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Idle computation cycles of a shared network of In [5] the author compares competition protocols
workstations are increasingly being used to run batend migration protocols for sequential and distributed
parallel programs. For one common paradigm, the batphograms on varaible-speed processors. A SNOW is
program task running on an idle workstation is pretreated as a collection of variable-speed processors
empted when the owner reclaims the workstation. Thighere background programs have lower priority than
owner interference has a considerable impact on thgreground owner programs. Competition protocols use
execution time of a batch program, especially in the caseéplication to reduce the impact of owner interference.
of large parallel programs. Replication of batch progra®imulation results of the performance of competition for
tasks has been used to reduce the impact of ownfé&tributed programs are presented. However there is no
interference. We show analytically that reclamation camathematical analysis of the performance of competition
significantly improve parallel program speedup. Perhaggotocols for distributed programs. Competition policy
surprisingly, replication can also improve efficiency fofssyes such as, how to allocate workstations for replicat-
certain workloads. We present analysis to quantify thﬁg tasks of a program, are not studied.
amount of speedup and efficiency improvement. Further-
more, we provide analysis to help determine whether ex-  1he authors in [6] demonstrate that owner interfer-

tra available workstations should be used for increasifg'ce considerably impacts the performance of a parallel
job parallelism or for task replication. program running in a SNOW environment. Futhermore,

they demonstrate that using task replication can sig-
nificantly improve job response time. The study only
considers the loss of up to one workstation in a batch

Networks of workstations (NOWSs) have been use%f tasks. Tasks are assumed to be of different sizes

to run oarallel proarams for some time I11. [21. I3 allowing for a mix of short and long service demand
un p prog S s . (11, 2], [ ]'tasks. Performance of replication for programs with
[4], [5], [6], [7], [8], [9], [10]. The NOW may be

: . tight coscheduling requirements is not studied. The
dedicated as in the case of Beowulf [11] or shared adnt g requ C N
. consider one no-replication and two replication strategie

in the case of Condor [12], [13]. When the NOW 'Sé% alleviate the negative impact of owner interference:

shared with workstation owner processes, it is referr L .
0 as a shared network of workstations (SNOW). Thréo replication (NR) adds the extra workstations to the

. neral I, single replication (SR) repli he |
speedup of parallel programs running on a SNOW ¢ v eraipool, single rep cation (SR) ep cates the large
. . ask in a batch using one extra workstation and uses other
be greatly affected by workstation owner interference, . .
Xtra workstations in the general pool, and complete

In this paper we consider a SNOW where parallereplication (CR) replicates thd( largest tasks using

jobs are run in an opportunistic fashion as in Condot, . . :
: : extra workstations. They show with experimental
In such an environment, workstation owner processes
. - workloads that CR performs better than SR. Our work
have preemptive priority over batched parallel programs.

) . .differs in that we provide analysis and proofs instead
Owner process workstation reclamations stop execution . . .
of the batch iob task and hence mav sianificantly im agf simulation, we consider synchronized workloads, we
J y sig yimp udy various tradeoffs in how best to allocdteextra

. . S
the parallel job response time. workstations, and we consider the tradeoff between using
One approach to prevent a workstation reclamatiaxtra processors for parallelism versus replication.
from impacting parallel job performance is to replicate

S Rosenberg [1 vel model for devisin
some or all of the parallel tasks [5], [6]. When replication osenberg [10] .de. elops a model for devising
. ; , a schedule that maximizes the amount of work ac-
is used, parallel job performance is not affected by recla- . .

. . complished from an embarassingly parallel workload.

mations as long as one replica of each task completss . . : .

. . Wwhner interference is considered as an adversial process
without interference.

between the owner and the user running background
This work was supported by the NSF grant ACI-9733658. programs. The instantaneous probability of workstation
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reclamation is assumed to be known. In [2] the authosse decomposed intasks and then the tasks are run in
consider sharing a bag of identically complex taskgarallel on idle workstations. For simplicity we assume
in a heterogeneous network of workstations (HNOWjhat all the tasks are of an equal length, that owner
The problem considered is accomplishing as much woptibs are sequential processes local to the workstation,
as possible on the HNOW, during a prespecified fixeghd migration and checkpointing overheads are absorbed
period of time. Neither of [2], [10] consider the effect ofin the workload demand. Similarly, homogeneity of
replication for reducing the impact of owner interferenceorkstations is assumed for simplicity.

on parallel program performance. .
P brog P We assume workstation owner processes have pre-

In this paper we show that replication can resukmptive priority over batch tasks. As soon as an owner
in significant speedup improvements and we analyfbb begins execution after an idle period, the workstation
cally quantify parallel task replication benefits for twds reclaimed, and the running batch task, if any, is
workload models: tightly-coupled barrier synchronizegreempted immediately. All task work completed since
and loosely-coupled barrier synchronized. We allow fahe last checkpoint is lost.
multiple workstation reclamations during the execution

of a b_a.tch of tasks. We. assume knowlt_adge of thaeently and identically distributed, and that the prob&pili
probability that a workstation may be reclaimed before kstation i laimed during the | h of K uni
a task completes, but do not assume knowledge of fhe " station is reclaime urlngt e length of a tas ur_ut
. o . : ISPr, 0 < p- < 1. When a task is preempted the task is
instantaneous probability of workstation reclamation

a;ﬁlocated to another idle workstation and is restarted on

in [2], [10]. We analytically study how to distribute extra,, . .\ o4 ciavion The partial work completed by the task

