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Abstract

The recent success of Internet-based computing
projects, coupled with rapid developments in peer-to-peer
systems, has stimulated interest in the notion of harvesting
idle cycles under a peer-to-peer model. The problem we
address in this paper is the development of scheduling
strategies to achieve faster turnaround time in an open
peer-based desktop grid system. The challenges for this
problem are two-fold: How does the scheduler quickly
discover idle cycles in the absence of global information
about host availability? And how can faster turnaround
time be achieved within the opportunistic scheduling en-
vironment offered by volunteer hosts? We propose a novel
peer-based scheduling method,Wave Scheduler, which
allows peers to self organize into a timezone-aware overlay
network using a structured overlay network. The Wave
Scheduler then exploits large blocks of idle night-time
cycles by migrating jobs to hosts located in night-time
zones around the globe, which are discovered by scalable
resource discovery methods.

Simulation results show that the slowdown factors of
all migration schemes are consistently lower than the
slowdown factors of the non-migration schemes. Com-
pared to traditional migration strategies we tested, the
Wave Scheduler performs best. However under heavy load
conditions, there is contention for those night-time hosts.
Therefore, we propose an adaptive migration strategy for
Wave Scheduler to further improve performance.

I.. Introduction

It is widely acknowledged that a vast amount of idle
cycles lie scattered throughout the Internet. The recent
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success of Internet-based computing projects such as
SETI@home [1] and the Stanford Folding Project [2],
coupled with rapid developments in peer-to-peer systems,
has stimulated interest in the notion of harvesting idle
cycles for desktop machines under a peer-to-peer model.

A peer-based desktop grid system allows cycle donors
to organize themselves into an overlay network. Each peer
is a potential donor of idle cycles as well as a potential
source of jobs for automatic scheduling in the virtual
resource pool. Many current research projects are exploring
Internet-wide cycle-sharing using a peer-based model [3],
[4], [5], [6].

The major benefits of peer-based desktop grid systems
are that they are scalable and lightweight, compared with
institutional-based Grid systems [7], [8], [9], load shar-
ing systems in local networks [10], [11], [12], [13] and
Internet-based global computing projects [1], [2], [14],
[15], [16]. The latter systems do not scale well because
they depend on centralized servers for scheduling and
resource management and often incur overhead for nego-
tiation and administration.1

However, to design scheduling methods satisfying jobs
with fast turnaround requirements is a big challenge in
dynamic, opportunistic peer-based desktop grid systems,
which faces a number of unique challenges inherent to the
nature of the peer-to-peer environment.

The challenge comes from the opportunistic and volatile
nature of the peer-based desktop grid systems. Peer-based
desktop grid systems use non-dedicated machines in which
local jobs have much higher priority than foreign jobs.
Therefore, compared to running on dedicated machines,
the foreign job will make slower progress since it can
only access a fraction of the host’s CPU availability. The
resources are highly volatile in peer-based desktop grid

1A range of research issues faced by desktop grid systems are be-
yond the scope of this paper including incentives and fairness, security
(malicious hosts, protecting the local host), etc.
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system. Nodes may leave and join the systems at any time,
and resource owners may withdraw their resources at any
time. Therefore, the foreign jobs may experience frequent
failures due to the volatility of the resources.

Another challenge for design of an efficient scheduling
system for peer-based desktop grid systems comes from
the difficulties in collecting global and accurate resource
information. It is unscalable to collect resource information
on all the nodes in a large scale peer-based desktop
grid system. Also users, especially home machine cycle
donors, may find it is intrusive to report their CPU usage
periodically to some remote clients. Therefore, scheduling
in large scale cycle sharing systems are usually best effort
scheduling based on limited resource information.

The problem we address in this paper is the develop-
ment of scheduling strategies that achieve fast turnaround
time and are deployable within a peer-based model. To our
best knowledge, we are the first to study this scheduling
problem in a fully distributed peer-based environment
using Internet-wide cycle donors.

We proposeWave Scheduler, a novel scalable scheduler
for peer-based desktop grid systems. Wave scheduler has
two major components: a self-organized, timezone-aware
overlay network and an efficient scheduling and migration
strategy.

Self-organized timezone-aware overlay network.The
Wave Scheduler allows hosts to organize themselves by
timezone to indicate when they have large blocks of idle
time. The Wave Scheduler uses a timezone-aware overlay
network built on a structured overlay network such as
CAN [17], Chord [18] or Pastry [19]. For example, a
host in Pacific Time timezone can join the corresponding
area in the overlay network to indicate that with high
probability his machine will be idle from 8:00-14:00
GMT when he sleeps.

Efficient scheduling and migration. Under the Wave
Scheduler, a client initially schedules its job on a host in
the current nighttime zone. When the host machine is no
longer idle, the job is migrated to a new nighttime zone.
Thus, jobs ride a wave of idle cycles around the world to
reduce turnaround time.

A class of applications suitable for scheduling and
migration in Wave Scheduler are long runningworkpile
jobs. Workpile jobs, also known asbag-of-tasks, are CPU
intensive and embarassingly parallel. For workpile jobs
which run in the order of hours to days, the overheads of
migration costs are negligible. Examples of such workpile
applications include state-space search algorithms, ray-
tracing programs, and long-running simulations.

The contributions of this paper include the following:

• Creation of an innovative scheduling method, the
Wave scheduler, which exploits large chunk of
idle cycles such as the nighttime cycles for fast
turnaround.

• Analysis of a range of migration strategies, including
migration under Wave Scheduler, with respect to
turnaround time, success rate, and overhead.

