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Abstract To use backfilling, the scheduler must know in advance
the length of each job, that is, how long jobs will fun
User estimates of job runtimes have emerged as an impihis information is used when computing the reservation
tant component of the workload on parallel machines, atihe (requires knowing when processors of currently run-
can have a significant impact on how a scheduler treaisg jobs will become available) and when determining
different jobs, and thus on overall performance. Itis theri& a waiting job is eligible for backfilling (must be short
fore highly desirable to have a good model of the relatioanough so as not to interfere with the reservation). As this
ship between parallel jobs and their associated estimatsefarmation is not generally available, backfilling sched-
We construct such a model based on a detailed analydiys require their users to provide runtime estimates for
of several workload traces. The model incorporates thagémitted jobs. Obviously jobs that violate these esti-
features that are consistent in all of the logs, most notalhates are killed. This is essential to insure that reserva-
the inherently modal nature of estimates (e.g. only 20 difens are respected. Indeed, backfilling is largely based
ferent values are used as estimates for about 90% of dimethe assumption that users would be motivated to pro-
jobs). We find that the behavior of users, as manifesteide accurate estimates, because jobs would have a better
through the estimate distributions, is remarkably similahance to backfill if the estimates are tight, but would be
across the different workload traces. Indeed, providifkgled if the estimates are too short.
our model with only the maximal allowed estimate value, However, empirical investigations of this issue found
along with the percentage of jobs that have used it, yielghat user runtime estimates are actually rather inaccurate
results that are very similar to the original. The remaifr1]. Results from four different installations are shown
ing difference (if any) is largely eliminated by providingn Fig. 1. These graphs are histograms of the estimation
information on one or two additional popular estimategccuracy: what percentage of the requested time was ac-
Consequently, in comparison to previous models, simrally used. The promising peak at 100% actually reflects
lations that utilize our model are better in reproducirjgbs that reached their allocated time and were then killed
scheduling behavior similar to that observed when usig the system according to the backfilling rules. The
real estimates. hump near zero was conjectured to reflect jobs that failed
on startup, based on the fact that all of them are very short
(less than 90 seconds). The rest of the jobs, that actually
1 Introduction ran successfully, have a rather flat uniform-like histogram

The issue of user runtime estimates has since become
EASY Backfilling [19, 21] is probably the most com<the focus of intensive research. A number of studies have
monly used method for scheduling parallel jobs at tigiggested that inaccurate runtime estimates are actually
presenttime [7]. The idea s simple: Whenever the syst@®od, as they provide the scheduler with more flexibil-
status changes (a new job arrives or a running job territy- and eventually lead to better performance; as a result,
nates), the scheduler scans the queue of waiting jobs inibwas even proposed to simply double the user runtime
der of arrival. Upon reaching the first queued job that c&stimates before using them [29, 21], or further, random-
not be started immediately (not enough free processoig)g them [22]. In contrast, other studies contend that
the scheduler makes a reservation on the job’s behalf. Tagsurate runtime estimates are actually better, as they can
is the earliest time in which enough free processors wolfdd to even better performance if used correctly, e.g. by
accumulate and allow the job to run. The scheduler thegheduling in some SJF (shortest job first) based order
continues to scan the queue looking for smaller jobs (14, 23, 1, 25]. Still other studies have shown that the
quire less processors) that have been waiting less, but @aauracy of user runtime estimates can have non-trivial
be started immediately without interfering with the resegffects on the results of performance evaluations [8].
vation. The action of selecting smaller jobs for execution
before their time is callebackfilling 1This is true for any backfilling scheduler, not just EASY.
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Figure 1:Accuracy histogram of user runtime estimates:uracy = 100 x runtime
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1.1 Motivation tually no fundamental difference between allowing users
to choose “any value”, or from within a limited set.
All this aCtiVity SpurrEd a search for ways to model user Therefore, regarc”ess of any possib|e Schedu"ng im-
runtime estimates. Such a model is needed for three rﬁﬁ)\/ements or Changesy it seems a para||e| workload
sons. First, itis useful as part of a general workload moggbdel will not be complete if realistic user estimates are
that can be used to study different job scheduling schemggs included. Importantly, we will show that systems per-
e.g. by means of simulation. Second, it is often the caggm better if real user estimates are replaced with artifi-
that existing log files from production systems (used t9al ones, generated by existing models. This uncaptured
drive simulations) are missing this information; a modehadness” quality of real user estimates constitutes a seri
can help in artificially manufacturing it. Third, a modebys deficiency of existing models, as the purpose of these
may provide insights that will be useful in the study of to reflect reality, not to paint a brighter (false) picture
whether and how the inaccuracy of estimates may be §¥hile counter intuitive, our goal in this paper is to pro-
ploited by the scheduler. duce estimates such that performance is worsened, not im-
We would like to make it clear that this paper targeisroved. Only when such a model is available, we can take
the first two reasons mentioned above, that is, we aih®e next step and consider ways to improve performance,
to model and reflect reality, not to make it better. Irbased on a truly representative workload.
deed, in a different study, we show how backfilling sched- In the reminder of this section we survey the estimate
ulers can produce and utilize better runtime predictionsodels that have been proposed, and point out their short-
that dramatically improve performance [25]. But eventhimings. This motivates the quest for a better model,
novel technique often relies on user estimates under wahich we propose in this paper.
ious conditions. Additionally, recall that user estimates
have a role_ that is different than just serving as appro>_;|!.-g Existing Models
mated runtimes, as they are also part of the user contract:
the system guarantees a job will never be killed before itge simplest possible model is to assume that user esti-
user estimate is reached. Consequently, system generaigebs are accurate. For example, such a model was used
predictions (or other conceivable future mechanisms thgt Feitelson in [8]. This approach has two advantages: it
are similar) can’t just” replace estimates. is extremely simple, and it avoids the murky issue of how
At the same time, estimates ensure that jobs will ite model user estimates correctly. However, as witnessed
deed be killed at some point. Systems with no user dsthe data in Fig. 1, it is far from the truth.
timates at all (that is, no runtime upper bound) are alsoA generalization of this model is to assume that a job’s
undesirable, as these will allow jobs to run indefinitelgstimate is uniformly distributed withifR, (f + 1)R],
potentially overwhelming the system. Atthe very least wehere R is the job’s runtime, andf is some non neg-
would expect users to choose some runtime upper-bowatigte factor { can’'t be negative because jobs are killed
from a predefined set of values. However, this scenaricisce their estimates are reached).f 1= 0, this means
rather similar to reality, in which most users are alreadlyat the estimates are identical to runtimes;fif= 4,
limiting themselves to very few canonical “round” estithey are distributed betweeR and5R, with an average
mates (as will be shown below), and jobs that exceed their3 R. Arguably, higherf values model increasingly in-
estimates are immediately killed. It turns out there is agecurate users. This model, which we call ttferhodel”,
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S o4l BEEE existence of a maximal allowed runtime, which suggests
o 0:2 I AR A T long jobs are guaranteed to have high accuracy. For ex-
® e . M T T Y N R ample, if a job runs for 17 hours, its estimate must be in

Q0 %\’o,j)o;))“’o,);’é % % G % the range of 17 to 18 hours, so it’s using at least 94.4% of
its estimate. In other words, in contrast to the underlying
assumption of the-model, the distribution of jobs in the
accuracy histogram (Fig. 1) is not uniform. Rather, long
]Sobs must be on the right, where accuracy is high, while
short jobs tend to be on the left, at lower accuracies.

