
Enhancing Security of Real-Time Applications on Grids
through Dynamic Scheduling

Tao Xie Xiao Qin*
Department of Computer Science

New Mexico Institute of Mining and Technology
801 Leroy Place, Socorro, New Mexico 87801-4796

{xietao, xqin}@cs.nmt.edu

Abstract

Real-time applications with security requirements are

emerging in various areas including government,
education, and business. The security sensitive real-time
applications can take full advantage of a grid environment
that allows grid participants to exercise a fine-grained
control and allocation of computational resources.
However, conventional real-time scheduling algorithms
failed to fulfil the security requirements of real-time
applications. In this paper we propose a dynamic real-
time scheduling algorithm, or SAREG, which is capable of
enhancing quality of security for real-time applications
running on Grids. To make SAREG practical, we present
a mathematical model to formally describe a scheduling
framework, security-sensitive real-time applications, and
security overheads. We leverage the model to measure
security overheads incurred by an array of security
services, including encryption, authentication, integrity
check, etc. The SAREG algorithm seamlessly integrates
security requirements into real-time scheduling by
employing the security overhead model. To evaluate the
effectiveness of SAREG, we conducted extensive
simulations using a real world trace from a
supercomputing centre. Our experimental results show
that SAREG significantly improves system performance in
terms of quality of security and schedulability over three
existing scheduling algorithms.

1. Introduction

A computational grid is a collection of geographically
dispersed computing resources, providing a large virtual
computing system to users. With rapid advances in
processing power, network bandwidth, and storage
capacity, Grids are emerging as next generation
computing platforms for large-scale computation and data
intensive problems in industry, academic, and government
organizations. As typical scientific simulation and
computation require a large amount of compute power, it
becomes crucial to take advantage of application

scheduling to enable the sharing and aggregation of
geographically distributed resources to meet the needs of
highly complex scientific problems [32].

Recently there have been some efforts devoted to the
development of real-time applications on Grids [9]. Real-
time applications depend not only on results of
computation, but also on time instants at which these
results become available [13]. The consequences of
missing deadlines of hard real-time systems may be
catastrophic, whereas such consequences for soft real-time
systems are relatively less damaging. Examples of hard
real-time applications include distributed defense and
surveillance applications [38], and distributed medical
data systems [20]. On-line transaction processing systems
are examples of soft real-time applications [26].

There exist a growing number of systems that have real
time and security considerations [36], because sensitive
data and processing require special safeguard and
protection against unauthorized access. In particular, a
variety of motivating real-time applications running on
Grids require security protections to completely fulfill
their security-critical needs. Unfortunately, conventional
wisdom on real time systems is inadequate for
applications with real-time and security requirements. This
is mainly because traditional real-time systems are
developed to guarantee timing constraints while possibly
posing unacceptable security risks.

To tackle the aforementioned problem, we proposed a
real-time scheduling algorithm (referred to as SAREG)
with security awareness, which is intended to seamlessly
integrate security into real-time scheduling for
applications running on Grids. In this paper we use trace-
driven simulation to compare the performance of the
SAREG algorithm against three baseline scheduling
algorithms for Grids. Our simulator combines
performance and security overhead estimates using a
security overhead model based on three most commonly
used security services. We have used a real world trace
from a supercomputing centre to drive our simulations.
Also, we concentrate on three security services, namely,
authentication, integrity, and encryption. Our empirical
results demonstrate that the SAREG scheduling algorithm

 1
* Contact author. http://www.cs.nmt.edu/~xqin

is able to achieve high quality of security while
guaranteeing timing constraints posed by real-time
applications.

To put our work in a large perspective, in the next
section we summarize related work in the areas of
computer security and real-time systems. Section 3
describes the preliminary system architecture and task
model. In Section 4 we propose a real-time scheduling
algorithm for parallel applications on Grids. We present in
Section 5 the experimental results based on real world
traces from a supercomputing centre. We also provide
insight into system parameters that ultimately affect
performance potential of SAREG. Finally, Section 6
concludes the paper with summary and future directions.

The rest of the paper is organized in the following
way. Section 2 includes a summary of related work in this
area. Section 3 discusses the system architecture and task
model with security requirements. Section 4 proposes a
security overhead model. Section 5 presents the security-
aware real-time scheduling strategy. Performance analysis
of the SAREC-EDF algorithm is explained in Section 6.
Section7 concludes the paper with summary and future
research directions.

2. Related work

Scheduling algorithms for Grids have been extensively

studied in the past both experimentally and theoretically.
Wu and Sun considered memory availability as a
performance factor and introduced memory-aware
scheduling in Grid environments [42]. Li compared the
performance of a variety of scheduling and processor
allocation algorithms for grid computing [21]. In et al.
proposed a framework for policy based scheduling in
resource allocation of grid computing [18]. However,
these scheduling algorithms are not suitable for real-time
applications, because there is no guarantee to finish real-
time tasks in specified time intervals.

The issue of scheduling for real-time applications was
previously reported in the literature. Conventional real-
time scheduling algorithms such as Rate Monotonic (RM)
algorithm [23], Earliest Deadline First (EDF) [37], and
Spring scheduling algorithm [33] were successfully
applied in real-time systems. We proposed both static [30]
and dynamic [31] scheduling schemes for real-time
systems. Unfortunately, none of the above real-time
scheduling algorithms can be directly applied to the Grid
environments.

Real-time scheduling is a key factor in obtaining high
performance and predictability for Grids. Various aspects
of complicated real-time scheduling problems in the
context of Grids were addressed in the literature. He et al.
proposed a dynamic scheduling for parallel jobs with soft-
deadlines in Grids [16]. Caron et al. developed an
algorithm that considers both priority and deadlines of

tasks on Grids [6]. However, most of existing real-time
scheduling algorithms perform poorly for security-
sensitive real-time applications on Grids due to the
ignorance of security requirements imposed by the
applications.

Recently increasing attention has been drawn toward
security-awareness in Grids, because efficient and flexible
security has become a baseline requirement. Humphrey et
al. examined the current state of the art in securing a group
of activities and introduced new technologies that promise
to meet the security requirements of Grids [17]. Azzedin
and Maheswaran integrated the notion of “trust” into
resource management of a grid computing systems [3].
Wright et al. proposed a security architecture for a
network of computers bound together by an overlying
framework used to provide users a powerful virtual
heterogeneous machine [41]. Connelly and Chien
proposed an approach to protecting tightly coupled, high-
performance component communication [7]. However, the
above security techniques are not appropriate for real-time
applications due to the lack of ability to express and
handle timing constraints.

