Costs and Benefits of Load Sharing in the
Computational Grid

Darin England
and Jon B. Weissman
Department of Computer Science and Engineering
University of Minnesota, Twin Cities
Email: {england,jo@cs.umn.edu

Abstract— We present an analysis of the costs and benefits of are exploited in small and medium-sized grids. Finally, we
load sharing of parallel jobs in the computational grid. We begin present a simple heuristic for determining the target mahi
with a workload generation model that captures the essentla o 54 migrated job. This heuristic, which we calleighted
properties of parallel jobs and use it as input to a grid simuhtion . . .
model. Our experiments are performed for both homogeneous Queue 'S_ easy to compu_te and 9'095 not require eSt'ma.teS of
and heterogeneous grids. We measured average job slowdowniOb run time. The paper is organized as follows: In Section 2
with respect to both local and remote jobs and we show that, we discuss related research. We present our workload model
with some reasonable assumptions concerning the migration jn Section 3. Section 4 represents the bulk of the paper,twhic
policy, load sharing proves to be beneficial when the grid is j,cydes a description of the simulation model, the homoge-
homogeneous, and that load sharing can adversely affect job . "
slowdown for lightly-loaded machines in a heterogeneous gt. neous and_heterogeneous g_”d resuIFs,_the scgllng reantds,
With respect to the number of sites in a grid, we find that the the evaluation of the scheduling heuristic. Section 5 aes$

benefits obtained by load sharing do not scale well. Small to the work.
modest-size grids can employ load sharing as effectively éarge-
scale grids. We also present and evaluate an effective schaidg Il. RELATED WORK

heuristic for migrating & job within the grid. The quality of the input data is paramount to any simulation

model. Cirne and Berman [2] developed a comprehensive
model of workloads for space-shared parallel supercomgute
An emerging trend in high-performance computing is they modeled the variation in job arrival rates throughdet t
build interconnected networks of supercomputing centersork day and they examined the differences between estimate
known as computational grids. Individually, these centeesd actual job run times. Our workload model differs from
house computing resources and instruments needed for latgeirs in that we provide an alternative method for genegati
scale collaborative applications. As these applicatiolaee the job arrivals and for modeling the job run times and job
increasing demands on existing resources, increaseceaffici run lengths. We describe our workload model in the next
in scheduling jobs onto the grid is becoming more importargection. In considering the importance of workload traces i
Already proven in the LAN environment, load sharing isimulation experiments, Lo et. al. [3] investigated thecetf§
becoming feasible in WANs and grids. The emergence of testa job scheduling algorithms due to the use of real workload
beds like TeraGrid[1] promises remarkable network bantiwidtraces vs. synthetic workload models. They found that the
between distant sites, enabling load sharing with minimake of either real or synthetic workloads did not affect the
network penalties. overall performance of job scheduling algorithms. Howgever
In this work, we investigated the costs and benefits @fe note that the use of a real workload trace necessarilyslimi
load sharing of parallel jobs in a simulated computation#fhe simulation to a single run. By using a workload model
grid. First, we present a detailed model of a supercomputand its generated job traces, a large number of simulation
workload. The nature of our workload model makes it easy tans may be conducted, thereby producing enough data to
use as input to the grid simulation experiments. We perfdrmenake statistically significant comparisons among altéraat
experiments for both homogeneous and heterogeneous grigenarios. Lo et. al. did find that other workload charasties
The results indicate that load sharing among sites is indemath as the proportion gbpower-of-twojob sizes and the
worthwhile. We find that in a homogeneous grid, any amounbrrelation between job size and job run time did affect
of load sharing results in decreased wait times for users. doheduler performance. In the next section, we discus® thes
a heterogeneous grid with differing workloads and machirteo characteristics as they relate to our experiments.
capacities, we find that the processing of remote jobs on aHollingsworth and Maneewongvatana [4] propose a novel
(previously) lightly-loaded machine can cause delay talocapproach to scheduling parallel jobs in a computational.gri
jobs. We also investigate how well the benefits of load slgariThey present the idea of an imprecise calendar where jobs are
scale as the number of sites in a grid increases. The benefitheduled into time slots by a hierarchical system of manage
are limited in that most of the opportunities for load shgrinnodes. Time slots that are further into the future are sdeddu

