
Costs and Benefits of Load Sharing in the
Computational Grid

Darin England
and Jon B. Weissman

Department of Computer Science and Engineering
University of Minnesota, Twin Cities
Email: fengland,jong@cs.umn.edu

Abstract— We present an analysis of the costs and benefits of
load sharing of parallel jobs in the computational grid. We begin
with a workload generation model that captures the essential
properties of parallel jobs and use it as input to a grid simulation
model. Our experiments are performed for both homogeneous
and heterogeneous grids. We measured average job slowdown
with respect to both local and remote jobs and we show that,
with some reasonable assumptions concerning the migration
policy, load sharing proves to be beneficial when the grid is
homogeneous, and that load sharing can adversely affect job
slowdown for lightly-loaded machines in a heterogeneous grid.
With respect to the number of sites in a grid, we find that the
benefits obtained by load sharing do not scale well. Small to
modest-size grids can employ load sharing as effectively aslarge-
scale grids. We also present and evaluate an effective scheduling
heuristic for migrating a job within the grid.

I. I NTRODUCTION

An emerging trend in high-performance computing is to
build interconnected networks of supercomputing centers
known as computational grids. Individually, these centers
house computing resources and instruments needed for large-
scale collaborative applications. As these applications place
increasing demands on existing resources, increased efficiency
in scheduling jobs onto the grid is becoming more important.
Already proven in the LAN environment, load sharing is
becoming feasible in WANs and grids. The emergence of test-
beds like TeraGrid[1] promises remarkable network bandwidth
between distant sites, enabling load sharing with minimal
network penalties.

In this work, we investigated the costs and benefits of
load sharing of parallel jobs in a simulated computational
grid. First, we present a detailed model of a supercomputer
workload. The nature of our workload model makes it easy to
use as input to the grid simulation experiments. We performed
experiments for both homogeneous and heterogeneous grids.
The results indicate that load sharing among sites is indeed
worthwhile. We find that in a homogeneous grid, any amount
of load sharing results in decreased wait times for users. In
a heterogeneous grid with differing workloads and machine
capacities, we find that the processing of remote jobs on a
(previously) lightly-loaded machine can cause delay to local
jobs. We also investigate how well the benefits of load sharing
scale as the number of sites in a grid increases. The benefits
are limited in that most of the opportunities for load sharing

are exploited in small and medium-sized grids. Finally, we
present a simple heuristic for determining the target machine
of a migrated job. This heuristic, which we callWeighted
Queue, is easy to compute and does not require estimates of
job run time. The paper is organized as follows: In Section 2
we discuss related research. We present our workload model
in Section 3. Section 4 represents the bulk of the paper, which
includes a description of the simulation model, the homoge-
neous and heterogeneous grid results, the scaling results,and
the evaluation of the scheduling heuristic. Section 5 concludes
the work.

II. RELATED WORK

The quality of the input data is paramount to any simulation
model. Cirne and Berman [2] developed a comprehensive
model of workloads for space-shared parallel supercomputers.
They modeled the variation in job arrival rates throughout the
work day and they examined the differences between estimated
and actual job run times. Our workload model differs from
theirs in that we provide an alternative method for generating
the job arrivals and for modeling the job run times and job
run lengths. We describe our workload model in the next
section. In considering the importance of workload traces in
simulation experiments, Lo et. al. [3] investigated the effects
on job scheduling algorithms due to the use of real workload
traces vs. synthetic workload models. They found that the
use of either real or synthetic workloads did not affect the
overall performance of job scheduling algorithms. However,
we note that the use of a real workload trace necessarily limits
the simulation to a single run. By using a workload model
and its generated job traces, a large number of simulation
runs may be conducted, thereby producing enough data to
make statistically significant comparisons among alternative
scenarios. Lo et. al. did find that other workload characteristics
such as the proportion ofpower-of-two job sizes and the
correlation between job size and job run time did affect
scheduler performance. In the next section, we discuss these
two characteristics as they relate to our experiments.