Some work has been done to incorporate security into a
variety of real-time applications. George and Haritsa
proposed concurrency control protocols to support
applications with real-time and security requirements [12].
Ahmed and Vrbsky developed a secure optimistic
concurrency control protocol that can make trade-offs
between security and real-time requirements [2]. Son et al.
proposed an approach to trading off quality of security to
achieve required real-time performance [35]. In [36], a
new scheme was developed to improve timeliness by
allowing partial violations of security. Our work is
fundamentally different from the above approaches
because they are focused on concurrency control protocols
whereas ours is intended to develop a security-aware real-
time scheduling algorithm, which can meet security
constraints in addition to real-time requirements of tasks
running on Grids.

Most recently, we proposed a dynamic security-aware
scheduling algorithm for a single machine [43] and
clusters [44]. We conducted simulations to show that
compared with three heuristic algorithms, the proposed
algorithm can consistently improve overall system
performance in terms of quality of security and system
schedulability under a wide range of workload conditions.

3. Mathematical Model

A mathematical model of security-aware real-time
scheduling for Grids is presented in this section. This
model, which describes a scheduling framework, security-
sensitive real-time jobs, and security overheads, allows the
SAREG algorithm to be formally presented in Section 4.

2

3.1. Scheduling Framework

A Grid can be specified as G = {M1, M2, …, Mn}, where
Mi, 1 ≤ i ≤ n, is a site or cluster [27]. The n sites are
connected by wide-area networks (See Figure 1). The
scheduling framework is general in the sense that it can be
applied to small-scale grids where computational sites are
connected by LAN or MAN. Each site Mi is represented as
a vector, e.g., Mi = (Pi, Ni,, Ti, Qi), where Pi is the peek
computational power measured by an overall CPU
capacity (e.g., BIPS), Ni is the number of machines in the
site, Ti is a set of accepted jobs running on Mi, and Qi is a
scheduler. Note that there exists a scheduler in each site,
and we advocate the use of a distributed scheduling
framework rather than a centralized one. This is mainly
because a centralized scheduler in a large-scale grid
inevitably becomes a severe performance bottleneck,
resulting to a significant performance drop when workload
is high. The distributed scheduling infrastructure makes a
system portable, secure, and capable of distributing
scheduling workload among an array of computational
sites in the system [28][29].

Each site continues to receive reasonably up-to-date
global load information by monitoring resource utilization
of the Grid, and periodically broadcasts it local load
information to other sites of the Grid. When a real-time
job is submitted by a user to a local site, the corresponding
scheduler assigns the job to a group of local machines or
migrate the job to a remote site within in the Grid. The
scheduler consists of a schedule queue used to
accommodate incoming real-time jobs. The scheduler
queue is maintained by an admission controller. If the
incoming real-time jobs can be scheduled, the admission
controller will place the tasks in the accepted queue for
further processing. In case no site can guarantee the

deadline of the submitted real-time job, it will be dropped
into a local rejected list. The scheduler processes all the
accepted tasks by its scheduling policy before transmits
them into the dispatch queue, where the quality of security
of accepted jobs are maximized. After the quality of
security is enhanced, the real-time job is dispatched to one
of the designated site Mi ∈ G. The machines in site Mi can
execute a number of real-time tasks in parallel.

3.2. Security-Sensitive Real-time Jobs

A real-time job is specified as a set of rational

parameters, e.g., Ji = (ei, pi, di, li, Si), where ei is the
execute time, pi is the number of machines required to
execute Ji, di is the deadline, and li denotes the amount of
data (measured in KB) to be protected. ei can be estimated
by code profiling and statistical prediction [5]. A
collection of security services required by Ji is specified as
Si = (, , …,), where denotes the security
level range of the jth security service. Our security-aware
scheduler is intended to determine the most appropriate
point si in space Si, e.g., si = (, , …,), where

 1 ≤ j ≤ q.

1
iS 2

iS q
iS j

iS

1
is 2

is q
is

,j
i

j
i Ss ∈

A schedule of a job Ji is formally denoted as the
following expression:

 ()),),...(,(),,(,,2,2,1,1, piipiiiiiii sssx σσσ= , (1)

where Ji is divided into pi tasks, ji,σ and are the start
time and the security level of the jth task.

jis ,

The SAREG algorithm is able to measure the security
benefits gained by each admitted job. To implement this
basic and valuable functionality, we quantitatively model
the security benefit of the jth task of job Ji as a security

User m2

User 2

User 1

Local M2

M1

User m1

User 2

User 1
Local Mn

User mn

User 1
Local

User 2

M3

User m3

User 1
Local

User 2

Figure 1. The Scheduling Framework for SAREG in a computational Grid.

3

level function denoted by SL: Si → ℜ, where ℜ is the set
of positive real numbers:

 , (2)

where , ,

Note that is the weight of the jth security service for
the task. Users specify in their requests the weights to
reflect relative priorities given to the required security
services. The security benefit of job Ji is computed as the
summation of the security levels of all its tasks. Thus, we
have the following equation:

∑
=

=
q

k

k
ji

k
iji swsSL

1
,,)(

()q
jijijiji ssss ,

2
,

1
,, ,...,,= 10 ≤≤ j

iw ∑
=

=
q

j

j
iw

1
1

j
iw

 , (3)

where .

∑
=

=
ip

j
jii sSLsSL

1
,)()(

)...,(,,2,,1, piiiii ssss =
The scheduling decision of the job Ji is feasible if (1)

all its tasks can be completed before the deadline di, and
(2) the corresponding security requirements are satisfied.
Specifically, given a real-time job that consists of pi
tasks, we can obtain the following non-linear optimization
problem formulation to compute the optimal security
benefit of Ji:

iJ

 maximize , (4)

subject to

() ∑∑
= =

=
ip

j

q

k

k
ji

k
ii swsSL

1 1
,

),max()min(,
k
i

k
ji

k
i SsS ≤≤ iji df ≤,

where fi,j is the finish time of the jth task of Ji, and
and are the minimum and maximum

security requirements of .

)min(j
iS)max(j

iS

iJ
The SAREG scheduling algorithm to be presented in

the next section strives to enhance quality of security,
which is defined by the sum of the security levels of all
the admitted jobs. Thus, the following security value
function needs to be optimized, subjecting to certain
timing and security constraints:

 maximize , (5)

A where Tj is a set of accepted jobs running on site Mj, yi,j
is set to 1 if job Ji is accepted by the jth site, and is set to 0
otherwise. Substituting Equation (4) into (5) yields the
following security value objective function. Thus, our job
scheduling problem for Grid environments can be
formally defined as follows: given a Grid G = {M1, M2, …,
Mn} and a list of jobs submitted to the Grid, find a
schedule

∑ ∑
= ∈

=
n

j TJ
iji

ji

sSLySV
1

,)(

()),),...(,(),,(,,2,2,1,1, piipiiiiiii sssx σσσ= for
each job Ji, such that the total security level of jobs on G,

 , (6) ∑ ∑∑∑
= = =∈

=
n

i

p

k

q

l

l
kj

k
j

TJ
ji

j

ij

swySV
1 1 1

,,

is maximized.