I. INTRODUCTION

at a coarse level. As the time for a slot nears, it is schecatied Job Artival Rates by Time of Day

a finer level. Like the imprecise calendar approach, we wish ‘ ‘ ‘ ‘

to efficiently distribute parallel jobs in a grid. Howeverew ser

employed simple scheduling methods that do not require job st

information such as run lengthEager et. al. [5] examined the

relative benefits of simple vs. complex load sharing padicie

Using an analytical model for a homogeneous network, they

concluded that simple policies that require only a smallamto 3sF

of state information perform as well as complex policies. st

We also examined simple policies and we extended their

work by comparing relative amounts of load sharing in both

homogeneous and in heterogeneous networks. More recently, * Gy Eaty Morming Late Marming Eary Afermoortate Afirmoon _ Evering

Subramani et. al. [6] used simulation to evaluate distatut Time orbay

scheduling algorithms in a grid environment. They use a Fig. 1. SDSC Job Arrival Rates by Time of Day

scheme in which jobs are placed in queues at multiple sites.

Then, the system tracks which copy of the job is first to begin

execution and all other copies are canceled. Our work diffegirrival rates of jobs to the IBM SP2 supercomputer at the San

from theirs in that we employ a scheduling algorithm that iBiego Supercomputing Center. From the figure, it is clear tha

easy to implement and we have a more complete workloatbre jobs arrive to the system during the working hours than

model with which we are able to make multiple simulatiomluring the night. This phenomenon, which was also observed

runs and hence reduce the variance in our performance mieg-Cirne and Berman, occurs in all of the workload traces

sures. that we examined. We capture the variation in job arrival
rates by using a Nonstationary Poisson Process to model the

[1l. M ODELING THE WORKLOAD job arrivals. In a Poisson Process, the inter-arrival tirfike

Our workload generation model takes an actual job trace §&€S between job arrivals) follow an Exponential probiapil
input. It produces a synthetic workload in standard worttlogdistribution. Thus, in our model, the job inter-arrival &m

format{7] that captures the following job characteristics ~ &ré generated from six Exponential distributions, one &mhe
period of the day as shown in Figure 1. Modeling the job

. arrivals in this manner helps to produce a realistic worttloa
2) Job sizes o . . .
3) Job run times which is more intense during the middle of the day.

))) For our workload model, the size of a job is characterized
In this section, we discuss how we model each of these chg(the number of CPUs it requests. The workload traces that
acteristics. Our model was created from careful examinatiqe examined are dominated Impwer-of-twosizes, i.e. 2, 4
of the traces shown in Table I. Since the SDSC (San Dieg01g 32 and 64. All other job sizes occur infrequentlyn@ir
Supercomputing Center) and the CTC (Cornell Theory Centefq Berman [2] model the size of a job with a uniform-log
traces are more recent and come from a machine that is M@i&ribution. In order to capture the prevalence of the pewe
widely used, these two traces were used as the basis for gufyg job sizes, they added a direct probability for tugin

T T
Arrival Rates

45+

Jobs per Hour
IS

251

1) Job inter-arrival times

simulation experiments. a job size into its nearest power-of-two neighbor. In castira
. . . we chose to use a discrete probability distribution thatotsl

Center Machine Nodes Time Period he f ith which the iob si . |
[ANL CMS 1024 Oct 1994 to Sep 1996 the frequency with which the job sizes appear in an actua

SDSC IBM SP2 128 Apr 1998 to Apr 2000 workload. The discrete probabilities are computed diyectl
CTc IBMSP2 512 Jun 1996 to May 1997 from the ratios in the real workload. Figure 2 shows the job

TABLE | size probabilities for the SDSC data up to 64 CPUs.

ACTUAL WORKLOADS EXAMINED We made several attempts at modeling job run times as

a function of job size. However, we found no correlation
between these two characteristics. At each center, we @&sum
In production systems, it is likely that some jobs will bean independent work model in which there is no correlation
unable to begin execution until other jobs have finished due fietween job size and job run time. After experimenting with
precedence constraints. The standard workload formavslloseveral probability distributions, we found that the jom ru
for the specification of precedence constraints; howev@en times fit the Weibull distribution quite well. The quality of
of the workloads that we examined contained this inforrmatiothe fit is not surprising since Weibull random variables are
For this reason and for simplicity, we assume that all jokfsmmonly used to model task completion times. Figure 3
arrive to the system independently. Figure 1 shows the geerahows the actual job run times from the SDSC workload
T . . . N plotted against our estimation of the Weibull distributidine
That is, no estimate of run length is required for job migmatto another . . . L .
machine in the grid. However, we employ backfilling at thealomachine plOt IS a h'StOQram with a bin size of 500 seconds. It is clear
level which requires run time estimates. that most jobs run for a short period of time, while a few jobs

