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Abstract

User estimates of job runtimes have emerged as an impor-
tant component of the workload on parallel machines, and
can have a significant impact on how a scheduler treats
different jobs, and thus on overall performance. It is there-
fore highly desirable to have a good model of the relation-
ship between parallel jobs and their associated estimates.
We construct such a model based on a detailed analysis
of several workload traces. The model incorporates those
features that are consistent in all of the logs, most notably
the inherently modal nature of estimates (e.g. only 20 dif-
ferent values are used as estimates for about 90% of the
jobs). We find that the behavior of users, as manifested
through the estimate distributions, is remarkably similar
across the different workload traces. Indeed, providing
our model with only the maximal allowed estimate value,
along with the percentage of jobs that have used it, yields
results that are very similar to the original. The remain-
ing difference (if any) is largely eliminated by providing
information on one or two additional popular estimates.
Consequently, in comparison to previous models, simu-
lations that utilize our model are better in reproducing
scheduling behavior similar to that observed when using
real estimates.

1 Introduction

EASY Backfilling [19, 21] is probably the most com-
monly used method for scheduling parallel jobs at the
present time [7]. The idea is simple: Whenever the system
status changes (a new job arrives or a running job termi-
nates), the scheduler scans the queue of waiting jobs in or-
der of arrival. Upon reaching the first queued job that can
not be started immediately (not enough free processors),
the scheduler makes a reservation on the job’s behalf. This
is the earliest time in which enough free processors would
accumulate and allow the job to run. The scheduler then
continues to scan the queue looking for smaller jobs (re-
quire less processors) that have been waiting less, but can
be started immediately without interfering with the reser-
vation. The action of selecting smaller jobs for execution
before their time is calledbackfilling.

To use backfilling, the scheduler must know in advance
the length of each job, that is, how long jobs will run1.
This information is used when computing the reservation
time (requires knowing when processors of currently run-
ning jobs will become available) and when determining
if a waiting job is eligible for backfilling (must be short
enough so as not to interfere with the reservation). As this
information is not generally available, backfilling sched-
ulers require their users to provide runtime estimates for
submitted jobs. Obviously jobs that violate these esti-
mates are killed. This is essential to insure that reserva-
tions are respected. Indeed, backfilling is largely based
on the assumption that users would be motivated to pro-
vide accurate estimates, because jobs would have a better
chance to backfill if the estimates are tight, but would be
killed if the estimates are too short.

However, empirical investigations of this issue found
that user runtime estimates are actually rather inaccurate
[21]. Results from four different installations are shown
in Fig. 1. These graphs are histograms of the estimation
accuracy: what percentage of the requested time was ac-
tually used. The promising peak at 100% actually reflects
jobs that reached their allocated time and were then killed
by the system according to the backfilling rules. The
hump near zero was conjectured to reflect jobs that failed
on startup, based on the fact that all of them are very short
(less than 90 seconds). The rest of the jobs, that actually
ran successfully, have a rather flat uniform-like histogram.

The issue of user runtime estimates has since become
the focus of intensive research. A number of studies have
suggested that inaccurate runtime estimates are actually
good, as they provide the scheduler with more flexibil-
ity and eventually lead to better performance; as a result,
it was even proposed to simply double the user runtime
estimates before using them [29, 21], or further, random-
izing them [22]. In contrast, other studies contend that
accurate runtime estimates are actually better, as they can
lead to even better performance if used correctly, e.g. by
scheduling in some SJF (shortest job first) based order
[14, 23, 1, 25]. Still other studies have shown that the
accuracy of user runtime estimates can have non-trivial
effects on the results of performance evaluations [8].

1This is true for any backfilling scheduler, not just EASY.
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Figure 1:Accuracy histogram of user runtime estimates:accuracy = 100 × runtime
estimate

.

1.1 Motivation

All this activity spurred a search for ways to model user
runtime estimates. Such a model is needed for three rea-
sons. First, it is useful as part of a general workload model
that can be used to study different job scheduling schemes,
e.g. by means of simulation. Second, it is often the case
that existing log files from production systems (used to
drive simulations) are missing this information; a model
can help in artificially manufacturing it. Third, a model
may provide insights that will be useful in the study of
whether and how the inaccuracy of estimates may be ex-
ploited by the scheduler.

We would like to make it clear that this paper targets
the first two reasons mentioned above, that is, we aim
to model and reflect reality, not to make it better. In-
deed, in a different study, we show how backfilling sched-
ulers can produce and utilize better runtime predictions
that dramatically improve performance [25]. But even this
novel technique often relies on user estimates under var-
ious conditions. Additionally, recall that user estimates
have a role that is different than just serving as approxi-
mated runtimes, as they are also part of the user contract:
the system guarantees a job will never be killed before its
user estimate is reached. Consequently, system generated
predictions (or other conceivable future mechanisms that
are similar) can’t “just” replace estimates.

At the same time, estimates ensure that jobs will in-
deed be killed at some point. Systems with no user es-
timates at all (that is, no runtime upper bound) are also
undesirable, as these will allow jobs to run indefinitely,
potentially overwhelming the system. At the very least we
would expect users to choose some runtime upper-bound
from a predefined set of values. However, this scenario is
rather similar to reality, in which most users are already
limiting themselves to very few canonical “round” esti-
mates (as will be shown below), and jobs that exceed their
estimates are immediately killed. It turns out there is ac-

tually no fundamental difference between allowing users
to choose “any value”, or from within a limited set.

Therefore, regardless of any possible scheduling im-
provements or changes, it seems a parallel workload
model will not be complete if realistic user estimates are
not included. Importantly, we will show that systems per-
form better if real user estimates are replaced with artifi-
cial ones, generated by existing models. This uncaptured
“badness” quality of real user estimates constitutes a seri-
ous deficiency of existing models, as the purpose of these
is to reflect reality, not to paint a brighter (false) picture.
While counter intuitive, our goal in this paper is to pro-
duce estimates such that performance is worsened, not im-
proved. Only when such a model is available, we can take
the next step and consider ways to improve performance,
based on a truly representative workload.

In the reminder of this section we survey the estimate
models that have been proposed, and point out their short-
comings. This motivates the quest for a better model,
which we propose in this paper.

1.2 Existing Models

The simplest possible model is to assume that user esti-
mates are accurate. For example, such a model was used
by Feitelson in [8]. This approach has two advantages: it
is extremely simple, and it avoids the murky issue of how
to model user estimates correctly. However, as witnessed
by the data in Fig. 1, it is far from the truth.

A generalization of this model is to assume that a job’s
estimate is uniformly distributed within[R, (f + 1)R],
whereR is the job’s runtime, andf is some non neg-
ative factor (f can’t be negative because jobs are killed
once their estimates are reached). Iff = 0, this means
that the estimates are identical to runtimes; iff = 4,
they are distributed betweenR and5R, with an average
of 3R. Arguably, higherf values model increasingly in-
accurate users. This model, which we call the “f -model”,
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Figure 2:Average accuracy as a function of binned-jobs’
runtime, in four different production traces.

was proposed by Mu’alem and Feitelson [11] and several
variants of it were used to investigate the effects of inac-
curacy [29, 21, 1]. It was also used by several researchers
in simulations using workloads that did not contain esti-
mates data [13, 8]. The main problem with this model is
that the estimates it creates are overly correlated with the
real runtimes, so it actually gives the scheduler consid-
erable amount of valuable information that is unavailable
when real user estimates are used. In particular, it enables
the scheduler to effectively identify shorter jobs and select
them for backfilling, leading to SJF-like behavior. For ex-
ample, under this model, a one-hour job will always ap-
pear longer than a one-minute job (in reality, this is often
not the case). This leads to better performance results than
those observed when using real user estimates.

A third model, also proposed by Mu’alem and Feitel-
son, attempts to reproduce the histograms of Fig. 1. These
flat histograms imply thatR/E = u, i.e. that the ratio of
the actual runtimeR to the estimateE can be modeled
as a uniformly distributed random variable (u ∈ [0, 1]).
By changing sides we find that given a runtimeR divided
by u results in an artificial estimateE. While unrelated
to the actual user estimate for this particular job, this is
expected to lead to the same general statistics of all the
estimates taken together. The model also created the peak
at 100% and the hump at low values. Finally, ifE came
out outrageous (becauseu happened to be very small), it
was truncated to 24 hours. This was called the “φ-model”
by Zhang et al. [27] (φ denoted the fraction of jobs in the
100% peak), who used it in various simulations.

The problem with this model is that it is missing a “hid-
den” factor which is often overlooked: that all production
installations have a limit on the maximal allowed runtime.
For example, on the SDSC SP2 machine this limit is 18
hours. Naturally, the limit also applies to estimates, as it
is meaningless to estimate that a job will run for say 37
hours if all jobs are limited to 18 hours.

