgea
7.     { };min,

ll v
i

v
ki Ss /* Initialize the security value of security service vl */ =

l

<
v
i

8.    for each security service v  do ,31},,,{ ≤≤∈ lgea
9.    while s  do }max{,

ll v
i

v
ki S

10.     increase security level ;l
ks  ,

11.     Use Equation (10) to calculate the security overhead of tk on Mj; 
12.             if  (based on Property 1) then 

i
geab

b
ki

b
kiki

j
ki dsce >++ ∑

∈ },,{
,,,, )(σ

13.               decrease security level s  break; ;,
lv
ki

14.             end while 
15.           end for 
16.    /* Obtain the security level of t on  using Equation (2) */ ∑

∈

=
},,{

,, )(
geab

b
ki

b
iki swsSL k jM

17.  else Migrate tk to another site Mr, subjecting to 
i

jr

r
i

geab

b
ki

b
kiki

rj
kijrnr

d
B

sce ≤
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+++ ∑
∈≠≤≤

,},,{
,,,

,
,,1

)(min
δσ  

18. end for 
19.  if Property 2 is satisfied then /* All the tasks  in Ji can be finished before di */ 
20.   where h = j or r; /* Accept job Ji */ ,1, ←hiy
21.           /* Optimize quality of security, see Equation (4) */ 

   Find site Mk for Ji, maximize ; ( ) ∑ ∑
= ∈

=
ip

k geab

b
ki

b
ii swsSL

1 },,{
,

22.    dispatch job Ji to Mk according to the schedule generated above; 
23.   else ;0, ←hiy /* Reject Ji, since no feasible schedule is available */  

 
Figure 3. The SAREG scheduling algorithm. 
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Before optimizing the security level of each task of job 
Ji on Mj, SAREG attempts to meet the real-time 
requirement of Ji. This can be accomplished by calculating 
the earliest start time (use Equation 11) and the minimal 
security overhead of Ji (use Equation 12) in Steps 2 and 3, 
followed by checking if all the tasks of Ji  can be 
completed before the deadline di (see Step 4). If the 
deadline cannot be met by Mj, Ji is rejected by Step 23. 

The security level of each task in Ji on Mj is optimized 
in the following way. Recall that the security service 
weights used in Equations (2), (4), and (6) reflect the 
importance of the three security services, directly 
indicating that it is desirable to give higher priorities to 
security services with higher weights (see Step 5). In other 
words, enhancing security levels of more important 
services tends to yield a maximized security level of the 
task on Mj. 

In the case of a particular security service 
, Step 10 escalates the security level  

while satisfying the following timing constraints (see Step 
12). Step 21 is able to maximize the security level of all 
the tasks in Ji by identifying a site Mh that provides the 
maximal security level and dispatching Ji to Mh (see Step 
22). 

},,{ geavl ∈ lv
kis ,

The time complexity of the SAREG scheduling 
algorithm is given as follows. 

Theorem 1. The time complexity of SAREG is O(knm), 
where n is the number of sites in a Grid, m is the number 
of tasks running on a site, and k is the number of possible 
security level ranks for a particular security service  

. 
lv

)31},,,{( ≤≤∈ lgeavl

Proof. The time complexity of finding the earliest start 
time for the task on a site is O(m) (Step 2). To obtain the 
minimal security overhead of the task; the time 
complexity is a constant O(1) ( Step 3). Sorting the 
security service weights in a decreasing order (Step 5) 
takes a constant time O(1) since we only have 3 security 
services. To increase the task’s three security levels to 
their possible maximal ranks under the constraints (Step 
12), the worst case time complexity is O(3km) (Step 8 ~ 
Step 15). To find site Mh on which the security level of 
task is optimized (Step 20 ~ Step 22), the time complexity 
is O(n). Thus, the time complexity of the SAREG 
algorithm is as follows: O(n)(O(m) + O(1) + O(1) + 
O(3km)) + O(n) = O(knm).  

min
ic

Since n, m and k cannot be very big numbers in 
practice, the time complexity of SAREG should be low 
based on the expression above. This time complexity 
indicates that the execution time of SAREG is a small 
value compared with task execution times (e.g., the real 
world trace used in our simulations shows that the average 
job execution time is 8031 Sec.). Thus, the CPU overhead 
of executing SAREG-EDF is ignored in our experiments. 