A fourth rather similar model was proposed by Cirne

was proposed by Mu’alem and Feitelson [11] and sevefdld Berman [3], which took the opposite direction in com-
variants of it were used to investigate the effects of inaarison to the previous model and chose to produce run-
curacy [29, 21, 1]. It was also used by several researchiéies as multiples of estimates and accuracies, while gen-
in simulations using workloads that did not contain esgrating direct models to the latter two. This decision was
mates data [13, 8]. The main problem with this model hased on the argument that accuracies correlate with es-
that the estimates it creates are overly correlated with fifgates less than they do with runtimes. In their model,
real runtimes, so it actually gives the scheduler consiccuracies were claimed to be well-modeled by a gamma
erable amount of valuable information that is unavailabfistribution (this seems to be the result of trying to model
when real user estimates are used. In particular, it enatifé&s uniform part of the histogram along with the hump
the scheduler to effectively identify shorter jobs and seleat low accuracies, by using one function for both). Esti-
them for backfilling, leading to SJF-like behavior. For exnates were successfully modeled by a log-uniform distri-
ample, under this model, a one-hour job will always apution. This methodology suffers from the same problem
pear longer than a one-minute job (in reality, this is ofté# the previous model, because accuracy is again inde-
notthe case). This leads to better performance results tRgfdent of runtime. In addition, this model is not use-
those observed when using real user estimates. ful when attempting to add estimates to existing logs that
A third model, also proposed by Mu'alem and Feitelack them, or to workloads that are generated by other
son, attempts to reproduce the histograms of Fig. 1. Th&adels which usually include runtimes and lack estimates
flat histograms imply thak/E = u, i.e. that the ratio of [10, 6, 15, 20].
the actual runtimeR to the estimate® can be modeled In addition to the per-model shortcomings mentioned
as a uniformly distributed random variable € [0,1]). above, there are two drawbacks from which all of them
By changing sides we find that given a runtiielivided collectively suffer: The first is lack of repetitiveness:€érh
by u results in an artificial estimat®. While unrelated work of users of parallel machines usually takes the form
to the actual user estimate for this particular job, this @ bursts of very similar jobs, characterized as “sessions”
expected to lead to the same general statistics of all {Be28]. In the SDSC-SP2 log for example, the median
estimates taken together. The model also created the pealke of the number of different estimates used by a user
at 100% and the hump at low values. Finallyfifcame is only 3, which means most of the associated jobs look
out outrageous (becausehappened to be very small), itidentical to the scheduler. It has been recently shown
was truncated to 24 hours. This was called thariodel” that such repetitiveness can have decisive effect on per-
by Zhang et al. [27]¢ denoted the fraction of jobs in theformance [26]. The second shortcoming is a direct result
100% peak), who used it in various simulations. of the first: estimates form a modal distribution composed
The problem with this model is that it is missing a “hidof very few values, a fact that is not reflected in any exist-
den” factor which is often overlooked: that all productioilg model. This is further discussed in the next section.
installations have a limit on the maximal allowed runtime. The conclusion from the above discussion is that all
For example, on the SDSC SP2 machine this limit is T8irrently available models for generating user estimates
hours. Naturally, the limit also applies to estimates, asaite lacking in some respect. Consequently, using them in
is meaningless to estimate that a job will run for say 3imulations leads to performance results that are gegerall
hours if all jobs are limited to 18 hours. unrealistically better than those obtained when real user
Consider Fig. 2 which displays the average accuracyesftimates are used. Our goal in this paper is to capture the
jobs grouped to 100 equally sized bins according to th&fradness” of real user estimates by finding a model that
runtime. It has previously been conjectured that the apatches all known information about them: their distri-
parent connection between longer runtimes and increabetion, their connection with each job’s runtime, and their
accuracy, is because the more a job progresses in its ceffect on scheduler performance.

runtime

Figure 2: Average accuracy as a function of binned-job
runtime, in four different production traces.
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Figure 3: Runtime and estimate CDFs (cumulative distribution fusmts) of various workload traces (Section 4 discusses the
traces in detail). The fact that runtime-curves are muchérighan estimate-curves means runtimes are indeed muaerstian
estimates. For example, in CTC, 40% of the estimates aréeshtban one hour (60% are longer), while for runtimes theagion

is reversed (only 40% are longer than one hour).

2 Modality Consider the scenario in which an SJF scheduler must
work with estimates that are highly inaccurate. If these
We require a model capable of generating realistic ussstimates nevertheless result in a relatively correctrerde
estimates. The usual manner in which such problems arg of waiting jobs, performance can be dramatically im-
tackled is by fitting observed data to well known distrisroved (up to an order of magnitude according to [1]).
butions, later to be used for producing artificial data. Tdowever, if estimates are modal, many jobs look the same
some extent, this methodology is applicable when modgi-the eyes of the scheduler, which consequently fails to
ing estimates, which appear to be well captured using tdoritize them correctly, and performance deteriorales.
log-uniform distribution [3] as shown in Fig. 3. general, if the estimate distribution is dominated by only
The difficulty lies in that user estimates embody am@ few large monolithic modes, performance is negatively
other important characteristic: they are inherently modeffected, as less variance among jobs means less opportu-
[21, 2, 17], because users tend to repeatedly use the saities for the scheduler to perform backfilling.
“round” values (e.g. ten minutes, one hour, etc.). This is L o i
reflected in the staircase-like estimate curves of Fig. :%,,in'VIOd"’lIIty is absent from existing estimate models. An

which each mode corresponds to a popular estimate vaft']ér.m:“d'at_e heuristic that thgrefgre C?mes to ml_n.d. when
rying to incorporate modality, is to “round” artificially

In particular, note the significant modes located at th A .
maximal estimate of each trace, where the runtime a%nerated estimates (e.g. by one of the models described

estimate curves finally méetEvidently, the maximal al- above) to the nearest “canonical” value: values smaller
' hgélan 1 hour are rounded to (say) the nearest multiple of

lowed estimate is always a popular value. For example, .
y pop X inutes, values smaller than 5 hours are rounded to the

this value is used by a remarkable 24% of CTC jobs. T . .
garest hour, and so on. Experiments have shown that this

phenomenon probably reflects users’ lack of knowledﬁ istic fails | turing the bad f timat
or inability to predict how long their jobs will run, along eunstic farls in capturing the badness of user estimates,

with their tendency to “play it safe” in the face of stricfnd fﬁ”"”t'_}?‘r_‘cle rezulﬁ are sym;lardto thdos§ dzp:ameﬁ be-
system policy to kill underestimated jobs. ore this "f}r el m,? alty was introduced. Additionatly
. ) ; . arbitrary “rounding” fails to reproduce the various prop-
In the context of job scheduling, this observation is . . o .
N . . . « _erties of the estimate distribution, as reported in the fol-
quite significant, as maximal-estimate jobs are the worlggNin sections
kind” of jobs in the eyes of a scheduler (too long to be 9 '
backfilled within all existing scheduling “holes”). In fact The fact of the matter is that modes have a different
if all jobs chose their estimates to be the maximal valugvorse) nature than produced by the above. For example,
all backfilling activity would stop completely when examining the number of jobs associated with the
The observation about the maximal estimate mode mayst popular estimates, we learn that these decay in an
also be applied, to some extent, on other (shorter) modegyonential manner e.g. half of the jobs use only 5 esti-
FoP— t o of BLUE and KTH: this is furthis-d mate values, 90% of the jobs use 20 estimates values etc.
I € apparent exception O an , tNIS IS TUrtnes-
cussed in Section 4 which reveals that 2h and 4h effectivelyesas In contrast, the decay ofless _pOPU|ar modes obeys a poW_er
BLUE and KTH's maximal estimate values, respectively. law. In fact, almost every estimates-related aspect exhibi

3Except for when using the “extra” nodes, see [21] for details ~ clear “model-able” (that can be modeled) characteristics.




3 Methodology Popularity Ranks Likewise, we need to model the
mode sizes/popuIarities/percentag@;};il. This se-
The modal nature of estimates motivates the followings is sorted in order of decreasing popularitypsis the
methodology. When examining a trace, we view ifsercentage of jobs associated with the most popular esti-
estimate distribution as a series Aif modes given by mate. The inde) denotes theopularity rankof the mode
{(ti7pi)}fi1. Each pair(t;, p;) represents one mode, sucko whichp; belongs. For example, the popularity rank of
thatt, is the estimate-value in secondsdr time), andp;  18h within CTC is 1 $; = 23.8%), as this is the most
is the percentage of jobs that uses their estimatex(for popular estimate. We also define thermalized popular-
percent or popularity). For example, the CTC mode sigy rank to bej/ K (a value between 0 and 1). Section 8
ries includes the paif18h, 23.8%) because 23.8% of thedefines the functior¥),,, that gets;j as input (popularity
jobs have used 18 hours as their estimate. Occasionalyk), and returng,;, the associated mode size.
we refer to modes asinswithin the estimate histogram. Mapping Given the above two series, we need to gen-
Note thaty";" | p; = 100% (we are considering all theerate a mapping between them, namely, to determine the
jobs in the trace). The remainder of this section servesgspularityp; of any given estimate;, which are paired
a roadmc’;go of this paper, describing step-by-step how tagorm a mode. Section 9 defines the functigp,, that
{(ti, pi)},—, mode-series is constructed. getsi as input (time rank) and returriss output (popular-
ity rank). Using the two functions defined above, we can
now associate eaahwith the appropriatg;. This yields
a complete description of the estimates distribution. The
Each of the following paragraphs correspond to a sectigt®del is then briefly surveyed in Section 10.
or two (sections are listed in order), and may contain someValidation Finally, the last part of this paper is vali-
associated definitions to be used later on. dating that the resulting distribution resembles the tgali

TraceFiles We build our model carefully, one compoAdditionally, we also verify through simulation that the
nent at a time, in order to achieve the desired effect. Eagi@dness” of user estimates is successfully captured, by
step is based on analyzing user estimates in traces fri@@lacing the original estimates with those generated by
various production machines, in an attempt to find invagur model. The replacement activity mandates develop-
ants that are not unique to a single installation. The traf@ & method according to which estimates are assigned
files we used and the manipulations we applied on thégnjobs (recall that an estimate of a job must be bigger
are discussed in Section 4. than or equal to its runtime). This is done in Section 11.