3.3. Security Overhead

Since security is achieved at the cost of performance
degradation, it is critical and fundamental to quantitatively
measure overhead caused by various security services.
Unfortunately, less attention has been paid to models used
to measure security overheads. Recently Irvine and Levin
proposed a security overhead framework, which can be
used for a variety of purposes [19]. However, security
overhead model for each security services in the context of
real-time computing remains an open issue. To enforce
security in real-time applications while making security-
aware scheduling algorithms predictable and practical, in
this section we proposed an effective model that is capable
of approximately, yet reasonably, measuring security
overheads experienced by tasks with an array of security
requirements. With the security overhead model in place,
schedulers are enabled to be aware of security overheads,
thereby incorporating the overheads into the process of
scheduling tasks. Particularly, the model can be employed
to compute the earliest start times and the minimal
security overhead (see Equation 12 and Equation 13).

Without loss of generality, we consider three security
services widely deployed in real-time systems, namely,
encryption, integrity, and authentication.

(a) Encryption (b) Integrity (c) Authentication

Figure 2. CPU overhead of security services.

4

• Encryption Overhead

Encryption is used to encrypt real-time applications
(executable file) and the data they produced such that a
third party is unable to discover users’ private algorithms
embedded in the executable applications or understand the
data created by the applications. Suppose each site has ten
optional encryption algorithms, which are listed in Table
1. Based on their performance, each cryptographic
algorithm is assigned a corresponding security level in the
range from 0.1 to 0.9. For example, level 0.9 implies that
we use 3DES, which is the strongest yet slowest
encryption function among the alternatives. Since
computation overhead caused by encryption mainly
depends on the cryptographic algorithms used and the size
of the data to be protected, Figure 2 (a) shows encryption
time in seconds as a function of encryption algorithms and
size of data to be secured measured on a 175 MHz Dec
Alpha600 machine [25].

Table 1. Cryptographic Algorithms Used for
Encryption Service

Cryptographic e
is : SL)(e

i
e sµ :MB/s

 SEAL 0.1 168.75
RC4 0.2 96.43
Blowfish 0.3 37.5
Knufu/Khafre 0.4 33.75
RC5 0.5 29.35
Rijndael 0.6 21.09
DES 0.7 15
IDEA 0.8 13.5
3DES 0.9 6.25

Let be the encryption security level of ti, and the
computation overhead of the encryption service can be
calculated using Equation (7), where li is the amount of
data whose confidentiality must be guaranteed, and

 is a function used to map a security level to its
corresponding encryption method’s performance.

e
is

)(e
i

e sµ

)()(e
i

e
i

e
i

e
i slsc µ= . (7)

• Integrity Overhead

Integrity services make it possible to ensure that no
one can modify or tamper applications while they are
executing on clusters. This can be accomplished by using
a variety of hash functions [4]. Ten commonly used hash
functions and their performance (evaluated on a 90 MHz
Pentium machine) are shown in Table 2. Based on their
performance, each hash function is assigned a
corresponding security level in the range from 0.1 to 1.0.
For example, level 0.1 implies that we use MD4, which is
the weakest yet fastest hash function among the

alternatives. Level 1.0 means that Snefru-256 is employed
for integrity, and Snefru-256 the slowest yet strongest
function among the competitors.

Table 2. Ten Hash Functions Used for
Integrity Service

Hash g
is : SL)(g

i
g sµ :KB/ms

MD4 0.1 23.90
MD5 0.2 17.09
RIPEMD 0.3 12.00
RIPEMD-128 0.4 9.73
SHA-1 0.5 6.88
RIPEMD-160 0.6 5.69
Tiger 0.7 4.36
Snefru-128 0.8 0.75
MD2 0.9 0.53
Snefru-256 1.0 0.50

Let be the integrity security level of ti, and the
computation overhead of the integrity service can be
calculated using Equation (8), where li is the amount of
data whose integrity must be guaranteed, and is
a function used to map a security level to its
corresponding hash function’s performance. The security
overhead model for integrity is depicted in Figure 2 (b).

g
is

)(g
i

g sµ

)()(g
i

g
i

g
i

g
i slsc µ= . (8)

• Authentication Overhead
Tasks must be submitted from authenticated users and,

thus, authentication services are deployed to authenticate
users who wish to access the Grid [8]. Table 3 enlists three
authentication techniques: weak authentication using
HMAC-MD5; acceptable authentication using HMAC-
SHA-1, and fair authentication using CBC-MAC-AES.
Each authentication technique is assigned a security level

 in accordance with the performance. Thus,

authentication overhead is a function of security

level . The security overhead model for authentication
is shown in Figure 2(c).

a
is

)(a
i

a
i sc

a
is

Table 3. Four Authentication Methods

Authentication
Methods

a
is :

Security
Level

)(a
i

a
i sc :

Computation
Time (ms)

HMAC-MD5 0.3 90
HMAC-SHA-1 0.6 148

CBC-MAC-AES 0.9 163

5

• Modeling Security Overheads
Now we can derive security overhead, which is the

sum of the three items above. Suppose task ti requires q
security services, which are provided in sequential order.
Let and be the security level and overhead of
the jth security service, the security overhead

experienced by ti, can be computed using Equation (9).
In particular, the security overhead of ti with security
requirements for the three services above is modelled by
Equation (10).

j
is)(j

i
j

i sc

ic

 , where . (9) ∑
=

=
q

j

j
i

j
ii scc

1
)(j

i
j

i Ss ∈

The SAREG algorithm is outlined in Figure 3. The goal
of the algorithm is to deliver high quality of security under
two conditions: (1) the security level promotion will not
miss its deadline; and (2) the security level promotion will
not result in any accepted subsequent task to be failed. To
achieve the goal, SAREG strives to maximize security
level (measured by Equation 5) of each accepted job (see
Step 21) while maintaining reasonably high guarantee
ratios (see Step 12).

 , where . (10) ∑
∈

=
},,{

)(
geaj

j
i

j
ii scc j

i
j

i Ss ∈

It is to be noted that , , and in
Equation (10) are derived from Equations (7)-(8) and
Table 2. In section 5, Equation (10) will be used to
calculated the earliest start times and minimal security
overhead. (See Equations 11 and Equation12).