5. Performance Evaluation 
 

In the previous Section we proposed the SAREG 
scheduling algorithm, which integrates security 
requirements into scheduling for real-time applications on 
Grids. Now we are in a position to evaluate the 
effectiveness of SAREG by conducting extensive 
simulations based on a real world trace from San Diego 
Supercomputer Center (SDSC SP2 log). The real trace 
was sampled on a 128-node (66MHz) IBM SP2 from May 
1998 through April 2000. To simplify our experiments, we 
utilized the first three months data with 6400 parallel jobs 
in simulation. 

In purpose of revealing the strength of SAREG, we 
compared it against two well-know scheduling algorithms, 
namely, Min-Min and Sufferage [25] in addition to a 
traditional real-time scheduling algorithm - the Earliest 
Deadline First algorithm (EDF). Min-Min and Sufferage 
are non-preemptive task scheduling algorithms, which 
were designed to schedule a stream of independent tasks 
onto a heterogeneous distributed computing system such 
as a Grid. Note that Min-Min and Sufferage are 
representative dynamic scheduling algorithms for Grid 
environments, and they were successfully applied in real 
world distributed resources management systems such as 
SmartNet [11]. For the sake of simplicity, throughout this 
section Sufferage is referred to as SUFFER. 

To emphasize the non-security-aware characteristic of 
EDF algorithm, we refer to the EDF algorithm as NS-EDF 
(non-security-aware EDF) in this paper. Although the NS-
EDF algorithm, a variation of EDF, is able to schedule 
real-time jobs with security requirements, it makes no 
effort to optimize quality of security. Rather, it randomly 
selects a security level for each task in a real-time job. The 
three baseline scheduling algorithms are briefly described 
below. 

(1) MINMIN:  For each submitted real-time job, a 
Grid site that offers the earliest completion time is tagged. 
Among all the mapped tasks, the one that has the 
minimum earliest completion time is chosen and then 
allocate to the tagged site. The MINMIN scheduler 
randomly selects security levels of security services 
required by tasks of a real-time job.  

(2) SUFFER: Allocating a site to a submitted job that 
would “suffer” most in terms of completion time if that 
site is not allocated to it. Again, the SUFFER scheduler 
randomly chooses security levels for security requirements 
posed by an arriving job. 

(3) NS-EDF: Tasks with the earliest deadlines are 
always executed first. We modified the traditional EDF 
algorithm in a way that it can randomly picks values 
within the security level ranges of services required by 
tasks. The following expression is held in the NS-EDF 
algorithm: . { }b

i
b

kii Ssgeabpk random:},,{,1 , =∈≤≤∀
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                              Table 4. Characteristics of System Parameters. 

The ultimate goal of comparing SAREG against 
MINMIN and SUFFER is to demonstrate schedulability 
performance improvements over existing scheduling 
algorithms in a real-time computing environment, whereas 
the purpose of comparing SAREG with NS-EDF is to 
show security performance benefits gained by employing 
SAREG in a Grid environment. This section is organized 
as follows. Section 5.1 describes our simulator and 

important system parameters. Section 5.2 is to examine 
the performance improvements of SAREG over the three 
baseline algorithms. In Section 5.3 we investigate the 
performance impacts of the number of computing nodes in 
a simulated four-site Grid. Section 5.4 addresses the 
performance sensitivity of the SAREG algorithm to CPU 
capacities of the nodes in a Grid. We evaluate in Section 
5.5 the scalability (measured as Grid size) of the proposed 
SAREG algorithm. Last but not least, Section 5.6 
demonstrates that SAREG delivers good performance in 
terms of conventional performance metrics, including the 
mean slowdown and mean response time.  
  
5.1. Simulator and Simulation Parameters  

Before presenting the empirical results in detail, we 
present the simulation model as follows. A competitive 
advantage of conducting simulation experiments is that 
performance evaluation on a Grid can be accomplished 
without additional hardware cost. The Grid simulator was 
designed and implemented based on the model and the 
algorithm described in the previous sections. 

Table 4 summarizes the key configuration parameters 
of the simulated Grid used in our experiments. The 
parameters of nodes in Grid are chosen to resemble real-
world workstations like IBM SP2 nodes. 