II.. Problem Description

The problem we address in this paper is the design of
scheduling strategies for faster turnaround time for bag-of-
tasks applications in large, open peer-based desktop grid
systems. In this section, we discuss the key dimensions of
the problem including the open peer-based cycle sharing
infrastructure, the host availability model, and the charac-
teristics of the applications supported by our scheduling
strategies.

A. Open peer-based desktop grid system

The peer-based desktop grid system we are studying
is open, symmetric, and fully distributed. In peer-based
desktop grid systems, hosts join a community-based over-
lay network depending on their interests. Any client peer
can submit applications; the application scheduler on the
client will select a group of hosts whose resources match
requirements of the application.

In a large, open peer-based desktop grid system, global
resource discovery and scheduling of idle hosts using
centralized servers is not feasible. Several research projects
have addressed resource discovery for peer-to-peer cycle
sharing [20], [4], [21]. One approach builds an auxiliary
hierarchy among the peers such that a dynamic group
of super-peers (similar to Gnutella’s ultrapeers [22]) are
designated to collect resource information and conduct the
resource discovery on behalf of the other peers. Alterna-
tively, each client peer uses a distributed scalable algorithm
to discover available resources. These protocols are either
probing based, such as expanding ring and random walk,
or gossip based such as exchanging and caching resource
advertisements.

On receiving a request for computational cycles from
some client, the host returns resource information includ-
ing CPU power, memory size, disk size, etc. It also returns
information regarding the current status of the machine
regarding its availability to accept a foreign job. The
client then chooses a host to schedule the job using its
host selection criteria and waits for acknowledgment. The
client then ships the job to the selected host. The job can
be migrated to a new host if the current host becomes
unavailable.
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B. Host availability model

In open cycle sharing systems, users can make strict
policies to decide when the host is available, which will
limit the amount of cycles available to foreign jobs. A
lesson learned from previous cycle sharing systems is
that inconvenienced users will quickly withdraw from the
system. To keep the users in the system, a cycle sharing
system must be designed to preserve user control over her
idle cycles and to cause minimal disturbance to the host
machine.

The legendary Condor load sharing project [10], [8],
developed at the University of Wisconsin in the 1980s for
distributed systems, allows users to specify that foreign
jobs should be preempted whenever mouse or keyboard
events occur. Condor also supports strict owner policies in
its classified advertisementof resource information [23]:
users can rank foreign applications, specify a minimum
CPU load threshold for cycle sharing, or specify specific
time slots when foreign jobs are allowed to that host.

Another example of strict user-defined policies is the
popular SETI@home project [1]. Users donate cycles
by downloading a screensaver program from a central
SETI@home server. The screensaver works like standard
screensaver programs: it runs when no mouse or keyboard
activities have been detected for a pre-configured time;
otherwise it sleeps. SETI@home can also be configured to
run in background mode, enabling it to continue computing
all the time. However, screensaver mode is the default
mode suggested by the SETI@home group and is the
dominant mode employed by the SETI@home volunteer
community.

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

�����
�����
�����

�����
�����
�����

15 mins

CPU Load = 75%

Mouse/keyboard Events

Unavailable cycles

Available cycles

Local Jobs

Fig. 1. A sample host profile of available idle cycles

As peer-based cycle sharing becomes more widespread,
the majority of the users will most likely be more conserva-
tive than current users when donating cycles to anonymous
clients in an open cycle sharing environment. The cycle
sharing pattern will be cautiously generous: users are
willing to join the system only if they know their own
work will not be disturbed by foreign jobs. CPU cycle

sharing will be likely limited to the time when owners are
away from their machines and the CPU load from local
applications is light. Figure 1 illustrates a sample host
profile of available idle cycles under a strict user local
policy: Host is available only when CPU load is less than
75% and there is no mouse or keyboard activity for 15
minutes.

C. Application characteristic

The type of applications we are looking at in this
study are largeWorkpile (Bag-of-tasks)jobs, requiring
large amounts of CPU cycles but little if any data com-
munication. Examples of workpile applications include
state-space search algorithms, ray-tracing programs, gene
sequencing and long-running simulations. Often these ap-
plications have higher performance requirements such as
faster turnaround time and higher throughput. Some of the
above applications may have real time constraints, such as
weather forecasting, or deadlines such as scientific simu-
lations that must be completed in time for a conference
submission (such as JSSPP).

The migration cost is higher in global peer-based cycle
sharing systems than in local area network as the codes
and data are transferred on the Internet. If a short job that
runs for a few minutes, is migrated many times in its life
span, the accumulated migration cost may well counter
the migration benefit. Long jobs which run for hours or
even for months receive maximal benefit from migration
schemes. For such jobs, the cost of migration, which
includes resource discovery overhead to find a migration
target, checkpointing, and cost to transfer the code and
data is negligible compared to the total runtime of the job.

The size of many long running applications is small and
these applications require minimal data communication.
For example, the average data moved per CPU hour by
users of SETI@home is only 21.25 KB, which is feasible
even for users with slow dial-up connections. With respect
to program size, Stanford Folding is only about 371KB,
and SETI@home is around 791KB (because it includes the
graphical interface for the screensaver). These applications
run for a long time. Using the same SETI@home example,
the average computation time of each job is over 6 hours
(the major type of CPU in SETI@home is Intel x86).

III. Wave scheduling for workpile applica-
tions

Wave scheduling is an idea that springs naturally from
the observation that millions of machines are idle for large
chunks of time. For example, most home machines and
office machines lie idle at night. It is influenced by the
notion of prime time v. non-prime time scheduling regimes
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enforced by parallel job schedulers [24], which schedules
long jobs at night to improve turnaround time.

There are many motivations for the design of Wave
Scheduler.