Consider Fig. 2 which displays the average accuracy of
jobs grouped to 100 equally sized bins according to their
runtime. It has previously been conjectured that the ap-
parent connection between longer runtimes and increased
accuracy, is because the more a job progresses in its com-

putation, the grater its chances become to reach successful
completion [3]. However, this false hypothesis ignores the
existence of a maximal allowed runtime, which suggests
long jobs are guaranteed to have high accuracy. For ex-
ample, if a job runs for 17 hours, its estimate must be in
the range of 17 to 18 hours, so it’s using at least 94.4% of
its estimate. In other words, in contrast to the underlying
assumption of theφ-model, the distribution of jobs in the
accuracy histogram (Fig. 1) is not uniform. Rather, long
jobs must be on the right, where accuracy is high, while
short jobs tend to be on the left, at lower accuracies.

A fourth rather similar model was proposed by Cirne
and Berman [3], which took the opposite direction in com-
parison to the previous model and chose to produce run-
times as multiples of estimates and accuracies, while gen-
erating direct models to the latter two. This decision was
based on the argument that accuracies correlate with es-
timates less than they do with runtimes. In their model,
accuracies were claimed to be well-modeled by a gamma
distribution (this seems to be the result of trying to model
the uniform part of the histogram along with the hump
at low accuracies, by using one function for both). Esti-
mates were successfully modeled by a log-uniform distri-
bution. This methodology suffers from the same problem
as the previous model, because accuracy is again inde-
pendent of runtime. In addition, this model is not use-
ful when attempting to add estimates to existing logs that
lack them, or to workloads that are generated by other
models which usually include runtimes and lack estimates
[10, 6, 15, 20].

In addition to the per-model shortcomings mentioned
above, there are two drawbacks from which all of them
collectively suffer: The first is lack of repetitiveness: The
work of users of parallel machines usually takes the form
of bursts of very similar jobs, characterized as “sessions”
[8, 28]. In the SDSC-SP2 log for example, the median
value of the number of different estimates used by a user
is only 3, which means most of the associated jobs look
identical to the scheduler. It has been recently shown
that such repetitiveness can have decisive effect on per-
formance [26]. The second shortcoming is a direct result
of the first: estimates form a modal distribution composed
of very few values, a fact that is not reflected in any exist-
ing model. This is further discussed in the next section.

The conclusion from the above discussion is that all
currently available models for generating user estimates
are lacking in some respect. Consequently, using them in
simulations leads to performance results that are generally
unrealistically better than those obtained when real user
estimates are used. Our goal in this paper is to capture the
“badness” of real user estimates by finding a model that
matches all known information about them: their distri-
bution, their connection with each job’s runtime, and their
effect on scheduler performance.
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Figure 3: Runtime and estimate CDFs (cumulative distribution functions) of various workload traces (Section 4 discusses the
traces in detail). The fact that runtime-curves are much higher than estimate-curves means runtimes are indeed much shorter than
estimates. For example, in CTC, 40% of the estimates are shorter than one hour (60% are longer), while for runtimes the situation
is reversed (only 40% are longer than one hour).

2 Modality

We require a model capable of generating realistic user
estimates. The usual manner in which such problems are
tackled is by fitting observed data to well known distri-
butions, later to be used for producing artificial data. To
some extent, this methodology is applicable when model-
ing estimates, which appear to be well captured using the
log-uniform distribution [3] as shown in Fig. 3.

The difficulty lies in that user estimates embody an-
other important characteristic: they are inherently modal
[21, 2, 17], because users tend to repeatedly use the same
“round” values (e.g. ten minutes, one hour, etc.). This is
reflected in the staircase-like estimate curves of Fig. 3, in
which each mode corresponds to a popular estimate value.

In particular, note the significant modes located at the
maximal estimate of each trace, where the runtime and
estimate curves finally meet2. Evidently, the maximal al-
lowed estimate is always a popular value. For example,
this value is used by a remarkable 24% of CTC jobs. This
phenomenon probably reflects users’ lack of knowledge
or inability to predict how long their jobs will run, along
with their tendency to “play it safe” in the face of strict
system policy to kill underestimated jobs.

In the context of job scheduling, this observation is
quite significant, as maximal-estimate jobs are the “worst
kind” of jobs in the eyes of a scheduler (too long to be
backfilled within all existing scheduling “holes”). In fact,
if all jobs chose their estimates to be the maximal value,
all backfilling activity would stop completely3.

The observation about the maximal estimate mode may
also be applied, to some extent, on other (shorter) modes:

2With the apparent exception of BLUE and KTH; this is further dis-
cussed in Section 4 which reveals that 2h and 4h effectively serve as
BLUE and KTH’s maximal estimate values, respectively.

3Except for when using the “extra” nodes, see [21] for details.

Consider the scenario in which an SJF scheduler must
work with estimates that are highly inaccurate. If these
estimates nevertheless result in a relatively correct order-
ing of waiting jobs, performance can be dramatically im-
proved (up to an order of magnitude according to [1]).
However, if estimates are modal, many jobs look the same
in the eyes of the scheduler, which consequently fails to
prioritize them correctly, and performance deteriorates.In
general, if the estimate distribution is dominated by only
a few large monolithic modes, performance is negatively
effected, as less variance among jobs means less opportu-
nities for the scheduler to perform backfilling.

Modality is absent from existing estimate models. An
immediate heuristic that therefore comes to mind when
trying to incorporate modality, is to “round” artificially
generated estimates (e.g. by one of the models described
above) to the nearest “canonical” value: values smaller
than 1 hour are rounded to (say) the nearest multiple of
5 minutes, values smaller than 5 hours are rounded to the
nearest hour, and so on. Experiments have shown that this
heuristic fails in capturing the badness of user estimates,
and performance results are similar to those obtained be-
fore this artificial modality was introduced. Additionally,
arbitrary “rounding” fails to reproduce the various prop-
erties of the estimate distribution, as reported in the fol-
lowing sections.

The fact of the matter is that modes have a different
(worse) nature than produced by the above. For example,
when examining the number of jobs associated with the
most popular estimates, we learn that these decay in an
exponential manner e.g. half of the jobs use only 5 esti-
mate values, 90% of the jobs use 20 estimates values etc.
In contrast, the decay of less popular modes obeys a power
law. In fact, almost every estimates-related aspect exhibit
clear “model-able” (that can be modeled) characteristics.
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3 Methodology

The modal nature of estimates motivates the following
methodology. When examining a trace, we view its
estimate distribution as a series ofK modes given by
{(ti, pi)}

K
i=1. Each pair(ti, pi) represents one mode, such

thatti is the estimate-value in seconds (t for time), andpi

is the percentage of jobs that useti as their estimate (p for
percent or popularity). For example, the CTC mode se-
ries includes the pair(18h, 23.8%) because 23.8% of the
jobs have used 18 hours as their estimate. Occasionally,
we refer to modes asbinswithin the estimate histogram.
Note that

∑K

i=1 pi = 100% (we are considering all the
jobs in the trace). The remainder of this section serves as
a roadmap of this paper, describing step-by-step how the
{(ti, pi)}

K

i=1 mode-series is constructed.

3.1 Roadmap of This Paper

Each of the following paragraphs correspond to a section
or two (sections are listed in order), and may contain some
associated definitions to be used later on.

Trace Files We build our model carefully, one compo-
nent at a time, in order to achieve the desired effect. Each
step is based on analyzing user estimates in traces from
various production machines, in an attempt to find invari-
ants that are not unique to a single installation. The trace
files we used and the manipulations we applied on them
are discussed in Section 4.

Mass Disparity Our first step is showing that there
exists a natural partition within the mode series that di-
vides it into two: About 20 “head” estimate values are
used throughout the entire trace by about 90% of the jobs
that compose the trace. The rest of the estimate values are
considered “tail” values. This is discussed in Section 5.
Throughout the paper we will see that these two mode
groups have distinctive characteristics. Naturally, the ef-
forts we invest in modeling the two are proportional to the
mass they entail.

Number of Estimates We start the modeling in Sec-
tion 6 by finding out how many different estimates there
are, that is, modeling the value ofK. Note that this mostly
effects the tail as we already know the head size (∼20).

Time Ranks The next step is modeling the values
themselves, that is, what exactly are theK time-values
{ti}

K

i=1. The indexing of this ascendingly sorted series
is according to the values, witht1 being the shortest and
tK being the maximal value allowed within the trace (also
denotedTmax). The indexi denotes thetime rankof es-
timateti. This concept proved to be very helpful in our
modeling efforts. We also define thenormalized timeof
an estimateti to beti/Tmax (a value between 0 and 1).
Section 7 defines the functionFtim that getsi as input
(time rank), and returnsti (seconds).