We modified a real world trace1 by adding randomly 
generated deadlines for all tasks in the trace. The 

                                                           

)

1 http://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_sp2.html 

assignment of deadlines is controlled by a deadline base, 
or laxity, denoted as β, which sets an upper bound on 
tasks’ slack times. We use Equation (13) to generate job 
Ji’s deadline di. 

                   d                          (13) ,β+++= max
iiii cea

where ai and ei are the arrival and execution times 
obtained from the real-world trace. is the maximal 

security overhead (measured in ms), which is computed by 
Equation (14).  

max
ic

             Parameter           Value (Fixed) - (Varied) 
CPU Speed (2) – (4, 8, 16) 

β (Deadline Base, or Laxity)   (50 second) – (200, 400, 800 second) 

Network bandwidth 5 MB/Second 
Number of sites (4) – (8, 16, 32) 
Number of nodes (184)- (256, 320,384) 
Mean size of data to be secured 50KB for short jobs, 500KB for medium jobs, 1MB for long jobs 
Mean size of input data 100MB for short jobs, 500MB for medium jobs, 1TB for large jobs 
Mean size of application code 500KB for short jobs, 5MB for medium jobs, 50MB for large jobs 
Required security services Encryption, Integrity and Authentication  
Weights of security services Authentication=0.2; Encryption=0.5; Integrity=0.3 

              { }(∑
∈

=
},,{

max max
geaj

j
i

j
ii Scc ,                      (14) 

where  represents the overhead of the jth 

security service for when the corresponding maximal 
requirement is fulfilled. 

{ }( j
i

j
i Sc max )

iJ

“Job number”, “submit time”, “execution time” and 
“number of requested processors” of jobs submitted to the 
Grid are taken directly from the trace. “size of input file”, 
“size of application code”, “size of output file” and 
“deadlines” are synthetically generated in accordance with 
the above model, since these parameters are not available 
in the trace. Security requirements are randomly generated 
from 0.1 to 1.0 for each security service. When a job has 
to be remotely executed to meet its deadline, we must 
consider its migration cost, which is factored in Equation 
11. In order to measure the migration cost of a job, we 
need to estimate the network bandwidth and the amount of 
data to be transferred. Vazhkudai et. al. [40] measured the 
end-to-end bandwidth between two remote super-
computing centres using GridFTP. It was discovered that 
the network bandwidth varies from 1.5 to 10.2 MB/sec. In 
our simulation experiments, the network bandwidth was 
randomly drawn from a uniform distribution with range 
1.5 to 10.2 MB/sec., which can resemble practical network 
bandwidth in existing distributed systems. The 
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synthesized deadline weakens correlations between real-
time requirement and other workload characteristics. 
However, in the experiments we can examine performance 
impacts of deadlines on system performance by 
controlling the deadlines as fundamental simulation 
parameters (see Section 5.2).  

The performance metrics by which we evaluate 
system performance include:  

security value: (see Equation 6). 
guarantee ratio: measured as a fraction of total 

submitted jobs that are found to be schedulable). 
overall system performance: defined as a product of 

security value and guarantee ratio.  
mean slowdown: the slowdown of a job is the ratio of 

a job’s response time to its service time, and mean 
slowdown is the average slowdown of all schedulable jobs 
in the Grid.  

mean response time: the response time of a job is the 
time interval between the job’s arrival and finish times, 
and mean response time is the average response time of all 
schedulable jobs in the Grid.  

 
5.2. Overall Performance Comparisons  

 
The goal of this experiment is two fold: (1) to 

compare the proposed SAREG algorithm against the three 
baseline schemes, and (2) to understand the sensitivity of 
SAREG to parameter β, or deadline base (Laxity). To 
stress the evaluation, we assume that each job arrived in 
the Grid requires the three security services. Without loss 
of generality, it is assumed that time spent handling page 
faults is factored in jobs’ execution time.  

Figure 4 shows the simulation results for these four 
algorithms on a Grid with 4 sites (184 nodes) where the 
CPU power is fixed at 100MIPS. We observe from Figure 
6 (a) that SAREG and NS-EDF exhibit similar 
performance in terms of guarantee ratio (the performance 
difference is less than 2%), whereas the guarantee ratios of 
SAREG are a lot higher than those of MINMIN and 
SUFFER algorithms. The reason for the performance 
improvements of SAREG over MINMIN and SUFFER is 
two fold. First, SAREG is a real-time scheduler, while 

MINMIN and SUFFER are non-real-time scheduling 
algorithms. Second, SAREG judiciously enhances the 
security levels of accepted jobs under the condition that 
the deadlines of the accepted jobs are guaranteed. 

Figure 4 (a) illustrates that the guarantee ratios of four 
algorithms increase with the increasing value of the laxity. 
This is because the large deadline leads to long slack 
times, which in turn tend to make the deadlines more 
likely to be guaranteed.  