)(e
i

e
i sc)(g

i
g
i sc)(a

i
a
i sc

4. The SAREG Scheduling Algorithm

1. for each task tk of job Ji on site Mj do
2. Use Equation (11) to computer , the earliest start time of task Ji on site Mj; j

ki,σ
3. Use Equation (12) to obtain the minimal security overhead c of task tk; min

ki,

l

l

4. if then (See Property 1) i
min

kiki
j
ki dce ≤++ ,,,σ

5. Sort the security service weights in a decreasing order of their values, e.g.,
 , where v 321 v

i
v
i

v
i www << ;31},,,{ ≤≤∈ lgea

6. for each security service v do ,31},,,{ ≤≤∈ lgea
7. { };min,

ll v
i

v
ki Ss /* Initialize the security value of security service vl */ =

l

<
v
i

8. for each security service v do ,31},,,{ ≤≤∈ lgea
9. while s do }max{,

ll v
i

v
ki S

10. increase security level ;l
ks ,

11. Use Equation (10) to calculate the security overhead of tk on Mj;
12. if (based on Property 1) then

i
geab

b
ki

b
kiki

j
ki dsce >++ ∑

∈ },,{
,,,,)(σ

13. decrease security level s break; ;,
lv
ki

14. end while
15. end for
16. /* Obtain the security level of t on using Equation (2) */ ∑

∈

=
},,{

,,)(
geab

b
ki

b
iki swsSL k jM

17. else Migrate tk to another site Mr, subjecting to
i

jr

r
i

geab

b
ki

b
kiki

rj
kijrnr

d
B

sce ≤
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+++ ∑
∈≠≤≤

,},,{
,,,

,
,,1

)(min
δσ

18. end for
19. if Property 2 is satisfied then /* All the tasks in Ji can be finished before di */
20. where h = j or r; /* Accept job Ji */ ,1, ←hiy
21. /* Optimize quality of security, see Equation (4) */

 Find site Mk for Ji, maximize ; () ∑ ∑
= ∈

=
ip

k geab

b
ki

b
ii swsSL

1 },,{
,

22. dispatch job Ji to Mk according to the schedule generated above;
23. else ;0, ←hiy /* Reject Ji, since no feasible schedule is available */

Figure 3. The SAREG scheduling algorithm.

6

Before optimizing the security level of each task of job
Ji on Mj, SAREG attempts to meet the real-time
requirement of Ji. This can be accomplished by calculating
the earliest start time (use Equation 11) and the minimal
security overhead of Ji (use Equation 12) in Steps 2 and 3,
followed by checking if all the tasks of Ji can be
completed before the deadline di (see Step 4). If the
deadline cannot be met by Mj, Ji is rejected by Step 23.

The security level of each task in Ji on Mj is optimized
in the following way. Recall that the security service
weights used in Equations (2), (4), and (6) reflect the
importance of the three security services, directly
indicating that it is desirable to give higher priorities to
security services with higher weights (see Step 5). In other
words, enhancing security levels of more important
services tends to yield a maximized security level of the
task on Mj.

In the case of a particular security service
, Step 10 escalates the security level

while satisfying the following timing constraints (see Step
12). Step 21 is able to maximize the security level of all
the tasks in Ji by identifying a site Mh that provides the
maximal security level and dispatching Ji to Mh (see Step
22).

},,{ geavl ∈ lv
kis ,

The time complexity of the SAREG scheduling
algorithm is given as follows.

Theorem 1. The time complexity of SAREG is O(knm),
where n is the number of sites in a Grid, m is the number
of tasks running on a site, and k is the number of possible
security level ranks for a particular security service

.
lv

)31},,,{(≤≤∈ lgeavl

Proof. The time complexity of finding the earliest start
time for the task on a site is O(m) (Step 2). To obtain the
minimal security overhead of the task; the time
complexity is a constant O(1) (Step 3). Sorting the
security service weights in a decreasing order (Step 5)
takes a constant time O(1) since we only have 3 security
services. To increase the task’s three security levels to
their possible maximal ranks under the constraints (Step
12), the worst case time complexity is O(3km) (Step 8 ~
Step 15). To find site Mh on which the security level of
task is optimized (Step 20 ~ Step 22), the time complexity
is O(n). Thus, the time complexity of the SAREG
algorithm is as follows: O(n)(O(m) + O(1) + O(1) +
O(3km)) + O(n) = O(knm).

min
ic

Since n, m and k cannot be very big numbers in
practice, the time complexity of SAREG should be low
based on the expression above. This time complexity
indicates that the execution time of SAREG is a small
value compared with task execution times (e.g., the real
world trace used in our simulations shows that the average
job execution time is 8031 Sec.). Thus, the CPU overhead
of executing SAREG-EDF is ignored in our experiments.

5. Performance Evaluation

In the previous Section we proposed the SAREG
scheduling algorithm, which integrates security
requirements into scheduling for real-time applications on
Grids. Now we are in a position to evaluate the
effectiveness of SAREG by conducting extensive
simulations based on a real world trace from San Diego
Supercomputer Center (SDSC SP2 log). The real trace
was sampled on a 128-node (66MHz) IBM SP2 from May
1998 through April 2000. To simplify our experiments, we
utilized the first three months data with 6400 parallel jobs
in simulation.

In purpose of revealing the strength of SAREG, we
compared it against two well-know scheduling algorithms,
namely, Min-Min and Sufferage [25] in addition to a
traditional real-time scheduling algorithm - the Earliest
Deadline First algorithm (EDF). Min-Min and Sufferage
are non-preemptive task scheduling algorithms, which
were designed to schedule a stream of independent tasks
onto a heterogeneous distributed computing system such
as a Grid. Note that Min-Min and Sufferage are
representative dynamic scheduling algorithms for Grid
environments, and they were successfully applied in real
world distributed resources management systems such as
SmartNet [11]. For the sake of simplicity, throughout this
section Sufferage is referred to as SUFFER.

To emphasize the non-security-aware characteristic of
EDF algorithm, we refer to the EDF algorithm as NS-EDF
(non-security-aware EDF) in this paper. Although the NS-
EDF algorithm, a variation of EDF, is able to schedule
real-time jobs with security requirements, it makes no
effort to optimize quality of security. Rather, it randomly
selects a security level for each task in a real-time job. The
three baseline scheduling algorithms are briefly described
below.