Local Job Arrivals Local Job Arrivals
Job Size Discrete Probability Distribution ‘ \

40

Probability ——
3s] ,
Job Job
30 B Machine 1 Queu Queu Machine 2
> 25 B
z
% 20 Migrated Jobs
a
15
8 cpus
10 16 cpus
5 32 cpus 64 dpus
Local Job Arrivals Local Job Arrivals
. o dl o o]
0 10 20 30 40 50 60
Number of CPUs Requested
. . - L . i Job Job ' Machine 4
Fig. 2. Discrete Probability Distribution for SDSC Job Size Machine 3 @ @

Histogram of Job Run Times

40000

" Actual Run Times)) e .
Weibel Run Times—— Fig. 4. Supercomputing Grid Simulation Model

35000
30000

250007 1 We say that docal job is a job that executes on the machine

' at which the job originally arrived. Aemotejob is one that has
been migrated and executes on a remote machine. We make
this distinction because a job that is flagged as migratable

20000

15000 |- |

Number of Occurences

10000 1 might actually execute on its local machine if it appears
so00 | | more favorable. There are two requirements for a job to be
ol e, transferred to a remote machine:
wsomen " 1) The originating machine’s job queue must be nonempty.
2) There must be a remote machine with a more favorable
Fig. 3. SDSC Actual Job Run Times vs. Estimated Weibull ibstion queue status.

In other words, if a machine is currently lightly loaded, its
run for very long periods of time. Again, the size of the job jgueue s empty, then 't. will not attempt to m|gratg an argvin
not a good predictor of job run time. We only included jobJsOb .((.aven though the J_ob,may be -ﬂagged as m|gr§table.) In
that ran to completion in order to avoid jobs that were killeadd't.'on’ whe_n a mac_hlnes queue 1 no.ner_npty and it attempts
or that died. to migrate a job that just arrived, then it will transfer thud j

to the machine whose queue size is smallest, thus we employ

IV. SIMULATION the Shortest Queue scheduling policy for the experiments in
this section. Later, we will introduce a new scheduling ppli
called Weighted Queue. These requirements are common sense

Our simulation model of a computational grid consists afttempts to create a reasonable migration policy. This siean
four supercomputer centers. Traditionally, each centeunldvo that before a machine attempts to migrate a job, it must poll
operate in an autonomous fashion with no job migration the other machines in the grid to obtain their load inforomati
other sites. The model shown in Figure 4 illustrates the ideaThe cost of job migration includes estimates for network
of cooperation among the centers by allowing some jobs bandwidth and the amount of data to be transferred. As part
be migrated to remote sites. Each center has a local worklazdtheir work in predicting data transfer costs, Vazhkudai
that is representative of the actual workload for its maehiret. al. [8] measured the end-to-end bandwidth between two
type. Some percentage of the job arrivals are flagged r@snote supercomputing centers. Their measurements were
migratable. We envision this occurring as users indicatinga made using GridFTP, the file transfer service of the Globus
job submission script that they are willing to allow a partax Toolkit[9]. They found the network bandwidth to vary from
job to be migrated. Of course not all jobs are migratable due1.5 to 10.2 MB/sec (megabits). For our experiments, we
various reasons: locality of data, parallel architecgpecific use a constant network bandwidth of 5 MB/sec. Based on
code, security concerns, etc. Therefore, our experimeate wthe work of Vazhkudai et. al., this represents an achievable
conducted with varying percentages of the workload beidmpndwidth for current systems. In the future, advances in
migratable. The choice of which jobs are flagged as suchnstwork infrastructure will help to reduce the cost of job
completely random. In this way, we are certain to simulage timigration. For example, the TeraGrid project [1] will have
migration of both large jobs and small jobs. the ability to transfer data at the rate of 40GB/sec. Theactu

A. Model Description

workload traces that we examined did not contain infornmatio Average Job Stondown

18 T T T
about data sizes. In the absence of this information, we used 0} RLm“'iHJJ"bb;{
a Triangular distribution as an approximation. The range of weor 1
the distribution is from 1MB to 1GB, with a mode of 100MB ol
(megabytes)