Figure 4 (b) plots security values of the four 
alternatives when the deadline base is increased from 50 to 
800 Sec. Comparing with the average execution time of all 
jobs in the trace, which is 8030.8 Sec., the laxity range 
[50, 800] is reasonable. Figure 4 (b) reveals that SAREG 
consistently performs better, with respect to quality of 
security, than all the other three approaches. When the 
deadlines are tight, the security values of SAREG are 
much higher than those of MINMIN and SUFFER. In 
addition, SAREG consistently outperforms NS-EDF when 
the laxity varies from 50 seconds to 800 seconds. This is 
because that SAREG can improve accepted jobs’ security 
levels under constraints of their deadlines and resources 
availability, while NS-EDF makes no effort to optimize 
the security levels. More specifically, NS-EDF merely 
randomly chooses a security level within the 
corresponding security requirement range. Interestingly, 
when the deadlines become tight, the performance 
improvements of SAREG over the three competitor 
algorithms are more pronounced. The results clearly 
indicate that Grids can gain more performance benefits 
from our SAREG approach under the circumstance that 
real-time tasks have urgent deadlines. 

The overall system performance improvements 
achieved by SAREG are plotted in Figure 4(c). The first 
observation deduced from Figure 4(c) is that the value of 
overall system performance increases with the laxity. This 
is mainly because the overall system performance is a 
product of security value and guarantee ratio, which 
become higher when the deadlines are loose due to the 
high laxity value. 

A second observation made from figure 4(c) is that the 
SAREG algorithm significantly outperforms all the other 

 
 
 
 
 

 

(a) Guarantee ratio                       (b) Security value                        (c) Overall system performance 
Figure 4. Performance impact of deadline. 
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three alternatives. This can be explained by the fact that 
although the guarantee ratios of SAREG and NS-EDF are 
similar, SAREG considerably improves security values 
over the other algorithms, while achieving much higher 
guarantee ratio than MINMIN and SUFFER. This result 
suggests that if quality of security is the sole objective in 
scheduling, SAREG is more suitable for Grids than the 
other algorithms. By contrast, if schedulability is the only 
performance objective, SAREG can maintain similar 
guarantee ratios as those of NS-EDF, whose security 
performance is the second best among the four algorithms. 

Last but not least, Figure 4(c) indicates that the overall 
performance improvement of SAREG over the other three 
algorithms becomes more pronounced when the deadlines 
are tighter, implying that more performance benefits can 
be obtained by SAREG for real-time applications with 
small slack times. This is because the SAREG approach is 
less sensitive to the change in deadlines than the other 
approaches. 

 
5.3 Scalability  
 

This experiment is intended to investigate the 
scalability of the SAREG algorithm. We scale the number 
of sites in the Grid from 4 to 32. Figure 5 plots the 
performances as functions of the number of sites in the 
Grid. The results show that the SAREG approach exhibits 
good scalability. 

Figure 5 shows the improvement of SAREG in overall 
system performance over the other three heuristics. It is 
observed from Figure 5 that the amount of improvement 
over MINMIN and SUFFER maintains almost the same 
level with the increasing value of the site number. This 
result can be explained by the non-real-time nature of 
MINMIN and SUFFER, which schedules tasks that 
change the expected site ready time status by the least 
amount that any assignment could. 

 
5.4 Sensitivities to CPU Capacity  
 

To examine performance sensitivities of the four 
algorithms to CPU capacity, in this set of experiments we 
varied the CPU capacity (measured as speedup over the 
baseline computational node) from 2 to 16. Specifically, 
the CPU speed of the IBM SP2 66MHz nodes is 
normalized to 1. We escalate the CPU capacity of  the 
nodes to a normalized value of 2, 4, 8, and 16, 
respectively. Therefore, the execution times (including 
security overhead) could be 1/2, 1/4, 1/8 and 1/16 of that 
of original values, respectively. Also, we select a 200 
seconds laxity and a four-site simulated Grid with total 
184 nodes. This experiment is focused on evaluating the 
performance impact of CPU speedup on the four 
algorithms under a situation where deadlines are relatively 
tight and the number of nodes is less than sufficient. 

The results reported in Figure 6 reveal that the SAREG 

(a) Guarantee ratio                           (b) Security value                            (c) Overall system performance
    Figure 5. Performance impact of number of sites. 

