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Abstract

This paper presents a comprehensive characterization
of a multi-cluster supercomputer1 workload using twelve-
month scientific research traces. Metrics that we character-
ize include system utilization, job arrival rate and interar-
rival time, job cancellation rate, job size (degree of paral-
lelism), job run time, memory usage, and user/group behav-
ior. Correlations between metrics (job runtime and mem-
ory usage, requested and actual runtime, etc) are identi-
fied and extensively studied. Differences with previously re-
ported workloads are recognized and statistical distribu-
tions are fitted for generating synthetic workloads with the
same characteristics. This study provides a realistic basis
for experiments in resource management and evaluations
of different scheduling strategies in a multi-cluster research
environment.

1. Introduction

Workload characterization of parallel supercomputers is
important to understand the system performance and de-
velop workload models for evaluating different system de-
signs and scheduling strategies [1, 2]. During the past sev-
eral years, lots of workload data has been collected [3], ana-
lyzed [4, 5, 6], and modeled [7, 8, 9]. Benchmarks and stan-
dards are also proposed for job scheduling on parallel com-
puters [10].

In previously studied workloads [4, 5, 6, 7], some char-
acteristics are similar. For example, most of the workloads
are collected from large custom-made production facilities
(IBM SP2, SGI Origin, etc) in supercomputing centers. Jobs
typically request “power-of-two” number of processors and
have different arrival patterns in different periods (e.g. peak

1 Distributed ASCI Supercomputer-2 (DAS-2). ASCI stands for Ad-
vanced School for Computing and Imaging in the Netherlands.

and none-peak hours in a daily cycle). Some characteris-
tics, such as distributions and correlations, vary across dif-
ferent workloads [4, 5, 11]. Other characteristics are stud-
ied and reported separately, such as job cancellation rate [9]
and conditional distributions (e.g. actual runtime distribu-
tions conditioned on requested runtime [4]). In this paper
we compare our workload with previous reported ones on a
per characteristics basis.

This paper presents a comprehensive workload charac-
terization of the DAS-2 [12] supercomputer. The DAS-2
system is interesting in that it is built using the popular
COTS (Commodity Off The Shelf) components (e.g. In-
tel Pentium processors and Ethernet networks) and con-
sists of multiple distributed clusters serving the five par-
ticipating universities. Not like other production machines,
DAS-2 is dedicated to parallel and distributed computing
research thus it has much lower system utilization. We an-
alyze twelve-month workloads on DAS-2 clusters in year
2003. Characteristics include system utilization, job arrival
rate and interarrival time, job cancellation rate, job size
(degree of parallelism), job run time, memory usage, and
user/group behavior. Correlations between metrics are also
identified and studied.

The contributions of this paper reside in the following.
Firstly, our study is based on cluster workloads. Cluster
computing is a popular alternative in the HPC commu-
nity and to our knowledge, not much work has been done
in characterizing cluster workloads. Secondly, the system
we study is a research facility. This provides an interest-
ing comparison point to the well studied production work-
loads. Thirdly, we present a comprehensive characteriza-
tion of the DAS-2 workloads. We not only analyze most
of the metrics appeared in previous work, but also exten-
sively study the correlations between different characteris-
tics. Moreover, we fit the observed data with statistical dis-
tributions to facilitate synthetic workload generation. This
research serves as a realistic basis in modeling cluster work-
loads, which contributes as input for evaluations of differ-
ent scheduling strategies in a multi-cluster research environ-



cluster location #CPUs period #job entries
fs0 Vrije Univ. A’dam 144 01-12/2003 219618
fs1 Leiden Univ. 64 01-12/2003 39356
fs2 Univ. of A’dam 64 01-12/2003 65382
fs3 Delft Univ. of Tech. 64 01-12/2003 66112
fs4 Utrecht Univ. 64 02-12/2003 32953

Table 1. DAS-2 clusters and workload traces (A’dam - Amsterdam).

ment [13].
The rest of the paper is organized as follows. Section 2

provides an overview of the DAS-2 system and workload
traces used in our study. Section 3 analyzes the overall sys-
tem utilization. Section 4 describes the job arrival character-
istics, including job arrival rate, job interarrival time and job
cancellation rate. Distributions are fitted for job interarrival
times and job cancellation lags. Section 5 describes job exe-
cution characteristics. This includes job size, job actual run-
time, memory usage, and correlations between them. Dis-
tributions and/or conditional distributions are also provided.
Section 6 describes user/group behavior and its implications
in modeling and predictions. In section 7 conclusions are
presented and future work is discussed.