Mass Disparity Our first step is showing that therel he paper is concluded in Section 12.
exists a natural partition within the mode series that di-
vides it into two: About 20 “head” estimate values ar i1ahili
used throughout the entire trace by about 90% of the jo 52 Input, Output, and Availability
that compose the trace. The rest of the estimate values@save go along, the number ofiodel parameteraccu-
considered “tail” values. This is discussed in Section fulates to the neighborhood of two dozens. Most are
Throughout the paper we will see that these two modetional and are supplied with reasonable default values.
groups have distinctive characteristics. Naturally, the &he only mandatory parameters are the number of jobs
forts we invest in modeling the two are proportional to th& (the number of estimates to produce), and the maximal
mass they entail. allowed estimate valug&,,.... Another important parame-

Number of Estimates We start the modeling in Sec-ter is the percentage of jobs associated With,., as this
tion 6 by finding out how many different estimates theggopular mode exhibits great variance and has decisive ef-
are, thatis, modeling the value &f. Note that this mostly fect on performance. Thautput of the modes the series
effects the tail as we already know the head siz2().  of the modes: how many jobs use which estimate.

Time Ranks The next step is modeling the values The model we develop is somewhat sophisticated and
themselves, that is, what exactly are tRetime-values involves a number of technical issues with subtle nature.
{ti}fil. The indexing of this ascendingly sorted serighs it is our purpose to allow simulations that are more
is according to the values, with being the shortest andrealistic, the C++ source code of the model is made avail-
tx being the maximal value allowed within the trace (alsable for download from the parallel workload archive [9].
denotedr;,,.). The index; denotes théime rankof es- Its interface is composed of two function: The first gets a
timatet,. This concept proved to be very helpful in oustructure containing all the model parameters (all but two
modeling efforts. We also define tm®rmalized timeof are assigned default values), and returns an arralf of
an estimate; to bet; /T,,.. (a value between 0 and 1)modes. The second function gets the mode array and an-
Section 7 defines the functioh;,,, that getsi as input other array composed of job structures (ID and runtime).
(time rank), and returng (seconds). It than associates each job with a suitable estimate.

3.1 Roadmap of This Paper



Abbrev. Site Start | End |CPUS Number of jobs {V) M |U|X K

original| cleaned sane |months userd max|| estimate
SDSC-106San-Diego Supercomp. CtApr 98|Apr 00| 128| 73,103 59,332 53,673 24|428(18h 339
CTC Cornell Theory Center Jun 9§May 97| 512|| 79,302 77,222 77,222 11|679|18h 265
KTH4H |Swedish Royal Instit. TechSep 9§Aug 97| 100|| 23,070 23,070 23,070 11|209| 4h 106
BLUE San-Diego Supercomp. GtApr 00{Jun 03 1,152/|250,44(0243,314223,407 32|468|36h 525
SDSC San-Diego Supercomp. GtApr 98{Apr 00| 128|| 73,496 59,725 54,053 24|428|18h 543
KTH Swedish Royal Instit. TechSep 96Aug 97| 100|| 28,490 28,490 28,490 11|214|60h 271

Table 1: The trace files. The variabled, U, X, and K are months duration, number of users, maximal estimateeyalod
number of estimate bins, respectively. BLUE relates to Bago'’s Blue-Horizon machine. The others are SP2 machines.

1 e}
4 TheTraceFiles 8 L0 T T
g 150 -
. . ) o o 100 - P
The analysis and simulations reported in this paper aF§ B0 [ K-LH
' . 1
based on four accounting logs from large-scale paralled 0 100 200 300 400 500 600 700

machines that are listed in Table 1. These are all the logs
from the parallel workload archive [9] that contain infor-

mation about user estimates and were available at the tigyg e 4: Assume there are users in a log. Each user is asso-
we began this research (the DAS2 log, which also coglateq with the number of modes he owns (i = 1,2, ...,n),
tains this data, was added since). Since traces spandiigh thain, is the smallest angh., is the largest. Theindex is
past decade, were generated at different sites, by machieed to be the user-rank and serves as the X-axis. The-assoc
with different sizes, and reflect different load conditipngtedm; is the Y-axis and only positive:;-s are shown (that is,
we have reason to believe consistent results obtained/§€rs with a zeren;, that do not own any mode, are not shown).

user-rank

this paper are truly representative. The SDSC outlier is associated with user 106 which is order of
. - . _magnitude more “original” than other users, exclusivelynowg
Table 1 contains data about the original traces, their r€05 of the SDSC modes.

ommended “cleaned” version which is also available from
the archive (excludes various non-representative anoma-
lies [26]), and a “sane” version. The latter applies a filter

on “cleaned” logs to remove jobs that cannot be used(®ection 6), and the time values used (Section 7), respec-

simulations (unknown size, runtime, or submission timejvely. Other aspects of the model where not affected.
As our goal is providing a model for the sake of perfor- ] ) ]
mance analysis through simulation, our modeling activ- 1 n€ other problematic workload was KTH: This log is
ity targets only sane jobs. In particular, thecolumn in actually a combination of three different modes of activ-

Table 1 is related to the sane versions, as is all the di¥a running jobs of up to 4 hours on weekdays, running
presented in this paper. jobs of up to 15 hours on weeknights, and running jobs

of up to 60 hours on weekends. We have found that in

During the study we found that two of the.san.e quﬁe context of user estimates modeling, considering these
need to be further manipulated to be useful in this co

text. The first is the SDSC log: We say an estimate mo@wee domains in an aggregated manner is similar to, say,

e . .
is “owned” by a user if this estimate was exclusively use%’:\@grfegatln%CTC elmd BLL:CEhtO be a;mgle ng. we tlzer%-
by only that user within the log. It turns out that user 106, ¢ focused ononlyone o t. em —the daytime workloa
: . U . . ith the 4-hour limit, which is the largest component of
is uniguely creative in comparison to others, owning 2 Be log. This will be denoted b THAH
estimates of the 543 found in SDSC (38%). This is highly 9- '
irregular* as shown in Fig. 4 which displays the number of Recall our claim that maximal estimate values are al-
modes owned by each user (only owners are shown). Weys popular (Fig. 3). We have argued that 4h and 2h
therefore remove this unique activity from the log for thgre the effective maxima of KTH and BLUE, respectively.
remainder of the discussion (regular activity of user 106pviously, this is the case for KTH (most of the time 4h
using estimates that are also used by others, is allowegstthe maximum). As for BLUE, this machine had an “ex-
remain). The resulting log is calle8®DSC-106This ver- press” and ‘“interactive” priority queues defined, with a
sion proved beneficial when modeliig and F;, the limit of 2 hours on submitted jobs [9]. Indeed, the vast
number of different estimate values found within a logajority of 2-hours estimate jobs are from within these
gueues, which means here too users provided the maximal
4In fact, as this activity is concentrated within about 2 nhsnsf the  Value available to them (while still allowing their jobs to
log, it actually constitutes a workload flurry [26]. be accepted to the higher priority queues).
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Figure 5: Distributions of bins and of jobs, showing that a small fiactof the bins account for a large fraction of the jobs and
vice versa. The actual fractions are indicated by the jaitior which is a generalization of the proverbial 10/90 rule

jobs 10%] 50%] 75% | 90%] 95%] 98%]| 99% | 100% SDSC-106 cTC KTH4H BLUE
SDSC-104] 1| 6| 12| 22| 39| 77| 116] 339] & 1000 —— — — —
CTC 1 4| 10| 22| 36| 62| 89| 265 B
KTH4H 1 6| 12| 21| 28| 36| 43| 106 = 100 e
BLUE 1 3 8| 23| 42| 76| 116/ 563| ‘5
SDSC 1 6 12| 23| 43| 91| 156| 543| § 10 LR .
KTH 1 8| 21| 41| 60| 89| 122 270 -g ‘ ¥
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Table 2: Mass disparity: per-log minimal number of estimate™ S § - 328 §
bins needed to cover the specified percent of the jobs. = =

popularity rank

Figure 6: Weeks in which an estimate appears, as a function of
its popularity-rank (note that estimates are sorted froemtiost
popular to the least). The top-20 appear throughout the logs
Examining the histogram of estimates immediately re-

veals that the distribution is highly modal: A small num-
ber of values are used very many times, while many othsfrjobs, showing the fraction of jobs with estimates that
values are only used a small number of times. In this sé€all into bins of the different sizes. This line starts out fla
tion, we establish the mass disparity among estimate biasd only grows sharply at the end, indicating that most
Human beings tend to estimate runtime with “roundgobs belong to large bins (i.e. most estimate values are the
or “canonical” numbers: 10 minutes, one hour etc. [21, pppular values that are repeatedly used very many times).
17]. This has two consequences. One is that the numbeThe figure also shows the joint ratio for each case. This
of bins in the histogramK) is very small relative to the is a generalization of the well-know 10/90 rule. For exam-
number of jobs in the traceN). According to Table 1, ple, the joint ratio of 9/91 for the CTC log means that 9%
N may be in the order of tens to hundreds of thousandsthe bins account for 91% of the jobs, and vice versa: the
while K is invariably in the order of only a few hundredspther 91% of the bins contain only 9% of the jobs. Fur-
The other consequence is that a small set of canonitwdr details about the shape of the distributions are given
bins dominates the set of values. Similar phenomena h&vdable 2. This shows the absolute number of bins in-
been observed in many other types of workloads. Theglved, rather than their fraction; for example, the CTC
are called a “mass disparity”, because the mass of the dis~ shows that a mere 4 bins cover 50% of the jobs, 10
tribution is not spread out equally; rather, a small set bins cover 75% of the jobs, and 22 bins contain 90%. In-
values gets a disproportionally large part of the mass [5]eed, a bit more than 20 head bins are enough to account
The mass disparity of user runtime estimates is illur 90% of the jobs in all four logs.
trated in Fig. 5. These are CDFs related to the bin size'Head” bins dramatically vary in size: While the most
(the number of jobs composing a bin). In each graph, thepular is used by0 — 25% of the jobs, only~ 1% use
top line is simply the distribution of bin sizes. This linghe 20-th most popular. Regardless, all head bins, whether
grows sharply at the beginning, indicating that there darge or small, have a common temporal quality: their use
very many small bins (i.e. values that are used by onlyisnot confined to a limited period of time. Rather, they are
small number of jobs). The other line is the distributionniformly used throughoutthe entire log. This is shown in

5 MassDisparity of Estimates
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Figure 7:Modeling K using a power modek = aN® (« = 1.1, 8 = 0.5) and a liner model which is defined by the points as
specified in Table 3. Curves associated with SDSC share the salor, the higher being SDSC-106.