Popularity Ranks Likewise, we need to model the
mode sizes/popularities/percentages:{pj}

K

j=1. This se-
ries is sorted in order of decreasing popularity, sop1 is the
percentage of jobs associated with the most popular esti-
mate. The indexj denotes thepopularity rankof the mode
to whichpj belongs. For example, the popularity rank of
18h within CTC is 1 (p1 = 23.8%), as this is the most
popular estimate. We also define thenormalized popular-
ity rank to bej/K (a value between 0 and 1). Section 8
defines the functionFpop that getsj as input (popularity
rank), and returnspj , the associated mode size.

Mapping Given the above two series, we need to gen-
erate a mapping between them, namely, to determine the
popularitypj of any given estimateti, which are paired
to form a mode. Section 9 defines the functionFmap that
getsi as input (time rank) and returnsj as output (popular-
ity rank). Using the two functions defined above, we can
now associate eachti with the appropriatepj. This yields
a complete description of the estimates distribution. The
model is then briefly surveyed in Section 10.

Validation Finally, the last part of this paper is vali-
dating that the resulting distribution resembles the reality.
Additionally, we also verify through simulation that the
“badness” of user estimates is successfully captured, by
replacing the original estimates with those generated by
our model. The replacement activity mandates develop-
ing a method according to which estimates are assigned
to jobs (recall that an estimate of a job must be bigger
than or equal to its runtime). This is done in Section 11.
The paper is concluded in Section 12.

3.2 Input, Output, and Availability

As we go along, the number ofmodel parametersaccu-
mulates to the neighborhood of two dozens. Most are
optional and are supplied with reasonable default values.
The only mandatory parameters are the number of jobs
N (the number of estimates to produce), and the maximal
allowed estimate valueTmax. Another important parame-
ter is the percentage of jobs associated withTmax, as this
popular mode exhibits great variance and has decisive ef-
fect on performance. Theoutput of the modelis the series
of the modes: how many jobs use which estimate.

The model we develop is somewhat sophisticated and
involves a number of technical issues with subtle nature.
As it is our purpose to allow simulations that are more
realistic, the C++ source code of the model is made avail-
able for download from the parallel workload archive [9].
Its interface is composed of two function: The first gets a
structure containing all the model parameters (all but two
are assigned default values), and returns an array ofK
modes. The second function gets the mode array and an-
other array composed of job structures (ID and runtime).
It than associates each job with a suitable estimate.
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Abbrev. Site Start End CPUs Number of jobs (N ) M U X K
original cleaned sane months users max estimates

SDSC-106San-Diego Supercomp. Ctr.Apr 98 Apr 00 128 73,103 59,332 53,673 24 428 18h 339
CTC Cornell Theory Center Jun 96 May 97 512 79,302 77,222 77,222 11 679 18h 265
KTH4H Swedish Royal Instit. Tech.Sep 96Aug 97 100 23,070 23,070 23,070 11 209 4h 106
BLUE San-Diego Supercomp. Ctr.Apr 00 Jun 03 1,152 250,440 243,314 223,407 32 468 36h 525
SDSC San-Diego Supercomp. Ctr.Apr 98 Apr 00 128 73,496 59,725 54,053 24 428 18h 543
KTH Swedish Royal Instit. Tech.Sep 96Aug 97 100 28,490 28,490 28,490 11 214 60h 271

Table 1: The trace files. The variablesM , U , X, andK are months duration, number of users, maximal estimate value, and
number of estimate bins, respectively. BLUE relates to San-Diego’s Blue-Horizon machine. The others are SP2 machines.

4 The Trace Files

The analysis and simulations reported in this paper are
based on four accounting logs from large-scale parallel
machines that are listed in Table 1. These are all the logs
from the parallel workload archive [9] that contain infor-
mation about user estimates and were available at the time
we began this research (the DAS2 log, which also con-
tains this data, was added since). Since traces span the
past decade, were generated at different sites, by machines
with different sizes, and reflect different load conditions,
we have reason to believe consistent results obtained in
this paper are truly representative.

Table 1 contains data about the original traces, their rec-
ommended “cleaned” version which is also available from
the archive (excludes various non-representative anoma-
lies [26]), and a “sane” version. The latter applies a filter
on “cleaned” logs to remove jobs that cannot be used in
simulations (unknown size, runtime, or submission time).
As our goal is providing a model for the sake of perfor-
mance analysis through simulation, our modeling activ-
ity targets only sane jobs. In particular, theK column in
Table 1 is related to the sane versions, as is all the data
presented in this paper.

During the study we found that two of the sane logs
need to be further manipulated to be useful in this con-
text. The first is the SDSC log: We say an estimate mode
is “owned” by a user if this estimate was exclusively used
by only that user within the log. It turns out that user 106
is uniquely creative in comparison to others, owning 204
estimates of the 543 found in SDSC (38%). This is highly
irregular4 as shown in Fig. 4 which displays the number of
modes owned by each user (only owners are shown). We
therefore remove this unique activity from the log for the
remainder of the discussion (regular activity of user 106,
using estimates that are also used by others, is allowed to
remain). The resulting log is calledSDSC-106. This ver-
sion proved beneficial when modelingK andFtim, the
number of different estimate values found within a log

4In fact, as this activity is concentrated within about 2 months of the
log, it actually constitutes a workload flurry [26].
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defined to be the user-rank and serves as the X-axis. The associ-
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users with a zeromi, that do not own any mode, are not shown).
The SDSC outlier is associated with user 106 which is order of
magnitude more “original” than other users, exclusively owning
38% of the SDSC modes.

(Section 6), and the time values used (Section 7), respec-
tively. Other aspects of the model where not affected.

The other problematic workload was KTH: This log is
actually a combination of three different modes of activ-
ity: running jobs of up to 4 hours on weekdays, running
jobs of up to 15 hours on weeknights, and running jobs
of up to 60 hours on weekends. We have found that in
the context of user estimates modeling, considering these
three domains in an aggregated manner is similar to, say,
aggregating CTC and BLUE to be a single log. We there-
fore focused on only one of them — the daytime workload
with the 4-hour limit, which is the largest component of
the log. This will be denoted byKTH4H.

Recall our claim that maximal estimate values are al-
ways popular (Fig. 3). We have argued that 4h and 2h
are the effective maxima of KTH and BLUE, respectively.
Obviously, this is the case for KTH (most of the time 4h
is the maximum). As for BLUE, this machine had an “ex-
press” and “interactive” priority queues defined, with a
limit of 2 hours on submitted jobs [9]. Indeed, the vast
majority of 2-hours estimate jobs are from within these
queues, which means here too users provided the maximal
value available to them (while still allowing their jobs to
be accepted to the higher priority queues).
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Figure 5:Distributions of bins and of jobs, showing that a small fraction of the bins account for a large fraction of the jobs and
vice versa. The actual fractions are indicated by the joint ratio, which is a generalization of the proverbial 10/90 rule.

jobs 10% 50% 75% 90% 95% 98% 99% 100%
SDSC-106 1 6 12 22 39 77 116 339
CTC 1 4 10 22 36 62 89 265
KTH4H 1 6 12 21 28 36 43 106
BLUE 1 3 8 23 42 76 116 563
SDSC 1 6 12 23 43 91 156 543
KTH 1 8 21 41 60 89 122 270

Table 2: Mass disparity: per-log minimal number of estimate
bins needed to cover the specified percent of the jobs.

5 Mass Disparity of Estimates

Examining the histogram of estimates immediately re-
veals that the distribution is highly modal: A small num-
ber of values are used very many times, while many other
values are only used a small number of times. In this sec-
tion, we establish the mass disparity among estimate bins.

Human beings tend to estimate runtime with “round”
or “canonical” numbers: 10 minutes, one hour etc. [21, 1,
17]. This has two consequences. One is that the number
of bins in the histogram (K) is very small relative to the
number of jobs in the trace (N ). According to Table 1,
N may be in the order of tens to hundreds of thousands,
while K is invariably in the order of only a few hundreds.

The other consequence is that a small set of canonical
bins dominates the set of values. Similar phenomena have
been observed in many other types of workloads. They
are called a “mass disparity”, because the mass of the dis-
tribution is not spread out equally; rather, a small set of
values gets a disproportionally large part of the mass [5].

The mass disparity of user runtime estimates is illus-
trated in Fig. 5. These are CDFs related to the bin size
(the number of jobs composing a bin). In each graph, the
top line is simply the distribution of bin sizes. This line
grows sharply at the beginning, indicating that there are
very many small bins (i.e. values that are used by only a
small number of jobs). The other line is the distribution
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Figure 6:Weeks in which an estimate appears, as a function of
its popularity-rank (note that estimates are sorted from the most
popular to the least). The top-20 appear throughout the logs.

of jobs, showing the fraction of jobs with estimates that
fall into bins of the different sizes. This line starts out flat
and only grows sharply at the end, indicating that most
jobs belong to large bins (i.e. most estimate values are the
popular values that are repeatedly used very many times).