2. The DAS-2 Supercomputer and Workload
Traces

The DAS-2 supercomputer consists of five clusters lo-
cated at five Dutch universities and is primarily used for
computing and scientific research. The largest cluster (Vrije
Universiteit) contains 72 nodes and the other four clusters
have 32 nodes each. Every node contains two 1GHz Pen-
tium III processors, 1GB RAM and 20GB local storage. The
clusters are interconnected by the Dutch university internet
backbone and the nodes within a local cluster are connected
by high speed Myrinet as well as Fast Ethernet LANs. All
clusters use openPBS [14] as local batch system (one and
only one queue is configured for each cluster). Maui [15]
(FCFS with backfilling) is used as the local scheduler. Jobs
that require multi-clusters can be submitted using toolkits
such as Globus [16]. DAS-2 runs RedHat Linux as the op-
erating system.

We use job traces recorded in the PBS accounting logs
for twelve months in year 2003 on the five clusters2. All
jobs in the traces arerigid (jobs that do not change paral-
lelism at runtime) batch jobs. An overview of the DAS-2
system and workload traces is provided in Table 1. As we
can see, fs0 (VU) is the most active cluster, with more than
two hundred thousand job entries. Next we have clusters at

2 Logs of January on fs4 are not available.

UvA (fs2) and Delft (fs3), each with more than sixty thou-
sand entries. Leiden (fs1) and Utrecht (fs4) are relatively
less active among the DAS-2 clusters. Next section gives a
more detailed analysis on the overall system utilization.

3. System Utilization

Figure 1 shows the DAS-2 system utilization as function
of time of day. Two plots are shown for every cluster. One
is the average utilization of all days and the other is the av-
erage utilization of all active days in the year (excluding
system down time and days without job arrivals3). In aver-
age, fs0 has the highest (22%) and fs3 has the lowest sys-
tem utilization (7.3%) among DAS-2 clusters. The utiliza-
tion (7.3% to 22%) is substantially lower than previously
reported workloads (e.g. 50% in average excluding down-
time [5]). This is because DAS-2 system is designed for sci-
entific research and production jobs are precluded from it.
The goal of DAS-2 is not on high utilization, but rather on
provide fast response time and more available processors
for university researchers. Moreover, DAS-2 schedulers de-
fine one special policy, which forbids jobs to be scheduled
on nodes (SMP dual processor) of which one processor is
already used by another job. This policy also has a certain
negative impact on the overall system utilization.

We can see that the utilization approximately follows the
daily job arrival rate (see Figure 2), although the differences
between day and night are generally smaller. It is because
nightly jobs often require more processors and run longer
than daily jobs, despite substantially fewer job arrivals. This
is particularly evident on cluster fs3 and fs4.

4. Job Arrival Characteristics

In this section we analyze the job arrival characteristics.
We first describe the job arrival rate, focusing mainly on
daily cycles. Daily peak and non-peak hours are identified.
Secondly, we characterize the job interarrival times during

3 Since we calculate the system utilization based on traces, we could
not distinguish whether it is system down time or time without job ar-
rivals.
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Figure 1. System utilization of DAS-2 clusters. “Average” stands for the average utilization of all days
in the year. “Average*” stands for the average utilization of all active days in the year, excluding sys-
tem downtime and days without job arrivals.

daily peak hours. Several statistical distributions are exam-
ined to fit the job interarrival times. Finally, job cancella-
tion rate and cancellation lags are analyzed and modeled,
since it may also affect the scheduling process.

4.1. Job Arrival Rate

As is studied in [7], job arrivals are expected to have cy-
cles at three levels: daily, weekly, and yearly. In a yearly
cycle, we find that workloads are not distributed evenly
throughout the year. Instead, workloads concentrate on spe-
cific months and job entries in these months are around two
or more times above average. We call them “job-intensive”
months (October, November and December on fs0, August,
November on fs1, November, December on fs2, May, De-
cember on fs3, and August, November on fs4). This is be-
cause of the different active users/groups on different clus-
ters and they are active in specific periods during the year
(see Section 6). In a weekly cycle, all clusters share simi-
lar characteristics. Wednesday has the highest average job
arrival rate and decreases alongside, with Sunday and Sat-

urday have the lowest arrival rate. This is natural since peo-
ple generally work more during weekdays (Monday - Fri-
day) than weekends (Saturday and Sunday).

The most important cycle is the daily cycle. As is shown
in 2, clusters share similar daily workload distributions dur-
ing weekdays. We identify the daily peak hours as from 9am
to 7pm on all five clusters. This is in accordance with nor-
mal “working hours” at Dutch universities. Similar job ar-
rival distributions are reported on other workloads with dif-
ferent peak hour periods (e.g. 8am to 6pm in [4], 8am to
7pm in [7]). Additionally, an intermediate period is reported
from 6pm to 11pm in [4]. We observed similar characteris-
tics on DAS-2 clusters, with an intermediate arrival period
from 8pm to 1am and a low arrival period from 1am to 8am.
The arrival rate per hour can be divided into three scales.
The fs0 cluster has the highest one, with an average arrival
rate of 108 jobs per hour and peak arrival rate exceeding
200 jobs per hour. In the middle there are fs2 and fs3, with
average arrival rates of 31 and 32 jobs per hour each. Clus-
ters fs1 and fs4 have average arrival rates of 19 and 15 jobs
per hour, respectively.