• First, resource information such as when the host
will be idle and how long the host will continue to
be idle with high probability will help the scheduler
make much better decisions. Wave scheduler builds
this information into the overlay network by having
hosts organize themselves into the overlay network
according to their timezone information.

• Second, efficient use of large and relatively stable
chunks of continuing idle cycles provides the best
performance improvement, while performance im-
provement by using sporadic and volatile small pieces
of idle cycles in seconds or minutes is marginal and
may be countered by high resource discovery and
scheduling overhead. Therefore, the Wave scheduler
proposes to use long idle night-time cycles.

• Third, the cycle donors are geographically distributed
nodes, so that their idle times are well dispersed on
the human time scale. Machines enter night-time in
the order of the time zones around the world. In such
a system, migration is an efficient scheme for faster
turnaround.

• Fourth, the scheduler should be easy to install and
not intrusive to users’ privacy. The particular wave
scheduler studied in this paper only needs minimal
user input such as time zone information.

Wave Scheduler builds a timezone-aware, structured
overlay network and it migrates jobs from busy hosts
to idle hosts. Wave scheduler can utilize any structured
overlay network such as CAN [17], Pastry [19], and
Chord [18]. The algorithm we present here uses a CAN
overlay [17] to organize nodes located in different time-
zones. In this section, we introduce the structured overlay
network, and then we describe Wave Scheduler.

A. Structured overlay network

Structured overlay networks take advantage of the
power of regular topologies: symmetric and balanced
topologies, explicit label-based or Cartesian distance based
routing and theoretical-bounded virtual routing latency and
neighbor table size. In this section, we will describe the
original CAN (Content Addressable Network) protocol,
which is used by our Wave Scheduler.

The CAN structured overlay [17] uses a Cartesian
coordinate space. The entire space is partitioned among
all the physical nodes in the system at any time, and
each physical node owns a distinct subspace in the overall
space. Any coordinate that lies within its subspace can be
used as an address to the physical node which owns the
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F G

C D
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New Node

(0.83, 0.27)

(0.83, 0.27)

Fig. 2. Node join in CAN

subspace. For example, in Figure 2, the whole Cartesian
space is partitioned among 7 nodes, A,B,C,D,E,F and G.
The neighbors of a given node in the CAN overlay are
those nodes who are adjacent alongd− 1 dimensions and
abut along one dimension. The neighbors of node G are
nodes F, E, B, and C.

In Figure 2, new node N joins the CAN space by
picking a coordinate in the Cartesian space and sending
a message into the CAN destined for that coordinate. (The
method for picking the coordinate is application-specific.)
There is a bootstrap mechanism for injecting the message
into the CAN space at a starting node. The message is
then routed from node to node through the CAN space
until it reaches node D who owns the subspace containing
N’s coordinate. Each node along the way forwards the
message to the neighbor that is closest in the Cartesian
space to the destination. When the message reaches D,
it then splits the CAN space with the new node N and
adjusts the neighbor tables accordingly. Latency for the
join operation is bounded byO(n(1/d)) in which n is the
number of peers in the overlay network andd is the number
of dimensions of the CAN overlay network.
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Fig. 3. Routing in CAN

Figure 3 illustrates the coordinate-based routing from
a source node to a destination node which uses the same
hop by hop forwarding mechanism and is also bounded by
O(n(1/d)).
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Fig. 4. Job initiation and migration in wave scheduling

In this study, we utilize CAN’s label-based routing for
host discovery in all of our scheduling strategies. The CAN
protocol is fully described by Ratnasamy et.al [17].

B. Wave Scheduling

In this section, we will present the Wave Scheduler,
which takes advantage of the idle night cycles. Our wave
scheduling protocol functions as follows (see Figure 4).

• Wavezones in the CAN overlay. We divide the CAN
virtual overlay space into severalwavezones. Each
wavezonerepresents several geographical timezones.
A straightforward way to divide the CAN space is to
select one dimension of the d-dimensional Cartesian
space used by CAN and divide the space into several
wavezones along that dimension. For example, a 1
x 24 CAN space could be divided into 4 wavezones
each containing 6 continuous timezones.

• Host nodes join the overlay:A host node that wishes
to offer its night-time cycles knows which timezone it
occupies, say timezone 8. It randomly selects a node
label in wavezone 2 containing timezone 8 such as
(0.37, 7.12) and sends a join message to that node.
According to the CAN protocol, the message will
reach the physical node in charge of CAN node (0.37,
7.12) who will split the portion of the CAN space it
owns, giving part of it to the new host node.

• Client selects initial nightzone: The scheduler for
a workpile application knows which timezones are
currently nightzones. It select one of these nightzones
(based on some nightzone selection criteria) and de-
cides on the numberh of hosts it would like to target.

• Selects set of target hosts:The scheduler randomly
generates a collection ofh node labels in the wave-
zone containing the target nightzone and sends a
request message to each target node label using CAN
routing which finds the physical host which owns
that node label. Or it does an expanding ring search
starting from a random point in the target wavezone.
After negotiations, the application scheduler selects a

subset of those nodes to ship jobs to.
• Migration to next timezone: When morning comes

to a host node and the host is no longer available,
it selects a new target nightzone, randomly selects a
host node in that nightzone for migration, and after
negotiating with that host, migrates the unfinished job
to the new host.

C. Extensions to Wave Scheduler

The night-time concept can be extended to any long
interval of available time. The overlay does not necessary
need to be timezone based but can be organized based
on available time intervals. For example, a user in Pa-
cific Time timezone can register her home machine in
a wavezone containing hosts idle from 0:00-10:00 GMT,
when she knows she is at work during the daytime. Wave
scheduler can even accept more complicated user profiles,
which indicates users’ daily schedules.