The figure also shows the joint ratio for each case. This
is a generalization of the well-know 10/90 rule. For exam-
ple, the joint ratio of 9/91 for the CTC log means that 9%
of the bins account for 91% of the jobs, and vice versa: the
other 91% of the bins contain only 9% of the jobs. Fur-
ther details about the shape of the distributions are given
in Table 2. This shows the absolute number of bins in-
volved, rather than their fraction; for example, the CTC
row shows that a mere 4 bins cover 50% of the jobs, 10
bins cover 75% of the jobs, and 22 bins contain 90%. In-
deed, a bit more than 20 head bins are enough to account
for 90% of the jobs in all four logs.

“Head” bins dramatically vary in size: While the most
popular is used by10 − 25% of the jobs, only≈ 1% use
the 20-th most popular. Regardless, all head bins, whether
large or small, have a common temporal quality: their use
is not confined to a limited period of time. Rather, they are
uniformly used throughout the entire log. This is shown in
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Figure 7:ModelingK using a power modelK = αNβ (α = 1.1, β = 0.5) and a liner model which is defined by the points as
specified in Table 3. Curves associated with SDSC share the same color, the higher being SDSC-106.

Fig. 6 that plots the number of weeks in which estimates
are used, as a function of their popularity ranks. The hor-
izontal dot sequence associated with head bins indicates
they are spread out evenly throughout the log. Further,
the point of intersection between this sequence and the Y-
axis is always the duration of the trace, e.g. for SDSC this
is 2 years (a bit more than 100 weeks).

6 Number of Estimates

We have established that about 20 popular “head” bins
represent about 90% of the jobs’ estimate distribution
mass. We are left with the question of modeling the num-
ber of the other “tail” bins used by the remaining 10%.

Examining the four traces of choice in Table 1, we see
thatK tends to grow with the size of the trace, where this
“size” can be measured in various ways: as the number of
jobs executed (N ), as the duration of time spanned (M ),
as the maximal estimate (X), or as the number of differ-
ent active users (U ). Note that theU metric also measures
size, as new users continue to appear throughout each log.
This is relevant because after all, users are the ones gen-
erating the estimates. In fact, in each of the four traces of
choice, about 40% of the estimate modes are exclusively
owned (as defined above) by various users5.

We have experimented in modelingK as a function of
the aspects mentioned above (individually or combined),

5A surprising anecdote is that the actual number of bin-owners is also
(exactly) 40, in three of the four traces.

N (jobs) 0 20 200 1,000 10,0000 70,000 250,000
K (ests) 0 10 20 35 90 340 565
K/N (slope) 1/2 1/18 1/53 1/164 1/240 1/800

Table 3: Points defining the linear model ofK usingN . The
slope indicates the arrival rate of new estimates.

and most attempts revealed some insightful observations.
In fact, we are convincedK is the product of a combina-
tion of all factors, and that they all effect it to some degree.
However, in the interest of being short while avoiding un-
warranted complications (considering this only affects the
tail of the distribution), we have chosen to modelK as a
function ofN alone, which obtains tolerable results.

Fig. 7 plotsK as a function of the number of jobs sub-
mitted so far (ifn is an X value, its associated Y is the
number of estimate bins in use, before then-th job was
submitted). Note how the vanilla version of KTH and
SDSC stands out: the former due to the three estimate do-
mains it contains, and the latter due to user 106. All curves
can be rather successfully fitted with a power model on in-
dividual bases (we present one such power model that was
simultaneously fitted against all four traces of choice).
Accordingly, we allow the user of our model to supply the
appropriate coefficients (as optional parameters). How-
ever, as this only effects tail bins, we set an ad-hoc lin-
ear model (defined by Table 3) as the default configura-
tion. This provides a tolerable approximation ofK for
any given job numberN .
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Figure 8:Modeling estimate times usingf(x) = (a−1)x
a−x

.

7 Time Values of Estimates

Having computed aK approximation (order of a few hun-
dreds), we know how many estimate bins should be pro-
duced by our model. Let us continue to generate theseK
values, namely manufacture the{ti}

K

i=1 series. It has al-
ready been noted that users tend to give “round” estimates
[21, 2, 17], but this loose specification is not enough. In
this section we develop a simple method to generateK
such appropriate values. We are currently not consider-
ing the most popular (20) estimates in a separate man-
ner. These will be addressed in detail later on (Section 9),
complementing the model we develop in this section.

Recall that the time-ranks of estimates are their associ-
atedindexes, when ascendingly numbered from shortest
to longest. Evidently, this concept can be very helpful for
our purposes. We define a functionFtim that upon a time-
rank inputi, return the associated time valueti (seconds),
such thatFtim(i) = ti.

The top-left of Fig. 8 plots normalized estimate time
(ti/Tmax, whereTmax is the maximal estimate) as a func-
tion of its associated normalized time-rank (i/K), for
all four traces. According to the top-right and bottom
of Fig. 8, it turns out the resulting curves can be mod-
eled with great success when using the fractional function
f(x) = (a−1)x

a−x
for somea > 1 (x is normalized time-

rank). Further, the actual values ofa (Table 4) are corre-
lated withK, in that biggerK implies smallera.

trace KTH4H CTC SDSC-106 BLUE
a 1.91 > 1.57 > 1.50 > 1.24
K 106 < 265 < 339 < 525

Table 4:Thea parameter of the fractional fit presented in Fig. 8
is correlated with the number of different estimates (K).
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Figure 9:Modelinga as a function ofK using1 + αKβ (with
α = 12.1, β = −0.6). Note that a biggerK results in ana
parameter that is closer (but never equal) to 1, as required.

An obvious property off(x) in the relevant domain
(x ∈ [0, 1]) is that whena gets closer to 1, its numera-
tor goes to zero and therefore the curve gets closer to the
bottom and right axes. On the other hand, asa gets fur-
ther from 1 (goes to infinity), its numerator and denomina-
tor get more and more similar, which means the function
converges tof(x) = x (the main diagonal). The prac-
tical meaning of this is that less estimate values (smaller
K, biggera) means estimates’ temporal spread is more
uniform. In contrast, more estimate values (biggerK,
smallera) means a tendency of estimates to concentrate
at the beginning of the Y-axis, namely, be shorter.

In order to reduce the number of user-supplied param-
eters of our model, we can try to approximatea as a func-
tion of K (which we already know how to reasonably de-
duce from the number of jobs). The problem is that we
only have four samples (Table 4), too few to produce a
fit. One heuristic to overcome this problem is splitting the
traces in two and computingK anda for each half. This
enlarges our sample space by eight (two additional sam-
ples per trace) to a total of twelve. The results of fitting
this data to the best model we could find are shown in
Fig. 9 and indicate a moderate success.

We can now define the requiredFtim to be

Ftim(i) = Tmax · f (i/K) = Tmax ·
(a − 1) i

K

a − i
K

Generating the{ti}
K

i=1 series of time values is done by
simply assigning1, 2, ..., K to the time-ranki in an iter-
ative manner. Finally, as almost 100% of the estimates
are given in a minute resolution, the generated values are
rounded to the nearest multiple of 60 (if not colliding with
previously generated estimates).
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8 Popularity of Estimates

In the previous section we have modeled the time values
of estimates. Here we raise the question of how popular
is each estimate, that is, how many jobs are actually us-
ing each estimate value? Answering this question implies
modeling the{pi}

K
i=1 percentage series. Once again, like

in the previous section, ranking the estimates (this time
based on popularity) proves to be highly beneficial. Re-
call that{pi}

K
i=1 is descendingly sorted such thatp1 is the

percentage of jobs using the most popular estimate value,
pi is the percentage of jobs using thei-most popular esti-
mate value, andi serves as the associated popularity rank.
We seek a functionFpop such thatFpop(i) = pi. Note that
the constraint of

∑K
i=1 Fpop(i) = 100 must hold.

Fig. 10 plots the percentile size of each estimate bin,
as a function of its popularity-rank. Again, there is a clear
distinction between the top twenty most popular estimates
(head of the distribution) and the others (tail), as sizes of
head-bins decay exponentially, whereas the decay of the
tail obeys some power law.

The suggested fits are indeed very successful (R2 >
0.95 in both cases). However, when concentrating on the
head (left or middle of Fig. 10), it is evident the expo-
nential model is less successful for the first few estimates.
For example, in CTC the most popular estimate is used by
about 24% of the jobs, while in SDSC this is true for only
11%. In BLUE the situation is worse as the three top rank-
ing estimates “break” the exponential curve. (Indeed, the
exponential fit was produced after excluding these “ab-
normal” points.) Obviously, no model is perfect. But this
seemingly minor deficiency (at the “head of the head”) is
actually quite significant, as a large part of the distribu-
tion mass lies within this part (differences in less popular
estimates are far less important).