0 10 20
0

50

100

150

200

250

Time of day (hours)

# 
jo

b 
ar

riv
al

s

fs0

0 10 20
0

10

20

30

40

50
fs1

Time of day (hours)

# 
jo

b 
ar

riv
al

s

0 10 20
0

20

40

60

fs2

Time of day (hours)

# 
jo

b 
ar

riv
al

s

0 10 20
0

20

40

60

80

fs3

Time of day (hours)

# 
jo

b 
ar

riv
al

s

0 10 20
0

10

20

30

40

50
fs4

Time of day (hours)

# 
jo

b 
ar

riv
al

s

Figure 2. Daily cycle of job arrivals during weekdays on DAS-2 clusters.

cluster period M (s) CV best fitted distribution KS
fs0 2003/12/02 17 1.6 gamma (a = 0.44,b = 39) 0.10
fs1 2003/11/25 26 2.4 gamma (a = 0.30,b = 86) 0.13
fs2 2003/12/29 14 1.3 hyperexp2 (c1=0.92,λ1=0.07,c2=0.08,λ2=100) 0.07
fs3 2003/05/26 10 1.8 hyperexp2 (c1=0.55,λ1=0.06,c2=0.45,λ2=0.42) 0.10
fs4 2003/08/13 62 3.0 hyperexp2 (c1=0.09,λ1=0.003,c2=0.91,λ2=0.03) 0.10

Table 2. High load distributions of job interarrival time during daily peak hours (M - Mean, CV - Coef-
ficient of Variation, KS - maximal distance between the cumulative distribution function of the theo-
retical distribution and the sample’s empirical distribution).

4.2. Job Interarrival Time

Based on the observed job interarrival patterns, we
choose to characterize “representative” and “high load” pe-
riod of job interarrival times. The representative period is
defined as the peak hours during weekdays in job-intensive
months. The high load period is the peak hours of the most
heavily loaded days in the year. As is shown in Table 2, dur-
ing high load period themeanranges from 14 to 62 sec-

onds and thecoefficient of variation(CV) varies from 1.3
to 3.0 on DAS-2 clusters. The mean and CV are consid-
erably larger in the representative period (see Table 3).
Both small (1-2) and large CVs (3-6) have been re-
ported in other workloads [4, 6].

We have selected several statistical models to fit the
interarrival times of representative and high load period,
including hyperexponential, gamma, Weibull, and heavy-
tailed distributions like lognormal and Pareto [17]. We fit



cluster period M (s) CV best fitted distribution KS
fs0 Dec 27 4.5 hyperexp2 (c1=0.04,λ1=0.003,c2=0.96,λ2=0.06) 0.15
fs1 Aug, Dec 66 3.6 Weibull (a = 22.6, b = 0.44) 0.10
fs2 Dec 44 5.0 Weibull (a = 26.1, b = 0.58) 0.08
fs3 May, Dec 23 6.0 Weibull (a = 11.6, b = 0.53) 0.14
fs4 Aug, Nov 86 5.1 Weibull (a = 33.2, b = 0.5) 0.09

Table 3. Representative distributions of job interarrival time during daily peak hours (M - Mean, CV -
Coefficient of Variation, KS - maximal distance between the cumulative distribution function of the
theoretical distribution and the sample’s empirical distribution).
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Figure 3. Fitting distributions of interarrival time during peak hours on fs0.

the above mentioned distributions (except hyperexponen-
tial) usingMaximum Likelihood Estimation(MLE) method,
and a two-phase hyperexponential distribution usingExpec-
tation Maximization(EM) algorithm4 [18]. The goodness of
fit is assessed using the Kolmogorov-Smirnov test.

Results of distribution fitting are shown in Table 2 and 3.
Figure 3 and 4 further illustrate how well the different dis-
tributions fit the trace data on fs0 and fs1. Generally speak-
ing, none of the chosen distributions pass the goodness of
fit test. Some distributions, such as gamma and hyperex-
ponential, fit the head of the sample distribution well but
fail to fit the tail. Others like lognormal and Pareto, fit the
tail but not the head. It seems not likely to find a model
that fits all parts of the empirical distribution well. How-

4 Matlab [19] and Dataplot [20] are used to calculate means, CVs, do
MLE fitting and goodness of fit test. EMpht [21] is used to fit the hy-
perexponential distribution.

ever, we provide the best fitted distributions for high load
and representative period on DAS-2 clusters. For the high
load period (see Table 2, gamma and two-phase hyper-
exponential give the best results among the distributions.
One is slightly better than the other depending on the clus-
ters. For the representative period where longer tails and
larger CV are observed, Weibull distribution has the best
Kolmogorov-Smirnov test results. The only exception oc-
curs on fs0, where a two-phase hyperexponential distribu-
tion fits the sample tail better than Weibull. Parameters of
fitted distributions are provided in Table 2 and 3.