Hollingsworth and Maneewongvatana [4] propose a novel
approach to scheduling parallel jobs in a computational grid.
They present the idea of an imprecise calendar where jobs are
scheduled into time slots by a hierarchical system of manager
nodes. Time slots that are further into the future are scheduled

at a coarse level. As the time for a slot nears, it is scheduledat
a finer level. Like the imprecise calendar approach, we wish
to efficiently distribute parallel jobs in a grid. However, we
employed simple scheduling methods that do not require job
information such as run length1. Eager et. al. [5] examined the
relative benefits of simple vs. complex load sharing policies.
Using an analytical model for a homogeneous network, they
concluded that simple policies that require only a small amount
of state information perform as well as complex policies.
We also examined simple policies and we extended their
work by comparing relative amounts of load sharing in both
homogeneous and in heterogeneous networks. More recently,
Subramani et. al. [6] used simulation to evaluate distributed
scheduling algorithms in a grid environment. They use a
scheme in which jobs are placed in queues at multiple sites.
Then, the system tracks which copy of the job is first to begin
execution and all other copies are canceled. Our work differs
from theirs in that we employ a scheduling algorithm that is
easy to implement and we have a more complete workload
model with which we are able to make multiple simulation
runs and hence reduce the variance in our performance mea-
sures.

III. M ODELING THE WORKLOAD

Our workload generation model takes an actual job trace as
input. It produces a synthetic workload in standard workload
format[7] that captures the following job characteristics:

1) Job inter-arrival times
2) Job sizes
3) Job run times

In this section, we discuss how we model each of these char-
acteristics. Our model was created from careful examination
of the traces shown in Table I. Since the SDSC (San Diego
Supercomputing Center) and the CTC (Cornell Theory Center)
traces are more recent and come from a machine that is more
widely used, these two traces were used as the basis for our
simulation experiments.

Center Machine Nodes Time Period
LANL CM5 1024 Oct 1994 to Sep 1996
SDSC IBM SP2 128 Apr 1998 to Apr 2000
CTC IBM SP2 512 Jun 1996 to May 1997

TABLE I

ACTUAL WORKLOADS EXAMINED

In production systems, it is likely that some jobs will be
unable to begin execution until other jobs have finished due to
precedence constraints. The standard workload format allows
for the specification of precedence constraints; however, none
of the workloads that we examined contained this information.
For this reason and for simplicity, we assume that all jobs
arrive to the system independently. Figure 1 shows the average

1That is, no estimate of run length is required for job migration to another
machine in the grid. However, we employ backfilling at the local machine
level which requires run time estimates.

2

2.5

3

3.5

4

4.5

5

5.5

6

Graveyard Early Morning Late MorningEarly AfternoonLate Afternoon Evening

Jo
bs

 p
er

 H
ou

r

Time of Day

Job Arrival Rates by Time of Day

Arrival Rates

Fig. 1. SDSC Job Arrival Rates by Time of Day

arrival rates of jobs to the IBM SP2 supercomputer at the San
Diego Supercomputing Center. From the figure, it is clear that
more jobs arrive to the system during the working hours than
during the night. This phenomenon, which was also observed
by Cirne and Berman, occurs in all of the workload traces
that we examined. We capture the variation in job arrival
rates by using a Nonstationary Poisson Process to model the
job arrivals. In a Poisson Process, the inter-arrival times(the
times between job arrivals) follow an Exponential probability
distribution. Thus, in our model, the job inter-arrival times
are generated from six Exponential distributions, one for each
period of the day as shown in Figure 1. Modeling the job
arrivals in this manner helps to produce a realistic workload
which is more intense during the middle of the day.

For our workload model, the size of a job is characterized
by the number of CPUs it requests. The workload traces that
we examined are dominated bypower-of-twosizes, i.e. 2, 4,
8, 16, 32, and 64. All other job sizes occur infrequently. Cirne
and Berman [2] model the size of a job with a uniform-log
distribution. In order to capture the prevalence of the power-
of-two job sizes, they added a direct probability for turning
a job size into its nearest power-of-two neighbor. In contrast,
we chose to use a discrete probability distribution that reflects
the frequency with which the job sizes appear in an actual
workload. The discrete probabilities are computed directly
from the ratios in the real workload. Figure 2 shows the job
size probabilities for the SDSC data up to 64 CPUs.