120 -

For scheduling jobs at each local machine, we employ
backfilling, a technique by which a job is allowed to move
ahead of other jobs in the queue and begin execution as long
it does not cause the first job in the queue to be delayed. wor
The version of backfilling that we use is known as aggressive
backfilling. It is employed in the EASY scheduler on the

100 [~

Average Slowdown in Seconds

60

IBM SP2. Our implementation is exactly the one described “, P % 7 100
in Mu'alem and Feitelson [10]. For an excellent description ton Shatng percent
Of baCkfllllhg and |tS SenSitiVity to user run t|me eStImalWE Fig_ 5. Machine SDSC1 Homogeneous Grid Simulation

refer the reader to their work.
B. Experimental Design level of load sharing in Figure 5. Since the results for all
machines in the homogeneous network are similar, only the

Homogenous Heterogeneous results for one SDSC-type machine are presented. Each level

Network Network

Machine 1 SDSC1 SDSC1 of load sharing corresponds to an experiment and the average
macﬂ?neg ggggg SCDTSCClZ job slowdown is presented. The results are broken out by
acnine . .
Machine 4 SDSC4 oTeo local and remotejobs'. Fr'om' the figure, we see that as the
TABLE Il amount of load sharing is increased, the average slowdown

for local jobs decreases. This is because as more jobs are
allowed to be migrated, there is more opportunity to exploit
the benefits of load sharing, i.e. machines are able to off-

Table Il shows the homogeneous and the heterogene!ﬁ%d more work t_o Iegs heavjly-loaded m_achin_es. Also, by the
grid makeup for our simulation experiments. We made JHtUre of our migration policy, a machine will not attempt
independent replications of the simulation for each type fj migrate a]_O_b if its own job queue is empty. Therefore,
network and for each level of load sharing, 0, 25, 50, 75, atjﬁﬁal jobs arrving fo an empiy queue (which is common
100%. A level of load sharing indicates the percentage af joly/1€" backfilling is employed) are guaranteed to execute®n th
flagged as migratable. Each replication of an experiment V\)égohtly—lo.aded local machine. At the 25% load sharing Ie_/el
performed with a different (but statistically similar) vidnad emote jobs have shorter average slowdown than local jobs.

that was generated in accordance with our workload modg[iS iS because migrated jobs get sent to machines with more

Our performance measure of interest is job slowdown, whidvorable queue statuses. At 25% load sharing, the majofity

is defined as follows jobs (75%) are not allowed to be migrated and so they must
' execute locally, regardless of the load on the local machine

NETWORK CONFIGURATIONS FORSIMULATION RUNS

Time-Run Ti : :
Slowdown— %W _ ~ local job, Compared to the slowdown for local jobs, the slowdown for
Migration Timet Queue Time:Run Time - rempote job. remote jobs remains relatively unchanged as the amount of

Job slowd h . h load sharing is increased, although there is a slight isered

Job: slowdown ‘captures the notion that users are MQg, 10094 |evel. We note that this increase is possible becaus
willing to accept ang gueue times for long-running JObsr,th he Shortest Queue scheduling policy is not optimal. Altitou

for short-rupnmg Jobs. For each measurement showp In B presented, we also collected average and median jolequeu
Resultssection, we present an average of the 20 replicatiofs,.s and average queue sizes for each experiment. These

fqr an experiment. In °Tder fo be certain that pe_rforman%?atistics exhibit the same general trends as job slowdgven.
differences among the different levels of load sharing are onclude that for a homogeneous grid, even a small amount

due to randomness in the synthetic workloads, we used ;4 sharing produces benefits. In addition, by the use of

same sets of synthetic workloads as input to each expenment e asonable migration policy, local jobs can greatly bénefi

C. Results from large amounts of load sharing, while remote jobs still
. . . experience lower slowdown than when there is no load sharing
1) Homogeneous Grid Simulationtn the homogeneous : .

o : ; - ; . 2) A Confidence Interval for Improvement in Average Job
grid simulation, all machines have statistically iderttieark- Slowdown:Here, we statistically compare the improvement in
loads. Therefore, all machines get roughly the same inten- . ' Y P P

average job slowdown for local jobs when the amount of load

sity of workload regardless of the amount of load Sharm@ﬂaring is increased from zero to 25%. We present a paired-

erformed. We present the average job slowdown for ea) . . .
P P 9¢ 1? confidence interval. Since different sets of workloads were