4.3. Cancelled Jobs

Cancelled jobs may also affect the scheduling process
and should be taken into account during workload model-
ing. In [9], reported job cancellation rates range from 12%
to 23% and cancelled jobs are modeled separately. On DAS-
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Figure 4. Fitting distributions of interarrival time during peak hours on fs1.

10
0

10
2

10
4

10
6

0

0.2

0.4

0.6

0.8

1

cancellation lag t (seconds)

C
D

F
 (

Y
 >

 t)

10
0

10
2

10
4

10
6

0

0.2

0.4

0.6

0.8

1

cancellation lag t (seconds)

C
D

F
 (

Y
 >

 t)

fs0 trace
Weibull
lognormal
hyperexp2

fs0
fs1
fs2
fs3
fs4

(a) CDFs of cancellation lag 
on DAS−2 clusters 

(b) Fitting distributions of 
cancellation lag on fs0 

Figure 5. Distributions of cancellation lags on DAS-2 clusters.

2 clusters, as is shown in Table 4, lower cancellation rate
are observed. The average percentage of cancelled jobs are
6.8% (range from 3.3% on fs3 to 10.6% on fs0).

Thecancellation lag(CL) is defined as the time between
job arrival and cancellation. On DAS-2 clusters, the aver-
age cancellation lag is 6429 seconds (Table 4). Plots of can-
cellation lag distributions (CDF) on a log scale are shown
in Figure 5(a). In [9], log-uniform distribution is used to
fit the cancellation lag. We examined three distributions
(two-phase hyperexponential, lognormal and weibull). Fig-
ure 5(b) illustrates the fitting results on fs0. In general, log-

normal provides the best fit for the observed data. However,
only on fs4 it passes the goodness of fit test. Fitted lognor-
mal parameters are provided in Table 4.

5. Job Execution Characteristics

In this section we describe the job execution character-
istics. Firstly we characterize job size (number of proces-
sors requested), job actual runtime, and memory usage. Sec-
ondly the correlations between these metrics are extensively



cluster cancelled jobs (%) M (s) CV lognormal parameters KS
fs0 10.6 3528 8.7 µ = 4.7,σ = 2.0 0.06
fs1 7.7 4749 6.4 µ = 4.4,σ = 2.0 0.16
fs2 3.6 13480 6.6 µ = 5.0,σ = 2.1 0.14
fs3 3.3 3931 6.5 µ = 4.0,σ = 2.3 0.09
fs4 8.6 6458 6.3 µ = 5.8,σ = 2.1 0.02
average 6.8 6429 6.9 µ = 4.8,σ = 2.1 0.09

Table 4. Job cancellation rates and cancellation lags (CL) on DAS-2 clusters (M - CL Mean, CV - CL
Coefficient of Variation, KS - maximal distance between the cumulative distribution function of the
theoretical distribution and the sample’s empirical distribution).

cluster serial(%) two(%) power-of-two(%) others(%) odd (except serial) (%)
fs0 2.8 59.4 78.1 19.1 4.2
fs1 2.4 42.8 60.5 37.1 0.2
fs2 4.7 39.6 61.9 33.4 0.4
fs3 1.4 73.6 96.1 2.5 0.03
fs4 0.9 85.3 97.6 1.5 0.05
average 2.4 60.1 78.8 18.7 1.0

Table 5. Job size characteristics on DAS-2 clusters.

studied and conditional distributions are defined for the job
actual runtime.

5.1. Job Size

Table 5 shows the job size characteristics on DAS-2
clusters. The “power-of-two” phenomenon (78.8% in aver-
age) is clearly observed, as is found in many other work-
loads [4, 7, 9, 11]. However, the “power-of-two” sizes on
cluster fs0, fs1, and fs2 are not as dominant as on fs3 and
fs4. Instead, some multiple-2 sizes also contribute to a sig-
nificant portion of the total number of jobs (e.g.6 and14
processors on fs1, shown in Figure 6(a)). The fractions of
serial (0.9-4.7%) and odd numbers (1% in average) are sig-
nificantly lower compared to previously reported workloads
(30-40%). One possible explanation could be the special
policy mentioned in Section 3 , which forbids jobs to be
scheduled on nodes (SMP dual processor) with one proces-
sor busy. Researchers are not encouraged to submit multi-
processor jobs with odd numbers.

As we all noticed in Table 5, job size oftwoprocessors is
surprisingly popular on DAS-2 clusters and it is chosen by
a major fraction of jobs (range from 39.6% on fs2 to 85.3%
on fs4). To find a proper explanation for this phenomenon,
we analyze the internal structure of the workloads. On fs0,
for instance, there are ten very active users (out of 130 users
in total). The most active user submitted more than 40,000

jobs (18% of the total number of jobs on fs0) in consecutive
seven weeks during October and November 2003, which is
his/her only active period throughout the year. All of these
jobs have the same name and request two processors. For
the second most active user on fs0, around 90% of his/her
jobs have a job size of two. On other DAS-2 clusters simi-
lar user behavior are observed, resulting in the popularity of
job size two and power-of-two. We discuss more on user be-
havior and its impacts on workload modeling in Section 6.