We note that the observed differences among the traces
at the “head of the head” expose an inherent weakness
in any estimate model one might suggest, because the ef-
fect of the variance among these 1-3 estimates is decisive.
Consequently, our model will allow (though not mandate)
the user to provide information regarding top-ranking esti-
mates as model parameters (this will be further addressed
in the next section). As for the default, recall that a job es-
timating to run for the maximal allowed value (Tmax) is
the worst kind of job in the eyes of a backfilling scheduler
(Section 2). For this reason, we prefer the default model to
follow the CTC example by making the (single) top rank-
ing estimate “break” the exponential contiguity. This sig-
nificant job percentage will later be associated withTmax

to serve as a realistic worst case scenario. We therefore
defineFpop as follows

Fpop(i) =







89 −
∑20

j=2

(

αeβ·j + γ
)

i = 1

αeβ·i + γ i = 2, 3, ..., 20
ω · iρ · 100−89

λ
i = 21, 22, ..., K

Starting with the (simplest) middle branch,Fpop is de-
termined by the exponential model for all head popular-
ity ranks but the first (the default values for the coeffi-
cients are specified in the caption of Fig. 10). The first
branch is defined so as to preserve the invariant shown in
Table 2 that the twenty top ranking estimates are enough
to cover almost 90% of the jobs. Finally, the third branch
determine sizes of tail estimates according to a power law
(again, coefficient values are specified in Fig. 10). But
to preserve the constraint that

∑K

i=1 Fpop(i) = 100, tail
sizes are scaled by a factor of100−89

λ
, whereλ is the sum

of the tail:
∑K

i=21 ω · iρ. The resulting default curve is
almost identical to the one associated with the model as
presented in Fig. 10, with a top rank of a bit more than
20% (to be associated withTmax).
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Figure 11:Scatter plots of relative popularity-ranks vs. relative time-ranks appear to reveal a uniform distribution across alltraces.
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9 Mapping Time to Popularity

The next step after separately generating the estimates’
time {ti}

K

i=1 and popularity{pj}
K

j=1 is figuring out how
two construct a bipartite matching between the two. We
seek a functionFmap such thatFmap(i) = j, that is, we
want to map each time-rank to a popularity-rank in a man-
ner that yields an estimate distributions similar to those
found in the original traces (Fig. 3).

9.1 Mapping of Tail Estimates

As a first step towards constructingFmap, let us exam-
ine this mapping as it appears in the four traces. Fig. 11
scatter plots normalized popularity-ranks vs. normalized
time-ranks: one point per estimate6. The points appear to
be more or less uniformly distributed, which means there
is no apparent mapping rule.

In an effort to expose some trend possibly hidden
within the “disorder” of the scatter plots, we counted the
number of points in each grid-cell within Fig. 11. We then
generated an associated heat-map for each sub-figure by
assigning a color based on the point-count of each cell:
cells that are populated by 80-100% of the maximal (cell)
point-count found within the sub-figure (denotedC), are
assigned with black; cells populated by 0-20% ofC are
assigned with white; the remaining cells are assigned with
a gray intensity that is linearly proportional to their point-
count, batched in multiples of 20% ofC.

6A scatter plot of actual values turns out to be meaningless.

The result, displayed in Fig. 12, appears to strengthen
our initial hypothesis that the mapping between
popularity-ranks and time-ranks is more or less uni-
formally random, as other than the bottom-left cell being
consistently black (top twenty popular estimates show
tendency of being shorter), there is no consistent pattern
that emerges when comparing the different traces.

Our next step was therefore to randomly map between
time and popularity ranks. Regrettably, this resulted in
failure, as the generated CDFs were inherently different
than those displayed in Fig. 3. The major guilty party of
this failure were (unsurprisingly) the “big modes” that fell
in the wrong places. The fact of the matter is that when
(uniformly) randomly mapping between time and popu-
larity ranks, there is a nonnegligible probability that the
4-5 most popular estimates are assigned to (say) times in
the proximity of the maximal value, which means that the
majority of the distribution mass is much too long. Alter-
natively, there is also a nonnegligible probability that the
opposite will occur, namely, that none of the more popu-
lar estimates will be assigned to a time in the proximity of
Tmax, contrary to our previous findings.

We conclude that it is tail estimates (in terms of pop-
ularity) that are roughly randomly mapped to times in
a uniform manner, forming the relatively balanced scat-
ter plot observed in Fig. 11. This appearance is created
due to the fact there are much more tail estimates (few
hundreds) than head’s (20). The head estimates minority,
which nevertheless constitute 90% of the mass, distributes
differently and requires a greater modeling effort.
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9.2 Determining Head Times

We have reached the point where the effort to model user
estimates is reduced to simply determining twenty actual
time values and mapping them correctly to the appropri-
ate (head) sizes. In other words, our task is as simple as
producing twenty(ti, pi) pairs. These are good news, as
the number of samples is so small, that a thorough exami-
nation of the entire sample-space becomes a feasible task.
The bad news is that unlike previous parts of the model
that are actually relatively trivial, and in spite of consid-
erable efforts we have made, we have failed to produce a
simplemethod of accomplishing the task. In the interest
of practicality and space, we will not describe our vari-
ous unsuccessful attempts to produce a simple straightfor-
ward solution. Instead, we will concentrate on describing
the sophisticated algorithm we developed that has finally
managed to deliver satisfactory results.

Let us examine the relevant sample space. Table 5 lists
the twenty most popular estimates in each trace, and their
associated (job) percentile sizes. It is immediately appar-
ent that of the 36 values displayed, a remarkable 15 are
joint timesacross all traces (note that we do not consider
values higher than 4 hours within the KTH4H log, when
determining which values are joint). The joint times are
highlighted in bold font, and have values one would ex-
pect from humans to ordinarily use. Note that this is re-
gardless of the different per-trace maximal estimate limits.
We conclude that joint values should be hard-coded in our
model, as it is fairly reasonable to conjecture humans will
always extensively use values like 10 minutes, 1 hour, etc.
We therefore define the first head-mapping step — deter-
mining the twenty time values that are the most popular
— as follows:

1. ChooseTmax, the maximal estimate (which is a
mandatory parameter of our model). As previously
mentioned, this is always a top ranking value.

2. Choose all hard-coded joint times that are smaller
thanTmax.

3. Choose in order (from largest to smallest) multiples
of Tround that are smaller thanTmax, whereTround

is 200 hours, then 100 hours, then 50h, 10h, 5h, 2h,
1h, 20min, 10min, and 5 minutes. This process is
stopped when the number of (different) chosen val-
ues reaches twenty.

The role of the third item above is to add arelativeas-
pect to the process of choosing popular estimates, which is
largely hard-coded (second item). As will later be shown,
this manages to successfully capture KTH4H’s condensed
nature. At the other end, traces (machines) of larger esti-
mate domains containing jobs that span hundreds of hours
do in fact exist [2]. Regrettably, their owners refuse to

# estimate SDSC-106 CTC KTH4H BLUE
hh:mm

1 00:01 6.6(4)

2 00:02 4.0(10)

3 00:03 2.2(14)

4 00:04 1.2(20)

5 00:05 11.3(1) 8.8(3) 11.5(2) 2.7(7)

6 00:10 7.9(4) 6.4(4) 9.6(3) 4.3(6)

7 00:12 1.2(17)

8 00:15 3.0(13) 10.6(2) 5.3(7) 16.0(3)

9 00:20 4.8(7) 2.0(12) 3.1(12) 2.5(8)

10 00:30 4.7(8) 3.5(9) 5.5(6) 17.7(2)

11 00:40 1.3(19) 0.5(19)

12 00:45 1.1(18)

13 00:50 0.5(20)

14 01:00 10.5(2) 4.2(8) 5.8(5) 4.9(5)

15 01:30 0.8(18) 1.3(18) 1.5(12)

16 01:40 1.4(16)

17 01:59 6.0(4)

18 02:00 5.3(6) 5.4(6) 4.5(9) 21.3(1)

19 02:10 1.3(17)

20 02:30 1.2(16) 1.4(15)

21 03:00 3.8(10) 4.9(7) 2.5(13) 1.8(10)

22 03:20 5.1(8)

23 03:50 3.3(11)

24 04:00 5.7(5) 2.2(11) 12.5(1) 1.6(11)

25 04:50 0.6(20)

26 05:00 1.4(15) 1.1(16) 0.9(15)

27 06:00 2.0(14) 6.1(5) 1.0(14)

28 07:00 0.9(19)

29 08:00 3.4(11) 1.5(14) 0.8(17)

30 10:00 3.3(12) 1.7(13) 0.9(16)

31 12:00 4.0(9) 2.2(10) 0.6(18)

32 15:00 0.9(20) 1.5(15)

33 16:00 1.0(17)

34 17:00 0.6(19)

35 18:00 9.8(3) 23.8(1) 2.1(9)

36 36:00 1.1(13)

sum (all) 86.4 88.9 89.3 88.7
sum (joint) 81.2 84.4 60.4 79.1

Table 5:Top twenty popular bins in the four traces. Each col-
umn contains exactly twenty job percentage values. Note that
fifteen of the top twenty estimates are joint across all traces (ex-
cluding KTH4H for estimates bigger than 4 hours). Joint esti-
mates appear in bold font. The subscript parentheses denotethe
popularity-ranks within each trace. Notice the percentilesum of
the top twenty which is invariantly in the neighborhood of 89%,
the value used in Section 8 to defineFpop.

share them with the community. Nevertheless, our al-
gorithm generates longer times based on the modes they
report (400h, 200h, 100h, and 50h in the NCSA O2K
traces).