We made several attempts at modeling job run times as
a function of job size. However, we found no correlation
between these two characteristics. At each center, we assume
an independent work model in which there is no correlation
between job size and job run time. After experimenting with
several probability distributions, we found that the job run
times fit the Weibull distribution quite well. The quality of
the fit is not surprising since Weibull random variables are
commonly used to model task completion times. Figure 3
shows the actual job run times from the SDSC workload
plotted against our estimation of the Weibull distribution. The
plot is a histogram with a bin size of 500 seconds. It is clear
that most jobs run for a short period of time, while a few jobs

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

P
ro

ba
bi

lit
y

Number of CPUs Requested

Job Size Discrete Probability Distribution

8 cpus 16 cpus

32 cpus 64 cpus

Probability

Fig. 2. Discrete Probability Distribution for SDSC Job Sizes

0

5000

10000

15000

20000

25000

30000

35000

40000

0 5 10 15 20 25 30 35 40

N
um

be
r

of
 O

cc
ur

en
ce

s

Histogram Bin

Histogram of Job Run Times

Actual Run Times
Weibull Run Times

Fig. 3. SDSC Actual Job Run Times vs. Estimated Weibull Distribution

run for very long periods of time. Again, the size of the job is
not a good predictor of job run time. We only included jobs
that ran to completion in order to avoid jobs that were killed
or that died.

IV. SIMULATION

A. Model Description

Our simulation model of a computational grid consists of
four supercomputer centers. Traditionally, each center would
operate in an autonomous fashion with no job migration to
other sites. The model shown in Figure 4 illustrates the idea
of cooperation among the centers by allowing some jobs to
be migrated to remote sites. Each center has a local workload
that is representative of the actual workload for its machine
type. Some percentage of the job arrivals are flagged as
migratable. We envision this occurring as users indicatingvia a
job submission script that they are willing to allow a particular
job to be migrated. Of course not all jobs are migratable due to
various reasons: locality of data, parallel architecture-specific
code, security concerns, etc. Therefore, our experiments were
conducted with varying percentages of the workload being
migratable. The choice of which jobs are flagged as such is
completely random. In this way, we are certain to simulate the
migration of both large jobs and small jobs.

Migrated Jobs

Queue
Job Machine 4

Queue
Job

Machine 2

Job
QueueMachine 3

Job
QueueMachine 1

Local Job Arrivals Local Job Arrivals

Local Job ArrivalsLocal Job Arrivals

Fig. 4. Supercomputing Grid Simulation Model

We say that alocal job is a job that executes on the machine
at which the job originally arrived. Aremotejob is one that has
been migrated and executes on a remote machine. We make
this distinction because a job that is flagged as migratable
might actually execute on its local machine if it appears
more favorable. There are two requirements for a job to be
transferred to a remote machine:

1) The originating machine’s job queue must be nonempty.
2) There must be a remote machine with a more favorable

queue status.

In other words, if a machine is currently lightly loaded, i.e. its
queue is empty, then it will not attempt to migrate an arriving
job (even though the job may be flagged as migratable.) In
addition, when a machine’s queue is nonempty and it attempts
to migrate a job that just arrived, then it will transfer the job
to the machine whose queue size is smallest, thus we employ
the Shortest Queue scheduling policy for the experiments in
this section. Later, we will introduce a new scheduling policy
called Weighted Queue. These requirements are common sense
attempts to create a reasonable migration policy. This means
that before a machine attempts to migrate a job, it must poll
the other machines in the grid to obtain their load information.

The cost of job migration includes estimates for network
bandwidth and the amount of data to be transferred. As part
of their work in predicting data transfer costs, Vazhkudai
et. al. [8] measured the end-to-end bandwidth between two
remote supercomputing centers. Their measurements were
made using GridFTP, the file transfer service of the Globus
Toolkit[9]. They found the network bandwidth to vary from
1.5 to 10.2 MB/sec (megabits). For our experiments, we
use a constant network bandwidth of 5 MB/sec. Based on
the work of Vazhkudai et. al., this represents an achievable
bandwidth for current systems. In the future, advances in
network infrastructure will help to reduce the cost of job
migration. For example, the TeraGrid project [1] will have
the ability to transfer data at the rate of 40GB/sec. The actual

workload traces that we examined did not contain information
about data sizes. In the absence of this information, we used
a Triangular distribution as an approximation. The range of
the distribution is from 1MB to 1GB, with a mode of 100MB
(megabytes)2.