2Data sizes were estimated based on a survey by Cime. used for each replication of an experiment, our observation

of average slowdown are IID (Independent and Identically w00 ‘ Auerage Job Slondonn
Distributed.) Let our observations of slowdown be labeled
as X;; for ¢ = 1,2 (for no load sharing and for 25% load
sharing respectively), and fgf = 1,... ,n (wheren is 20
because there are 20 replications.) gt= X; — Xy;. We
construct a 90% confidence interval f@(Z;), i.e. for the
expected value of the difference in average job slowdown. If
this confidence interval does not contain zero, then we can
state with approximately 90% confidence that a small amount
of load sharing (25%) decreases the average job slowdown
(assuming the accurateness of our workload and simulation

All Jobs ——
Local Jobs—X—
280 Remote Jobs—K—

Average Slowdown in Seconds
N
5
S

models.) The confidence interval is constructed as follows. 1o = % 75 100
We first compute the average and an estimate of the variance ton Shatng percent
of the Z;'s. Fig. 6. Machine SDSC1 Heterogeneous Grid Simulation
n
_ S Z
Z(TL) = # Average Job Slowdown
n 90 T
1 Lomaime
and 80 - Remote Jobs—K— 7<
N _
LI - 2P]
— = J b il
var|[Z(n)] = =2 ! r

n(n —1)
The 90% confidence interval is

Z(n) £ tn 100951/ var[Z(n)]

Average Slowdown in Seconds
@
g

We computedZ(20) = 34.2 and var[Z(20)] = 169.8, which T

leads to a 90% confidence interval [@..7, 56.7]. Therefore, wp

we can state (with approximately 90% confidence) that under o ‘ ‘ ‘

our workload and simulation assumptions, allowing 25% load ° * Loaa Sharng Percen * o
sharing results in a decrease in slowdown for local jobs of

between 11.7 and 56.7. Fig. 7. Machine CTC1 Heterogeneous Grid Simulation

3) Heterogeneous Grid SimulatiorGrids consist of ma-
chines that have different capacities, speeds, and watkloa))
characteristics. Our simulation of a heterogeneous grjg c4ne slowdown for SDSC local jobs increases at the 25, 50, and

tures those differences in capacities and workload chariget />% load sharing levels when compared to no load sharing.
tics. We did make the simplification that remote jobs, algtou TNiS is because the remote jobs that get processed by the SDSC
generated from different distributions for different magh Machines are in general of a longer duration than the normal
types, will execute at the same speed on any machine @§al SDSC jobs. Hence, the long-running remote jobs tend to
the network, given the same number of processors. This!iéerfere with the processing of local jobs. Not until we &av

a reasonable assumption for our simulations since all of t80% load sharing do the SDSC local jobs actually experience

workloads in the model are based on job traces from IBM Sp3Ver average slowdown than under no load sharing (0%.) The
supercomputers. §Iowdown fqr remote jobs processed 'at the SDSC machmes

The model for the heterogeneous grid consists of two SDJEEreases with the amount of _Ioad shar_lng since the quetee tim
machines and two CTC machines. Each CTC machine Ha§reases as more long-running CTC jobs are processed.
512 processors and each SDSC machine has 128 processofk.is €asy to see that load sharing has greater benefits for
Although the CTC machines have more computing capacitjfers of machines that are more heavily loaded. The slowdown
their workloads are more intense than those at the SD8tgasurements for CTC local jobs become more favorable
machines. In fact, the CTC machines handle more than twigé the amount of load sharing is increased. The slowdown
the number of jobs; and the average and the median run tink@s remote jobs processed at the CTC machines remains
for CTC jobs are more than twice those for SDSC jobs[7]. relatively unchanged, although there is a slight increasle w

Figures 6 and 7 show the average slowdown for SDSC-ty increase in the amount of load sharing. We conclude that
and CTC-type machines respectively. Again, we only presefd sharing in a heterogeneous grid can adversely affeat lo
the results for one machine of each type since the results f@s on (previously) lightly-loaded machines. Machineatth
other two machines are similar. We can see from the ordind¥gre previously heavily-loaded receive the most benefit. In
scale in the two figures that the CTC machines have lower j#ls type of environment, our results indicate that as moek |
slowdown. The computing capacity of these machines is aifidaring as possible should be permitted so that the workload
to handle their heavy workloads. An interesting result @t thcan be evenly distributed.