Wave Scheduling can also be easily leveraged to handle
heterogeneity of the hosts in the system. Information such
as operating systems, memory and machine types can be
represented by further dividing the node label space or
adding separate dimensions. For example, a third dimen-
sion is added to represent the operating system and it is
divided into subspaces that represent each type of operating
systems. When a client needs extra cycles, it can generate
a node label. The first two dimensions are generated in the
way described above and the third dimension has a value
indicating the hosts need to be running a specific operating
system. The third dimension can be empty, indicating the
client does not care about the operating system type. In
heterogeneous peer-based desktop grid system, the hosts
have different CPU speeds. The difference between CPU
speeds can be solved by normalizing the length of the idle
time by the CPU speed and organize hosts according to
this normalized profile information.

IV.. Peer-based scheduling strategies that uti-
lize migration

In this section, we describe the scheduling/migration
strategies we evaluated in this paper. First we describe
the key components that serve as building blocks for our
scheduling strategies. Then we describe the peer-based
migration strategies studied in this paper. In this study,
we assume that all the migration schemes are built on a
structured overlay network.

Our scheduling model is composed of the following
four key components: host selection criteria, host discovery
strategy, local scheduling policy, and migration scheme.
When a client wants to schedule a job, the scheduler
chooses the candidate host(s) satisfying the host selection
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criteria via host discovery. Then it schedules the job on
the candidate host. If there are multiple candidate hosts, it
will select one to schedule the job on. A migration scheme
decides when and where to migrate the job. It uses host
discovery and host selection strategy to decide where to
migrate the host. Other modules including checkpointing,
result verification and monitoring are out of the scope of
this discussion.

Host selectionA client uses its host selection criteria to
decide whether the host can be a candidate, and it selects
one of them on which to schedule a job if there are multiple
candidates. We also assume that each host can host at most
one foreign job at a time.

The following terms define the criteria we use in this
study, motivated by our earlier discussion of strict user
control. Unclaimedmeans that there is no foreign job on
that host.Availablemeans that there is no foreign job on
that host and the host is idle. Local user policy can be made
to decide whether the host is idle based on criteria such as
if the CPU load is below some threshold, or if there are
no recent mouse/keyboard activities. The user policy can
even blackout arbitrary time slots.

Different scheduling methods use different host selec-
tion criteria. Simple scheduling methods relax their hosts
selection criteria to use anyunclaimedhosts, while fast
turnaround scheduling methods try to schedule foreign job
on availablehosts for instant execution.

In this study, we use a low-complexity host selection
strategy when there are multiple candidates: a client
selects the first discovered host that satisfies the particular
host selection criteria used by the scheduling method.

Host Discovery. The purpose of the host discovery
scheme is to discovery candidate hosts to accept the
foreign job. The scheme needs to take into account the
tradeoff between the message overhead and the success
rate of the operation [20], [21]. Two schemes are used in
this study.
Label-based random discovery.When the client needs
extra cycles, the client randomly chooses a point in the
CAN coordinate space and sends a request to that point.
The peer owning that point will receive this request and
return the resource information about whether it has
already accepted a foreign job (claimed) and whether it
is available. If the host does not satisfy the host selection
criteria, the client can repeatedly generate another random
point and contact another host. The maximum number of
queries the client can issue is a configurable parameter.

Expanding ring search.When the client needs extra
cycles, the client sends out a request with the host
selection criteria to its direct neighbors. On receiving

such request, if the criteria can be satisfied, the neighbor
acknowledges the client. If the request is not satisfied, the
client increases the search scope and forwards the request
to its neighbors one-hop farther away. This procedure
is repeated until the request is satisfied or the searching
scope limit is reached. The client can choose to initiate
the search in its own neighborhood, or it can choose a
random point in the system (by generating a random
node label and asking the owner of that random label to
start the search). The benefit of the latter approach is to
create a balanced load in cases of a skewed client request
distribution in the CAN space.

Local Scheduling.The local scheduling policy on a host
determines the type of service a host gives to a foreign job
that it has accepted. Two common policies are:screensaver
and background. With screensaver, foreign jobs can only
run when there is no recent mouse/keyboard activity. With
background, foreign jobs continue running as background
processes with low priority even when users are present at
their machines. We only consider the screensaver option
in this study to reflect a conservative policy most likely in
open peer-to-peer cycle sharing systems.

Note that under screensaver mode, the availability of
a host to run the foreign job does not mean that the job
receives 100% of the machine’s CPU cycles. Instead the
job concurrently shares cycles with other local jobs.

Migration: Migration was originally designed for load
sharing in distributed computing to move active processes
from a heavily loaded machine to a lightly loaded machine.
Theoretical and experimental studies have shown that
migration can be used to improve turnaround time [25],
[26].

There are two important issues for migration schemes:
when to migrate the jobs andwhere to migrate the jobs.
Traditional load sharing systems used central servers or
high overhead information exchange to collect resource in-
formation about hosts in the system to determine when and
where to migrate jobs [25], [26]. New scalable strategies
are needed to guide migration decisions in a peer-to-peer
system.

The optimal solution ofwhen to migration the job
requires accurate predication of future resource availability
on all the hosts. Many researchers have addressed the
CPU availability prediction problem for the Grid or for
load sharing systems [27], [28], [29], but they all require
a central location to collect and process the resource
information. In our study, we assume there is no resource
availability prediction and that migration is a simple best
effort decision based primarily on local information, e.g.
when the host becomes unavailable due to user activity.

The same resource availability issue exists forwhere
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to migrate the job. But the issue ofwhere to migrate the
job is also related to the scalable host discovery which we
have discussed. The scheduler needs the host discovery to
discover candidate hosts which are suitable to migrate the
job to.