Fig. 6 that plots the number of weeks in which estimated (jobs) 0| 20| 200 1,000 10,0004 70,000 250,000
are used, as a function of their popularity ranks. The hofs (ésts) |0 10| 20| 35 90| 340| 565
izontal dot sequence associated with head bins indicatd4y (Slope)] [1/2]1/18|] 1/53| 1/164] 1/240] 1/800
they are sp_read OUt. evenly throughout the log. Furth% ble 3: Points defining the linear model & usingN. The
thg p_omt of mtersectlon_ between this sequence and thes_ 0e indicates the arrival rate of new estimates.
axis is always the duration of the trace, e.g. for SDSC this

is 2 years (a bit more than 100 weeks).

and most attempts revealed some insightful observations.
6 Number of Estimates In fact, we are convinced is the product of a combina-

tion of all factors, and that they all effect it to some degree
We have established that about 20 popular “head” biHswever, in the interest of being short while avoiding un-
represent about 90% of the jobs’ estimate distributiavarranted complications (considering this only affects th
mass. We are left with the question of modeling the nunail of the distribution), we have chosen to modélas a
ber of the other “tail” bins used by the remaining 10%. function of N alone, which obtains tolerable results.

Examining the four traces of choice in Table 1, we S€€rig. 7 plotsK as a function of the number of jobs sub-

‘h?“K tends to grow W'th the size of the trace, where thﬁi ted so far (ifn is an X value, its associated Y is the
“size” can be measured in various ways: as the numbe

r . . . .
ber of estimate b , bef b
jobs executedl), as the duration of time spanneti/{, fiimber of estimate bins in use, before théh job was

h i1al estimateX h ber of diff submitted). Note how the vanilla version of KTH and
as the maximal estimateX{), or as the number of di € SpSC stands out: the former due to the three estimate do-

ent active userd). Note that thé/ metric also measures ains it contains, and the latter due to user 106. All curves

SIZ€, as NEW USers continue to appear throughout each At be rather successfully fitted with a power model on in-
Th's. IS relevan_t because after_ all, users are the ones Hilidual bases (we present one such power model that was
erat_mg the estimates. In fact,_ in each of the four tracgssti ultaneously fitted against all four traces of choice).
choice, about 40% of the estimate modes are eXCIUS'Vﬁé(cordingly, we allow the user of our model to supply the

owvr\}edh(as defmeq abovz)_by va(;|olgs uSers ‘ . ¢ appropriate coefficients (as optional parameters). How-
e have experimented in modelidg as a function o er, as this only effects tail bins, we set an ad-hoc lin-

: A ey
the aspects mentioned above (individually or comblneg)alr model (defined by Table 3) as the default configura-

5 surprising anecdote is that the actual number of bin-owigealso 10N _This_ provides a tolerable approximation &f for
(exactly) 40, in three of the four traces. any given job numbeN .




1 real data model
L T T T

KTHAH oo T frace KTHZH  CTC _ SDSC-106  BLUE
cTC g a | 191 > 157 > 150 > 124
08 "sDSC-106 —— /77| g K | 106 < 265 < 339 < 525

BLUE
06 o Table 4: Thea parameter of the fractional fit presented in Fig. 8

is correlated with the number of different estimat&9 .(

0.8 b o ™
1
0

. 04 1 F
g ;,.' " 2 I KTH|4H T I I I
k. 02 I S B = S s i data -
= ; Bt : : ! 1.8 Hi i power model —
g ok i S — g LE : : : : :
£ o N T © N ¥ © @ o g 1.6 i 4., CTC . . S SR
B o o o o o o o = : _H— +SDSC-106
=} 1 KTH4H CTC SDSC-106 BLUE © ) + + ‘ BLUE
E "real’ — P A A ® gL + G e e eleietetere
] model N £ : 3 3 o+ 3 3
0.8 R E g : : : : : :
i ' 1 1 1 1 1 1 1
P 8 0 - I O 0 O O RO OO OV | 100 200 300 400 500 600 700
R By Y Pl ]_ different estmates (K)
0.4 [iiofoid iidfod b i e f _
. YA I P / Figure 9:Modelinga as a function ofs usingl + aK” (with
o2 b i Ll Ll LSl a =121, 8 = —0.6). Note that a biggeK results in am
A o L AN parameter that is closer (but never equal) to 1, as required.
o il {10 . pAun

OCNYTORAONTOXAONTORHONT QD
oooo oooo oooo oooo . . .
An obvious property off(z) in the relevant domain
(x € [0,1]) is that whena gets closer to 1, its numera-
Figure 8:Modeling estimate times usinf(z) = <22 tor goes to zero and therefore the curve gets closer to the
bottom and right axes. On the other handaagets fur-
ther from 1 (goes to infinity), its numerator and denomina-
7 TimeValuesof Estimates tor get more and more similar, which means the function
converges tof (z) = « (the main diagonal). The prac-

Having computed & approximation (order of a few hun-tical meaning of this is tlhat less estimate values (smaller
dreds), we know how many estimate bins should be prs- Piggera) means estimates’ temporal spread is more
duced by our model. Let us continue to generate tdgsgniform. In contrast, more estimate values (bigger
values, namely manufacture ﬂﬁe}fil series. It has al- Smallera) means a tendenc_y of estimates to concentrate
ready been noted that users tend to give “round” estimafédhe beginning of the Y-axis, namely, be shorter.

[21, 2, 17], but this loose specification is not enough. In [N order to reduce the number of user-supplied param-
this section we develop a simple method to genefate €t€rs of our model, we can try to approximatas a func-
such appropriate values. We are currently not considdfn of & (which we already know how to reasonably de-
ing the most popular (20) estimates in a separate m&4ce from the number of jobs). The problem is that we
ner. These will be addressed in detail later on (Section 9y have four samples (Table 4), too few to produce a

complementing the model we develop in this section. fit. One_ heuristic to overcome this problem is splitting the
fraces in two and computing anda for each half. This

Recall that the time-ranks of estimates are their asso i | by eiaht (t dditional
atedindexes when ascendingly numbered from shorte§{1'aryes our sample space by €ig (two addi lonal sam-
es per trace) to a total of twelve. The results of fitting

to longest. Evidently, this concept can be very helpful S . :
our purposes. We define a functiéh,, that upon a time- this data to the best model we could find are shown in

rank inputi, return the associated time valygseconds), F'Q\’/'Vg and |nd|c§1t$_ a n;r(])derate_ succetssb
such thatfy;,, (i) = t;. e can now define the requirdd;,,, to be

The top-left of Fig. 8 plots normalized estimate time , . (a—1 %
(ti/Trmaz, WhereTy, .. is the maximal estimate) as a func- Fiim (i) = Trnax - f (1K) = Trnae - ———
tion of its associated normalized time-rank K), for
all four traces. According to the top-right and bottorGenerating thqui}fil series of time values is done by
of Fig. 8, it turns out the resulting curves can be modimply assigningl, 2, ..., K to the time-rank in an iter-
eled with great success when using the fractional functigtive manner. Finally, as almost 100% of the estimates
flz) = % for somea > 1 (z is normalized time- are given in a minute resolution, the generated values are
rank). Further, the actual values @{Table 4) are corre- rounded to the nearest multiple of 60 (if not colliding with
lated with K, in that biggerK implies smallela. previously generated estimates).

normalized time-rank (i/K)

2

K
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Figure 10: Modeling percentage of jobs associated with estimate lass function of popularity rank. The head (middle) is
modeled by the exponential functie®® + ~ (with a = 14.05, 3 = —0.18, andy = 0.46). The tail (right) is modeled by the
wzx” power law (withw = 795.6 andp = —2.27). Note that the middle figure has linear axes, while the othrerare log scaled.
The left figure concatenates the head and tail models.