\t;v:tzxi\(;?:?\r/\]/z r;)t?:)gg)r/nzmong tasks of a program but alslg lost and the task is rgstarted at the beginning on the
: newly allocated workstation. The task only restarts after
In a dedicated parallel processing machine, increase current length of a task unit is finished. The time
ing a parallel program’s workstation allocation beyondhen one set of job tasks is deemed to be completed
the program’s maximum parallelism will reduce workstaand the next set of tasks started may represent the point
tion efficiency without any speedup improvement [14]in the program where barrier synchronization takes place
We show that this assumption does not hold in the case when a job checkpoints.

of a SNOW. On the contrary, and somewhat surprisingly, .
- . LT We assume we have enough workstations at hand
additional workstation allocation in the form of task

replication can result in improvements in efficienc ago when one (or more) of the workstations is reclaimed
W:” as speedu P Y 8%e have another one (or more) upon which to run
P P the task(s). Thus a job always has a fixed number of
The rest of the paper is organized as followswvorkstations allocated to it. We make this assumption
In Section Il we describe our machine and workloatb simplify analysis, but it should have no effect on the
models. In Section Il we present replication analysigualitative results gleaned from this study.
and _results for both Workloaq models considered. In When we say a task is replicatédimes, we mean
Section IV we present analysis and explore the trath— . .
. . . . . _there are a total ofl > 1 identical tasks scheduled,
off between using additional workstations for replication

and the task completes when one (or more) of them

versus for increasing job parallelism. In Section V W ishes. However ifd — 1. we say the task has not

prove lemmas that are used in theorems. We state Qur .
: : . een replicated.
conclusions in Section VI.

We assume workstation reclamations are indepen-

B. Parallel Job Models
II. MACHINE AND WORKLOAD MODEL

. . _ The batch workload consists of parallel programs,
In this section we explain our overall systeny; jobs, each withN tasks, whereN > 1. A job
model, specific parallel program models, and perfogompletes when all of thé/ tasks have completed. For

mance metrics. simplicity, we assume all tasks to be of unit length.
_ Different inter-task synchronization constraints impact
A. System and Workstation Model the job performance. We have recently begun exploration

of the effectiveness of replication for a Master-Worker

We_assume_ a SNOW system f homogeneous workload [15], but for now consider the following work-
workstations. As in the Condor system [12], [13], we aﬁbgd models:

sume workstations execute both owner jobs and batche
jobs. We assume batghbs are parallel programs, that « Tightly-Coupled Barrier:



We assume a job is composed of equal sized TABLE I Notation
tasks. A series oB barriers must be completed.

o N Parallelism of a program
A barrier is reached when egch of thé tasks ~ Degree of replication
completes. All tasks must be simultaneously sched= » Probability of workstation reclamation

uled for forward progress. If any of th& tasks is S
preemptgd, ally taSI.(S must be started over. Thl_JS' . Rq Response Time, wher¢ is the degree of replication
a barrier is only achieved after a task-demand sized B, | Efficiency, whered is the degree of replication
time interval where none of th& workstations is F(1) | CDF of the probability distribution

Speedup, wherd is the degree of replication

reclaimed. ) _ pn:N | Mean of a maximum ofV geometric variables
We assume that tasks always start at fixed intervals 5 Number of barriers in a program, each havingtasks

of time. When a workstation is reclaimed, the task— ¢ Sequential fraction of a parallel program
must be moved and hence the completed work of 7. [ Taski of a program
all job tasks (of the current barrier) is lost and all
these tasks must be re-executed from the beginning.
We also assume, for simplicity and to model task. Tightly Coupled Barrier
migration time, that the tasks can be restarted only
at the beginning of the next interval. In this section we present our analysis and results
We only explicitly model one barrier, since the analfor the tighly-coupled barrier synchronization model.
ysis is the same foB barrierS, with the responseASSUme a JOb has pal’alleliSM and that the pl’obablllty
time beingB times that in the case of one barrierof a workstation reclamation during task execution is

« Loosely-Coupled Barrier: pr. The probability that a task completes (i — p,.).
The model for loosely-coupled is the same ahe program completes a set of tasks, if all the
tightly-coupled with one difference: the only Syn_workstations complete the task allocated to them. Thus
chronization constraint during the time betweeff1e probability that the job completes a set’éftasks is
barriers is waiting for each of the othaf— 1 tasks (1 — p»)". Assuming the program has a linear speedup
to reach the barrier. Thus preemption of one tagk @ dedicated set of workstations, the expected speedup
does not affect the completion of the oth§r— 1  of the program on a non-dedicated set of workstations
tasks. is S1 = N(1-p,)V.

I_t i_s necessgry for all thev workstation_s to have When a task is replicated on two workstations, the
finished their current task before the job (any of,q gets completed when either one of them completes.

its tasks) can I.pr.olceed tol the ne>r<1t barrier. AQaifing prohability that the task is completed during the first
we do not exp 'C_'IY model more than one ba_merallocation is(1 — p2). If all the tasks in a program are
since the analysis is the same fBrbarriers, with

h ime beind i hat of barri replicated then the probability that a program completes
the response time being times that of one barrier. ; gq of asks i$1 —p2)N. The expected speedup of the

replicated program (assuming linear speedupy+s=
C. Performance Metrics and Notation N(1-p2)N.

. : . . The ratio of speedup with replication to the
Our primary metrics of interest are batch JobS cedup without replication is
speedup and efficiency [14]. Since we want to study thg P P

impact of replication, we defing; to be the speedup of a Sy NA-p2HN 1-p2 y

job when each of its tasks is replicatétimes. Likewise, S, N(1—-p)N (1 _ pr)

R, andE,; are the response time and efficiency assuming

each task is replicated times. In the case when the 0 < p. < 1implies (1 —p?) > (1 — p,) and the

tasks of a program have different degrees of replicatiogpeedup ratio grows exponentially as the parallelim

d represents the relevant degree of replication beifgincreased. The speedup with replication is guaranteed

discussed. We summarize our notation in Table I. o pe at least as much as the speedup without replication,
if not better.

