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Idle computation cycles of a shared network of
workstations are increasingly being used to run batch
parallel programs. For one common paradigm, the batch
program task running on an idle workstation is pre-
empted when the owner reclaims the workstation. This
owner interference has a considerable impact on the
execution time of a batch program, especially in the case
of large parallel programs. Replication of batch program
tasks has been used to reduce the impact of owner
interference. We show analytically that reclamation can
significantly improve parallel program speedup. Perhaps
surprisingly, replication can also improve efficiency for
certain workloads. We present analysis to quantify the
amount of speedup and efficiency improvement. Further-
more, we provide analysis to help determine whether ex-
tra available workstations should be used for increasing
job parallelism or for task replication.

I. I NTRODUCTION

Networks of workstations (NOWs) have been used
to run parallel programs for some time [1], [2], [3],
[4], [5], [6], [7], [8], [9], [10]. The NOW may be
dedicated as in the case of Beowulf [11] or shared as
in the case of Condor [12], [13]. When the NOW is
shared with workstation owner processes, it is referred
to as a shared network of workstations (SNOW). The
speedup of parallel programs running on a SNOW can
be greatly affected by workstation owner interference.
In this paper we consider a SNOW where parallel
jobs are run in an opportunistic fashion as in Condor.
In such an environment, workstation owner processes
have preemptive priority over batched parallel programs.
Owner process workstation reclamations stop execution
of the batch job task and hence may significantly impact
the parallel job response time.

One approach to prevent a workstation reclamation
from impacting parallel job performance is to replicate
some or all of the parallel tasks [5], [6]. When replication
is used, parallel job performance is not affected by recla-
mations as long as one replica of each task completes
without interference.
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In [5] the author compares competition protocols
and migration protocols for sequential and distributed
programs on varaible-speed processors. A SNOW is
treated as a collection of variable-speed processors
where background programs have lower priority than
foreground owner programs. Competition protocols use
replication to reduce the impact of owner interference.
Simulation results of the performance of competition for
distributed programs are presented. However there is no
mathematical analysis of the performance of competition
protocols for distributed programs. Competition policy
issues such as, how to allocate workstations for replicat-
ing tasks of a program, are not studied.

The authors in [6] demonstrate that owner interfer-
ence considerably impacts the performance of a parallel
program running in a SNOW environment. Futhermore,
they demonstrate that using task replication can sig-
nificantly improve job response time. The study only
considers the loss of up to one workstation in a batch
of tasks. Tasks are assumed to be of different sizes
allowing for a mix of short and long service demand
tasks. Performance of replication for programs with
tight coscheduling requirements is not studied. They
consider one no-replication and two replication strategies
to alleviate the negative impact of owner interference:
no-replication (NR) adds the extra workstations to the
general pool, single replication (SR) replicates the largest
task in a batch using one extra workstation and uses other
extra workstations in the general pool, and complete
replication (CR) replicates theK largest tasks usingK extra workstations. They show with experimental
workloads that CR performs better than SR. Our work
differs in that we provide analysis and proofs instead
of simulation, we consider synchronized workloads, we
study various tradeoffs in how best to allocateK extra
workstations, and we consider the tradeoff between using
extra processors for parallelism versus replication.

Rosenberg [10] develops a model for devising
a schedule that maximizes the amount of work ac-
complished from an embarassingly parallel workload.
Owner interference is considered as an adversial process
between the owner and the user running background
programs. The instantaneous probability of workstation



reclamation is assumed to be known. In [2] the authors
consider sharing a bag of identically complex tasks
in a heterogeneous network of workstations (HNOW).
The problem considered is accomplishing as much work
as possible on the HNOW, during a prespecified fixed
period of time. Neither of [2], [10] consider the effect of
replication for reducing the impact of owner interference
on parallel program performance.

In this paper we show that replication can result
in significant speedup improvements and we analyti-
cally quantify parallel task replication benefits for two
workload models: tightly-coupled barrier synchronized
and loosely-coupled barrier synchronized. We allow for
multiple workstation reclamations during the execution
of a batch of tasks. We assume knowledge of the
probability that a workstation may be reclaimed before
a task completes, but do not assume knowledge of the
instantaneous probability of workstation reclamation as
in [2], [10]. We analytically study how to distribute extra
workstations not only among tasks of a program but also
between two programs.

In a dedicated parallel processing machine, increas-
ing a parallel program’s workstation allocation beyond
the program’s maximum parallelism will reduce worksta-
tion efficiency without any speedup improvement [14].
We show that this assumption does not hold in the case
of a SNOW. On the contrary, and somewhat surprisingly,
additional workstation allocation in the form of task
replication can result in improvements in efficiency as
well as speedup.