Average Queue Times vs. Number of Sites Average Job Queue Time (All Jobs in Network)

40000 35000

T T
Homogenous Network—— All Jobs Shortest Queue——
Heterogeneous Network—<— All Jobs Weighted Queue—>¢—

1
35000 30000

30000 - 25000 -

25000

20000 -

20000 - 15000

Average Queue Time All Jobs in Seconds
Average Time in Queue in Seconds

15000 10000

10000 L L L 5000 L L L
2 4 6 8 10 0 25 50 75 100

Number of Machines in Network Degree of Load Sharing in Percent

Fig. 8. Scaling the Number of Sites in a Grid Fig. 9. Weighted Queue vs. Shortest Queue

4) Scaling the Number of Sited:arge-scale projects thata priori to job execution and these estimates are notosiousl|
include the administration of a computational grid may nied inaccurate. Also, backfilling has a significant effect on a
consider expansion of the grid to new sites. An example is theachine’s queue size. A simple and natural extension tausin
addition of the Pittsburgh Supercomputer Center (PSC)do thhortest queue size is to compute the ratio of the total numbe
TeraGrid project in October 2002. If load sharing is empthyeof CPUs being requested by jobs currently in the queue to
then the effect of the new site will be an important considethe number of CPUs in the machine. We call this criterion
ation. In this section, we test the performance of load sigariWeighted Queuelt measures the percentage of a machine’s
with respect to the number of sites in a grid. In addition toapacity that has already been requested, which could be
the runs with 4 sites as described in the previous sectioes, greater than 100%. The appeal of this heuristic is that it is
made runs with 2, 6, 8, and 10 sites for both homogeneous aaby to compute and it does not require estimates of job run
heterogeneous grids. The homogeneous grid consistslgntiteme. In a homogeneous grid, the Weighted Queue heuristic
of SDSC-type machines. For the heterogeneous grid, we splifrfforms exactly the same as Shortest Queue because all
the number of machines evenly between SDSC-type machimeachines have the same workload characteristics and the sam
and CTC-type machines. For example, in the run with with 1€apacity. However, in a heterogeneous grid, this heuristic
total machines, the grid consists of 5 SDSC machines and¥ploit the differences in workloads and machine capacitie
CTC machines. All runs for this experiment were performed/e compare the performance of Weighted Queue vs. Shortest
at the 50% load sharing level. We present the average jQeue in a simulation experiment for a heterogeneous grid of
queue times in Figure 8. In this figure, the average quetwo SDSC-type machines and two CTC-type machines. The
times for the heterogeneous networks are higher due to #neerage job queue times are presented in Figure 9. In this
heavy workloads at the CTC machines. The results for bdigure, we are directly comparing the two measures. For both
types of grids are presented in the same figure in order heuristics, the average queue time decreases as the amount
save space. We are not implying that all homogeneous griofsload sharing increases. Depending on the level of load
perform better than heterogeneous grids. The figure shats thharing, the reductions in queue times range between 4%
the average job queue time decreases as the number of sites 64% for Shortest Queue, and between 15% and 77% for
increases; however, the improvements come at a decreadgghted Queue. Thus, Weighted Queue performs better in
rate. In moving from a small number of sites (2 or 4) to ¢he heterogeneous environment.
larger number of sites, the benefits of load sharing are lseadi
apparent. As the number of sites increases, the benefits of
load sharing still exist, but there seems to be a saturationin this work we investigated the benefits of load sharing of
point where all of the opportunities for load sharing haverbe parallel jobs among supercomputer centers in a compugdtion
exploited. This suggests that small to modest-sized gréats ayrid. By closely examining actual job traces, we were able
be as effective as large-scale grids with respect to loadrgha to create a model that generates accurate synthetic wdskloa

5) A Proposed Scheduling Heuristidn this section, we Using these workloads as input, we employed a discreteteven
present a new heuristic for choosing the target machine f@mulation model to explore the effects of load sharing in
job migration. In the absence of detailed job information, doth homogeneous and heterogeneous grids. For homogeneous
when low scheduling overhead is desired, one simple measgrigls, our results demonstrate that cooperation among site
is the number of jobs in the remote machine’s job queue. By the form of load sharing leads to overall reduced job
itself, this criterion does not always yield the best migmat slowdown. By the use of a migration policy that only allows
decisions because it does not take into account the jolnmanti migration from a nonempty queue to a queue that is more fa-
Nevertheless, schedulers only have estimates of job rua tinorable, local jobs receive the most benefit from load slgarin