Finally, recall we have already generatedK time values
usingFtim defined in Section 7. Head times generated
here, replace the twenty values generated byFtim that are
the closest to them (and so the structure reported in Fig. 8
is preserved).
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ttr Fsdsc−106 Fctc Fkth4h Fblue

0 3 1 1 1
1 1 3 4 6
2 4 4 10 5
3 17 2 14 3
4 13 12 20 7
5 7 9 2 2
6 8 8 3 18
7 18 18 7 19
8 2 6 12 4
9 6 7 6 11

10 16 11 19 20
11 10 20 5 9
12 5 16 18 10
13 15 5 16 14
14 14 14 9 13
15 19 13 17 16
16 11 10 15 15
17 12 15 13 17
18 9 17 8 8
19 20 19 11 12

Table 6:TheFlog functions of the four traces. The four most
popular ranks in each trace are highlighted in bold font.

9.3 Mapping of Head Estimates

Having both head times (seconds) and sizes (job percent-
ages) we now go on to map between them. As usual, the
mapping is made possible by using the associated ranks,
rather than the actual values. For this purpose we need
two new definitions:

First, we define a new type of time-rank, thetop-twenty
time rank (or ttr for short), which is rather similar to
the ordinary time-rank: All top-twenty times, excluding
Tmax, are ascendingly sorted. The first is assigned a ttr=1,
the second a ttr=2, and the last a ttr=19. For example, ac-
cording to Table 5, in CTC, 00:05 has ttr=1, 00:10 has
ttr=2, 01:30 has a ttr=7, and 17:00 has a ttr=19.Tmax is
always associated with ttr=0.

Second, for each trace-filelog, we define a function
Flog that maps ttr-s to the associated popularity ranks,
within that log. For example,Fctc(0)=1 asTmax=18h
(associated with ttr=0) is its most popular estimate. Like-
wise,Fctc(1)=3, as 5min is the smallest top-twenty esti-
mate (ttr=1) and is the third most popular estimate within
CTC. Table 6 listsFlog of the four traces. Recall that 2h is
the effectiveTmax of BLUE and therefore this is the esti-
mate we choose to associate with ttr=0. Additionally, note
the BLUE 01:59 mode near itsTmax=2h (Table 5). This
is probably due to users trying to enjoy both worlds: use
the maximal value, while “tricking” the system to assign
their jobs a higher priority as a result of being shorter. We
are not interested (nor able) to model such phenomena.
Therefore, in the generation of Table 6 and throughout the
reminder of this paper, we aggregate the 01:59 mode with
that of 2h and consider them a single 27.3% mode.
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Figure 13: There is only 0-3 difference between the closest
three ttr-s that are associated with the more popular ranks (Ta-
ble 6). For example, 3 of the ttr-s associated with popularity rank
2, are located in rows 3-5 in Table 6 (highlighted in a different
color).

The Flog functions in Table 6 reflect reality, and are
in fact the reason for the log-uniform CDFs observed in
Fig. 3. We therefore seek an algorithm that can “learn”
these functions and be able to imitate them. Given such
an artificialFlog, we would finally be able to match head-
sizes (produced in Section 8, their size defines their pop-
ularity rank) to head-times (produced in Section 9.2, their
value defines their ttr-s) and complete our model.

At first glance, the fourFlog functions appear to have
little similarities (the correlation coefficient between the
columns of Table 6 is only 0.1-0.3), seemingly deeming
failure on the generalization attempt. However a closer in-
spection reveals some regularities. Consider for example
the more popular (and therefore more important to model)
ranks: at least three of four values of each such rank are
clustering across neighboring lines (ttr-s). This is made
clearer in Fig. 13. Another observation is that when di-
viding popularity-ranks into two (1-10 vs. 11-20), around
75% of the more popular ranks are found in the top half of
Table 6, which indicates a clear tendency of more popular
ranks to be associated with smaller ttr-s. (This coincides
with the log-uniformity of the original estimate distribu-
tions). It is our job to capture these regularities.

In the initialization part of our algorithm, which we call
thepool algorithm, we associate ttr=0 (ofTmax) with pop-
ularity rank=1, that is, the maximal estimate is also the
most popular. The rationale of this decision is that

1. according to Table 6 this is usually the case in real
traces,

2. as explained in Section 2, makingTmax the most
popular estimate constitutes a realistic worst case
scenario, which is most appropriate to serve as the
default setting, and

3. it is the “safest” decision due to the constraint that
estimates must be longer than runtimes.

The last two items are the reason why we chose to follow
the CTC example and enforce a sizable first rank on the

13



construction ofFpop (end of Section 8) that “breaks” the
exponential contiguity observed in Fig. 10. To complete
the initialization part, we allocate an empty vectorVpool

designated to hold popularity ranks. Any popularity rank
may have up to four occurrences withinVpool.

The body of the pool-algorithm iterates through the rest
of the ttr-s in ascending order (Jttr = 1, 2, ..., 19) and
performs the following steps on each iteration:

1. For each trace filelog, insert the popularity rank
Flog(Jttr) to Vpool, but only if this rank wasn’t al-
ready mapped to some smaller ttr in previous iter-
ations. (In other words, insert all the values from
within theJttr line in Table 6, that weren’t already
chosen.)

2. If there exists popularity ranks that have four oc-
currences withinVpool, choose the smallest of these
ranksR, mapJttr to R, remove all occurrences ofR
from Vpool, and move on to the next iteration.

3. Otherwise, randomly choose two (not necessarily
different) popularity ranks from withinVpool, map
the smaller of these toJttr, and remove all its occur-
rences fromVpool.

A main principle of the algorithm is the gradual iter-
ation over Table 6, such that no popularity-rankR is el-
igible for mapping toJttr, before we have actually wit-
nessed at least one occasion in whichR was mapped to a
ttr that is smaller than or equal toJttr. This aims to imi-
tate the originalFlog functions, along with serving as the
first safety-mechanism obstructing more popular ranks to
be mapped to longer estimates (recall that estimate CDFs
are log-uniform, which means most estimates are short).

Another important principle of the algorithm is that
increased number of occurrences of the sameR within
Vpool, implies a greater chance ofR to be randomly cho-
sen. And so, anR that is mapped to a ttr≤ Jttr within
two traces (two occurrences withinVpool), has double the
chance of being chosen in comparison to a popularity rank
for which this condition holds with respect to only one
trace (one occurrence withinVpool). This aspect of the
algorithm also aims to capture the commonality between
the various traces.

Item number two in the algorithm tries to make sure an
R will not be mapped to a ttr that is bigger thanall the ttr-
s to which it was mapped in the four traces. Like the first
principle mentioned above, this item has the role of mak-
ing sure the resulting mapping isn’t too different than that
of the original logs. It also serves as the second safety-
mechanism limiting the probability of more popular ranks
to be mapped to longer estimates.

The combination of the above “safety mechanisms”
was usually enough to produce satisfactory results. How-
ever, on rare occasions, too many high popularity ranks
have managed to nevertheless “escape” these mechanisms

and be mapped to longer estimates. Adding a third safety-
mechanism, in the form of using the minimum between
two choices of popularity ranks (third item of the algo-
rithm), has turned this probability negligible.

9.4 Embedding User-Supplied Estimates

While the estimate distributions of the traces bare remark-
able resemblance, they are also very distinct within the
“head of the head” (as discussed in Section 8), that is, the
1-3 most popular estimates. For example, considering Ta-
ble 5, the difference between the percentage of SDSC and
CTC jobs associated with 18h (10% vs. 24%) is enough
to yield completely different distributions. Another exam-
ple is BLUE’s shift of the maximum from 36h to 2h, or its
two huge modes in 15min and 30min; the fact that more
than 60% of its jobs use one of these estimates (along with
01:59), cannot be captured by any general model. Yet an-
other example is KTH4H’s unique modes below 5min.
This variance among the most important estimate bins,
along with the fact users may be aware of special queues
and other influential technicalities concerning their site,
mandates a general model to allow its user to manually
supply head estimates as parameters.