I1l. ANALYSIS AND RESULTS In Fig. 1 we present plots of the ratio of speedup
with replication over the speedup with no replication.
For the sake of readability we state the relevatinless varied, we assumg. = 0.1, N = 32, andd
Lemmas before the Theorem statements. The proofs(oéplication degree) = 2. We chogg to be 32 as a
the Lemmas are in section V typical sized parallel program. Even though replication
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Fig. 1. Speedup Ratio (Replication over No-
Replication)

provides a much better performance improvement for
higher values op,., we selecip,, = 0.1 because running
tightly coupled parallel jobs on a SNOW with high
owner interference may not be practical.

In all three graphs, on the y-axis we plot the ratio
of speedup with replication over the speedup with no
replication. In Fig. 1(a) we vary job parallelism. We
see that the ratio increases with the job parallelism.
This is because a$v increases, the probability of a
task being preempted, and all of the tasks requiring a
restart, also increases. With replicatidroth a task and
its replica must be preempted before a barrier needs
to be re-executed. Hence, the speedup ratio increases
significantly.

In Fig. 1(b) we varyp,.. We see that ag, increases,
the utility of replicating tasks increases.

In Fig. 1(c) we vary the degree of replicatiod,
We see that for the parameters chosen, increasing the
degree of replication up to 3 significantly improves job
speedup.

Replication can also increase the efficiency [14]
defined as the ratio of speedup to the number of work-
stations,E(n) = S(n)/n. Assuming all the tasks of a
program are replicated once, the number of additional
workstations allocated to the parallel program is equal
to N, where N is the parallelism of the program and
is equal to the number of workstations allocated to the
program without replication. The efficiency is improved
if E5/E, > 1 whereE, , E; represent the efficiency of
the program with and without replication respectively.
E>/Ey = S»/(251), so the efficiency is improved if
S»/S1 > 2. This happens when :

(L=p)"
(1 _pr)N -
1-p;

>21/N
1 —Dr

1 1
1 —
0g2(1_pr N

N> ——
- 1—p2
10g2(172:)

Given p,, we can calculate the parallelism for
which the efficiency of the program will be improved
by replicating all its tasks. We can use the knowledge of
N andp, to determine the degree of improvement (or
degradation) replication causes in the efficiency.

In the general case when each tasif the program
of parallelismN is replicatedd; times, whered; > 1,



the speedup of the replicated programNsHﬁil(l —

pli). Replication causes improvement in efficiency if
N ) N
NILL, (1 =p¥) > (1= p)N 3.5, di

Fig. 2 shows the minimum parallelism a program
must have, to achieve improved efficiency by replication.
Programs that are larger (have higher parallelism) tha
the minimum parallelism will have better efficiency with
replication than without replication. All the tasks of a
program are replicated to an equal degree.

Paralle?sm

In Fig. 2(a) we varyp,. We plot the minimum
parallelism needed when the degree of replicatio, is

0 I I

3 and5. For a low value ofp, (low owner interference), 01 02 03 04 05 06 07 08

replication improves efficiency only for large programs. p; (Reclamation probability)
When the owner interference is high, replication im-
proves performance significantly and is thus able to
improve the efficiency of both large and small programs.

@

In Fig. 2(b) we vary the degree of replication
d on the x-axis and view its effect on the minimum
parallelism which is plotted on the y-axis. A lower de-
gree of replication improves the efficiency for programs
with smaller parallelism than does a higher degree of¢
replication. Note, for higher degrees of replication where g
the efficiency ratio is less than 1, it is the case that higherS
. . - o 10 r
speedup is achieved, but at the cost of a lower efficiency.

1) Allocating extra workstations to the same pro- st P
gram with equal replication:In the previous sections e R R
we considered the benefit of replicating all of the tasks {7 ° 7 7 T T
relative to no replication. In this section we investigate 2 3 4 5 6 7 8 9
the best way to allocate additional replicas when we d (Degree of replication)
do not have enough workstations available to replicate (b)

all the tasks an additional time. Suppose we have
workstations { < k£ < N) to allocate to a program

of parallelismN, whose tasks are all replicatedimes. Fig. 2: Minimum parallelism for which replication

The question we have is : Is it better to use all theseimproves efficiency
workstations to replicate just one task of the program
additional times, or to use them to replicdtagasks of
the program 1 additional time?

Lemma 5.14f 0<p<1,n>0andk >0, then Sa+r = N(1—pHN=1(1 - pith)
Vm > n, we have

respectively. We have

Sat1 = N(L—pH)NF(1 = pith)*

1— pn+k 1— pm+k

L=p" L=pm p)N=1(1 — pd+l). For k = 2, we have
— d\N—1 d+2
Theorem 3.1:Replicating k tasks one additional Savk = N1 =pH)" (1 = pi*?)
timg gi_ves better speedup (am_j response time) than (1= pi+?)
replicating one of the taskiks additional times. Sqrr = N(1 _pg)N—l(l _pgﬂ)ﬁ
—pt

Proof: Let Syix, Sqr1 denote the estimated
speedups when one task is replicateddditional times
and whenk tasks are replicated one additional time

d+1)

r

(1—pd)

_ 1—-p
Sasr = N(1—phyN1(1 = prey L 2P )

For k = 1, we haveS;i1 = Sarx = N(1 —



By Lemma 5.1 (Section V) we know$;1; > Sgir. oOne of these tasks, we wish to determine the allocation
Similarly, for £ > 2, we can reapply Lemma 54— 1 that will maximize speedup.