In [7], the best results for fitting job sizes are obtained
by gamma and two-stage uniform distributions. On DAS-2
clusters, we find that two-stage loguniform distribution pro-
vides the best fit for job sizes. Plots of the job size distribu-
tions on a log scale are shown in Figure 6(b).

5.2. Job Actual Runtime

Job actual runtime has been extensively studied in pre-
vious reported workloads. Table 6 shows the characteristics
of job actual runtimes on DAS-2 clusters. The actual run-
times range from 374 to 2427 seconds, which is lower then
previously reported workloads (e.g. 3479 seconds on SDSC
SP2 [6]). However, the CV (5.3 - 16) is substantially higher
than other production systems (2 - 5) [4, 5, 6]. This is in
accordance with the scientific and experimental nature of
the DAS-2 usage: the majority of jobs have small execution
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Figure 7. Distributions of job actual runtimes on DAS-2 clusters.

times and they vary a lot. Plots of the actual runtime distri-
butions on a log scale are shown in Figure 7(a).

Different kinds of distributions have been used to model
the actual runtime, for instance, loguniform in [22], hy-
pergamma in [7] and Weibull in [4]. We evaluate gamma,
lognormal and Weibull distributions for actual runtimes on
DAS-2 clusters. Figure 7(b) shows the distribution fitting
on fs0. Weibull and lognormal have similar goodness of fit
test results, and they both fit better than gamma. Lognor-
mal is a better model for samples that have a lower head
and a longer tail (fs2, fs3, and fs4, see Figure 7(a)). Param-
eters of fitted distributions are listed in Table 6.

5.3. Memory Usage

The PBS [14] accounting logs record the maximum
amount of physical memory used by the job. Hereafter we
refer to memory usage as the maximum used physical mem-
ory. Memory usage per processor is defined as the maxi-
mum used memory divided by the number of processors re-
quested.

Figure 8(a) shows the distributions of memory usage on
DAS-2 clusters. It is clearly observed that three special val-
ues are chosen by a major fraction of jobs. These special
values are 0KB, 324KB and 2600-3000KB (slightly differ-



cluster mean (s) CV fitted distributions KS
fs0 374 5.3 Weibull (a = 121.7,b = 0.46) 0.08
fs1 648 7.9 Weibull (a = 142.2,b = 0.45) 0.12
fs2 531 16 lognormal (µ = 4.2,σ = 1.8) 0.22
fs3 466 12 lognormal (µ = 3.7,σ = 1.7) 0.12
fs4 2427 6.4 lognormal (µ = 5.3,σ = 2.5) 0.13

Table 6. Job actual runtimes on DAS-2 clusters.

cluster 0KB (%) 324KB (%) 2600-3000KB (%)
fs0 32 19 34
fs1 29 20 16
fs2 25 18 21
fs3 40 17 34
fs4 24 6 62
average 30 16 33

Table 7. Three special memory usage values and their corresponding job percentages.

ent values in this range depending on the clusters), and their
corresponding job percentages are listed in Table 7. We can
see that a large fraction (30% in average) of jobs have very
small memory usage5. 324KB and 2600-3000KB, on the
other hand, contributes nearly one-sixth and one-third (in
average) to the total number of jobs, respectively. The rea-
son why memory usage concentrates on these special val-
ues might be that jobs typically have to load certain shared
libraries (e.g. C, MPI, Globus), and these shared libraries
normally require a fixed amount of memory. To verify this
claim, we run MPI jobs (fractal computation) with differ-
ent requested number of processors (4, 8, 16 and 32) on
DAS-2 clusters. We found that memory usage for these jobs
is almost the same (324KB, for job size 4, 8 and 16). The
exception occurs for job size 32, of which memory usage
jumps to 52,620KB. Other MPI programs also appears to
use memory size of 324KB. Therefore, we might say that
jobs which use 324KB memory most likely have to load
certain libraries like MPI. Memory usage of 2600-3000KB
could be explained by inclusion of other shared libraries or
objects.

Distributions of memory usage per processor on a log
scale are shown in Figure 8(b). As we can see, most of the
jobs uses less than 10MB memory per processor (only 2%
of the available amount). Correlations between memory us-
age and job sizes are discussed in next section.

5 0KB is recorded in the PBS accounting logs. It means that the job
uses very small memory (rounded to zero) instead of saying that the
job does not use memory at all.