For scheduling jobs at each local machine, we employ
backfilling, a technique by which a job is allowed to move
ahead of other jobs in the queue and begin execution as long
it does not cause the first job in the queue to be delayed.
The version of backfilling that we use is known as aggressive
backfilling. It is employed in the EASY scheduler on the
IBM SP2. Our implementation is exactly the one described
in Mu’alem and Feitelson [10]. For an excellent description
of backfilling and its sensitivity to user run time estimates, we
refer the reader to their work.

B. Experimental Design

Homogenous Heterogeneous
Network Network

Machine 1 SDSC1 SDSC1
Machine 2 SDSC2 SDSC2
Machine 3 SDSC3 CTC1
Machine 4 SDSC4 CTC2

TABLE II

NETWORK CONFIGURATIONS FORSIMULATION RUNS

Table II shows the homogeneous and the heterogeneous
grid makeup for our simulation experiments. We made 20
independent replications of the simulation for each type of
network and for each level of load sharing, 0, 25, 50, 75, and
100%. A level of load sharing indicates the percentage of jobs
flagged as migratable. Each replication of an experiment was
performed with a different (but statistically similar) workload
that was generated in accordance with our workload model.
Our performance measure of interest is job slowdown, which
is defined as follows.

Slowdown= (Queue Time+Run Time
Run Time local job,

Migration Time+Queue Time+Run Time
Run Time remote job.

Job slowdown captures the notion that users are more
willing to accept long queue times for long-running jobs than
for short-running jobs. For each measurement shown in the
Resultssection, we present an average of the 20 replications
for an experiment. In order to be certain that performance
differences among the different levels of load sharing are not
due to randomness in the synthetic workloads, we used the
same sets of synthetic workloads as input to each experiment.

C. Results

1) Homogeneous Grid Simulation:In the homogeneous
grid simulation, all machines have statistically identical work-
loads. Therefore, all machines get roughly the same inten-
sity of workload regardless of the amount of load sharing
performed. We present the average job slowdown for each

2Data sizes were estimated based on a survey by Cirne.

 40

 60

 80

 100

 120

 140

 160

 180

0 25 50 75 100

A
ve

ra
ge

 S
lo

w
do

w
n

in
 S

ec
on

ds

Load Sharing Percent

Average Job Slowdown

All Jobs
Local Jobs

Remote Jobs

Fig. 5. Machine SDSC1 Homogeneous Grid Simulation

level of load sharing in Figure 5. Since the results for all
machines in the homogeneous network are similar, only the
results for one SDSC-type machine are presented. Each level
of load sharing corresponds to an experiment and the average
job slowdown is presented. The results are broken out by
local and remote jobs. From the figure, we see that as the
amount of load sharing is increased, the average slowdown
for local jobs decreases. This is because as more jobs are
allowed to be migrated, there is more opportunity to exploit
the benefits of load sharing, i.e. machines are able to off-
load more work to less heavily-loaded machines. Also, by the
nature of our migration policy, a machine will not attempt
to migrate a job if its own job queue is empty. Therefore,
local jobs arriving to an empty queue (which is common
when backfilling is employed) are guaranteed to execute on the
lightly-loaded local machine. At the 25% load sharing level,
remote jobs have shorter average slowdown than local jobs.
This is because migrated jobs get sent to machines with more
favorable queue statuses. At 25% load sharing, the majorityof
jobs (75%) are not allowed to be migrated and so they must
execute locally, regardless of the load on the local machine.
Compared to the slowdown for local jobs, the slowdown for
remote jobs remains relatively unchanged as the amount of
load sharing is increased, although there is a slight increase at
the 100% level. We note that this increase is possible because
the Shortest Queue scheduling policy is not optimal. Although
not presented, we also collected average and median job queue
times and average queue sizes for each experiment. These
statistics exhibit the same general trends as job slowdown.We
conclude that for a homogeneous grid, even a small amount
of load sharing produces benefits. In addition, by the use of
a reasonable migration policy, local jobs can greatly benefit
from large amounts of load sharing, while remote jobs still
experience lower slowdown than when there is no load sharing.