times to show thabi 1 > Sat- Lemma 5.11f 0<p<1,n>0andk > 0, then

Thus it is better to replicatk tasks of the program Vm > n, we have
one additional time, than to replicate one tdskimes. ,
1— pn+k 1— pm+k

[ |

>
1—pn 1—pm

In Fig. 3 we present plots of the ratio of speedup
(Sat+1) when one workstation is allocated to eachkof Theorem 3.2:Speedup is maximized when the ex-
tasks over the speeduf ) when all k workstations tra workstation is allocated to the task that has the least
are allocated to one of the tasks. In all four graphs, wéplicas.
plot the speedup ratiSa1/Sa+x, @s the y-axis. Unless  proof: The speedup of the program before allocat-
varied, we assumg, = 0.1, d = 2, N = 32, and the jnq the extra workstation is given k= N (1—pét)(1—
number of extra workstations to be allocated= 4. da), (1 — piv) = NHﬁil(l _ph). Let S; denote

Before allocation of the extra workstations, each of th% .
o the speedup of the program when the extra workstation
tasks has an equal degree of replication.

is allocated to taskl; (i.e. taskT} is replicated one
i i i . dj+1 N .

In Fig. 3(a) we vary the parallellsmf._ We plot  5qditional time).S; = N (1 —p )Hi#,i:l(l_pgl)_
N only for values whereV > k. Assume, without loss

of generality, that the allocation of the workstations

is done among the first tasks. For every value oV s, N( —pdith Hgéj (1= pk)
allocating the additional workstation evenly results in a i NHN (1 : £
speedup ratio of 1.03 fat = 2 and 1.32 forl = 1. From =1\t~ Pr

the expressions faf,,; andSq4,, we can see that the S, (1- d]--',-l)
tasksk + 1 through N contribute equally to the speedup S Ny )

dj
in both cases. Consequently, they do not affect the ratio S (1-pr")
Sat+1/Sa+x. FOr N > k, the ratio of the speedups is
independent ofV. We can assume, without loss of generality, that

_ L . _._has the least replicas, i.6; < d;, Vj # 1. By Lemma
In Fig. 3(b) we vary the initial degree of rephcatlon5 1 we know thatS, /S > S;/S, Vj, 1 < j < N. Thus
d (before allocating thé: extra workstations) and studyS1 > ;. Therefore we ?na;(imize speedup_by allocating

its effect on th_e rgtloSdH/ S+k- Fora lower |q|t|al the extra workstation to the least replicated task. m
degree of replication, the allocation @f workstations

to the program has a greater effect. Asincreases, In Fig. 4 we plot the ratio of the speedup when
the k& workstations have a smaller effect on the overalve allocate the extra workstation to the task with degree

speedup. Thus the ratio of speedups approaches 1 @replicationd, over the speedup when we allocate the
higher values of. extra workstation to the task with degree of replication

d;, whered, <d,;.
In Fig. 3(c) we varyp,. The benefit of allocating * ="

the k workstations is greater for higher amounts of owner  In Fig. 4(a), we varyl; with a fixed value ofZ; =
interference. Thus the benefit of distributing the extr&). As the difference in the initial degrees of replication
workstations among thé tasks is more pronounced forbetween the two tasks (before the extra workstation is
higher values op,.. allocated) is low, the ratio of the speedups approaches
1. It is more important to allocate the extra workstation

. In Fig. 3(d) we vary the r_1umber of extra Work'to the least replicated task, when the difference in their
stationsk. Whenk = 1 the ratio of speedups equalsdegrees of replication is high

1. As the number of extra workstations is increased,

the difference in the performance of the two allocation  In Fig. 4(b), we varyp,. At higher values of owner

policies increases. interference using the extra workstation to replicate the
least replicated task becomes more important.

2) Allocating an extra workstation to the same 3) Allocating extra workstations to identical pro-
program with non-identical replicationiet us assume grams: We now consider the case where we have TWO
we have a prograny with N tasks {3, T», ... Ty) parallel jobs, each with equal parallelism, and want to
running in parallel. Let us assume each tdskhasd; allocate additional replicas in the best way possible.
replicas. If we have an extra workstation to allocate tBonsider the problem of allocatingextra workstations
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Fig. 3: Speedup ratio (One-to-each over All-to-one)

to jobs J; and.J, which each haveV > k tasks. Each andk — k; workstations are allocated td. Assuming
task of both the programs hdgeplicas. In other words, that the program is composed of one barrier, and all the
the parallelism and replication of each job is equal. Odasks are of unit length, the expected response time of
objective is to allocate the additionalworkstations so .J; (or J;) before allocation of the extra workstations is
as to minimize mean response time. m Therefore we have

Lemma 5.3If z > 1, m > 0, n > 0 and wlog

1 1 1
m > n, thenl + g™t > g™ 4 g7, Ravr = =( +
2T s L

)

Theorem 3.3:Giving some extra workstations to
each program results in a better mean response time thgy
giving all of them to one of the programs.
1

(1 _ pg)kal(l _p;i+1)k1

1
Proof: Let R;. be the mean response time when Riyr, = 5(
all k£ additional workstations are allocated to one of the
programs, say/;. Let R;1x, be the mean response time

whenky, (0 < k; < k), workstations are allocated th + 1

(1 — pd)N=ktki (1 — pit1)k—k: )
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Sinced > 1, we knowll_f’i:1 > 1. Ask > 1 and

0 < k1 <k, applying Lemma 5.3 we get

14 (1 _ngrl)k > (1 _ngrl)kfkl + (1 _ngrl)kl
L—-pf " =" 1-pf 1 —pd
1 [1 + (1 _p;“i+1)k] >
(1= ph)N=k(1 — pithyk (L—phk * =
1 [(1 _pg+1)k—k1
AP+~ prr - (1= pfF
(1 —pf+1)k1
Ha )
r