To this end, we allow the user to supply the model with
a vector of up to twenty(ti, pi) pairs. The manner in
which these pairs are embedded within our model is the
following: The ti values replace default-generated head
times (Section 9.2) that are the closest to them, with the
exception ofTmax which is never replaced unless explic-
itly given by the user as one of the(ti, pi) pairs. (This is
due to the reasons discussed in Section 9.3.) As an ex-
ample, in order to effectively replace the maximal value
of BLUE, the user must supply two pairs:(36h, 1%) to
prevent the model from making the old maximum (36h)
the most popular estimate, and(2h, 27%) to generate the
new maximum.

Similarly to times, user suppliedpi percentile sizes re-
place default-generated sizes (Section 8) that are the clos-
est to them. Once again, the biggest value (reserved for
Tmax) is not replaced if the user did not supply a pair con-
tainingTmax. Additionally, the remaining non-user head-
sizes are scaled such that the total mass of the head is still
89% (scaling however do applies to the largest non-user
size). If scaling is not possible (sum of user sizes exceed
89%), non-user head-sizes are simply eliminated, and the
tail sizes are scaled such that the sum of the entire distri-
bution is 100%.

Finally, the pool algorithm is refined to skip ttr-s that
are associated with user-supplied estimates and to avoid
choosing their associated popularity ranks for mapping.
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10 Overview of the Model

Now that all the different pieces are in place, let us briefly
review the default operation of the estimates model we
have developed:

1. Get input. The mandatory parameters are maximal
estimate valueTmax, and number of jobsN (which
is the number of estimates the model must produce
as output). A third, “semi mandatory”, parameter is
the percentage of jobs associated withTmax. While
the model can arbitrarily decide this value by itself,
its variation in reality is too big to be captured by
a model, whereas its influence on performance re-
sults is too detrimental to be ignored (Tmax jobs are
the “worst kind” of jobs in the eyes of the scheduler;
Section 2).

2. Compute the value ofK (different estimate times) as
defined in Section 6.

3. GenerateK time-values usingFtim as defined in
Section 7.

4. Generate 20 “head” time-values using the algorithm
defined in Section 9.2 and combine them with the
K time-values produced in the previous item. Non-
head times are denoted “tail” times.

5. GenerateK percentile sizes usingFpop as defined in
Section 8. The largest 20 sizes are the head sizes.
The rest are tail.

6. Map between time- and size-values usingFmap as
defined in Section 9, by

• Randomly mapping between tail-times and tail-
sizes in a uniform manner (Section 9.1).

• Mapping head-times and head-sizes using the
pool algorithm (Section 9.3).

7. If received user supplied estimate bins, embed them
within the model as described in Section 9.4.

10.1 About the Complexity

The only part which is non-trivial in our model is the pool
algorithm: Generating the estimate time values by them-
selves is a trivial operation. Generating sizes (percent-
ages of jobs) is equally trivial. Mapping between these
two value sets is also a relatively easy operation, as all but
the 20 most popular sizes can be randomly mapped. All
the complexity of the model concentrates in solving the
problem of deciding how many jobs are associated with
each “head” estimate, or in other words, where exactly to
place the larger modes. The question of whether a simpler
alternative than the one suggested here exists, is an open
one, and it is conceivable there’s a positive answer. How-
ever, all the “immediate” heuristics we could think of in

order to perform this task in a simpler manner have been
checked and verified to be inadequate. In fact, it is these
inadequacies that has lead us step by step in the develop-
ment of the pool algorithm.

11 Validating the Model

Having implemented the estimate model, we now go on
to validate its effectiveness. This is essentially composed
of two parts. The first is obviously making sure that
the resulting distribution is similar to that of the traces
(Section 11.1). However, this is not enough by itself, as
our ultimate goal is to allow realistic performance evalu-
ation. The second part is therefore checking whether per-
formance results obtained by using the original data are
comparable to those produced when replacing original es-
timates with artificial values produced by the model (Sec-
tion 11.3). The latter part mandates developing a method
according to which artificial estimates are assigned to jobs
(Section 11.2).

11.1 Validating the Distribution

Fig. 14 plots the original CDFs (solid line) against those
generated by the “vanilla” model using various seeds. The
only input parameters that are given to the model are those
listed in Section 10, that is, the maximal estimateTmax,
then number of jobsN , and the percentage of jobs asso-
ciated withTmax. Recall that BLUE’s maximum is con-
sidered to be 2 hours and that in order to reflect this we
must explicitly supply the model with an additional pair
(Section 9.4).

The results indicate the model has notable success in
generating distributions that are remarkably similar to that
of SDSC-106 and CTC; it is far less successful with re-
spect to the other two traces. However, this should come
as no surprise because, as mentioned earlier, the model
has no pretense of reflecting abnormalities or features that
are unique to individual traces. In the case of KTH4H,
these are the large modes that are found below 5 minutes
(Table 5). In fact, if aggregating these modes with that of
5 minutes, we get that a remarkable 25.5% of KTH4H’s
jobs have estimates that are 5 minutes or less, which is
inherently different in comparison to the other traces. In
the case of BLUE, its uniqueness takes the form of two
exceptional modes located at 15 and 30 minutes. This dis-
tinctive quality is especially apparent in Fig. 10, where the
three biggest modes “break” the log-uniform contiguity.

The practical question is therefore if the model can pro-
duce good results when provided withminimaladditional
information highlighting the trace-specific abnormalities.
The amount of such information is inherently limited if we
are to keep the model applicable and maintain its practi-
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Figure 14:The original estimate distribution of the traces (solid lines) vs. the output of the vanilla model, when used with four
different seeds. Output is less successful for traces with unique features.
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Figure 15:Output of the model under the “improved” setting which provides minimal information identifying the unique features.

cal value. We therefore define the “improved” setting in
which the KTH4H model is provided with the additional
(5min, 25%) pair. The BLUE model is provided with
two additional pairs associated with its two exceptional
modes:(15min, 16%) and(30min, 18%).

The results of the improved setting are shown in Fig. 15
and indicate that this additional information was all that
the model needed in order to produce satisfactory results
(also) with respect to the two “unique” traces. To test the
impact of additional information on situations where the
vanilla model manages to produce reasonable results by
itself, the improved setting supplied three additional pairs
(of the most popular estimates) when modeling CTC and
SDSC-106. It is not apparent whether the additional in-
formation made a qualitative difference.

The important conclusion that follows from the suc-
cessful experiment we have conducted in this section, is
that estimate distributions are indeed extremely similar:
Most of their variance concentrates within the 1-3 most
popular estimates, and once these are provided, the model
produces very good results.

11.2 Assigning Estimates to Jobs

The next step in validating the model is putting it to use
within a simulation. For this purpose we have decided
to simulate the EASY scheduler and evaluate its perfor-

mance under the four workloads. This can be done with
original estimates or after replacing them with artificial
values that were generated by our model. Similar perfor-
mance results would indicate success.

The common practice when modeling a parallel work-
load is to define canonical random variables to represent
the different attributes of the jobs, e.g. runtime, size, inter-
arrival time etc. [6, 15, 20]. Generating a workload ofN
jobs is then performed by creatingN samples of these
random variables. Importantly, each sample is generated
independentlyof other samples.

In this respect, assignment of artificial estimates to jobs
is subtle, as this must be done under the constraint that
estimates mustn’t be smaller than the runtimes of the jobs
to which they are assigned. Here, we can’t just simply
randomly choose a value. However, if independence be-
tween jobs is still assumed, we can easily overcome the
problem by using therandom shuffle algorithm. This al-
gorithm gets two vectorsVestimate andVruntime that hold
N values as suggested by their names. The content of both
vectors is generated as usual, according to the procedure
described above (under the assumption of independence).
Now all that is needed is a random permutation that maps
between the two, such that every estimate is equal to or
bigger than its associated runtime. The random shuffle
algorithm finds such a permutation by iterating through
Vruntime and randomly pairing each runtimeR with some
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Figure 16:Validating badness. The reason for the peculiar result associated with the average SDSC wait time remains unknown.

estimateE ∈ Vestimate for which E ≥ R. After values
are paired, they are removed from their respective vectors.

Note that we do not claim that the independence as-
sumption underlying the random shuffle algorithm is cor-
rect. On the contrary. We only argue that this is the com-
mon practice. However, there is a way to transform the
original data such that this assumption holds: The algo-
rithm can be applied to the original data, that is, we can
populate theVestimate vector with original trace estimates
and reassign them to jobs using the shuffle algorithm. The
outcome of doing this would be that the original estimates
are “randomly shuffled” between jobs (which is the source
of the algorithm’s name). The result of such shuffling is to
create independent “real” estimates. This is suitable as a
basis for comparison with our model, as explained below.

11.3 Validating Performance Results

Several estimate-generation models have been evaluated
and compared against the original data:

• TheX2-model: simply doubles user estimates on the
fly [16, 21].

• The shfl-model: the result of applying the random
shuffle algorithm (defined above) to the original data.
As noted, assuming independence in this context is
correct.