8 Popularity of Estimates We note that the observed differences among the traces
at the “head of the head” expose an inherent weakness

In the previous section we have modeled the time valu8sny estimate model one might suggest, because the ef-
of estimates. Here we raise the question of how popufgpt of the variance among these 1-3 estimates is decisive.
is each estimate, that is, how many jobs are actually §s2nsequently, our model will allow (though not mandate)
ing each estimate value? Answering this question implig user to provide information regarding top-ranking-esti
modeling the{pi}fil percentage series. Once again, lik@ates as model parameters (this will be further addressed
in the previous section, ranking the estimates (this tirffethe next section). As for the default, recall that a job es-
based on popularity) proves to be highly beneficial. RBMating to run for the maximal allowed valugf..) is

call that{p;}* , is descendingly sorted such thatis the the worstkind of job in the eyes of a backfilling scheduler
percentage of jobs using the most popu|ar estimate Va|('@cti0n 2) For this reason, we prefer the default model to
p: is the percentage of jobs using thenost popular esti- follow the CTC example by making the (single) top rank-
mate value, andserves as the associated popularity ranRg estimate “break” the exponential contiguity. This sig-

We seek a functiot},,,, such thatF,,, (i) = p;. Note that nificant job percentage will later be associated With, .,
the constraint OEK Fyop(i) = 100 must hold to serve as a realistic worst case scenario. We therefore
1=1+ pop - .

Fig. 10 plots the percentile size of each estimate b%?ﬁnerOp as follows

as a function of its popularity-rank. Again, there is a clear ]9 _ 22_3 (aeﬁ»j + 7) i=1
distinction between the top twenty most popular estimatgs (i) = Bi =2 i —92.3 .90
L . . . op ae’” + -y 1 =2,3,...,
(head of the distribution) and the others (tail), as sizes of w . i . 100-89 i=91.99 K
head-bins decay exponentially, whereas the decay of the A e
tail obeys some power law. Starting with the (simplest) middle branchi,,, is de-

The suggested fits are indeed very successtdl & termined by the exponential model for all head popular-
0.95 in both cases). However, when concentrating on ti¥ ranks but the first (the default values for the coeffi-
head (left or middle of Fig. 10), it is evident the expctients are specified in the caption of Fig. 10). The first
nential model is less successful for the first few estimat&§anch is defined so as to preserve the invariant shown in
For example, in CTC the most popular estimate is used F§Ple 2 that the twenty top ranking estimates are enough
about 24% of the jobs, while in SDSC this is true for oniip cover almost 90% of the jobs. Finally, the third branch
11%. In BLUE the situation is worse as the three top ranftetermine sizes of tail estimates according to a power law
ing estimates “break” the exponential curve. (Indeed, tk@gain, coefficient values are specified in Fig. 10). But
exponential fit was produced after excluding these “al§: preserve the constraint thBt ;" | Fyop(i) = 100, tail
normal” points.) Obviously, no model is perfect. But thiizes are scaled by a factor 8522, where) is the sum
seemingly minor deficiency (at the “head of the head”) &f the tail: Zfiﬂ w - i*. The resulting default curve is
actually quite significant, as a large part of the distribalmost identical to the one associated with the model as
tion mass lies within this part (differences in less populpresented in Fig. 10, with a top rank of a bit more than
estimates are far less important). 20% (to be associated with,, ).
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Figure 11:Scatter plots of relative popularity-ranks vs. relativegiranks appear to reveal a uniform distribution acrossaaes.
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Figure 12: Aggregating the data shown in Fig. 11 into a grid-based hemt-reveals no further insight, other than a consistent
tendency of popular estimates to be short (bottom-leftibtzd!s).

9 M apping Timeto Popular Ity The result, displayed in Fig. 12, appears to strengthen
our initial hypothesis that the mapping between
The next step after separately generating the estimaigspularity-ranks and time-ranks is more or less uni-
time {t;};-, and popularity{p;}"* | is figuring out how formally random, as other than the bottom-left cell being
two construct a bipartite matching between the two. Wensistently black (top twenty popular estimates show
seek a function’,,,;, such thatF,,q,(i) = j, thatis, we tendency of being shorter), there is no consistent pattern
want to map each time-rank to a popularity-rank in a maghat emerges when comparing the different traces.
ner that yields an estimate distributions similar to those o next step was therefore to randomly map between
found in the original traces (Fig. 3). time and popularity ranks. Regrettably, this resulted in
failure, as the generated CDFs were inherently different
9.1 Mapping of Tail Estimates than those displayed in Fig. 3. The major guilty party of
this failure were (unsurprisingly) the “big modes” that fel
in the wrong places. The fact of the matter is that when
iformly) randomly mapping between time and popu-

As a first step towards constructifg,.,, let us exam-
ine this mapping as it appears in the four traces. Fig.

scatter pIoFs normalized popglaérity-rank; vs. normalizggiy, ranks, there is a nonnegligible probability that the
time-ranks: one point per estimatéhe points appear 10 4_5 st popular estimates are assigned to (say) times in
be more or less uniformly distributed, which means thejigs oximity of the maximal value, which means that the

is no apparent mapping rule. majority of the distribution mass is much too long. Alter-

In an effort to expose some trend possibly hiddepyely, there is also a nonnegligible probability that th
within the “disorder” of the scatter plots, we counted t posite will occur, namely, that none of the more popu-

number of points in each grid-cell within Fig. 11. We thepy estimates will be assigned to a time in the proximity of
generated an associated heat-map for each sub-figure-by contrary to our previous findings
FMZLE! .

assigning a color based on the point-count of_each cel We conclude that it is tail estimates (in terms of pop-
cells that are populated by 80-100% of the maximal (Cemarity) that are roughly randomly mapped to times in

p0|r_1t—co(;mt_1;ﬁut?ld vzl.thln”the subl—flggrg (%eggfgj)gre a uniform manner, forming the relatively balanced scat-
assignea wi ack; cells popuiated vy U- € tor plot observed in Fig. 11. This appearance is created

assign_ed With white;_th_e remaining ceI_Is are assig_ned_wgue to the fact there are much more tail estimates (few

a gray intensity that is linearly proportional to their pin hundreds) than head’s (20). The head estimates minority

. . 0 . :

count, batched in multiples of 20% 6f. which nevertheless constitute 90% of the mass, distributes
6A scatter plot of actual values turns out to be meaningless. differently and requires a greater modeling effort.
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9.2 Determining Head Times #| estimate] SDSC-106 CTC [KTH4H| BLUE

hh:mm
We have reached the point where the effort to model userl| 00:01 6.6,
estimates is reduced to simply determining twenty actugl2| 00:02 4.0,
time values and mapping them correctly to the appropti- 00103 Laa
ate (head) sizes. In other words, our task is as simple aé OO.'O4 1200,
‘ , ' A 00:05 || 11.3,, 8.8 |11.54, | 2.7
producing twenty(;, p;) pairs. These are good news, as$ 6| 00:10 || 7.9, 6.4 | 960 | 4.3

the number of samples is so small, that a thorough exami-7| 00:12 || 1.2,
nation of the entire sample-space becomes a feasible tgsi| 00:15 || 3.045 [10.6) | 5.3y |16.04
The bad news is that unlike previous parts of the modg|9| 00:20 | 4.8, 2.002) | 3.1ua | 2.5
that are actually relatively trivial, and in spite of consid 101 00:30 || 4.7, 350 | 95¢ (17.7c

. 11| 00:40 1.3, 0.5
erable efforts we have made, we have failed to produce #| 0045 | 1.1, ) a9

simplemethod of accomplishing the task. In the interesti3| 00:50 0.520)
of practicality and space, we will not describe our vari-14| 01:00 [|10.5., 4.2, 585 | 4.9
ous unsuccessful attempts to produce a simple straightfpt>| 01:30 0.80s) | 1.30s) | 1.502
ward solution. Instead, we will concentrate on describin ;3 8%38 140 6.0
the sophisticated algorithm we developed that has finallfg| 35>.0g || 53 5.4 45 21 3“‘)
. . . +9(6) ) +9(9) +9(1)
managed to deliver satisfactory results. 19| 02:10 1.30n

Let us examine the relevant sample space. Table 5 li$#0| 02:30 || 1.2,
the twenty most popular estimates in each trace, and thgdl| 03:00 | 3.8 494 | 2505 | 1.840
associated (job) percentile sizes. It is immediately appeuz% 03:20 5.1,
ent that of the 36 values displayed, a remarkable 15 g Al 04:00 || 5.7, 220, 12'.5(1) 16,

joint timesacross all traces (note that we do not considebs| 4-50 620,
values higher than 4 hours within the KTH4H log, when2g| 05:00 || 1.4, 1100 0.9,
determining which values are joint). The joint times are27| 06:00 || 2.0, 6.1 1.004
highlighted in bold font, and have values one would ex28| 07:00 || 0.9,
pect from humans to ordinarily use. Note that this is rg29| 08:00 || 3.4, 1504 0847
gardless of the different per-trace maximal estimate imit gg %g 88 2'8“2) %';“” 8'2“6)
- . : .0 200 B
We conclude that joint values should be hard-codedin ou>| 15-00 0.920) 1.545
model, as it is fairly reasonable to conjecture humans wilB3| 16:00 Our
always extensively use values like 10 minutes, 1 hour, et&4| 17:00 0.610)
We therefore define the first head-mapping step — detegg %% %% 9.8s  [23.8 %-i(g)
. . 13
Tr;gggotlroewtgenty time values that are the most populaiSum @ 567 559 593 88.7( )
sum (joint) [|81.2 84.4 60.4 79.1