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 1

[ +1] >
(=1 =) (=) = pE )
1 [ 1
(1 — pd)N=k(1 — pF 1)k (1 — pdyk—hi (1 — pFHT) =kt
1
= pa )
1 N 1 N
(1=pHN (1 = ph)N=k(1 — pith)k =
1

(1= PN R (L= pT)e

1
+ 1 _ nd\N—k+kq 1 _ d+1 k—kq
(1—pf) (1—pr™)

HenceRgir > Ratk,, SO We get a better mean response
time by splitting the extra workstations among the two
programs than by giving them all to one of them. m

Theorem 3.4:The mean response time of two pro-
grams is minimized when the extra workstations are split
equally among the two programs.

Proof: Now, for a fixed k, we find k; so as
to minimize the mean response time. Note, we can
minimize the mean response time, by minimizing
(1 - pg-i_l )k—k1 + (]‘ B pg"rl )kl
1—pf 1—pd

Leta =

o d+1
22, and letf(z) = a* 7% + a®.

f'(z) =loga (a® — a*~%)

f'(z) = 0whena® = a*~* which is true when: = k/2.
f"(z) =log®a (a® + a*~%)

f"(k/2) > 0, thereforex = k/2 is the minima off(z).

Hence, we get the best mean response time when
we equally share the additional workstations among the
two programs/; and.Js. [ |

In Fig. 5 we plot the effect of distributing extra
workstations among two identical programs on their
mean job response times. Unless varied, we assume
N =32,p, =0.1,d = 2, k = 32. Adistribution(k;, k;)
means, without loss of generality; workstations are
allocated to the first program arfd workstations are
allocated to the second program.

In both the graphs, we plot the ratio of the mean
job response time for the distributiofk, , k) over the
response time for the distributiotk/2,%k/2). We use
different values ofk; for the plots.



of 0, 3, 6, 9 and 12. The y-axis has a logarithmic
scale. A higher owner interference causes the ratio to
increase significantly. For high valuesmgf, even a slight
imbalance in the allocation of the workstations among
the two programs has a stiff penalty in terms of mean
job response time.

B. Loosely Coupled Barrier

Rk, kkp) Rz ki2)

Here we consider barrier synchronized programs
whose tasks do not have to be co-scheduled. So a job
makes a barrier so long as all the tasks in the set
are completed irrespective of whether they were all
running simultaneously or not. In this master-worker
scenario, the time a program needs to reach a barrier
is the maximum of the time needed for each task of the
corresponding set to complete. When a task is replicated,
1000 it is sufficient for one of the replicas to finish. Thus we
only need to consider the replica that has the minimum
completion time. Hence for a program with replicated
tasks, the time needed to complete a set of tasks (reach
a barrier) is the maximum of the time required to
complete each of the individual tasks, which is in turn the
minimum of the completion times of the task’s replicas.

(@) pr=0.1,d=2, N =32 k=32

100 -

Rk, kkp) Rz ki2)

The probability that a task gets completed follows a
geometric distribution with parametét —p,.). The c.d.f
of the distribution is given by (¢) = 1—(1—(1—p,))! =
1—pt. FN(t) = (1 —pt)N. The mean of the maximum

10

it S

oa 05 o8 o7 os oo Of N geometric variables with parameter- p, [16] is
p, (Reclamation probability) UN:N = E?io(l —FN ) = Ezo(l -(1- pf,)N).

0.1 0.2 0.3

(b)d=2 N =32 k=32 Now consider the case where each task is replicated
d times. The time needed to complete a task is the
minimum of d geometric variables with the parameter
1 — p.. The minimum ofd geometric variables (with
parameted — p, ) follows a geometric distribution with
parameterl — (1 — (1 — p,))¢ = 1 — pi. The c.d.f

In Fig. 5(a), we varyk; (x-axis) in the range) of the geometric distribution with parameter— p¢ is
throughk = N = 32. We plot the curves correspondinggiven by F(t) = 1 — (1 — (1 — p?))! = 1 — p. The
to d values of1, 2, 3 and4. In each case, the plot ismean of the maximum ofV such geometric variables
symmetric about the linee = k/2 and the minimum (with parameted — p?) is given byuly.y = Y og(1 —
mean job response time is reached (by2, k/2). The FN(t) = 3002 (1 = (1 = pdt)N),
ratio is higher for lower values af. So it is especially _ ) )
important to divide the extra workstations equally among /.~ 9ives the mean time required to complete one
the two programs for low initial degree of replicationParrier. If a program ha® such barriers, then the time
As seen earlier, increasing replication for higher valud¥eded to complete the progranfigy. .. Similarly the -
of d does not improve peroformance significantly. Thudme needed to complete a program with no replication
the benefit of distributing the workstations among th& Bun:n-

programs is low foel = 2, 3, 4. In the plot the difference The completion time of the sequential version of

betweend = 2, 3 and4 is not discernible. the program isBN. Hence the speedup of the program

In Fig. 5(b), we varyp, along the x-axis and plot Without replication isS1 = 72— = sl

the response time ratio from top to bottom farvalues and the speedup of the program withreplicas isS; =

Fig. 5. Mean Response Time Ratio




BN _ N i
By = SE.A-(1—prm~)- |ne ratio of the speedup

with replication to the speedup without replication is
given by
15
Sa _ N/(Zo(t = (1=pfH™))
S N/(CZe(l— (1 =ph)N)) ;
&1t
2]
Sa _ Yimo(l— (1 =pH)N))
Si T Lol — (A= piHN)) os
Since0 < p, < 1 andd > 1, we havep? <
; dt t _ ndt ot 0 : : : : : :
Dr. G:xe]r\:t >0, p:; NS ppe (L =pi") > (1 - p;) and 5 10 15 20 25 30
(1=pf)N > (1—p;)N, whereN > 1. Hence,(1—(1— N (Parallelism)
pIHNY < (1 — (1 —pL)N), Vvt > 0. ThereforeS; > S;.
Note ford > 1, S; > S;. @pr=01,d=2
From the above we conclude that replication al-
ways results in better speedups wheg p, < 1. 3
In both the graphs of Fig. 6 we plot, on the y-axis, s |

the ratio of speedup with replication over the speedup
without replication. Unless varied, we assumiVe= 32, 2
pr = 0.1 andd = 2.