We compare several migration schemes that differ re-
garding when to migrate and where to migrate.

The options for when to migrate include:
• Immediate migration.Once the host is no longer

available, the foreign jobs are immediately migrated
to another available host.

• Linger migration. Linger migration allows foreign
jobs to linger on the host for a random amount of time
after the host becomes unavailable. After lingering,
if the host becomes available again, the foreign job
can continue execution on that host. Linger migration
avoids unnecessary migration as the host might only
be temporarily unavailable. Linger migration can also
be used to avoid network congestion or contention for
available hosts when a large number of jobs need to
be migrated at the same time.

There are also two options for where to migrate the
jobs:

• Random.The new host is selected in a random area
in the overlay network. There is no targeted area
for the search; the new host is a random host found
in the area where the resource discovery scheme is
launched.

• Night-time machines.The night-time machines are
assumed to be idle for a large chunk of time. The
Wave Scheduler uses the geographic CAN overlay to
select a host in the night-time zone.

A. Scheduling strategies

The scheduling strategies we study are built on the
above components. They all use the same host discovery
schemes but different host selection criteria and different
migration schemes.

Each strategy has two distinct steps: initial scheduling
and later migration. In initial scheduling, the initiator of
the job uses host discovery to discover hosts satisfying
the host selection criteria and schedules job on the chosen
host. The migration schemes also use host discovery to
discover candidate hosts, and they use different options
discussed above to decide when and where to migrate the
job. Table I summarizes the difference between different
migration schemes.

The non-migration strategy follows the SETI@home
model. It uses the more relaxed host selection criteria: any
unclaimedhost can be a candidate.

• No-migration: With no-migration, a client initially
schedules the task on an unclaimed host, and the

When to migrate
Where to migrate Immediate Migration Linger
Random Host Migration-immediate Migration-linger
Host in night-zone Wave-immediate Wave-linger

TABLE I. Different migration strategies

task never migrates during its lifetime. The task runs
in screensaver mode when the user is not using the
machine, and sleeps when the machine is unavailable.

The following are all migration schemes. The first four
migration schemes try to only useavailable hosts for
fast execution. When it fails to findavailable hostsfor
migration, the host will inform the initiator of the job and
let the initiator reschedule the job.

• Migration-immediate : With migration-immediate,
the client initially schedules the task on an available
host. When the host becomes unavailable migration-
immediate immediately migrates the job to arandom
available host. In the best case, the task begins run-
ning immediately, migrates as soon as the current host
in unavailable, and continues to run right away on a
new available host.

• Wave-immediate: Wave-immediate works the same
as migration-immediate except the job is migrated to
a host in the night-time zone.

• Migration-linger : With migration-linger, a client ini-
tially schedules the task on an available host. When
the host becomes unavailable, migration-linger allows
the task to linger on the host for a random amount of
time. If the host is still unavailable after the lingering
time is up, it then migrates.

• Wave-linger: Wave-linger works the same as
migration-linger except that the job is allowed to
linger before migrating to a host in the night-time
zone.

The migration schemes described above put minimal
burden on the hosts. A host only needs to try to migrate
the task once when it becomes unavailable, i.e. there is
no backoff and retry. Instead, if the host fails to find an
idle host, it notifies the original client node who initially
scheduled the job on this host, letting the client reschedule
the job.

The last two migration strategies are more persistent in
their efforts to find an available host. They are adaptive
strategies in that they adjust to the conditions on the local
host, and on their ability to find a migration target. These
adaptive strategies put a bigger burden on the host since
it must retry several times on behalf of the foreign task.

• Migration-adaptive : For initial scheduling,
migration-adaptive tries to find a host that is
available. If it cannot, migration-adaptive schedules
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the task on an unclaimed host where the task will
sleep for a random amount of time.
When the host becomes unavailable, migration-
adaptive will try to migrate the task to arandomnew
host that is available. If it cannot find such a host,
it allows the job to linger on the current host for a
random amount of time and try again later. A cycle
of attempted migration and lingering is repeated until
the job finishes.

• Wave-adaptive: Wave-adaptive is the same as
migration-adaptive except that it migrates to a host
in the night-time wave zone.

V.. Simulation

We conducted simulations to investigate the perfor-
mance of the migration strategies described above and
their effectiveness at reducing turnaround time, relative
to a no-migration policy similar to SETI@home. We
also evaluated the performance of the Wave Scheduler
to see what gains are achievable through our strategy of
exploiting knowledge of available idle blocks of time at
night.

A. Simulation configuration

We use a 5000 node structured overlay in the simula-
tion. Nodes join the overlay following the CAN protocol
(or timezone-aware CAN protocol in the case of the Wave
scheduler). The simulation is built with ns, a widely used
network simulation tool [30].

Profile of available cycles on hosts.To evaluate the
performance of different scheduling methods, a coarse-
grain hourly synthetic profile is generated for each machine
as follows: During the night-time (from 12pm to 6 am),
the host is available with a very low CPU utilization
level, from 0% to 10%. During the daytime, for each
one hour slot it is randomly decided whether the machine
is available or not. Finally, the local CPU load in a
free daytime slot is generated from a uniform distribution
ranging from 0% to 30%. We assume that when a host is
running a foreign job, it can still initiate resource discovery
for migration and relay messages for other hosts. The
percentage of available time during the day varies from
5% to 95%. For simplicity, we assume all the hosts have
the same computational power.

Job workload. During the simulation, a given peer can
be both a client and a host. A random group of peers
(10% to 90%) are chosen as clients. Each client submits
a job to the system at a random point during the day. The
job runtime is defined as the time needed for the job to
run to completion on a dedicated machine. Job runtime is
randomly distributed from 12 hours to 24 hours.