2) A Confidence Interval for Improvement in Average Job
Slowdown:Here, we statistically compare the improvement in
average job slowdown for local jobs when the amount of load
sharing is increased from zero to 25%. We present a paired-t confidence interval. Since different sets of workloads were
used for each replication of an experiment, our observations

of average slowdown are IID (Independent and Identically
Distributed.) Let our observations of slowdown be labeled
as Xij for i = 1; 2 (for no load sharing and for 25% load
sharing respectively), and forj = 1; : : : ; n (wheren is 20
because there are 20 replications.) LetZj = X1j �X2j . We
construct a 90% confidence interval forE(Zj), i.e. for the
expected value of the difference in average job slowdown. If
this confidence interval does not contain zero, then we can
state with approximately 90% confidence that a small amount
of load sharing (25%) decreases the average job slowdown
(assuming the accurateness of our workload and simulation
models.) The confidence interval is constructed as follows.
We first compute the average and an estimate of the variance
of theZj ’s. �Z(n) = Pnj=1 Zjn
and dvar[�Z(n)℄ = Pnj=1[Zj � �Z(n)℄2n(n� 1)
The 90% confidence interval is�Z(n)� tn�1;0:95qdvar[�Z(n)℄
We computed�Z(20) = 34:2 anddvar[�Z(20)℄ = 169:8, which
leads to a 90% confidence interval of[11:7; 56:7℄. Therefore,
we can state (with approximately 90% confidence) that under
our workload and simulation assumptions, allowing 25% load
sharing results in a decrease in slowdown for local jobs of
between 11.7 and 56.7.

3) Heterogeneous Grid Simulation:Grids consist of ma-
chines that have different capacities, speeds, and workload
characteristics. Our simulation of a heterogeneous grid cap-
tures those differences in capacities and workload characteris-
tics. We did make the simplification that remote jobs, although
generated from different distributions for different machine
types, will execute at the same speed on any machine in
the network, given the same number of processors. This is
a reasonable assumption for our simulations since all of the
workloads in the model are based on job traces from IBM SP2
supercomputers.

The model for the heterogeneous grid consists of two SDSC
machines and two CTC machines. Each CTC machine has
512 processors and each SDSC machine has 128 processors.
Although the CTC machines have more computing capacity,
their workloads are more intense than those at the SDSC
machines. In fact, the CTC machines handle more than twice
the number of jobs; and the average and the median run times
for CTC jobs are more than twice those for SDSC jobs[7].

Figures 6 and 7 show the average slowdown for SDSC-type
and CTC-type machines respectively. Again, we only present
the results for one machine of each type since the results for
other two machines are similar. We can see from the ordinate
scale in the two figures that the CTC machines have lower job
slowdown. The computing capacity of these machines is able
to handle their heavy workloads. An interesting result is that

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

0 25 50 75 100

A
ve

ra
ge

 S
lo

w
do

w
n

in
 S

ec
on

ds

Load Sharing Percent

Average Job Slowdown

All Jobs
Local Jobs

Remote Jobs

Fig. 6. Machine SDSC1 Heterogeneous Grid Simulation

 10

 20

 30

 40

 50

 60

 70

 80

 90

0 25 50 75 100

A
ve

ra
ge

 S
lo

w
do

w
n

in
 S

ec
on

ds

Load Sharing Percent

Average Job Slowdown

All Jobs
Local Jobs

Remote Jobs

Fig. 7. Machine CTC1 Heterogeneous Grid Simulation

the slowdown for SDSC local jobs increases at the 25, 50, and
75% load sharing levels when compared to no load sharing.
This is because the remote jobs that get processed by the SDSC
machines are in general of a longer duration than the normal
local SDSC jobs. Hence, the long-running remote jobs tend to
interfere with the processing of local jobs. Not until we have
100% load sharing do the SDSC local jobs actually experience
lower average slowdown than under no load sharing (0%.) The
slowdown for remote jobs processed at the SDSC machines
increases with the amount of load sharing since the queue time
increases as more long-running CTC jobs are processed.

It is easy to see that load sharing has greater benefits for
users of machines that are more heavily loaded. The slowdown
measurements for CTC local jobs become more favorable
as the amount of load sharing is increased. The slowdown
for remote jobs processed at the CTC machines remains
relatively unchanged, although there is a slight increase with
the increase in the amount of load sharing. We conclude that
load sharing in a heterogeneous grid can adversely affect local
jobs on (previously) lightly-loaded machines. Machines that
were previously heavily-loaded receive the most benefit. In
this type of environment, our results indicate that as much load
sharing as possible should be permitted so that the workload
can be evenly distributed.