5.4. Correlations Between Job Execution Charac-
teristics

A simple way to check the correlations between job exe-
cution characteristics is to calculate thePearson’s R corre-
lation coefficientsbetween these variables. However, Pear-
son’s R is very weak and misleading in our case since the
variables we study are not normally distributed. Instead,
we useSpearman’s rank correlation coefficientsto assess
the relationship between job execution characteristics, as
it makes no assumptions about the variable’s distributions.
Correlations that we studied are: memory usage versus job
size, memory usage per processor versus job size, actual
runtime versus job size, memory usage, and requested run-
time. Spearman’s r coefficients are listed in Table 8.

Firstly we examine the correlations between memory us-
age and job size. The Spearman’s r coefficients show posi-
tive correlations. This indicates that larger size jobs (using
more processors) tend to use more memory than smaller
jobs. Similar characteristics are reported in [23]. Correla-
tions between memory usage per processor and job size
have two folds on DAS-2 clusters. On fs1-3 small positive
correlations are observed, while on fs0 and fs4, weak in-
verse correlations are shown. We would expect that memory
usage per processor would increase as the job size increases.
However, as is discussed in Section 5.3, memory usage is
concentrated on special values. Following the same exam-
ple in Section 5.3, MPI programs with different job sizes
(e.g. 4, 8, 16) use the same amount of memory (324KB).
This will result an inverse correlation between memory us-
age per processor and job size. As the job size increases
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Figure 8. Distributions of memory usage and memory usage per processor on DAS-2 clusters.

cluster memory versus
job size

memory/proc
versus job size

actual runtime ver-
sus job size

actual runtime ver-
sus memory

actual versus re-
quested runtime

fs0 0.34 -0.02 0.01 0.72 0.44
fs1 0.59 0.22 0.27 0.71 0.61
fs2 0.64 0.13 0.46 0.68 0.45
fs3 0.25 0.08 -0.25 0.54 0.02
fs4 0.13 -0.08 -0.21 0.51 0.62

Table 8. Spearman’s rank correlation coefficients between job execution characteristics.

to a certain extent (e.g. 32), the maximum used memory
jumps to another level (e.g. 52,620KB). Correspondingly
the memory usage per processor grows rapidly and exceeds
those of smaller job sizes. This explains why the correla-
tions between memory usage per processor and job size are
weak and two-fold.

Correlations between job actual runtime and other char-
acteristics (e.g. job size, requested runtime, etc) are also ex-
tensively studied in previous workloads [4, 7, 9]. For job
runtime and size, small positive correlation coefficients are
reported in [7], meaning that in general larger jobs run
longer than smaller jobs. On DAS-2 clusters, however, both
positive and negative correlations are observed and it is hard
to said in general how the actual runtime is related to size.
The correlations between actual and requested runtime ap-
pear to be strong (except fs3). Naturally jobs with larger re-
quested runtimes generally run longer. This is clearly ob-
served in Figure 9, which illustrates the requested and ac-
tual runtime distributions on fs0. In Figure 9(a), we can see
that requested runtimes can be divided into three ranges and
each range contains a significant portion of jobs. Actual run-
time distributions conditioned on these ranges are shown in

Figure 9(b). Jobs with larger requested runtimes run longer
is evident by the fact that their CDFs are below those of jobs
with smaller requested runtimes.

The most significant correlation is obtained between ac-
tual runtime and memory usage. This is also illustrated in
Figure 10. However, as our observed memory usage is very
special compared with other workloads [23], we choose to
generate actual runtimes in a synthetic workload based on
the requested runtimes. The fitted conditional actual run-
time distributions for the five DAS-2 clusters are given
is Table 9. Generally speaking, two-phase log-uniform,
Weibull, and lognormal are the best fitted distributions for
small, medium, and large requested runtimes, respectively.
Exception occurs on fs3, where requested runtimes are only
divided into medium and large ranges. Above all, distribu-
tions conditioned on requested runtimes are more realistic
and accurate in modeling job actual runtimes.

6. User/group Behavior

User behavior has been discussed in [2, 11] as an impor-
tant structure in the workloads. Workloads typically contain
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Figure 10. CDF of memory usage and conditional distributions of actual job runtime on fs0.

a pool of users with different activity levels and periods. A
few users and applications tend to dominate the workload.
This special structure results in uniformity and predictabil-
ity on short time scales, allowing better predictions to be
made for improving the scheduler performance [11]. Sim-
ilar structures are observed on the DAS-2 clusters. In Fig-
ure 11(a), we can see that there are twelve groups on fs0
in total. Six of them are dominant, contributing to the ma-
jor fraction of the workload. Among the six groups two of
them are the most active. They are local groups6 at VU (CS

6 The DAS-2 group and user accounts are mapped onto all five clusters.

staff/group 3 and student/group 7). On other clusters simi-
lar behavior is observed: local groups are the most active in
their cluster workloads. Group Leiden and Delft are of spe-
cial interest and they are active on most of the DAS-2 clus-
ters. This is partially because Leiden students have to ac-
complish grid tasks utilizing more than one clusters, and
Delft researchers are experimenting processor co-allocation
on multi-clusters.