Host discovery parameters.We set the parameters of
the resource discovery schemes to be scalable and to have
low latency. The maximum number of scheduling attempts
for random node label-based resource discovery is 5 times
and the search scope for expanding ring search is 2 hops.

Migration parameters. The lingering time for the
linger-migration models is randomly chosen in the range 1
hour to 3 hours. In the adaptive model, the linger time of
a foreign job when it cannot find a better host to migrate
to is also randomly chosen in the range 1 hour to 3 hours.

Wave scheduler. For the Wave scheduler, a 1x 24
CAN space is divided into 6 wavezones, each containing
4 time zones based on its second dimension. We studied
the performance of a variety of strategies for selecting
the initial wavezone and the wavezone to migrate to. The
variations included (a) migrate the job to the wavezone
whose earliest timezone just entered night-time, (b) mi-
grate the job to a random night-time zone, and (c) migrate
the job to a wavezone that currently contains the most
night-time zones. The first option performs better than
the others, since it provides the maximal length of night-
time cycles. The simulation results presented in this paper
use this option. However, it may be better to randomly
select a nightzone to balance network traffic if many jobs
simultaneously require wave scheduling.

B. Simulation Metrics

Our evaluation of different scheduling strategies is fo-
cused on the turnaround time of a job, the time from when
it first began execution to when it completes execution in
the system.

In our study, a job is considered to have failed if the
client fails to find a host satisfying host selection criteria,
either when it initially tries to schedule the job, or when it
later tries to migrate. Most of the performance metrics are
measured only for those jobs that successfully complete
execution. In this study, we do not model rescheduling, as
we are interested in the success rate of the first scheduling
attempt which includes the initial scheduling and the
following successful migrations. The job completes in the
shortest time if the client only needs to schedule the job
once, so the slowdown factor measured this way show
the peak performance of each migration scheme. Also it
is interesting to see what percentage of jobs needs to be
rescheduled under different migration models.

The metrics used in the study are the followings:

• % of jobs that fail to complete (job failure rate) :
the number of failed jobs divided by the total number
of jobs submitted to the system.

• Average slowdown factor: The slowdown of a job is
its turnaround time (time to complete execution in the
peer-to-peer cycle sharing system) divided by the job
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Fig. 5. Average slowdown factor for no-migration vs.
migration (The percentage of clients in the system is 20%)

runtime (time to complete execution on a dedicated
machine). We average the slowdown over all jobs that
successfully complete execution.

• Average number of migrations per job: the number
of times a job migrates during its lifetime in the sys-
tem, averaged over all jobs that successfully complete
execution.

We do not include migration and resource discovery
overhead when plotting the average slowdown factor. The
migration and resource discovery overhead do not make
a visible difference in the results when migrations and
resource discoveries are infrequent and the jobs run for
a long time. We will analyze migration overhead, which
dominates the computation overhead in the discussion of
number of migrations.

C. Simulation Results

In this section, the legends in each graphs are ordered
from top to bottom to match the relative position of the
corresponding curves. Each data point is the average over
15 simulation runs.

1) No-migration vs. migration: We first compare
no-migration with the two basic migration schemes:
migration-immediate and migration-linger. We measure the
performance of these scheduling strategies as a function of
percentage of free time on the hosts. When the percentage
of free time on hosts increases on the x-axis, the load of
the system decreases. We also examine the impact of the
resource discovery scheme employed.

(a) The impact of migration on job turnaround times
Figure 5 shows the average slowdown factor for suc-

cessfully completed jobs as a function of free time on
the hosts during the daytime hours. As expected, jobs

progress faster with more available time on hosts during
daytime. The performance of the no-migration strategy is
clearly the worst since there is no effort made to avoid
long waiting times when the host is not free. Note that
the slowdown of migration-immediate (for both expanding
ring and random host discovery) is always 1, since only
jobs that successfully run to completion are considered.
The success rate of different scheduling schemes will be
discussed in section V-C.1(b).

The performance of migration-linger is better than the
no-migration strategy but worse than the others with its
wasted lingering time associated with each migration. The
performance of the adaptive models is the closest to the
idealized migration-immediate schemes since it adaptively
invokes the migration-immediate scheme whenever possi-
ble.

The slowdown factor is mainly influenced by the mi-
gration model used. However, for the linger and adaptive
strategies, the resource discovery protocol also plays a
role when the free time on the host is limited (e.g. when
the percentage of hosts free time during daytime is less
than 65%). We noticed that for the linger strategy, random
performs better with respect to slowdown, but for the
adaptive strategy, expanding ring performs better. This can
be explained as follows: For comparable search times,
expanding ring contacts more hosts than the random node
label-based search, and therefore yields a higher successful
migration rate. However, since with migration-linger, ev-
ery successful migration implies (wasted) lingering time,
ultimately random has lower slowdown with its lower
migration success rate. This observation is supported by
Figure 9 which shows the average number of migrations
for each strategy. For the adaptive strategy, expanding ring
has lower slowdown than random as expected.

Figure 5 also shows that the slowdown factor for
the no-migration strategy and for migration-immediate is
insensitive to the resource discovery schemes.

Figure 6 further confirms the improvement of
turnaround time when using a migration model under
heavy load. The majority of jobs scheduled by no-
migration scheduling experienced a slowdown greater than
2 and in the extreme case, jobs may experience slow-
down greater than 5. The majority of jobs scheduled by
migration-adaptive and migration-immediate have small
slowdown or no slowdown at all.

(b) The impact of migration on successful job comple-
tion

The above results regarding slowdown factor cannot be
considered in isolation. In particular, it is necessary to also
consider the job failure rates, i.e. percentage of jobs for
which a host satisfying host selection criteria cannot be
found either in initial scheduling or in migration.