1. ChooseT 4., the maximal estimate (which is aT
mandatory parameter of our model). As previouley

mentioned, this is always a top ranking value. fifteen of the top twenty estimates are joint across all sqez-

) P ding KTH4H for estimates bigger than 4 hours). Joint-esti
2. ti22%se all-hard-coded joint times that are Sma”n‘élvgtes appear in bold font. The subscript parentheses démote
max-

popularity-ranks within each trace. Notice the percerstilm of
3. Choose in order (from largest to smallest) multiplége top twenty which is invariantly in the neighborhood 0969
Of Thouna that are smaller thafi,,..,, WhereThoumnd the value used in Section 8 to defiRg,,,.
is 200 hours, then 100 hours, then 50h, 10h, 5h, 2h,
1h, 20min, 10min, and 5 minutes. This process is

able 5: Top twenty popular bins in the four traces. Each col-
mn contains exactly twenty job percentage values. Note tha

stopped when the number of (different) chosen vajhare them with the community. Nevertheless, our al-
ues reaches twenty. gorithm generates longer times based on the modes they
report (400h, 200h, 100h, and 50h in the NCSA O2K

The role of the third item above is to addedative as-
) . . |t~|races).
pectto the process of choosing popular estimates, which IS
largely hard-coded (second item). As will later be shown, Finally, recall we have already generaf€édime values

this manages to successfully capture KTH4H's condensesing F;;,,, defined in Section 7. Head times generated

nature. At the other end, traces (machines) of larger estére, replace the twenty values generated’y, that are

mate domains containing jobs that span hundreds of hotlms closest to them (and so the structure reported in Fig. 8

do in fact exist [2]. Regrettably, their owners refuse tis preserved).
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11 10/ 20 5 9 Figure 13: There is only 0-3 difference between the closest
%% 1% 1g %g %91 three ttr-s that are associated with the more popular rards (
14 14! 12 9 13 ble 6). For example, 3 of the ttr-s associated with popylaaibk
15 19| 13 17 16 2, are located in rows 3-5 in Table 6 (highlighted in a différe
16 11| 10| 15| 15 color).
17 12| 15 13| 17
%g 28 g 1? 12 The Fj,, functions in Table 6 reflect reality, and are

in fact the reason for the log-uniform CDFs observed in
Table 6: The F,,, functions of the four traces. The four mosFid. 3. We therefore seek an algorithm that can “learn”
popular ranks in each trace are highlighted in bold font. these functions and be able to imitate them. Given such
an artificial /4, we would finally be able to match head-
sizes (produced in Section 8, their size defines their pop-
9.3 Mapping of Head Estimates ularity rank) to head-times (produced in Section 9.2, their
) _ _ ) value defines their ttr-s) and complete our model.
Having both head times (seconds) and sizes (job percenta; fiyst glance, the fouit},, functions appear to have
ages) we now go on to map between them. As usual, fiife similarities (the correlation coefficient betweenet
mapping is made possible by using the associated ranumns of Table 6 is only 0.1-0.3), seemingly deeming
rather than the actual values. For this purpose we nggfiire on the generalization attempt. However a closer in-
two new definitions: spection reveals some regularities. Consider for example
First, we define a new type of time-rank, top-twenty the more popular (and therefore more important to model)
time rank (or ttr for short), which is rather similar toranks: at least three of four values of each such rank are
the ordinary time-rank: All top-twenty times, excludinglustering across neighboring lines (ttr-s). This is made
Tnax, are ascendingly sorted. The firstis assigned a ttrelearer in Fig. 13. Another observation is that when di-
the second a ttr=2, and the last a ttr=19. For example, @Rting popularity-ranks into two (1-10 vs. 11-20), around
cording to Table 5, in CTC, 00:05 has ttr=1, 00:10 hg%9 of the more popular ranks are found in the top half of
ttr=2, 01:30 has a ttr=7, and 17:00 has a ttr=19,., IS Table 6, which indicates a clear tendency of more popular
always associated with ttr=0. ranks to be associated with smaller ttr-s. (This coincides
Second, for each trace-filwg, we define a function with the log-uniformity of the original estimate distribu-
F,4 that maps ttr-s to the associated popularity rankigns). Itis our job to capture these regularities.
within that log. For exampleFi..(0)=1 asT;,..=18h Inthe initialization part of our algorithm, which we call
(associated with ttr=0) is its most popular estimate. Likékepool algorithm we associate ttr=0 (&f,,,,..) with pop-
wise, F.(1)=3, as 5min is the smallest top-twenty estularity rank=1, that is, the maximal estimate is also the
mate (ttr=1) and is the third most popular estimate withinost popular. The rationale of this decision is that
CTC. Table 6 lists},, of the four traces. Recallthat 2his 1. according to Table 6 this is usually the case in real
the effectiveT;, ... of BLUE and therefore this is the esti- traces,
mate we choose to associate with ttr=0. Additionally, note, . . . .
the BLUE 01:59 mode near itg,,,,,=2h (Table 5). This 2. as explame@ n Sectloq 2, mak'ﬂg”.‘“”.the most
is probably due to users trying to enjoy both worlds: use popular esumatg constitutes a reallstlc worst case
: Lo . scenario, which is most appropriate to serve as the
the maximal value, while “tricking” the system to assign default setting, and
their jobs a higher priority as a result of being shorter. We '
are not interested (nor able) to model such phenomena. it is the “safest” decision due to the constraint that
Therefore, in the generation of Table 6 and throughout the ~ estimates must be longer than runtimes.
reminder of this paper, we aggregate the 01:59 mode withe last two items are the reason why we chose to follow
that of 2h and consider them a single 27.3% mode.  the CTC example and enforce a sizable first rank on the
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construction off,,, (end of Section 8) that “breaks” theand be mapped to longer estimates. Adding a third safety-
exponential contiguity observed in Fig. 10. To completaechanism, in the form of using the minimum between
the initialization part, we allocate an empty vecigy,; two choices of popularity ranks (third item of the algo-
designated to hold popularity ranks. Any popularity ranithm), has turned this probability negligible.
may have up to four occurrences witHif,,,.
The body of the pool-algorithm iterates through the rest
of the ttr-s in ascending ordevy, = 1,2,...,19) and
performs the following steps on each iteration: 9.4 Embedding User-Supplied Estimates
1. For each trace fildog, insert the popularity rank
Fiog(Jier) 10 Vioor, but only if this rank wasn't al- While the estimate distributions of the traces bare remark-
ready mapped to some smaller ttr in previous itestble resemblance, they are also very distinct within the
ations. (In other words, insert all the values frorthead of the head” (as discussed in Section 8), that is, the
within the Jy, line in Table 6, that weren't already1-3 most popular estimates. For example, considering Ta-
chosen.) ble 5, the difference between the percentage of SDSC and

2. If there exists popularity ranks that have four o&TC jobs associated with 18h (10% vs. 24%) is enough

currences withir/,,;, choose the smallest of thes&® yield completely different distributions. Another exam
ranksR, map.Ju tpo R, remove all occurrences o ple is BLUE’s shift of the maximum from 36h to 2h, or its

from V..., and move on to the next iteration. two huge qugs in 15min and 30min; t_he fact that more
, than 60% of its jobs use one of these estimates (along with
3. Otherwise, randomly choose two (not necessarpy .59y cannot be captured by any general model. Yet an-
different) popularity ranks from W'th'WPOf’l’ mMap - other example is KTH4H’s uniqgue modes below 5min.
the smaller of these td;;,., and remove all its 0CCUr- g yariance among the most important estimate bins,
rences froml/,or. along with the fact users may be aware of special queues
A main principle of the algorithm is the gradual iterand other influential technicalities concerning their site
ation over Table 6, such that no popularity-raRks el- mandates a general model to allow its user to manually
igible for mapping toJ.,, before we have actually wit-supply head estimates as parameters.

nessed at least one occasion in whithvas mapped to a To this end, we allow the user to supply the model with

ttr that is s_m_aller than or_equal tQy-- T_his aim_s to imi- a vector of up to twentyt;, p;) pairs. The manner in
tate the originali,, functions, along with serving as the, iy, these pairs are embedded within our model is the

first safety-mechanism obstructing more popular ranksfg'flowing: The, values replace default-generated head

be mapped to longer estimates (recall that estimate C fives (Section 9.2) that are the closest to them, with the
are log-uniform, which means most estimates are shor

) e - . xception ofl’,, ... which is never replaced unless explic-
Another important principle of the algorithm is th