2/S1

In Fig. 6(a), we plot the speedup ratio as we vary g [

the parallelismN on the x-axis. The speedup ratio is
greater thanl, as replication provides at least as much
speedup as no replication. The speedup improvement ;5|
is better for larger jobs (higher values &f) than for
smaller jobs. The graph tends to level off for larger 0 w w w w ‘ ‘ ‘ ‘
N, because for largeN values, the chances of one of r 2 3 4 5 6 7 8
the workstations being reclaimed are much higher, so d (Degree of replication)
adding just one degree of replication is not as effective (b) pr = 0.1, N = 32
(as compared to smaller jobs).

©
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In Fig. 6(b), we plot the speedup ratio as we vargig. 6: Speedup Ratio (Replication over No-
the degree of replicatiod. The speedup improvementreplication)

increases significantly until abodt= 3 (for N = 32,
pr = 0.1), after which the improvement levels off.

1) Allocating extra workstations to the same prc)\_/vhenlc tasks are replicated one additional time+( 1

gram with equal replication:Now consider the problem fimes) respectively. Thus we have
of allocatingl < k < N additional workstations to a N

i Sat+k =
program whose tasks are all replicatédmes. S (1= (1 - pit)N-1(1 _p£d+k)t))
Lemma 5.2I1f 0<p<1,t>0,d> 0, and

n > 1, thenVk, k,n integers and < k < n, we have N
Sat1 = s dt\N—k (d+1)t\g
Yol = (A =pf)N=F(L —pr " T)F)

(1 _pdt)nfk(]_ _p(d+1)t)k > (1 _pdt)nfl(]_ _p(d+k)t)

) _ (d+k)t
Theorem 3.5:Replicating  tasks one additional ~ Sa+1 _ 2ol = (1 =pf)N 11 —p))
time gives better speedup (and response time) than Sa+k 370 (1 — (1 — pdt)N=k(1 — p{*TDE)k)
replicating one of the taskis additional times.

Proof: Let Sy k, Sas1 denote the speedups when ~ From Lemma 5.2 we know thatt > 0, (1 —
one task is replicatetl additional times d-+k times) and pZ)N=k(1 — p{™ ™)k > (1 = pdtyN=1(1 _ p{dThE)




Therefore,1 — (1 — pd)N=k(1 — pl™™Hk < 1 _ (1 —  of the two programs is at least as good (better in most
pIyN-1(1 _p£d+k)t) which implies cases) as allocating some to each program.

g Lemma 5.3If z > 1, m > 0, n > 0 and wlog
d+1

S—Zl m > n, thenl + ™™ > g™ 4 z",
d+k
Theorem 3.7:The mean response time is lower

Thus it is better to replicaté tasks one additional time \yhen all the extra workstations are allocated to either

than to use all thek workstations to replicate just onegne of the programs, rather than split among both the
proessk times more. B programs.

2) Allocating extra workstations to the same pro-  pyoof- Let Ra.x be the mean response time of
gram with different replication: Suppose we have aihe programs whett workstations are all allocated to
program that has on_e tasK;; with m total replicas gne of the programs and none to the other. Bat.j,
and another taskl; with n total replicas, wheren > pe the mean response time of the programs when
n. Since the change in speedup of the program, after< < & workstations are allocated to one of the
allocatingk > 1 additional workstations to one of theseprograms and: — k, workstations are allocated to the

tasks, only depends on the change in speedups du&jfRer program. Here we assume the (identical) programs
the additional replication of one of these tasks, we cafyin have one set of tasks (barrier).

assume, without loss of generality, that the program only
has 2 taskg, T>.

1 [ee]
Lemma 5.1:f z > 1, m > 0, n > 0 and wlog  Rat+r = 5[2(1 — (1=p*)N)
m > n, thenl 4+ ™" > 2™ 4+ g7, =0
[ee]
The(_)rem 3_.6:Allocating extra work_stations to the + Z(l — (1 —piyN=F(1 - p§d+1)t)k)]
task that is replicated the least results in better speedup =0
(and response time) than allocating extra workstations to 1.
other tasks. Ry, = 5[2(1 — (1 = pdyN=hr(1 — pld+1tykry
Proof: The speedup of the program when the ZO
extra workstations are allocated 19 is + Z(l . pgt)N7k+k1 (1 _p7(nd+1)t)kfk1)]
g N t=0
mtk = m+k
Yol = (1=p™ (1 = ppt)) e
. Ford > 1,t > 0 we have(l —p,"" ") > (1 — pit).
and the speedup of the_ program when theorkstations Therefore,(l”f‘d:;)t) > 1. By Lemma 5.3, we have
are used to replicaté; is (1-pg)
N
Spir = — (1 _ (d+1)t) (1 _ (d+1)t)
— (1 — pmt)(1 — plrTk)E 1 Dr ks Dr ks
Yimo(I =1 =p) (1 =pr7)) +( = pih) ¥ = ( 1= i) )
= 9. d+1)t
where,N = 2 . ((1 —p£ ) ))kikl
From Lemma 5.1, we knowt > 0, (1 —pmt)(1— (1 —pdt)
) > (1= g (1= ). Hence,(1 - (1
PP = p" ) < (1= (1= p™ (1 - ),
Therefore,S,,+r > Sm+r. SO allocating thé additional (1- p£d+1)t)k (1- p£d+1)t)k1
workstations to the task which is replicated fewer times 1+ A—piF 2 (1= pi)k
(before the allocation) is better. [ ] Pr Pr
(1 _p(d+1)t)k—k1
3) Allocating extra workstations to identical pro- + .