The rest of the paper is organized as follows.
In Section II we describe our machine and workload
models. In Section III we present replication analysis
and results for both workload models considered. In
Section IV we present analysis and explore the trade-
off between using additional workstations for replication
versus for increasing job parallelism. In Section V we
prove lemmas that are used in theorems. We state our
conclusions in Section VI.

II. M ACHINE AND WORKLOAD MODEL

In this section we explain our overall system
model, specific parallel program models, and perfor-
mance metrics.

A. System and Workstation Model

We assume a SNOW system ofN homogeneous
workstations. As in the Condor system [12], [13], we as-
sume workstations execute both owner jobs and batched
jobs. We assume batchjobs are parallel programs, that

are decomposed intotasks, and then the tasks are run in
parallel on idle workstations. For simplicity we assume
that all the tasks are of an equal length, that owner
jobs are sequential processes local to the workstation,
and migration and checkpointing overheads are absorbed
in the workload demand. Similarly, homogeneity of
workstations is assumed for simplicity.

We assume workstation owner processes have pre-
emptive priority over batch tasks. As soon as an owner
job begins execution after an idle period, the workstation
is reclaimed, and the running batch task, if any, is
preempted immediately. All task work completed since
the last checkpoint is lost.

We assume workstation reclamations are indepen-
dently and identically distributed, and that the probability
a workstation is reclaimed during the length of a task unit
is pr, 0 < pr < 1. When a task is preempted the task is
allocated to another idle workstation and is restarted on
that workstation. The partial work completed by the task
is lost and the task is restarted at the beginning on the
newly allocated workstation. The task only restarts after
the current length of a task unit is finished. The time
when one set of job tasks is deemed to be completed
and the next set of tasks started may represent the point
in the program where barrier synchronization takes place
or when a job checkpoints.

We assume we have enough workstations at hand
so when one (or more) of the workstations is reclaimed
we have another one (or more) upon which to run
the task(s). Thus a job always has a fixed number of
workstations allocated to it. We make this assumption
to simplify analysis, but it should have no effect on the
qualitative results gleaned from this study.

When we say a task is replicatedd times, we mean
there are a total ofd > 1 identical tasks scheduled,
and the task completes when one (or more) of them
finishes. However ifd = 1, we say the task has not
been replicated.

B. Parallel Job Models

The batch workload consists of parallel programs,
or jobs, each withN tasks, whereN � 1. A job
completes when all of theN tasks have completed. For
simplicity, we assume all tasks to be of unit length.
Different inter-task synchronization constraints impact
the job performance. We have recently begun exploration
of the effectiveness of replication for a Master-Worker
workload [15], but for now consider the following work-
load models:� Tightly-Coupled Barrier:



We assume a job is composed ofN equal sized
tasks. A series ofB barriers must be completed.
A barrier is reached when each of theN tasks
completes. All tasks must be simultaneously sched-
uled for forward progress. If any of theN tasks is
preempted, allN tasks must be started over. Thus,
a barrier is only achieved after a task-demand sized
time interval where none of theN workstations is
reclaimed.
We assume that tasks always start at fixed intervals
of time. When a workstation is reclaimed, the task
must be moved and hence the completed work of
all job tasks (of the current barrier) is lost and all
these tasks must be re-executed from the beginning.
We also assume, for simplicity and to model task
migration time, that the tasks can be restarted only
at the beginning of the next interval.
We only explicitly model one barrier, since the anal-
ysis is the same forB barriers, with the response
time beingB times that in the case of one barrier.� Loosely-Coupled Barrier:
The model for loosely-coupled is the same as
tightly-coupled with one difference: the only syn-
chronization constraint during the time between
barriers is waiting for each of the otherN�1 tasks
to reach the barrier. Thus preemption of one task
does not affect the completion of the otherN � 1
tasks.
It is necessary for all theN workstations to have
finished their current task before the job (any of
its tasks) can proceed to the next barrier. Again,
we do not explicitly model more than one barrier,
since the analysis is the same forB barriers, with
the response time beingB times that of one barrier.

C. Performance Metrics and Notation

Our primary metrics of interest are batch job
speedup and efficiency [14]. Since we want to study the
impact of replication, we defineSd to be the speedup of a
job when each of its tasks is replicatedd times. Likewise,Rd andEd are the response time and efficiency assuming
each task is replicatedd times. In the case when the
tasks of a program have different degrees of replication,d represents the relevant degree of replication being
discussed. We summarize our notation in Table I.