, e aFtly given by the user as one of t{¢;, p;) pairs. (This is
increased number of occurrences of the sameithin due to the reasons discussed in Section 9.3.) As an ex-

Vpoot» implies a greater chance &fto be randomly cho-

sen. And so, arR that is mapped to a tt Jy,- within of BLUE, the user must supply two pair§36h, 1%) to
two traces (two occurrences withif,.;), has double the prevent the model from making the old maximum (36h)

chance of being chosen in comparison to a popularity rajpk, - ) popular estimate, afh, 27%) to generate the
for which this condition holds with respect to only ONBaw maximum

trace (one occurrence withifi,,,;). This aspect of the o ) ) o
algorithm also aims to capture the commonality between>imilarly to times, user supplige percentile sizes re-
the various traces. place default-generated sizes (Section 8) that are the clos
ltem number two in the algorithm tries to make sure &t 10 them. Once again, the biggest value (reserved for
R will not be mapped to a ttr that is bigger thalhthe ttr- 1 ma=) IS notreplaced if the user did not supply a pair con-
s to which it was mapped in the four traces. Like the fir@iNiNgTma.. Additionally, the remaining non-user head-
principle mentioned above, this item has the role of makZ€s are scaled such that the total mass of the head is still
ing sure the resulting mapping isn't too different than th§P% (Scaling however do applies to the largest non-user
of the original logs. It also serves as the second safefZ®)- If scaling is not possible (sum of user sizes exceed
mechanism limiting the probability of more popular rank32%0), non-user head-sizes are simply eliminated, and the
to be mapped to longer estimates. tail sizes are scaled such that the sum of the entire distri-
The combination of the above “safety mechanism&4tion is 100%.
was usually enough to produce satisfactory results. How+inally, the pool algorithm is refined to skip ttr-s that
ever, on rare occasions, too many high popularity ranke associated with user-supplied estimates and to avoid
have managed to nevertheless “escape” these mechanigm®sing their associated popularity ranks for mapping.

ample, in order to effectively replace the maximal value
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10 Overview of the Model order to perform this task in a simpler manner have been
checked and verified to be inadequate. In fact, it is these

Now that all the different pieces are in place, let us briefisadequacies that has lead us step by step in the develop-

review the default operation of the estimates model wigent of the pool algorithm.

have developed:

1. Get input. The mandatory parameters are maxi . .
estimate valud’,,,.., and number of job$v (which n}ﬂ Validati ng the M odel

is the number of estimates the model must produce )

as output). A third, “semi mandatory”, parameter {§aving implemented the estimate model, we now go on
the percentage of jobs associated Wiith,,. While © validate its effectiveness. This is essentially comgdose
the model can arbitrarily decide this value by itselpf two parts. The first is obviously making sure that
its variation in reality is too big to be captured b);he resulting distribution is similar to that of the traces
a model, whereas its influence on performance fsection 11.1). However, this is not enough by itself, as
sults is too detrimental to be ignorefi,{,. jobs are ©OUr ultimate goal is to allow realistic performance evalu-

the “worst kind” of jobs in the eyes of the scheduleﬁ‘tion- The second part is therefore checking whether per-
Section 2). formance results obtained by using the original data are

. . ) comparable to those produced when replacing original es-

2. Co_mput_e the vglue dt’ (different estimate times) 3Stimates with artificial values produced by the model (Sec-
defined in Section 6. tion 11.3). The latter part mandates developing a method

3. GenerateK time-values usingfy;,,, as defined in according to which artificial estimates are assigned to jobs
Section 7. (Section 11.2).

4. Generate 20 “head” time-values using the algorithm
defined in Section 9.2 and combine them with thgg 1 Validating the Distribution
K time-values produced in the previous item. Non-
head times are denoted “tail” times. Fig. 14 plots the original CDFs (solid line) against those

5. Generatés percentile sizes using,., as defined in generated by the “vanilla” model using various seeds. The

Section 8. The largest 20 sizes are the head siZRalY input parameters thatare given to the model are those
The rest are tail. isted in Section 10, that is, the maximal estimalg, ..,
, , then number of jobsV, and the percentage of jobs asso-
6. Map between time- and size-values usifig., as cjated withT,,,. Recall that BLUE’s maximum is con-
defined in Section 9, by sidered to be 2 hours and that in order to reflect this we

o Randomly mapping between tail-times and taimust explicitly supply the model with an additional pair

sizes in a uniform manner (Section 9.1). (Section 9.4).
e Mapping head-times and head-sizes using theThe results indicate the model has notable success in
pool algorithm (Section 9.3). generating distributions that are remarkably similar & th

of SDSC-106 and CTC; it is far less successful with re-
%@ect to the other two traces. However, this should come
as no surprise because, as mentioned earlier, the model
has no pretense of reflecting abnormalities or features that
10.1 About the Complexity are unique to individual traces. In the case of KTH4H,
these are the large modes that are found below 5 minutes
The only part which is non-trivial in our model is the poofTable 5). In fact, if aggregating these modes with that of
algorithm: Generating the estimate time values by thefminutes, we get that a remarkable 25.5% of KTH4H's
selves is a trivial operation. Generating sizes (percejibs have estimates that are 5 minutes or less, which is
ages of jobs) is equally trivial. Mapping between theseherently different in comparison to the other traces. In
two value sets is also a relatively easy operation, as all bt case of BLUE, its uniqueness takes the form of two
the 20 most popular sizes can be randomly mapped. @Xceptional modes located at 15 and 30 minutes. This dis-
the complexity of the model concentrates in solving thictive quality is especially apparentin Fig. 10, where th
problem of deciding how many jobs are associated withree biggest modes “break” the log-uniform contiguity.
each “head” estimate, or in other words, where exactly toThe practical question is therefore if the model can pro-
place the larger modes. The question of whether a simpieice good results when provided witfinimaladditional
alternative than the one suggested here exists, is an ojppéormation highlighting the trace-specific abnormakttie
one, and it is conceivable there’s a positive answer. HolWhe amount of such information is inherently limited if we
ever, all the “immediate” heuristics we could think of irare to keep the model applicable and maintain its practi-

7. If received user supplied estimate bins, embed th
within the model as described in Section 9.4.
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Figure 14: The original estimate distribution of the traces (solickhvs. the output of the vanilla model, when used with four
different seeds. Output is less successful for traces wnitue features.
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Figure 15:0Output of the model under the “improved” setting which pdes minimal information identifying the unique features.

cal value. We therefore define the “improved” setting imance under the four workloads. This can be done with
which the KTH4H model is provided with the additionabriginal estimates or after replacing them with artificial
(5min, 25%) pair. The BLUE model is provided withvalues that were generated by our model. Similar perfor-
two additional pairs associated with its two exceptionaiance results would indicate success.

modes:(15min, 16%? and(30min, _18%). o The common practice when modeling a parallel work-
The results of the improved setting are shown in Fig. 13,4 is to define canonical random variables to represent

and indicate that this additional information was all thgt yifferent attributes of the jobs, e.g. runtime, sizegtin

the model needed in order to produce satisfactory resWisyal time etc. [6, 15, 20]. Generating a workloadéf

(also) with respect to the two “unique” traces. To test trfgbs is then performed by creatiny samples of these

impact of additional information on situations where the,4om variables. Importantly, each sample is generated
vanilla model manages to produce reasonable resunsiﬁ’dependentlpf other samples.

itself, the improved setting supplied three additionatpai _ ) - _ )
(of the most popular estimates) when modeling CTC and'n this respect, assignment of artificial estimates to jobs

SDSC-106. It is not apparent whether the additional il subtle, as this must be done under the constraint that
formation made a qualitative difference. estimates mustn’t be smaller than the runtimes of the jobs

do which they are assigned. Here, we can't just simply

The important conclusion that follows from the su =
cessful experiment we have conducted in this section@1domly choose a value. However, if independence be-

that estimate distributions are indeed extremely simildW€en jobs is still assumed, we can easily overcome the
Most of their variance concentrates within the 1-3 moBfoblem by using theandom shuffle algorithmThis al-

popular estimates, and once these are provided, the m&&|thm gets two vector8.timate andVi.unsim. that hold
produces very good results. N values as suggested by their names. The content of both

vectors is generated as usual, according to the procedure
described above (under the assumption of independence).
11.2 Assigning Estimates to Jobs Now all that is needed is a random permutation that maps

between the two, such that every estimate is equal to or
The next step in validating the model is putting it to uda@igger than its associated runtime. The random shuffle
within a simulation. For this purpose we have decidedgorithm finds such a permutation by iterating through
to simulate the EASY scheduler and evaluate its perfdf,,..;m. and randomly pairing each runtinf&with some
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Figure 16:Vvalidating badness. The reason for the peculiar resulicéstsal with the average SDSC wait time remains unknown.

estimateF € V_.simate fOr which E > R. After values [R,R- (f + 1)]. In accordance with [21], six val-
are paired, they are removed from their respective vectors. ues of f were chosen: 0 (complete accuracy), 1, 3,
Note that we do not claim that the independence as- 10, 100, and 300.
sumption underlying the random shuffle alg(_)ri_thm IS COI~ ¢ The feit-model:
rect. On the contrary. We only argue that this is the com-
mon practice. However, there is a way to transform the
original data such that this assumption holds: The algo-
rithm can be applied to the original data, that is, we can®
populate thé’. ;44 VECtor with original trace estimates
and reassign them to jobs using the shuffle algorithm. Thes Theimpr-model: the improved setting of our model,
outcome of doing this would be that the original estimates supplying it with some additional information (de-
are “randomly shuffled” between jobs (which is the source fined above).
of the algorithm’s name). The result of such shuffling is to
create independent “real” estimates. This is suitable al@te thatX2 andshfl are not models per-se, as both are

basis for comparison with our model, as explained beldg@sed on real estimates. The competitors of our model are
f andfeit (which produce estimates based on runtime).