• Thef -model: upon receiving a job’s runtimeR, uni-
formly chooses an estimate from the closed range

[R, R · (f + 1)]. In accordance with [21], six val-
ues off were chosen: 0 (complete accuracy), 1, 3,
10, 100, and 300.

• The feit-model: targets accuracy (suggested by
Mu’alem and Feitelson [21] and explained in the in-
troduction).

• Thevanl-model: the vanilla setting of the model de-
veloped in this paper (defined above).

• The impr-model: the improved setting of our model,
supplying it with some additional information (de-
fined above).

Note thatX2 andshfl are not models per-se, as both are
based on real estimates. The competitors of our model are
f andfeit (which produce estimates based on runtime).

Performance results are shown in Fig. 16 in the form
of average wait time and bounded slowdown. The black
dotted lines present the results of running the simulations
using the original data. Therefore, models that are closer
to this line are more realistic. Recall that our aim here is
not to improve performance. Rather, it is to produce trust-
worthy results that are closest to reality. All the results
associated with models that contain a random component
(all but X2 andf0) are the average of one hundred differ-
ent simulation runs employing different seeds. The error-
bars associated with these models display the absolute-
deviation (average of absolute value of deviation from the
average).
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When examining Fig. 16, it is clear the two variants of
our algorithm are more realistic, in that they usually do
a better job in capturing the “badness” of user estimates
(compare withf -s andfeit). Another observation is that
using increasedf -s (orfeit) to model increased user inac-
curacy (for the sake of realism) is erroneous, asf0 usually
produces results that are much closer to the truth. In fact,
f0 is usually comparable to the results obtained by our
model with the exception of the SDSC trace. However,
this is limited to the FCFS-based EASY scenario: if intro-
ducing a certain amount of limited SJF-ness to the sched-
uler (e.g. as in [25, 1]),f0 yields considerably better per-
formance results in comparison to the original, whereas
our model stays relatively the same (figure not shown to
conserve space). Another scenario in whichf0 can’t be
used is when evaluating system-generated runtime pre-
dictors that make use of estimates (along with other job
characteristics) [14, 23, 18, 25]. Finally (returning to the
context of EASY), unlikef0, our model has room for im-
provement as will shortly be discussed, and we believe it
has potential to “go the extra mile”.

A key point in understanding the performance results
is noticing that the vanilla setting of our algorithm is sur-
prisingly more successful in being closer to the original
than its improved counterpart. This is troublesome as our
entire case is built on the argument that models that are
more accurate would yield results that are closer to the
truth. The answer to the riddle is revealed when exam-
ining theshfl model. The fact of the matter is that one
cannot get more accurate thanshfl, as it “generates” a dis-
tribution that isidenticalto that of the original. Yet it too
seems to be inferior to our vanilla model. This exposes our
independence assumption (the random shuffle algorithm)
as the true guilty party which is responsible for the differ-
ence betweenimpr and the original. The correct compar-
ison betweenimpr andvanl should actually be based on
which is closer toshfl, not to the original, as only withshfl
can independence be assumed. Based on this criterion,
impr is consistently better thanvanl.

Once this is understood, we can also explain why the
performance ofimpr (in terms of wait and slowdown) is
always better than that ofvanl. Consider the difference
between the two models:impr simply has much more ac-
curate data regardingshorterjobs (e.g. KTH4H’s 25% of
5 minutes jobs). As short jobs benefit the most from the
backfilling optimization,impr consistently outperforms
vanl (in absolute terms).

11.4 Repetitiveness is Missing

We are not interested in artificially producing worse re-
sults by means of falsely boosting up estimates (as is done
by vanl with respect toimpr). This would be equivalent
to, say, increasing the fraction of jobs that estimate to run
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Figure 17:Runtime and estimate of all the jobs submitted by
three arbitrary users from the SDSC trace shows remarkable
repetitiveness.

Tmax, which can arbitrarily worsen results. Our true goal
is creating a reliable model. The above indicates that the
problem lies in the assumption of independence, namely,
the manner we assign estimates to jobs. While it is pos-
sible that this is partially because we neglected to enforce
the accuracy to be as displayed in Fig. 1 (the accuracy his-
tograms of evenshflare dissimilar to that of the original),
we conjecture that the independence assumption is more
acute.

It has been known for over a decade that the work gen-
erated by users is highly repetitive [12, 10]. Recent work
[28, 24] suggests that the correct way to model a work-
load is by viewing it as a sequence ofuser sessions, that
is, bursts of very similar jobs by the same user. This doc-
trine suggests that a correct model cannot just draw values
from a given distribution while disregarding previous val-
ues as is done by most existing parallel workload models
(e.g. [6, 15, 20, 4]). The rationale of this claim is that the
repetitive nature of the sequence within the session may
have a decisive effect on performance results7.

Since users tend to submit bursts of jobs having the
same estimate value (Fig. 17), the end result is somewhat
similar to that of the existence of estimates modes, but
in a more “temporal sense”: At any time instance, jobs
within the wait-queue tend to look the same to the sched-
uler, as jobs belonging to the same session usually share
the same estimate value. Consequently, the scheduler has
less flexibility in making backfilling decision and the per-
formance is negatively effected. Ourshflalgorithm, along
with all the rest of the models, do not entail the concept

7A remarkable example stressing the importance of this phenomenon
was recently published [26]: changing a runtime of onlyonejob (within
a log that spans two years) by a mere 30 seconds, resulted in a change
of 8% in the average bounded slowdown ofall the jobs; the reason was
traced to be a certain user-session and its interaction withthe scheduler.
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of sessions and therefore result in superior performance in
comparison to the original.

Accordingly, our future work includes developing an
assignment mechanism that is session aware. This can
be obtained if the procedure that pairs runtimes and es-
timates gets additional information associating jobs with
users. User-based modeling [24] can supply this data.

12 Conclusions and Future Work

User runtime estimates significantly effect the perfor-
mance of parallel systems [21, 1, 8]. As part of the effort
to allow realistic and trustworthy performance analysis of
such systems, there is a need for an estimates model that
successfully captures their main characteristics.

A number of models have been suggested, but these are
all lacking in some respect. Their shortcoming include
implicitly revealing too much information about real run-
times, erroneously emulating the accuracy ratio of run-
time to estimate, neglecting to take into consideration the
fact that all production installations have a limit on the
maximal allowed estimate, and that this value is always
one of the more popular estimates. Importantly, two key
ingredients are missing from existing models: the inher-
ently modal nature of the estimates caused by users’ ten-
dency to supply “round” values [21, 2, 17], and the tempo-
ral repetitive nature of user estimates, assigning the same
value to bursts of jobs (sessions) [26, 28]. These have
decisive effect on performance results, as low estimate-
variance of wait-queue jobs reduces the effectiveness of
backfilling. The outcome is simulation results that are un-
realistically better than those obtained with real estimates.

In this paper we produce a model that targets estimates
modality. We view the estimates distribution as a se-
quence of modes, and investigate their main character-
istics. Our findings include the invariant that 20 “head”
estimates are used by about 90% of the jobs throughout
the entire log. The popularity of head estimates (percent-
age of jobs using them) decreases exponentially, whereas
the tail obeys a power-law. The few hundred values that
are used as estimates, are well-fitted by a fractional model,
while at the same time, 15 out of the 20 head estimates are
identical across all the production logs we have examined.
The major difficulty faced by this paper was determining
how popular is each head estimate (how many jobs are
associated with each). This was solved by the “pool algo-
rithm”, aimed to capture similarities between profiles of
head-estimates within the analyzed production logs.

We found that all modeled aspects of the estimates dis-
tribution are almost identical across the logs, and therefore
our model defines only two mandatory parameters: the
number of jobs and the maximal allowed estimate (Tmax).
While considerable variance does in fact exist, it is mostly

encapsulated within the percentage of jobs estimated to
run forTmax. The remaining variance is attributed to an-
other 1-2 very popular modes that sometimes exist, but
are unique to individual logs. When provided this addi-
tional information, our model produces distributions that
are remarkably similar to that of the original.

When put to use in simulation (by replacing real esti-
mates with artificial ones), our model consistently yields
performance results that are closer to the original than
those obtained by other models. In fact, these results are
almost identical to when real estimates are used and are
randomly shuffled between jobs. This suggests that the
temporal repetitiveness of per-user estimates may be the
final obstacle separating us from achieving realistic re-
sults. Consequently, our future work includes developing
an improved assignment scheme of estimates to jobs that
will preserve this feature.

Our estimates model is available to download from the
parallel workload archive [9]. Its interface contains two
functions: generating the distribution modes, and assign-
ing estimates to jobs. The latter is essentially random
shuffling of estimates between jobs, under the constraint
that runtimes are smaller than estimates. Our future work
includes refining this function such that the user-session
quality takes effect.
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