As to the users, 10 out of 130 are the most active on
fs0 (see Figure 11(b)). We further analyze two users with
the largest portion of jobs. User 7 submitted more than
40,000 jobs in consecutive seven weeks during October



cluster small requested runtime (R - min-
utes)

middle requested runtime (R -
minutes)

large requested runtime (R -
minutes)

fs0 0<R≤10, 10<R≤16, R>16,
m = 34s, CV = 1.2, m = 206s, CV = 1.2, m = 1624s, CV = 2.9,
loguniform-2 Weibull lognormal
(l = -2.5,m = 1.2,h = 2.1,p = 0.1) (a = 150,b = 0.6) (µ = 5.4,σ = 2.2)

fs1 0<R≤10, 10<R≤60, R>60,
m = 40s, CV = 0.9, m = 250s, CV = 1.5, m = 6022s, CV = 2.8,
loguniform-2 Weibull lognormal
(l = -2.5,m = 1.2,h = 2,p = 0.08) (a = 184,b = 0.7) (µ = 6.4,σ = 2.9)

fs2 0<R≤10, 10<R≤60, R>60,
m = 69s, CV = 0.8, m = 301s, CV = 1.5, m = 7473s, CV = 4.9,
loguniform-2 Weibull lognormal
(l = -2.6,m = 1.6,h = 2.1,p = 0.03) (a = 229,b = 0.7) (µ = 6,σ = 2.7)

fs3 none 0<R≤61, R>61,
m = 85s, CV = 1.8, m = 10060s,CV = 2.8,
Weibull lognormal
(a = 71,b = 0.8) (µ = 6.9,σ = 2.6)

fs4 0<R≤16, 16<R≤600, R>600,
m = 72s, CV = 1.5, m = 3131s, CV = 10.5, m = 4270s,CV = 3.1,
loguniform-2 Weibull lognormal
(l = -2.5,m = 1.7,h = 2.3,p = 0.04) (a = 1369,b = 0.5) (µ = 6.6,σ = 2.1)

Table 9. Distributions of job actual runtimes conditioned on requested runtimes (loguniform-2 stands
for two-stage log-uniform distribution, m - mean, CV - Coefficient of Variation).

and November 2003, which is his/her only active period
throughout the year. Moreover, these jobs all have the same
name and request two processors. Jobs from user 2 are dis-
tributed evenly throughout the year, but 70% of them have
the same name and 90% request two processors. This struc-
ture explains some of our main observations before - a ma-
jority of DAS-2 workloads have a job size of two proces-
sors, and certain applications appear many more times than
others. Figure 11(c) shows the application repeated times
and their number of occurrences on fs0. We can see that
while lots of applications run only once or a small number
of times, there are highly repeated applications that con-
tribute to the heavy tail in the distribution. Similar phenom-
ena are reported on other workloads [11]. Techniques and
models have been proposed to capture the user behavior in
the workloads [24].

7. Conclusions and Future Work

In this paper, we present a comprehensive characteriza-
tion of a multi-cluster supercomputer (DAS-2) workload.
We characterized system utilization, job arrival process (ar-
rival rate, interarrival time, and cancellation rate), job ex-
ecution characteristics (job size, runtime, and memory us-
age), correlations between different metrics, and user/group

behavior. Differences of DAS-2 workloads compared with
previously reported workloads include the following:

1. A substantially lower average system utilization (from
7.3% to 22%) is observed.

2. Lower job cancellation rates (3.3%-10.6%) are ob-
served than in previously reported workloads (12%-
23%).

3. Power-of-two phenomenon of job sizes is clearly ob-
served, with an extreme popularity of job sizetwo. The
fraction of serial jobs (0.9%-4.7%) is much lower than
other workloads (30%-40%).

4. The job actual runtimes are strongly correlated with
memory usage as well as job requested runtimes. Con-
ditional distributions based on requested runtime
ranges are well fitted for actual runtimes.

5. A large portion of jobs has very small memory usage
and several special values are used by a major fraction
of jobs.

To facilitate generating synthetic workloads, we provide
distributions and conditional distributions of the main char-
acteristics. The distributions are summarized as follows:
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1. Interarrival time: in high load period, gamma or two
phase hyperexponential are the most suitable distribu-
tions; in representative period, Weibull gives the best
fit.

2. Cancellation lag: lognormal is the best fitted distribu-
tion.

3. Job size: two-stage loguniform is the most suitable dis-
tribution.

4. Actual runtime: Weibull or lognormal is the best fitted
distribution.

5. Actual runtime conditioned on requested time ranges
(R): for small R, two-stage loguniform is the most suit-
able distribution; for medium R, Weibull is the best fit-
ted distribution; for large R, lognormal gives the best
fit.