Figure 7 shows the percentage of jobs that failed to
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Fig. 6. histogram of slowdown factors of successfully
finished jobs (The percentage of clients is 20% and the
percentage of free time on hosts is 15%)

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90

Jo
b 

F
ai

lu
re

 R
at

e 
(%

)

Percentage of Free Time on Hosts during Daytime (%)

Migration-immediate (random)
Migration-linger (random)

Migration-immediate (expanding ring)
Migration-linger (expanding ring) 

Migration-adaptive (random)
Migration-adaptive (expanding ring) 

No-migration (random)
No-migration (expanding ring)

Fig. 7. % of jobs that fail to complete(The percentage
of clients in the system is 20%)

finish assuming the same simulation configuration as in
Figure 5. For the two strict migration models (migration-
immediate and migration-linger) which only use local
availability information, the failure rate is extremely high.
The adaptive models, which use a small amount of global
information at migration time, have dramatically fewer
failed jobs – close to zero.

Clearly, there is a tradeoff between the job turnaround
time and percentage of jobs that successfully complete.
The strict models have the lowest turnaround time, but
extremely high failure rates when free time on the hosts
is limited. The adaptive model performs best because
it achieves low turnaround time with most of the jobs
successfully completed.

When the number of client requests increase, there
will be intense competition for free hosts. When the free
time on these hosts is small, the situation is even worse.
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Figure 8 shows that the failure rate of all scheduling
strategies increases with the increasing number of client
requests. The persistently high failure rate of migration-
immediate makes it impractical for real applications when
the available resources are very limited.

The simulation results show that with abundant host
free time, the failure rate of migration-adaptive using an
expanding ring search is even slightly lower than the no-
migration scheme.

(c) Number of migrations during job lifetime
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Figure 9 shows that the average number of migrations
varies with the different migration scheduling strategies.
The graph shows that when the percentage of host free
time increases, the number of migrations increases first and
then decreases. The reason is that there are two factors
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that influence the number of migrations: the number of
currently available hosts and the length of free time slots
on the hosts. With more available hosts, there is higher
chance of migration success and therefore a larger number
of migrations. With longer free time slots, the need for the
jobs to migrate is reduced. With higher percentage of free
time, the amount of currently available hosts increases and
the length of free time slots also increases.

We can demonstrate that migration overhead is low
using the same graph. In early morning or late night, the
network traffic in the Internet is usually light. Therefore
the network connection from the end-host to the Internet is
usually the bottleneck link when downloading or uploading
data. In the following computation, we assume the upload
bandwidth of the host is 256kb, which is the bandwidth
of slow-end DSL users and download bandwidth is higher
than upload bandwidth with DSL. If the amount of data to
be transmitted during the migration is 1MB, the slowdown
factor of migration schemes will increase by at most 0.005
when the running time of the job is longer than 12 hours.
Even when the amount of data to transmit is 20MB, which
is quite large for a scientific computation, the influence is
at most 0.1. The time overhead of resource discoveries
is much smaller and negligible compared with that of
migration.

2) Performance of Wave Scheduler:This section
presents the evaluation of the Wave Scheduler. In order to
focus on the difference between migration strategies, we
only describe results with the resource discovery method
set as expanding ring search. (Simulations with random
node label-based discovery show the same relative perfor-
mance.)

(a) Impact of Wave scheduler on turnaround time
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Fig. 10. Wave Scheduler: Average slow down factor(The
percentage of client request is 20%)

Figure 10 shows that the turnaround time of jobs with
Wave Schedulers is lower than other migration schedulers.

Jobs progress faster with the Wave Scheduler because
it can identify hosts with potentially large chunks of
available times. The turnaround time of wave-adaptive is
consistently low, while the turnaround time of migration-
adaptive is significantly higher when the amount of free
time is small. When the percentage of free time on hosts
is 15%, the turnaround time of jobs under wave-adaptive
is about 75% of that under migration-adaptive.

(b) Impact of Wave scheduler on successful job com-
pletion

The percentage of jobs that fails to complete using
the Wave scheduler is influenced by two factors. Wave
identifies available hosts with large chunks of future free
time. However, if the ratio of requests to the number of
such hosts is limited, there will be scheduling conflicts.
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When the free time on hosts is limited, the Wave
scheduler does better than other migration schemes since
it was designed for this exact situation. (see Figure 12).
The intensive contention for night-time hosts is relieved by
wave-adaptive, which adapts to the amount of free time by
continuing to stay on the hosts in case of contention. The
job failure rate of wave-adaptive is competitive with the no-
migration model and slightly lower than with migration-
adaptive.

Figure 11 shows the percentage of jobs that failed
to finish under the same simulation configuration as in
Figure 10. The job failure rate of the Wave scheduler is
relatively higher than others when the percentage of free
time on hosts increases, as wave-immediate uses strict rules
about using night-time hosts and this cause contention. The
other two wave scheduler strategies perform as well as
migration-adaptive and the no-migration strategy.

(c) Number of migrations during job lifetime with Wave
scheduler

Figure 13 compares the average number of migrations
of successfully finished jobs with the wave migration
strategies versus the standard migration. As we expected,
jobs scheduled with the Wave scheduler finished with
fewer migrations, because it exploits the long available
intervals at night while the others may end up using short,
dispersed time slots during the day. As in the discussion
about migration overhead in section V-C.1(c), the migra-
tion overhead of Wave Scheduler is even smaller compared
with the standard migration schemes and therefore it is
acceptable for jobs with long running time.
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VI.. Conclusion and Future Work

We studied job scheduling strategies with the goal of
faster turnaround time in open peer-based cycle sharing
systems. The fundamental lesson to be learned is that
under strong owner policies on host availability for cycle
sharing, the ability to utilize free cycles wherever and
whenever they are available is critical. Migration achieves
this goal by moving jobs away from busy hosts and to
idle hosts. The best migration strategies that we studied,
wave and adaptive, were able to use fairly straightforward
mechanisms to make better decisions about when and
where to migrate.