_ pmdt\k—kq
grams: Consider two programd; and J,; which have (1 =p7)

N > k > 1 tasks each. The tasks of both the programs

are replicated a total of times each. Now we wish to

allocate{c _ad_dmonal workstations to the two programs S?l _pgt)k +(1- p7(nd+1)t)k > (1 _p;nit)kfkl (1 _p7(nd+1)t)k1
as to minimize the mean response time of the programs.

We claim that allocating alk workstations to just one + (1 — pitykr (1 — pld+Dtyk—k



Multiplying both sides by(1 — p)N—* we get

(1 =pfHN + (1 = pfHN (1 — platiityk >
(1 _ p;nit)Nflm (1 _ pgﬂdJrl)t)kl

+ (1 _ pgt)N7k+k1(1 _ p£d+1)t)kfk1

_ (1 _ pgt)N—kl (1 _ p£d+1)t)k1

_ (1 _ pdt)N—k+k1 (1 _ p(d—i-l)t)k—kl

—(1=p"HN — (1 = )Nk (1 — pltk <

2= (L= pi)V = (1= gV H(1 = ) <

9 _ (1 _p;lt)N—ln(l —p£d+1)t)k1

(d+1)t>kfk1

_ (1 _ dt)N7k+k1 (1 —pl!

Dy

(1—(1-pf)N)

+ (1= (1= pl)N=h(1 — pld+Dtyky <
(1— (1 —pHyN=k1(1 — pld+Dtyhr)

(L= (1= plyY kb (1 = sty

> a-@a-piH)
+ i(l — (1= pH)N=R(1 = pltthhky <
S0 (1= pty VR (1 gl

£ 30 (1= pffy N (1 ity

Let us further assume that each of thé tasks has
been replicated times. Thus we are running ondN
workstations. If we haveN + 1 workstations available
to us, we need to find out if it is more profitable (in terms
of speedup) to increase the parallelismJofto N + 1

or to replicate an existing task one additional time.

Let S; denote the speedup of; when run on
a SNOW with increased parallelism aP + 1, and
let Sg+1 denote the speedup of; when run on a
SNOW with parallelismN but with extra replication.
Note, for simplicity we assume, remains constant
when the parallelism is increased 16 + 1. We have
Si=S(N+1)(1-pH)N(1—p,) andSyy1 = S(N)(1—
pHN-1(1—pd+l), S+ > S, when :S(N)(1—pitl) >

S(N+1)(1—p%)(1—p,). The gain in improvement when
the parallelism is increased by 1 is given 5§t /S,.

ST S(V( = p)N T — pith)
Se — S(N+1)(1-pHN(L-p,)
SV = pi*h)

(1=pH(1 = py)

_ SV
- S(N+1)
wherea = %. Notea > 1 for d > 0.
St f+(A=-fH/(N+1)

S T Fra-pN
(Nf+f+1-f)N
(Nf+1-f)(N+1)

N + N%f

N+1)+(N2-1)f

:a(

Sd+1

—1="bla(N +N2f) = (N +1) — (N2 — 1)f]

Thus Ry < Ryyr,, SO We get a better mean response “¢

time if we allocate allt workstations to one off; or

Ja.

IV. REPLICATION VS PARALLELIZATION

A. Tightly Coupled Barrier

Suppose we have a prograf with a sequential

whereb = 1/[N + 1+ (N®> — 1)f]. Note b > 0 for

B N>0.

Sd+1
Saq

—1=>b[aN +aN?f — N — N%f — (1 — f)]
=bl(a—1)fN?+ (a—1)N — (1 - f)]

_ 1-f
—(a—l)b[fN2+N—m]

fraction f. Assume there is no upper bound on the
maximum parallelism. By Amdahl’'s Law, we know that
the speedup of this program has an upper bound of 1) Example: N=1:1f N =1,

S(N) = 1/(f + (1 = f)/N), where N is the number ¢, -

of tasks of J;. We shall assume that this speedup is=— —1=(a— 1)b[f+1— —=] =b(af +a—2)
achieved by the program when run on a set\ofded- d a—1

icated workstations, even though in a real scenario, tii@us it is always better to increase replication (rather
speedup achieved is much lower due to other constrairttsan parallelism) iff > 2/a — 1.
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Fig. 7: Speedup Ratio (Replication over Parallelism)

In Fig. 7 we plot the ratio of speedup withtion d (before using the extra workstation). An increase
increased replication over the speedup with increasgdthe initial degree of replication, means the amount
parallelism. Unless varied, we assumie= 2, N = 32, of improvement possible, by replicating one of the
pr = 0.1 and the sequential fraction of the paralletasks once more, is lower. Hence the improvement by
programf = 0.2. increased replication is less relative to the improvement
In Fig. 7(a), we vary\ along the x-axis and study possible by incr_easing parallelism. So we see a drop in
its effect on the ratio of speedup with increased repllhe §pe_edup ratio. For higher valuesioiising one extra
cation over speedup with increased parallelism. For thrigphc""tlolrl1 of On; task gf Lhe program l;]as a lov; effect.
choice of parameters it is better to increase replicatit%)nn ?I\_/era ﬁspee Up and thus we see the speedup ratio
for all N > 4. For N < 4, increasing parallelism gives evetling oft.

a better performance. WheN is large, using just one In Fig. 7(c), we varyp,.. Replication is especially
extra workstation to replicate a task has a reduced efféwipful when owner interference is high. Thus whegn
on overall performance. Thus we see the ratio levellingcreases, the speedup ratio also increases significantly.

off. In Fig. 7(d), we vary the sequential fraction of the

In Fig. 7(b), we vary the initial degree of replica-programf. We notice that the sequential fraction of the



program has a very low effect on the speedup ratio.