(1) MINMIN: For each submitted real-time job, a
Grid site that offers the earliest completion time is tagged.
Among all the mapped tasks, the one that has the
minimum earliest completion time is chosen and then
allocate to the tagged site. The MINMIN scheduler
randomly selects security levels of security services
required by tasks of a real-time job.

(2) SUFFER: Allocating a site to a submitted job that
would “suffer” most in terms of completion time if that
site is not allocated to it. Again, the SUFFER scheduler
randomly chooses security levels for security requirements
posed by an arriving job.

(3) NS-EDF: Tasks with the earliest deadlines are
always executed first. We modified the traditional EDF
algorithm in a way that it can randomly picks values
within the security level ranges of services required by
tasks. The following expression is held in the NS-EDF
algorithm: . { }b

i
b

kii Ssgeabpk random:},,{,1 , =∈≤≤∀

7

 Table 4. Characteristics of System Parameters.

The ultimate goal of comparing SAREG against
MINMIN and SUFFER is to demonstrate schedulability
performance improvements over existing scheduling
algorithms in a real-time computing environment, whereas
the purpose of comparing SAREG with NS-EDF is to
show security performance benefits gained by employing
SAREG in a Grid environment. This section is organized
as follows. Section 5.1 describes our simulator and

important system parameters. Section 5.2 is to examine
the performance improvements of SAREG over the three
baseline algorithms. In Section 5.3 we investigate the
performance impacts of the number of computing nodes in
a simulated four-site Grid. Section 5.4 addresses the
performance sensitivity of the SAREG algorithm to CPU
capacities of the nodes in a Grid. We evaluate in Section
5.5 the scalability (measured as Grid size) of the proposed
SAREG algorithm. Last but not least, Section 5.6
demonstrates that SAREG delivers good performance in
terms of conventional performance metrics, including the
mean slowdown and mean response time.

5.1. Simulator and Simulation Parameters

Before presenting the empirical results in detail, we
present the simulation model as follows. A competitive
advantage of conducting simulation experiments is that
performance evaluation on a Grid can be accomplished
without additional hardware cost. The Grid simulator was
designed and implemented based on the model and the
algorithm described in the previous sections.

Table 4 summarizes the key configuration parameters
of the simulated Grid used in our experiments. The
parameters of nodes in Grid are chosen to resemble real-
world workstations like IBM SP2 nodes.

We modified a real world trace1 by adding randomly
generated deadlines for all tasks in the trace. The

)

1 http://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_sp2.html

assignment of deadlines is controlled by a deadline base,
or laxity, denoted as β, which sets an upper bound on
tasks’ slack times. We use Equation (13) to generate job
Ji’s deadline di.

 d (13) ,β+++= max
iiii cea

where ai and ei are the arrival and execution times
obtained from the real-world trace. is the maximal

security overhead (measured in ms), which is computed by
Equation (14).

max
ic

 Parameter Value (Fixed) - (Varied)
CPU Speed (2) – (4, 8, 16)

β (Deadline Base, or Laxity) (50 second) – (200, 400, 800 second)

Network bandwidth 5 MB/Second
Number of sites (4) – (8, 16, 32)
Number of nodes (184)- (256, 320,384)
Mean size of data to be secured 50KB for short jobs, 500KB for medium jobs, 1MB for long jobs
Mean size of input data 100MB for short jobs, 500MB for medium jobs, 1TB for large jobs
Mean size of application code 500KB for short jobs, 5MB for medium jobs, 50MB for large jobs
Required security services Encryption, Integrity and Authentication
Weights of security services Authentication=0.2; Encryption=0.5; Integrity=0.3

 { }(∑
∈

=
},,{

max max
geaj

j
i

j
ii Scc , (14)

where represents the overhead of the jth

security service for when the corresponding maximal
requirement is fulfilled.

{ }(j
i

j
i Sc max)

iJ

“Job number”, “submit time”, “execution time” and
“number of requested processors” of jobs submitted to the
Grid are taken directly from the trace. “size of input file”,
“size of application code”, “size of output file” and
“deadlines” are synthetically generated in accordance with
the above model, since these parameters are not available
in the trace. Security requirements are randomly generated
from 0.1 to 1.0 for each security service. When a job has
to be remotely executed to meet its deadline, we must
consider its migration cost, which is factored in Equation
11. In order to measure the migration cost of a job, we
need to estimate the network bandwidth and the amount of
data to be transferred. Vazhkudai et. al. [40] measured the
end-to-end bandwidth between two remote super-
computing centres using GridFTP. It was discovered that
the network bandwidth varies from 1.5 to 10.2 MB/sec. In
our simulation experiments, the network bandwidth was
randomly drawn from a uniform distribution with range
1.5 to 10.2 MB/sec., which can resemble practical network
bandwidth in existing distributed systems. The

8

synthesized deadline weakens correlations between real-
time requirement and other workload characteristics.
However, in the experiments we can examine performance
impacts of deadlines on system performance by
controlling the deadlines as fundamental simulation
parameters (see Section 5.2).

The performance metrics by which we evaluate
system performance include:

security value: (see Equation 6).
guarantee ratio: measured as a fraction of total

submitted jobs that are found to be schedulable).
overall system performance: defined as a product of

security value and guarantee ratio.
mean slowdown: the slowdown of a job is the ratio of

a job’s response time to its service time, and mean
slowdown is the average slowdown of all schedulable jobs
in the Grid.

mean response time: the response time of a job is the
time interval between the job’s arrival and finish times,
and mean response time is the average response time of all
schedulable jobs in the Grid.

5.2. Overall Performance Comparisons

The goal of this experiment is two fold: (1) to

compare the proposed SAREG algorithm against the three
baseline schemes, and (2) to understand the sensitivity of
SAREG to parameter β, or deadline base (Laxity). To
stress the evaluation, we assume that each job arrived in
the Grid requires the three security services. Without loss
of generality, it is assumed that time spent handling page
faults is factored in jobs’ execution time.

Figure 4 shows the simulation results for these four
algorithms on a Grid with 4 sites (184 nodes) where the
CPU power is fixed at 100MIPS. We observe from Figure
6 (a) that SAREG and NS-EDF exhibit similar
performance in terms of guarantee ratio (the performance
difference is less than 2%), whereas the guarantee ratios of
SAREG are a lot higher than those of MINMIN and
SUFFER algorithms. The reason for the performance
improvements of SAREG over MINMIN and SUFFER is
two fold. First, SAREG is a real-time scheduler, while

MINMIN and SUFFER are non-real-time scheduling
algorithms. Second, SAREG judiciously enhances the
security levels of accepted jobs under the condition that
the deadlines of the accepted jobs are guaranteed.