In future work, we plan to generate workload mod-
els based on the results in this paper and evaluate several
scheduling strategies for DAS-2 clusters. Since the goal
of DAS-2 system is to provide fast response time to re-
searchers, load balancing techniques and higher level re-
source brokering are to be investigated. Another interesting
point in a multi-cluster environment is co-allocation. Cur-
rently multi-cluster job information is not logged on the
DAS-2 clusters. We plan to instrument the Globus gate-
keeper to collect the necessary traces and identify the key
characteristics for multi-cluster jobs.

8. Acknowledgments

The DAS-2 supercomputer is funded by NWO (Nether-
lands Organization for Scientific Research) and the partic-
ipating universities. We thank Dr. Dick Epema (Delft Uni-
versity of Technology) and the referees for their many valu-
able suggestions that improved the quality of this paper.

References

[1] M. Calzarossa and G. Serazzi. Workload characterization: A
survey.Proc. IEEE, 81(8): 1136–1150, 1993.

[2] D. G. Feitelson. Workload modeling for performance eval-
uation. Lecture Notes in Computer Science, 2459:114–141,
2002.

[3] Parallel Workload Archive. http://www.cs.huji.ac.il/labs/
parallel/workload/.

[4] S.-H. Chiang and M. K. Vernon. Characteristics of a large
shared memory production workload.Lecture Notes in Com-
puter Science, 2221: 159–187, 2001.

[5] D. Feitelson and B. Nitzberg. Job characteristics of a
production parallel scientific workload on the NASA ames
iPSC/860. In D. G. Feitelson and L. Rudolph, editors,
Job Scheduling Strategies for Parallel Processing – IPPS’95
Workshop, volume 949, pages 337–360. Springer, 1995.

[6] K. Windisch, V. Lo, R. Moore, D. Feitelson, and B. Nitzberg.
A comparison of workload traces from two production par-
allel machines. In6th Symp. Frontiers Massively Parallel
Comput., pages 319–326, 1996.

[7] U. Lublin and D. G. Feitelson. The workload on parallel su-
percomputers: modeling the characteristics of rigid jobs.J.
Parallel and Distributed Comput., 63(11): 1105–1122, 2003.



[8] J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira, and J. Ri-
odan. Modeling of workload in MPPs. In D. G. Feitelson
and L. Rudolph, editors,Job Scheduling Strategies for Par-
allel Processing, pages 95–116. Springer Verlag, 1997.

[9] W. Cirne and F. Berman. A comprehensive model of the su-
percomputer workload. InIEEE 4th Annual Workshop on
Workload Characterization, 2001.

[10] S. J. Chapin, W. Cirne, D. G. Feitelson, J. P. Jones, S. T.
Leutenegger, U. Schwiegelshohn, W. Smith, and D. Talby.
Benchmarks and standards for the evaluation of parallel job
schedulers. In D. G. Feitelson and L. Rudolph, editors,Job
Scheduling Strategies for Parallel Processing, pages 67–90.
Springer-Verlag, 1999.

[11] A. B. Downey and D. G. Feitelson. The elusive goal of work-
load characterization.Perf. Eval. Rev., 26(4): 14–29, 1999.

[12] The DAS-2 Supercomputer. http://www.cs.vu.nl/das2.
[13] S. Banen, A. Bucur and D. H. J. Epema. A Measurement-

Based Simulation Study of Processor Co-Allocation in Mul-
ticluster Systems. In D. G. Feitelson and L. Rudolph, editors,
Job Scheduling Strategies for Parallel Processing, pages
105–128. Springer-Verlag, 2003.

[14] Portable Batch System. http://www.openpbs.org.
[15] The Maui Scheduler. http://www.supercluster.org.
[16] The Globus project. http://www.globus.org.
[17] O. Allen. Probability, Statistics, and Queueing Theory with

Computer Science Applications. Acdemic Press, 1978.
[18] R. E. A. Khayari, R. Sadre, B. R. Haverkort. Fitting world-

wide web request traces with the EM-algorithm. Perfor-
mance Evaluation 52, pp 175–191, Elsevier, 2003.

[19] Matlab. http://www.mathworks.com.
[20] Dataplot. http://www.itl.nist.gov/div898/software/dataplot/.
[21] The EMpht programme. http://www.maths.lth.se/matstat/

staff/asmus/pspapers.html.
[22] Allen B. Downey. Using Queue Time Predictions for Proces-

sor Allocation. In D. G. Feitelson and L. Rudolph, editors,
Job Scheduling Strategies for Parallel Processing, pages 35–
57. Springer-Verlag, 1997.

[23] D. G. Feitelson Memory usage in the LANL CM-5 Work-
load. In D. G. Feitelson and L. Rudolph, editors,Job
Scheduling Strategies for Parallel Processing, pages 78–94.
Springer-Verlag, 1997.

[24] M. Calzarossa and G. Serazzi. Construction and use of mul-
ticlass workload models.Performance Evaluation, 19(4):
341–352, 1994.