(a) Guarantee ratio                           (b) Security value                          (c) Overall system performance 
Figure 6. Performance impact of CPU Speedup. 
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algorithm outperforms the other three alternatives in terms 
of security value and overall system performance. 
However, the discrepancy of guarantee ratio performance 
between SAREG and NS-EDF is almost zero. This is 
because SAREG can accept the same number of submitted 
tasks as NS-EDF when the node’s CPU speed is so fast 
that the security overhead is trivial and thus has little 
effect on the guarantee ratio performance. Figure 6 shows 
that MINMIN and SUFFER only slightly improve their 
performance when the computing capacity of the Grid is 
increased. The results can be explained by the following 
two reasons. First, the trace used in the simulation has 
approximate fixed job arrival rate, meaning that the 
decrease jobs’ execution time unnecessarily improves 
guarantee ratio. Second, the deadlines of all submitted 
tasks are relatively tight. As we can see from Fig 6., the 
laxity has great influence on MINMIN and SUFFER in 
terms of the guarantee ratio. 

 
5.5 Impact of the Number of Nodes 
 

This subsection is focused on performance impact of 
the number of nodes in a four-site simulated Grid. 
Specifically, we evaluate the performance of the four 
algorithms in the cases where the total number of 
computation nodes in a Grid changes from 184 to 384 and 
all tasks have very tight deadlines (laxity=50 seconds). 
Each task in the trace poses requirement on how many 
nodes it needs. The goal is to examine the performance 
impact of number of total nodes in a Grid. 

Figures 7 shows the performance impacts of the 
number of nodes in the Grid. We observe from the figure 
that the SAREG delivers better overall system 
performance than the other competitor algorithms under 
all four cases. This result is consistent with that observed 
from the previous experiment (see Fig. 4). Furthermore, 
all the four scheduling algorithms exhibit better 
performance when the Grid has more computation nodes. 
However, MINMIN and SUFFER can only marginally 
improve performance in guarantee ratio and security value 
when more computational nodes are available in the Grid. 

The reason is two-fold: (1) each task has extremely tight 
deadline and the guarantee ratios of MINMIN and 
SUFFER largely depend on deadlines (see Fig. 4), and (2) 
the number of nodes increased is very small compared 
with the number of total submitted jobs. 

Interestingly, Figures 7 reveals that the performance 
improvement of SAREG over NS-EDF in terms of GR is 
not promising in the first three nodes number 
configurations. NS-EDF even outperforms SAREG in GR 
when the total number of nodes in the Grid is 384. The 
rationale behind this result is that SAREG always tries to 
promote currently arrived tasks’ security levels to the 
maximal possible value, which in turn increase the 
execution time of currently scheduled tasks. Therefore, 
subsequent tasks could wait for a longer time to be 
executed and thus violate their deadlines. For NS-EDF this 
situation does not apply. 

 
6. Summary and Future Work 

 
In this paper, we proposed a novel scheduling 

algorithm, or SAREG, for real-time applications on 
computational Grids. The SAREG approach paves the 
way to the design of security-aware real-time scheduling 
algorithms for Grid computing environments. To make the 
SAREG scheduling algorithm practical, we presented a 
mathematical model in which a scheduling framework, 
security-sensitive real-time jobs, and security overheads 
are formally described. With the mathematical model in 
place, we can incorporate security overheads into the 
process of real-time scheduling. We introduced a new 
performance metric-security value, which was used to 
measure the quality of security experienced by all real-
time jobs whose deadlines can be met. 

To quantitatively evaluate the effectiveness of the 
SAREG algorithm, we conducted extensive simulations 
based on a real world trace from a supercomputing centre. 
Experimental results under a wide spectrum of workload 
conditions show that SAREG significantly enhances 
quality of security for real-time applications while 

(a) Guarantee ratio                           (b) Security value                            (c) Overall system performance
Figure 7. Performance impact of number of nodes. 
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maintaining high guarantee ratios. Furthermore, SAREG 
is capable of minimizing the mean slowdown and 
response time under various workload characteristics. 
More importantly, SAREG-EDF achieves overall system 
performance over three existing scheduling algorithms 
(MIN-MIN, Sufferage, and EDF) by averages of 286.34%, 
272.14%, and 33.86%, respectively. 
• Future studies in this research can be performed in the 
following directions. 
• Besides the three security services discussed, we plan 
to incorporate more security services into our security 
overhead model. Additional security services include 
authorization and auditing services. 
• We intend to design and develop a security-aware 
real-time scheduling algorithm for a large scale 
heterogeneous Grid environment.  
• To make our SAREG strategy more practical, we will 
extend the SAREG algorithm in a way that parallel 
applications with dependent tasks are considered. 
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