Figure 4 (a) illustrates that the guarantee ratios of four
algorithms increase with the increasing value of the laxity.
This is because the large deadline leads to long slack
times, which in turn tend to make the deadlines more
likely to be guaranteed.

Figure 4 (b) plots security values of the four
alternatives when the deadline base is increased from 50 to
800 Sec. Comparing with the average execution time of all
jobs in the trace, which is 8030.8 Sec., the laxity range
[50, 800] is reasonable. Figure 4 (b) reveals that SAREG
consistently performs better, with respect to quality of
security, than all the other three approaches. When the
deadlines are tight, the security values of SAREG are
much higher than those of MINMIN and SUFFER. In
addition, SAREG consistently outperforms NS-EDF when
the laxity varies from 50 seconds to 800 seconds. This is
because that SAREG can improve accepted jobs’ security
levels under constraints of their deadlines and resources
availability, while NS-EDF makes no effort to optimize
the security levels. More specifically, NS-EDF merely
randomly chooses a security level within the
corresponding security requirement range. Interestingly,
when the deadlines become tight, the performance
improvements of SAREG over the three competitor
algorithms are more pronounced. The results clearly
indicate that Grids can gain more performance benefits
from our SAREG approach under the circumstance that
real-time tasks have urgent deadlines.

The overall system performance improvements
achieved by SAREG are plotted in Figure 4(c). The first
observation deduced from Figure 4(c) is that the value of
overall system performance increases with the laxity. This
is mainly because the overall system performance is a
product of security value and guarantee ratio, which
become higher when the deadlines are loose due to the
high laxity value.

A second observation made from figure 4(c) is that the
SAREG algorithm significantly outperforms all the other

(a) Guarantee ratio (b) Security value (c) Overall system performance
Figure 4. Performance impact of deadline.

9

three alternatives. This can be explained by the fact that
although the guarantee ratios of SAREG and NS-EDF are
similar, SAREG considerably improves security values
over the other algorithms, while achieving much higher
guarantee ratio than MINMIN and SUFFER. This result
suggests that if quality of security is the sole objective in
scheduling, SAREG is more suitable for Grids than the
other algorithms. By contrast, if schedulability is the only
performance objective, SAREG can maintain similar
guarantee ratios as those of NS-EDF, whose security
performance is the second best among the four algorithms.

Last but not least, Figure 4(c) indicates that the overall
performance improvement of SAREG over the other three
algorithms becomes more pronounced when the deadlines
are tighter, implying that more performance benefits can
be obtained by SAREG for real-time applications with
small slack times. This is because the SAREG approach is
less sensitive to the change in deadlines than the other
approaches.

5.3 Scalability

This experiment is intended to investigate the
scalability of the SAREG algorithm. We scale the number
of sites in the Grid from 4 to 32. Figure 5 plots the
performances as functions of the number of sites in the
Grid. The results show that the SAREG approach exhibits
good scalability.

Figure 5 shows the improvement of SAREG in overall
system performance over the other three heuristics. It is
observed from Figure 5 that the amount of improvement
over MINMIN and SUFFER maintains almost the same
level with the increasing value of the site number. This
result can be explained by the non-real-time nature of
MINMIN and SUFFER, which schedules tasks that
change the expected site ready time status by the least
amount that any assignment could.

5.4 Sensitivities to CPU Capacity

To examine performance sensitivities of the four
algorithms to CPU capacity, in this set of experiments we
varied the CPU capacity (measured as speedup over the
baseline computational node) from 2 to 16. Specifically,
the CPU speed of the IBM SP2 66MHz nodes is
normalized to 1. We escalate the CPU capacity of the
nodes to a normalized value of 2, 4, 8, and 16,
respectively. Therefore, the execution times (including
security overhead) could be 1/2, 1/4, 1/8 and 1/16 of that
of original values, respectively. Also, we select a 200
seconds laxity and a four-site simulated Grid with total
184 nodes. This experiment is focused on evaluating the
performance impact of CPU speedup on the four
algorithms under a situation where deadlines are relatively
tight and the number of nodes is less than sufficient.

The results reported in Figure 6 reveal that the SAREG

(a) Guarantee ratio (b) Security value (c) Overall system performance
 Figure 5. Performance impact of number of sites.

(a) Guarantee ratio (b) Security value (c) Overall system performance
Figure 6. Performance impact of CPU Speedup.

10

algorithm outperforms the other three alternatives in terms
of security value and overall system performance.
However, the discrepancy of guarantee ratio performance
between SAREG and NS-EDF is almost zero. This is
because SAREG can accept the same number of submitted
tasks as NS-EDF when the node’s CPU speed is so fast
that the security overhead is trivial and thus has little
effect on the guarantee ratio performance. Figure 6 shows
that MINMIN and SUFFER only slightly improve their
performance when the computing capacity of the Grid is
increased. The results can be explained by the following
two reasons. First, the trace used in the simulation has
approximate fixed job arrival rate, meaning that the
decrease jobs’ execution time unnecessarily improves
guarantee ratio. Second, the deadlines of all submitted
tasks are relatively tight. As we can see from Fig 6., the
laxity has great influence on MINMIN and SUFFER in
terms of the guarantee ratio.

5.5 Impact of the Number of Nodes

This subsection is focused on performance impact of
the number of nodes in a four-site simulated Grid.
Specifically, we evaluate the performance of the four
algorithms in the cases where the total number of
computation nodes in a Grid changes from 184 to 384 and
all tasks have very tight deadlines (laxity=50 seconds).
Each task in the trace poses requirement on how many
nodes it needs. The goal is to examine the performance
impact of number of total nodes in a Grid.

Figures 7 shows the performance impacts of the
number of nodes in the Grid. We observe from the figure
that the SAREG delivers better overall system
performance than the other competitor algorithms under
all four cases. This result is consistent with that observed
from the previous experiment (see Fig. 4). Furthermore,
all the four scheduling algorithms exhibit better
performance when the Grid has more computation nodes.
However, MINMIN and SUFFER can only marginally
improve performance in guarantee ratio and security value
when more computational nodes are available in the Grid.

The reason is two-fold: (1) each task has extremely tight
deadline and the guarantee ratios of MINMIN and
SUFFER largely depend on deadlines (see Fig. 4), and (2)
the number of nodes increased is very small compared
with the number of total submitted jobs.