We also observed that careful design of the infrastruc-
ture of a peer-to-peer cycle sharing system impacts the
performance of its schedulers. For example, the use of a
structured overlay network that supports timezone-aware
overlay was essential for the functioning of our wave
scheduler. To recap:

• Compared with no-migration schemes, migration sig-
nificantly reduces turnaround time.

• The adaptive strategies perform best overall with
respect to both low turnaround time and low job
failure rate.

• Wave scheduler performs better than the other migra-
tion strategies when the free time during the day is
limited.

• Wave-adaptive improves upon wave because it re-
duces collisions on night-time hosts. It performs best
among all the scheduling strategies.

To further improve the performance of Wave Scheduler
and conduct a more realistic and comprehensive evaluation
of Wave Scheduler and other peer-based scheduling using
migration schemes, our ongoing and future work include
the following tasks:
1) Improving wave scheduler by using the schemes dis-
cussed in section III including expanding the night-time
cycles to any idle cycles and overlay construction including
information other than just CPU cycles.
2) Evaluating Wave Scheduler and other migration
schemes using a retry model in which clients retry after
a random amount of time if the job fails to be scheduled
on host in initial scheduling or migration. Alternatively,a
client can make an intelligent decision about the how long
it needs to wait before retry based on estimation of current
load of the system.
3) Evaluating Wave Scheduler using workload trace such
as Condor trace and desktop grid trace used by [31].
4) Studying the characteristics of bag-of-tasks scientific
computation to understand what impact Wave Scheduler
can make for real applications.
5) Collecting activity based resource profiles and generat-
ing CPU usage pattern from such profiles as a supporting
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study to our work.
6) Studying the migration cost on an Internet test-bed such
as PlanetLab [32].

A. Related Work

The related work can be divided into two categories:
peer-to-peer networks and cycle sharing systems.

Peer-to-peer networks emerged with the popular file
sharing systems. The first generation peer-to-peer proto-
cols [22] were extended to efficient, scalable and robust
structured peer-to-peer overlay networks [17], [19], [18].
Structured peer-to-peer overlay networks are motivated by
distributed hash table algorithms which use consistent hash
function to hash a key onto a physical node in the overlay
network. A wealth of peer-to-peer applications including
file sharing, storage sharing, and web caching are built
atop structured overlay networks. The popularity of peer-
to-peer file sharing techniques naturally stimulated the
development of peer-based cycle sharing systems.

The second research area is cycle sharing systems
which can be divided into three categories: Internet-based
computing infrastructures, institutional-based cycle sharing
systems and desktop grid systems.

Internet-based computing infrastructures [1], [14], [15]
use a client-server model to distribute tasks to volunteers
scattered in the Internet. The hosts actively download
tasks and data from a central server. A foreign task then
stays on the same host during their entire life spans. The
hosts report the results to the central server when the
computation is done. Because Internet-based computing
projects require manual coordination from central servers,
they may experience downtime due to surges in hosts
requests.

Institutional-based cycle sharing systems promote re-
source sharing within one or a few institutions. In or-
der to access resources in institutional-based cycle shar-
ing systems, the user first needs to acquire an account
from the system administrator. The most notable practical
institutional-based cycle sharing system is Condor [10],
[8], which was first installed as a production system 15
years ago. The work continued to evolve from a load shar-
ing system within one institution to a load sharing system
within several institutions. Condor-G uses Globus [7] for
inter-domain resource management. The strict membership
requirement and heavyweight resource management and
scheduling methods used by this type of system make it
hard for average users to install and maintain their own
cycle sharing systems.

The new desktop grid systems [33], [34] harness idle
cycles on desktop machines. Our work belongs to one
type of desktop grid systems, the peer-based desktop grid
systems [3], [4], [5], which harness idle cycles on desktop

machines under a peer-based model. Each node in these
systems can be either a single machine or an institution
joining the peer-to-peer overlay network. Each peer can be
both a cycle donor and a cycle consumer. Peer-based cycle
sharing systems is a new research field, which charts many
challenging research problems including scalable resource
discovery and management, incentives for node to join the
system, trust and security schemes. OurGrid [3] proposed
an accounting scheme to aid equitable resource sharing
in order to attract nodes to join the system. Flock of
Condor [4] proposed to organize the nodes in a Pastry [19]
overlay network. Nodes broadcast resource information
in a limited scope for resource discovery. Our CCOF
model [5] proposed a generic scalable modular peer-to-
peer cycle sharing architecture which supports automatic
scheduling for arbitrary client applications.

To our best knowledge, none of the previous work has
addressed the fast turnaround scheduling problem in a scal-
able peer-based cycle sharing system. A recent paper [31]
describes scheduling for rapid application turnaround on
enterprise desktop grids. The computation infrastructure
used a client-server model, in which a server stores the
input data and schedules tasks to a host. When the host
becomes available, it sends a request to the server. The
server keeps a queue of available hosts and chooses the
best hosts based on resource criteria such as clock rate
and number of cycles delivered in the past. The work did
not considering migration schemes. Moreover, this work
is limited to scheduling within one institution and it uses
a client-server infrastructure, while scheduling in a large
scale fully distributed peer-based cycle sharing system is
much more complicated and challenging.
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