 10000

 15000

 20000

 25000

 30000

 35000

 40000

2 4 6 8 10

A
ve

ra
ge

 Q
ue

ue
 T

im
e

A
ll

Jo
bs

 in
 S

ec
on

ds

Number of Machines in Network

Average Queue Times vs. Number of Sites

Homogenous Network
Heterogeneous Network

Fig. 8. Scaling the Number of Sites in a Grid

4) Scaling the Number of Sites:Large-scale projects that
include the administration of a computational grid may needto
consider expansion of the grid to new sites. An example is the
addition of the Pittsburgh Supercomputer Center (PSC) to the
TeraGrid project in October 2002. If load sharing is employed,
then the effect of the new site will be an important consider-
ation. In this section, we test the performance of load sharing
with respect to the number of sites in a grid. In addition to
the runs with 4 sites as described in the previous sections, we
made runs with 2, 6, 8, and 10 sites for both homogeneous and
heterogeneous grids. The homogeneous grid consists entirely
of SDSC-type machines. For the heterogeneous grid, we split
the number of machines evenly between SDSC-type machines
and CTC-type machines. For example, in the run with with 10
total machines, the grid consists of 5 SDSC machines and 5
CTC machines. All runs for this experiment were performed
at the 50% load sharing level. We present the average job
queue times in Figure 8. In this figure, the average queue
times for the heterogeneous networks are higher due to the
heavy workloads at the CTC machines. The results for both
types of grids are presented in the same figure in order to
save space. We are not implying that all homogeneous grids
perform better than heterogeneous grids. The figure shows that
the average job queue time decreases as the number of sites
increases; however, the improvements come at a decreasing
rate. In moving from a small number of sites (2 or 4) to a
larger number of sites, the benefits of load sharing are readily
apparent. As the number of sites increases, the benefits of
load sharing still exist, but there seems to be a saturation
point where all of the opportunities for load sharing have been
exploited. This suggests that small to modest-sized grids can
be as effective as large-scale grids with respect to load sharing.

5) A Proposed Scheduling Heuristic:In this section, we
present a new heuristic for choosing the target machine for
job migration. In the absence of detailed job information, or
when low scheduling overhead is desired, one simple measure
is the number of jobs in the remote machine’s job queue. By
itself, this criterion does not always yield the best migration
decisions because it does not take into account the job runtime.
Nevertheless, schedulers only have estimates of job run time

 5000

 10000

 15000

 20000

 25000

 30000

 35000

0 25 50 75 100

A
ve

ra
ge

 T
im

e
in

 Q
ue

ue
 in

 S
ec

on
ds

Degree of Load Sharing in Percent

Average Job Queue Time (All Jobs in Network)

All Jobs Shortest Queue
All Jobs Weighted Queue

Fig. 9. Weighted Queue vs. Shortest Queue

a priori to job execution and these estimates are notoriously
inaccurate. Also, backfilling has a significant effect on a
machine’s queue size. A simple and natural extension to using
shortest queue size is to compute the ratio of the total number
of CPUs being requested by jobs currently in the queue to
the number of CPUs in the machine. We call this criterion
Weighted Queue. It measures the percentage of a machine’s
capacity that has already been requested, which could be
greater than 100%. The appeal of this heuristic is that it is
easy to compute and it does not require estimates of job run
time. In a homogeneous grid, the Weighted Queue heuristic
performs exactly the same as Shortest Queue because all
machines have the same workload characteristics and the same
capacity. However, in a heterogeneous grid, this heuristiccan
exploit the differences in workloads and machine capacities.
We compare the performance of Weighted Queue vs. Shortest
Queue in a simulation experiment for a heterogeneous grid of
two SDSC-type machines and two CTC-type machines. The
average job queue times are presented in Figure 9. In this
figure, we are directly comparing the two measures. For both
heuristics, the average queue time decreases as the amount
of load sharing increases. Depending on the level of load
sharing, the reductions in queue times range between 4%
and 64% for Shortest Queue, and between 15% and 77% for
Weighted Queue. Thus, Weighted Queue performs better in
the heterogeneous environment.