Interestingly, Figures 7 reveals that the performance
improvement of SAREG over NS-EDF in terms of GR is
not promising in the first three nodes number
configurations. NS-EDF even outperforms SAREG in GR
when the total number of nodes in the Grid is 384. The
rationale behind this result is that SAREG always tries to
promote currently arrived tasks’ security levels to the
maximal possible value, which in turn increase the
execution time of currently scheduled tasks. Therefore,
subsequent tasks could wait for a longer time to be
executed and thus violate their deadlines. For NS-EDF this
situation does not apply.

6. Summary and Future Work

In this paper, we proposed a novel scheduling

algorithm, or SAREG, for real-time applications on
computational Grids. The SAREG approach paves the
way to the design of security-aware real-time scheduling
algorithms for Grid computing environments. To make the
SAREG scheduling algorithm practical, we presented a
mathematical model in which a scheduling framework,
security-sensitive real-time jobs, and security overheads
are formally described. With the mathematical model in
place, we can incorporate security overheads into the
process of real-time scheduling. We introduced a new
performance metric-security value, which was used to
measure the quality of security experienced by all real-
time jobs whose deadlines can be met.

To quantitatively evaluate the effectiveness of the
SAREG algorithm, we conducted extensive simulations
based on a real world trace from a supercomputing centre.
Experimental results under a wide spectrum of workload
conditions show that SAREG significantly enhances
quality of security for real-time applications while

(a) Guarantee ratio (b) Security value (c) Overall system performance
Figure 7. Performance impact of number of nodes.

11

maintaining high guarantee ratios. Furthermore, SAREG
is capable of minimizing the mean slowdown and
response time under various workload characteristics.
More importantly, SAREG-EDF achieves overall system
performance over three existing scheduling algorithms
(MIN-MIN, Sufferage, and EDF) by averages of 286.34%,
272.14%, and 33.86%, respectively.
• Future studies in this research can be performed in the
following directions.
• Besides the three security services discussed, we plan
to incorporate more security services into our security
overhead model. Additional security services include
authorization and auditing services.
• We intend to design and develop a security-aware
real-time scheduling algorithm for a large scale
heterogeneous Grid environment.
• To make our SAREG strategy more practical, we will
extend the SAREG algorithm in a way that parallel
applications with dependent tasks are considered.

Acknowledgements

This work was partially supported by a start-up research
fund (103295) from the research and economic
development office of the New Mexico Institute of Mining
and Technology. We are grateful to five anonymous
referees of this paper for their very comprehensive
suggestions and comments, which greatly improved the
original manuscript.

References

[1] T.F. Abdelzaher, E. M. Atkins, and K.G. Shin., “QoS

Negotiation in Real-Time Systems and Its Application to
Automated Flight Control,” IEEE Trans. Computers, Vol.
49, No. 11, Nov. 2000, pp.1170-1183.

[2] Q. Ahmed and S. Vrbsky, “Maintaining security in firm real-
time database systems,” Proc. 14th Ann. Computer Security
Application Conf., 1998.

[3] F. Azzedin, M. Maheswaran, “Towards trust-aware resource
management in grid computing systems,” Proc. 2nd
IEEE/ACM Int’l Symp. Cluster Computing and the Grid,
May 2002.

[4] A. Bosselaers, R. Govaerts and J. Vandewalle, “Fast hashing
on the Pentium,” Proc. Advances in Cryptology, LNCS
1109, pp. 298-312, Springer-Verlag, 1996.

[5] T. D. Braun et al., “A comparison study of static mapping
heuristics for a class of meta-tasks on heterogeneous
computing systems,” Proc. Workshop on Heterogeneous
Computing, pp.15-29, Apr. 1999.

[6] E. Caron, P. K. Chouhan, and F. Desprez, “Deadline
Scheduling with Priority for Client-Server Systems on the
Grid,” Proc. Int’l Workshop Grid Computing, pp. 410-414,
Nov. 2004.

[7] K. Connelly and A. A. Chien, “Breaking the barriers: high
performance security for high performance computing,”

Proc. Workshop on New security paradigms, Virginia, Sept.
2002.

[8] J. Deepakumara, H.M. Heys, and R. Venkatesan,
“Performance comparison of message authentication code
(MAC) algorithms for Internet protocol security (IPSEC),”
Proc. Newfoundland Electrical and Computer Engineering
Conf., St. John's, Newfoundland, Nov. 2003.

[9] O. Elkeelany, M. Matalgah, K. Sheikh, M. Thaker, G.
Chaudhry, D. Medhi, J. Qaddouri, “Performance analysis of
IPSec protocol: encryption and authentication,” Proc. IEEE
Int’l Conf. Communications, pp. 1164-1168, New York,
NY, April-May 2002.

[10] M. Eltayeb, A. Dogan, F. Ozunger, “A data scheduling
algorithm for autonomous distributed real-time applications
in grid computing,” Proc. Int’l Conf. Parallel Processing,
pp.388-395, Aug. 2004.

[11] R. F. Freund, M. Gherrity, S. Ambrosius, M. Campbell, M.
Halderman, D. Hensgen, E. Keith, T. Kidd, M. Kussow,J.
D. Lima, F. Mirabile, L. Moore, B. Rust, and H. J. Siegel,
“Scheduling resources in multi-user, heterogeneous
computing environments with SmartNet,” Proc.
Heterogeneous Computing Workshop, pp.184-199, March
1998.

[12] B. George and J. Haritsa, “Secure transaction processing in
firm real-time database systems,” Proc. ACM SIGMOD
Conf., May, 1997.

[13] W. A. Halang, et al., “Measuring the performance of real-
time systems,” Int’l Journal of Time-Critical Computing
Systems, 18, pp. 59-68, 2000.

[14] A. Harbitter and D. A. Menasce, “The performance of
public key enabled Kerberos authentication in mobile
computing applications,” Proc. ACM Conf. Computer and
Comm. Security, pp. 78-85, 2001.

[15] M. Harchol-Balter and A. Downey, “Exploiting Process
Lifetime Distributions for Load Balacing,” ACM
transaction on Computer Systems, vol. 3, no. 31, 1997.

[16] L. He, S. A. Jarvis, D. P. Spooner, X. Chen, and G. R.
Nudd, “Dynamic Scheduling of Parallel Jobs with QoS
Demands in Muticluster and Grids,” Proc. Int’l Workshop
Grid Computing, pp.402-409, Nov. 2004.

[17] M. Humphrey, M. R. Thompson, and K. R. Jackson,
“Security for Grids,” Proc. of the IEEE, pp. 644-652, March
2005.

[18] J.-U. In, P. Avery, R. Cavanaugh, and S. Ranka, “Policy
based scheduling for simple quality of service in grid
computing,” Proc. Int’l Symp. Parallel and Distributed
Processing, pp. 23-32, April 2004.