V. PROOFS
Lemma 5.1:f 0<p<1,n>0andk>0,then
Ym > n, we have
1— pn+k 1— pm+k
1—pn 1—pm
Proof: Sincek > 0, n > 0 and0 < p < 1,

p? > p"tk And also sincen > n, p™~" < 1 which
implies (1 — p™~") > 0. Therefore, we have

prL—p™ ) >p "t —pm™)

pn _ pm > anrk _ perk

_pm _ anrk > _pn _ perk

1— pn—i-k +pm+n+k _ pm >1 _pm+k +pm+n+k _pn
1)

1 _pn+k +pm(pn+k _

(1-

1) >1 _pm+k +pn(pm+k _
pr (1 —p™) > (1= p™h (1 - p")
1 _pn+k 1 _pm+k

1—pn 1—pm

Lemma5.2iIf 0 <p<1,t>0,d>0,and
n > 1, thenVk, k,n integers and < k < n, we have

(1= pt)n=k(1 — pldtDtyk > (1 — pityn=1(1 — pld+ht)

Proof: Sinced > 0 andt > 0, from Lemma 5.1

we have forl <i<k—1

1— pdt+t 1— p(d+i)t+t
1 — pit 1 — pld+it
Therefore,
(1 _pdt+t)k71 k—1 1— p(d+i)t+t
— pdtyk—1 — od+i)t
(1—p) o 1=pld+d
(d+i+1)t
(A1)t k=1 k 1 —-p
(1 p ) > H p (d+1i)t
1— p(d+k)t
dt\k—1
> (1=p%) 1= plari
(1 _p(d+1)t)k > (1 _ pdt)kfl(]_ _p(d+k)t)
(1= pt)n=k(1 — pldtDtyk > (1 — pdtyn=1(1 — pld+hit)

Lemma 5.3:f x > 1, m > 0, n > 0 and wlog

m > n, thenl + z™t" > 2™ 4z,
Proof:
Caseln=0

n = 0 impliesz™*t"? = z™ andz™ = 1. So1 +

™ = 142™ = g™ +2", Thus,1+2™F" > g™+ 2",

Case2n >0
Let f(z) = 1+ a™t" — 2™ — 2" Now, f'(z) =
(m +n)zm "l —mpm—1 —pgn—t,
1 n 1
i — m+n—1 1— m _ R
F@) (m +n)z [ m—+nz™ m—l—nwm]
= (m +n)z™t"!
1 m n 1
[1——( peend]
" m+n m+nx
Since,z > 1 andm > n, = <1,
1
( m_ ., _n ) <1

Becausen > 0,

m+n m4+nzxm—"n

= < 1, thereforef'(z) > 0 so f(z)

is increasing Wherm > 1. Atz =1, f(1) = 0 which
implies f(z) > 0, for x > 1. Hence,1 + ™" >

™+ x".

VI. CONCLUSIONS

We have analyzed the performance improvements

resulting from task replication of batch parallel programs

runni

ng on a SNOW. Specifically, we have derived

formulas to calculate the speedup and efficiency im-

provements due to task replication. With our analysis

we have shown that replicating tasks of parallel programs

can result in significant speedup improvements. Also, for

some workloads, replication can also improve efficiency.

Furthermore, when the probability of workstation recla-

mation rises, the speedup and efficiency improvements
due to replication increase. Likewise, as job parallelism
increases, replication becomes even more beneficial in
improving speedup.

We have also analyzed the problem of using extra

workstations to replicate tasks of a parallel program and
show how to distribute the extra workstations among the
tasks. Specifically, for the workload models considered,

if we have k extra workstations, we have shown it is

bette

r to replicatek tasks one additional time than to

replicate one of the taskis additional times. If there is

only one extra workstation, we have shown it is best to
allocate the extra workstation to the least replicated.task

Finally, if we have extra workstations to distribute among



two identical programs, distributing the workstations loads on a network of workstations,” iroc. 1995 ACM SIG-

equally between the two programs gives least meap. METRICS 1995.
q y prog g E] S. Cho, “Competitive execution in a distributed envinoent,”

response time for tightly coupled workload and giving Ph.D. dissertation, University of California, Los Angeld996.
all the extra workstations to one of the programs giveg] E. Heymann, M. Senar, E. Lugue, and M. Livny, “Evaluation
least mean response time for loosely coupled workload. ©f strategies to reduce the impact of machine reclaim inecycl

stealing environments,” ifProc. First IEEE/ACM International

Lastly, we have presented an analysis of the trade- Symposium on Cluster Computing and the GBd01, pp. 320-

: ; ; 328.
off between using an extra workstation to mcreas%] S. Leutenegger and X. Sun, “Limitations of cycle steglifor

parallelism and increasing replication, and have found ' parallel processing on a network of homogeneous worksetio
that replication can be more beneficial than increasing Journal of Parallel and Distributed Computingol. 43, no. 3,
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