V. CONCLUSIONS

For heterogeneous grids, where there are large difference$i6] K. S. Trivedi, Probability and Statistics with Reliability, Queueing and
workload characteristics among the sites, a small amount of Computer Science Applicatian&nd ed. John Wiley and Sons, Inc.,
load sharing results in increased job slowdown for locakjob

on lightly-loaded machines. Local jobs in the heavily-ledd

machines receive the most benefit. In this case, the migratio

policy should be carefully considered and simulation is one

tool that can help in this evaluation. We also see that the

benefits of load sharing do not scale particularly well. Bher

is a point of diminishing returns as the number of sites in

a grid increases. Thus, we conclude that modest-sized grids

can provide as much benefit with respect to load sharing as

large-scale grids. Finally, we presented a simple hearfsti

selecting the target machine of migrated job. The Weighted

Queue measure, which considers the number of CPUs being

requested relative to a machine’s capacity, is effectiasy o

compute, and does not require estimates of job run time.

ACKNOWLEDGMENT

The authors would like to acknowledge support from the
Department of Energy through contract DE-FG02-03ER25554
and the National Science Foundation 0305641.

REFERENCES

[1] The TeraGrid Project, “A distributed computing infrastture for scien-
tific research,’www. t er agri d. org.

[2] W. Cirne and F. Berman, “A comprehensive model of the scpaputer
workload,” in 4th Workshop on Workload Characterizatidbec 2001.

[3] V. Lo, J. Mache, and K. Windisch, “A comparative study et work-
load traces and synthetic workload models for parallel jciteduling,”
in Job Scheduling Strategies for Parallel Processily G. Feitelson
and L. Rudolph, Eds. Springer Verlag, 1998, vol. 1459, pp-485
Lecture Notes in Computer Science.

[4] J. K. Hollingsworth and S. Maneewongvatana, “Impreaiaéendars: an
approach to scheduling computational grids,18th IEEE International
Conference on Distributed Computing Systef#99.

[5] D. L. Eager, E. D. Lazowska, and J. Zahorjan, “Adaptivadcsharing
in homogenous distributed system$ZEE Transactions on Software
Engineering vol. SE-12, no. 5, may 1986.

[6] V. Subramaniet al, “Distributed job scheduling on computational
grids using multiple simultaneous requests,”litth IEEE International
Symposium on High Performance Distributed Compyt2@D2.

[7] Parallel Workload Archive, “The hebrew university of
jerusalem, school of computer science and engineering,’
www. ¢s. huji.ac.il/labs/parallel/workl oad.

[8] S. Vazhkudaiet al, “Predicting the performance of wide area data
transfers,” inProceedings of the International Parallel and Distributed
Processing Symposiyra002.

[9] The Globus Allianceht t p: / / ww. gl obus. or g.

[10] A. Mu'alem and D. Feitelson, “Utilization, predictdity, workloads,
and user run time estimates in scheduling the ibm sp2 witkfliiég,”
IEEE Transactions on Parallel and Distributed Systemd. 12, no. 6,
jun 2001.

[11] D. G. Feitelson, “Packing schemes for gang schedulingJob Schedul-
ing Strategies for Parallel Processin®. G. Feitelson and L. Rudolph,
Eds. Springer-Verlag, 1996, vol. 1162, pp. 89-110, Leciioges in
Computer Science.

[12] I. Foster and C. Kesselman, EdShe Grid: Blueprint for a New
Computing Infrastructure Margan Kaufmann, 1998.

[13] D. M. Gross and C. M. HarrisFundamentals of Queueing Thepry
2nd ed. John Wiley and Sons, 1985.

[14] A. M. Law and W. D. KeltonSimulation Modeling and Analysi&nd ed.
McGraw Hill, 1991.

[15] W. Smith, I. Foster, and V. Taylor, “Predicting appliam run times
using historical information,” inlob Scheduling Strategies for Parallel
Processing D. G. Feitelson and L. Rudolph, Eds. Springer Verlag,
1998, vol. 1459, pp. 122-142, Lecture Notes in Computerrfseie