V. CONCLUSIONS

In this work we investigated the benefits of load sharing of
parallel jobs among supercomputer centers in a computational
grid. By closely examining actual job traces, we were able
to create a model that generates accurate synthetic workloads.
Using these workloads as input, we employed a discrete-event
simulation model to explore the effects of load sharing in
both homogeneous and heterogeneous grids. For homogeneous
grids, our results demonstrate that cooperation among sites
in the form of load sharing leads to overall reduced job
slowdown. By the use of a migration policy that only allows
migration from a nonempty queue to a queue that is more fa-
vorable, local jobs receive the most benefit from load sharing.

For heterogeneous grids, where there are large differencesin
workload characteristics among the sites, a small amount of
load sharing results in increased job slowdown for local jobs
on lightly-loaded machines. Local jobs in the heavily-loaded
machines receive the most benefit. In this case, the migration
policy should be carefully considered and simulation is one
tool that can help in this evaluation. We also see that the
benefits of load sharing do not scale particularly well. There
is a point of diminishing returns as the number of sites in
a grid increases. Thus, we conclude that modest-sized grids
can provide as much benefit with respect to load sharing as
large-scale grids. Finally, we presented a simple heuristic for
selecting the target machine of migrated job. The Weighted
Queue measure, which considers the number of CPUs being
requested relative to a machine’s capacity, is effective, easy to
compute, and does not require estimates of job run time.

ACKNOWLEDGMENT

The authors would like to acknowledge support from the
Department of Energy through contract DE-FG02-03ER25554
and the National Science Foundation 0305641.

REFERENCES

[1] The TeraGrid Project, “A distributed computing infrastructure for scien-
tific research,”www.teragrid.org.

[2] W. Cirne and F. Berman, “A comprehensive model of the supercomputer
workload,” in 4th Workshop on Workload Characterization, Dec 2001.

[3] V. Lo, J. Mache, and K. Windisch, “A comparative study of real work-
load traces and synthetic workload models for parallel job scheduling,”
in Job Scheduling Strategies for Parallel Processing, D. G. Feitelson
and L. Rudolph, Eds. Springer Verlag, 1998, vol. 1459, pp. 25–46,
Lecture Notes in Computer Science.

[4] J. K. Hollingsworth and S. Maneewongvatana, “Imprecisecalendars: an
approach to scheduling computational grids,” in19th IEEE International
Conference on Distributed Computing Systems, 1999.

[5] D. L. Eager, E. D. Lazowska, and J. Zahorjan, “Adaptive load sharing
in homogenous distributed systems,”IEEE Transactions on Software
Engineering, vol. SE-12, no. 5, may 1986.

[6] V. Subramani et al., “Distributed job scheduling on computational
grids using multiple simultaneous requests,” in11th IEEE International
Symposium on High Performance Distributed Computing, 2002.

[7] Parallel Workload Archive, “The hebrew university of
jerusalem, school of computer science and engineering,”
www.cs.huji.ac.il/labs/parallel/workload.

[8] S. Vazhkudaiet al., “Predicting the performance of wide area data
transfers,” inProceedings of the International Parallel and Distributed
Processing Symposium, 2002.

[9] The Globus Alliance,http://www.globus.org.
[10] A. Mu’alem and D. Feitelson, “Utilization, predictability, workloads,

and user run time estimates in scheduling the ibm sp2 with backfilling,”
IEEE Transactions on Parallel and Distributed Systems, vol. 12, no. 6,
jun 2001.

[11] D. G. Feitelson, “Packing schemes for gang scheduling,” in Job Schedul-
ing Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph,
Eds. Springer-Verlag, 1996, vol. 1162, pp. 89–110, LectureNotes in
Computer Science.

[12] I. Foster and C. Kesselman, Eds.,The Grid: Blueprint for a New
Computing Infrastructure. Margan Kaufmann, 1998.

[13] D. M. Gross and C. M. Harris,Fundamentals of Queueing Theory,
2nd ed. John Wiley and Sons, 1985.

[14] A. M. Law and W. D. Kelton,Simulation Modeling and Analysis, 2nd ed.
McGraw Hill, 1991.

[15] W. Smith, I. Foster, and V. Taylor, “Predicting application run times
using historical information,” inJob Scheduling Strategies for Parallel
Processing, D. G. Feitelson and L. Rudolph, Eds. Springer Verlag,
1998, vol. 1459, pp. 122–142, Lecture Notes in Computer Science.

[16] K. S. Trivedi, Probability and Statistics with Reliability, Queueing and
Computer Science Applications, 2nd ed. John Wiley and Sons, Inc.,
2002.