Performance results are shown in Fig. 16 in the form
of average wait time and bounded slowdown. The black
Several estimate-generation models have been evalualettied lines present the results of running the simulations

targets accuracy (suggested by
Mu’alem and Feitelson [21] and explained in the in-
troduction).

Thevankmodel: the vanilla setting of the model de-
veloped in this paper (defined above).

11.3 Validating Performance Results

and compared against the original data: using the original data. Therefore, models that are closer
e TheX2-model: simply doubles user estimates on tH& this line are more realistic. Recall that our aim here is
fly [16, 21]. not to improve performance. Rather, it is to produce trust-

. worthy results that are closest to reality. All the results
o The shftmodel: the result of applying the randomyggqciated with models that contain a random component
shuffle algorithm (defined above) to the original datgy | byt X2 andf0) are the average of one hundred differ-
As noted, assuming independence in this contexidst simulation runs employing different seeds. The error-
correct. bars associated with these models display the absolute-
e The f-model: upon receiving a job’s runtinfe, uni- deviation (average of absolute value of deviation from the
formly chooses an estimate from the closed rangeerage).

17



When examining Fig. 16, it is clear the two variants of 10° - —
our algorithm are more realistic, in that they usually do 10% t WL{ {WW@W'JM
a better job in capturing the “badness” of user estimates 10 0 100 200 300 400 500 600 700 800

(compare withf-s andfeit). Another observation is that

user 2

. . . . . o 5
using increased-s (orfeit) to model increased user inac- § % 183 s A S w ]
curacy (for the sake of realism) is erroneousifassually g’ § 10t LM i i i i i
produces results that are much closer to the truth. In fack 0 200 400 600 800 1000 1200

fO is usually comparable to the results obtained by our o 10°
model with the exception of the SDSC trace. However, © 3 - Lo ' B ' o ' . M'M ]
this is limited to the FCFS-based EASY scenario: if intro- 2 10! L ' ' —
ducing a certain amount of limited SJF-ness to the sched- 0 100 200 300 400 500 600
uler (e.g. as in [25, 1])0 yields considerably better per- . )

(e.g ! MOy y P runime ——— | joh of user

formance results in comparison to the original, whereas |_estimate
our model stays relatively the same (figure not shown to
conserve space). Another scenario in whigltan't be Figure 17: Runtime and estimate of all the jobs submitted by
used is when evaluating system-generated runtime piteee arbitrary users from the SDSC trace shows remarkable
dictors that make use of estimates (along with other jogpetitiveness.
characteristics) [14, 23, 18, 25]. Finally (returning te th
context of EASY), unliké0, our model has room for im-
provement as will shortly be discussed, and we believélit.a, Which can arbitrarily worsen results. Our true goal
has potential to “go the extra mile”. is creating a reliable model. The above indicates that the
A key point in understanding the performance resuf§oblem lies in the assumption of independence, namely,
is noticing that the vanilla setting of our algorithm is suthe manner we assign estimates to jobs. While it is pos-
prisingly more successful in being closer to the origingible that this is partially because we neglected to enforce
than its improved counterpart. This is troublesome as ¢l accuracy to be as displayed in Fig. 1 (the accuracy his-
entire case is built on the argument that models that &pgrams of eveshflare dissimilar to that of the original),
more accurate would yield results that are closer to th€ conjecture that the independence assumption is more
truth. The answer to the riddle is revealed when exa@cute.
ining the shflmodel. The fact of the matter is that one It has been known for over a decade that the work gen-
cannot get more accurate thsinfl, as it “generates” a dis- erated by users is highly repetitive [12, 10]. Recent work
tribution that isidenticalto that of the original. Yet it too [28, 24] suggests that the correct way to model a work-
seems to be inferior to our vanilla model. This exposes daad is by viewing it as a sequencewder sessionghat
independence assumption (the random shuffle algorithis)bursts of very similar jobs by the same user. This doc-
as the true guilty party which is responsible for the diffetrine suggests that a correct model cannot just draw values
ence betweempr and the original. The correct comparfrom a given distribution while disregarding previous val-
ison betweenmpr andvanl should actually be based orues as is done by most existing parallel workload models
which is closer tshfl not to the original, as only witbhfl (e.g. [6, 15, 20, 4]). The rationale of this claim is that the
can independence be assumed. Based on this criteriepetitive nature of the sequence within the session may
impr is consistently better tharanl. have a decisive effect on performance redults
Once this is understood, we can also explain why theSince users tend to submit bursts of jobs having the
performance ofmpr (in terms of wait and slowdown) issame estimate value (Fig. 17), the end result is somewhat
always better than that afanl. Consider the differencesimilar to that of the existence of estimates modes, but
between the two modelgmpr simply has much more ac-in a more “temporal sense™. At any time instance, jobs
curate data regardirghorterjobs (e.g. KTH4H's 25% of within the wait-queue tend to look the same to the sched-
5 minutes jobs). As short jobs benefit the most from theer, as jobs belonging to the same session usually share
backfilling optimization,impr consistently outperformsthe same estimate value. Consequently, the scheduler has
vanl(in absolute terms). less flexibility in making backfilling decision and the per-
formance is negatively effected. Oshiflalgorithm, along
with all the rest of the models, do not entail the concept

11.4 RepetitivenessisMissing

We are not interested in artificially producing worse re- 'Aremarkable example stressing the importance of this phenon

: ; ; recently published [26]: changing a runtime of oomgjob (within
sults by means of falsely boosting up estimates (as is déﬁ‘affoﬁg that spans two years) by a mere 30 seconds, resultechiange

by vanl \_’Vith res_pect tdmpr)_. This_ would be e_qUivalent of 8% in the average bounded slowdownatifthe jobs; the reason was
to, say, increasing the fraction of jobs that estimate to ru#iced to be a certain user-session and its interactionthétischeduler.
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of sessions and therefore result in superior performanceircapsulated within the percentage of jobs estimated to
comparison to the original. run forT,,... The remaining variance is attributed to an-
Accordingly, our future work includes developing awther 1-2 very popular modes that sometimes exist, but
assignment mechanism that is session aware. This ea@ unique to individual logs. When provided this addi-
be obtained if the procedure that pairs runtimes and éisnal information, our model produces distributions that
timates gets additional information associating jobs wigre remarkably similar to that of the original.
users. User-based modeling [24] can supply this data. When put to use in simulation (by replacing real esti-
mates with artificial ones), our model consistently yields
performance results that are closer to the original than
12 Conclusions and Future Work those obtained by other models. In fact, these results are
almost identical to when real estimates are used and are
User runtime estimates significantly effect the perfof@ndomly shuffled between jobs. This suggests that the
mance of parallel systems [21, 1, 8]. As part of the effdi@mporal repetitiveness of per-user estimates may be the
to allow realistic and trustworthy performance analysis §nal obstacle separating us from achieving realistic re-
such systems, there is a need for an estimates model §éfs. Consequently, our future work includes developing
successfully captures their main characteristics. an improved assignment scheme of estimates to jobs that

A number of models have been suggested, but theseWibPreserve this feature.
all lacking in some respect. Their shortcoming include Our estimates model is available to download from the
implicitly revealing too much information about real runParallel workload archive [9]. Its interface contains two
times, erroneously emulating the accuracy ratio of rufinctions: generating the distribution modes, and assign-
time to estimate, neglecting to take into consideration i estimates to jobs. The latter is essentially random
fact that all production installations have a limit on th&huffling of estimates between jobs, under the constraint
maximal allowed estimate, and that this value is a|Wa§Jgat runtimes are smaller than estimates. Our future work
one of the more popular estimates. Importantly, two kggpludes refining this function such that the user-session
ingredients are missing from existing models: the inhejuality takes effect.
ently modal nature of the estimates caused by users’ ten-
dency to supply “round” values [21, 2, 17], and the tempé-cknowledgment
\r/zlllrjeepteot T,ﬁsrgtgﬁoogsu?séfssig;nsa;t?zsé,azzlfn?ﬁiﬁ rs]a'FE]js resgarch was supported in part by the Israel Science
decisive effect on performance results, as low estimj—;qundatmn (grantno. 167/03).
variance of wait-queue jobs reduces the effectiveness of
backfilling. The outcome is simulation results that are ufRef er ences
realistically better than those obtained with real estésat
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