[19] C. Irvine and T. Levin, “Towards a taxonomy and costing
method for security services,” Proc. 15th Annual Computer
Security Applications Conference, 1999.

[20] J. Lee, B. Tierney, and W. Johnston, “Data intensive
distributed computing: a medical application example,”
Proc. High Performance Computing and Networking Conf.,
April 1999.

[21] K. Li, “Experimental performance evaluation of job
scheduling and processor allocation algorithms for grid
computing on metacomputers,” Proc. Int’l Symp. Parallel
and Distributed Processing, April 2004.

[22] S. Liden, “The Evolution of Flight Management Systems,”
Proc. IEEE/AIAA 13th Digital Avionics Systems Conf., pp.
157-169, 1995.

12

[23] C. L. Liu, J.W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment,”
Journal of the ACM, Vol.20, No.1, pp. 46-61, 1973.

[24] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F.
Freund, “Dynamicmatching and scheduling of a class of
independent tasks onto heterogeneous comput-ing systems,”
Proc. IEEE Heterogeneous Computing Workshop, pp. 30–
44, Apr. 1999.

[25] E. Nahum, S. O'Malley, H. Orman, R. Schroeppel,
“Towards High Performance Cryptographic Software,”
Proc. IEEE Workshop Architecture and Implementation of
High Performance Communication Subsystems, August
1995.

[26] J. Nilsson and F. Dahlgren, “Improving performance of
load-store sequences for transaction processing workloads
on multiprocessors,” Proc. Int’l Conference on Parallel
Processing, pp. 246-255, 21-24 Sept. 1999.

[27] X. Qin, H. Jiang, Y. Zhu, and D. R. Swanson, “Towards
Load Balancing Support for I/O-Intensive Parallel Jobs in a
Cluster of Workstations,” Proc. 5th IEEE Int’l Conf. on
Cluster Computing, pp.100-107, Dec. 2003.

[28] X. Qin and H. Jiang, “Improving Effective Bandwidth of
Networks on Clusters using Load Balancing for
Communication-Intensive Applications,” Proc. 24th IEEE
Int’l Performance, Computing, and Communications Conf.,
Phoenix, Arizona, April 2005.

[29] X. Qin, “Improving Network Performance through Task
Duplication for Parallel Applications on Clusters,” Proc.
24th IEEE Int’l Performance, Computing, and
Communications Conference, Phoenix, Arizona, April
2005.

[30] X. Qin, H. Jiang, D. R. Swanson, “An Efficient Fault-
tolerant Scheduling Algorithm for Real-time Tasks with
Precedence Constraints in Heterogeneous Systems,” Proc.
31st Int’l Conf. Parallel Processing, pp.360-368, 2002.

[31] X. Qin and H. Jiang, “Dynamic, Reliability-driven
Scheduling of Parallel Real-time Jobs in Heterogeneous
Systems,” Proc. 30th Int’l Conf. Parallel Processing,
pp.113-122, Sept. 2001.

[32] X. Qin and H. Jiang, "Data Grids: Supporting Data-
Intensive Applications in Wide Area Networks," High
Performance Computing: Paradigm and Infrastructure,
edited by L. T. Yang and M. Guo, John Wiley and Sons,
2004.

[33] K. Ramamritham, J. A. Stankovic, “Dynamic task
scheduling in distributed hard real-time system,” IEEE
Software, Vol. 1, No. 3, July 1984.

[34] J. Schreur, “B737 Flight Management Computer Flight Plan
Trajectory Computation and Analysis,” Proc. Am. Control
Conf., pp.3419-3429, 1995.

[35] S. H. Son, R. Zimmerman, and J. Hansson, “An adaptable
security manager for real-time transactions,” Proc. 12th
Euromicro Conf. Real-Time Systems, pp. 63 – 70, June
2000.

[36] S. H. Son, R. Mukkamala, and R. David, “Integrating
security and real-time requirements using covert channel
capacity,” IEEE Trans. Knowledge and Data Engineering,
Vol. 12 , No. 6, pp. 865 – 879, 2000.

[37] J. A. Stankovic, M. Spuri, K. Ramamritham, G.C. buttazzo,
“Deadline Scheduling for Real-Time Systems – EDF and
Related Algorithms,” Kluwer Academic Publishers, 1998.

 [38] M. D. Theys, M. Tan, N. Beck, H. J. Siegel, and M.
Jurczyk, “A mathematical model and scheduling heuristic
for satisfying prioritized data requests in an oversubscribed
communication networks,” IEEE Trans. Parallel and
Distributed Systems, Vol. 11, No. 9, pp. 969-988, Oct.
2000.

[39] M.E. Thomadakis and J.-C. Liu, “On the efficient
scheduling of non-periodic tasks in hard real-time systems,”
Proc. 20th IEEE Real-Time Systems Symp., pp.148-151,
1999.

[40] S. Vazhkudai , J. M. Schopf , and I. Foster, “Predicting the
Performance of Wide Area Data Transfers,” Proceedings of
the 16th International Parallel and Distributed Processing
Symposium, April 2002.

[41] R. Wright, D. J. Shifflett, C. E. Irvine, “Security
Architecture for a Virtual Heterogeneous Machine,” Proc.
14th Ann. Computer Security Applications Conference,
1998.

[42] M. Wu and X.-H Sun, “Memory conscious task partition
and scheduling in Grid Environments,” Proc. Int’l
Workshop Grid Computing, pp.138-145, Nov. 2004.

[43] T. Xie, A. Sung, and X. Qin, "Dynamic Task Scheduling
with Security Awareness in Real-Time Systems", Proc.
Int’l Symp. Parallel and Distributed Processing, the 4th
Int'l Workshop on Performance Modeling, Evaluation, and
Optimization of Parallel and Distributed Systems,
IEEE/ACM, April 2005.

[44] T. Xie, A. Sung, and X. Qin, "Dynamic Task Scheduling
with Security Awareness in Real-Time Systems", Proc.
Int’l Symp. Parallel and Distributed Processing, April
2005.

13

	1. Introduction
	2. Related work
	3. Mathematical Model
	3.1. Scheduling Framework
	3.2. Security-Sensitive Real-time Jobs
	3.3. Security Overhead
	Encryption Overhead
	Integrity Overhead

	Authentication Overhead
	Modeling Security Overheads

	4. The SAREG Scheduling Algorithm
	5. Performance Evaluation
	5.1. Simulator and Simulation Parameters
	5.2. Overall Performance Comparisons
	5.3 Scalability
	5.4 Sensitivities to CPU Capacity
	5.5 Impact of the Number of Nodes

	6. Summary and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