III. A NALYSIS AND RESULTS

For the sake of readability we state the relevant
Lemmas before the Theorem statements. The proofs of
the Lemmas are in section V

TABLE I: NotationN Parallelism of a programd Degree of replicationpr Probability of workstation reclamationSd Speedup, whered is the degree of replicationRd Response Time, whered is the degree of replicationEd Efficiency, whered is the degree of replicationF (t) CDF of the probability distribution�N:N Mean of a maximum ofN geometric variablesB Number of barriers in a program, each havingN tasksf Sequential fraction of a parallel programTi Task i of a program

A. Tightly Coupled Barrier

In this section we present our analysis and results
for the tighly-coupled barrier synchronization model.
Assume a job has parallelismN and that the probability
of a workstation reclamation during task execution ispr. The probability that a task completes is(1 � pr).
The program completes a set ofN tasks, if all the
workstations complete the task allocated to them. Thus
the probability that the job completes a set ofN tasks is(1� pr)N . Assuming the program has a linear speedup
on a dedicated set of workstations, the expected speedup
of the program on a non-dedicated set of workstations
is S1 = N(1� pr)N .

When a task is replicated on two workstations, the
task gets completed when either one of them completes.
The probability that the task is completed during the first
allocation is(1 � p2r). If all the tasks in a program are
replicated then the probability that a program completes
a set of tasks is(1�p2r)N . The expected speedup of the
replicated program (assuming linear speedup) isS2 =N(1� p2r)N .

The ratio of speedup with replication to the
speedup without replication isS2S1 = N(1� p2r)NN(1� pr)N = (1� p2r1� pr )N0 � pr � 1 implies (1 � p2r) � (1 � pr) and the
speedup ratio grows exponentially as the parallelismN
is increased. The speedup with replication is guaranteed
to be at least as much as the speedup without replication,
if not better.

In Fig. 1 we present plots of the ratio of speedup
with replication over the speedup with no replication.
Unless varied, we assumepr = 0.1, N = 32, andd
(replication degree) = 2. We choseN to be 32 as a
typical sized parallel program. Even though replication



1

10

100

5 10 15 20 25 30

S
2/

S
1

N (Parallelism)

(a) pr = 0:1, d = 2

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
2/

S
1

pr (Reclamation probability)

(b) N = 32, d = 2

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8

S
2/

S
1

d (Degree of replication)

(c) pr = 0:1, N = 32
Fig. 1: Speedup Ratio (Replication over No-
Replication)

provides a much better performance improvement for
higher values ofpr, we selectpr = 0:1 because running
tightly coupled parallel jobs on a SNOW with high
owner interference may not be practical.

In all three graphs, on the y-axis we plot the ratio
of speedup with replication over the speedup with no
replication. In Fig. 1(a) we vary job parallelism. We
see that the ratio increases with the job parallelism.
This is because asN increases, the probability of a
task being preempted, and all of the tasks requiring a
restart, also increases. With replication,both a task and
its replica must be preempted before a barrier needs
to be re-executed. Hence, the speedup ratio increases
significantly.

In Fig. 1(b) we varypr. We see that aspr increases,
the utility of replicating tasks increases.

In Fig. 1(c) we vary the degree of replication,d.
We see that for the parameters chosen, increasing the
degree of replication up to 3 significantly improves job
speedup.

Replication can also increase the efficiency [14]
defined as the ratio of speedup to the number of work-
stations,E(n) = S(n)=n. Assuming all the tasks of a
program are replicated once, the number of additional
workstations allocated to the parallel program is equal
to N , whereN is the parallelism of the program and
is equal to the number of workstations allocated to the
program without replication. The efficiency is improved
if E2=E1 � 1 whereE2 , E1 represent the efficiency of
the program with and without replication respectively.E2=E1 = S2=(2S1), so the efficiency is improved ifS2=S1 � 2. This happens when :(1� p2r)N(1� pr)N � 21� p2r1� pr � 21=Nlog2(1� p2r1� pr ) � 1NN � 1log2( 1�p2r1�pr )

Given pr, we can calculate the parallelism for
which the efficiency of the program will be improved
by replicating all its tasks. We can use the knowledge ofN and pr to determine the degree of improvement (or
degradation) replication causes in the efficiency.

In the general case when each taski of the program
of parallelismN is replicateddi times, wheredi � 1,



the speedup of the replicated program isNQNi=1(1 �pdir ). Replication causes improvement in efficiency ifNQNi=1(1� pdir ) � (1� pr)NPNi=1 di.
Fig. 2 shows the minimum parallelism a program

must have, to achieve improved efficiency by replication.
Programs that are larger (have higher parallelism) than
the minimum parallelism will have better efficiency with
replication than without replication. All the tasks of a
program are replicated to an equal degree.

In Fig. 2(a) we varypr. We plot the minimum
parallelism needed when the degree of replication is2,3 and5. For a low value ofpr (low owner interference),
replication improves efficiency only for large programs.
When the owner interference is high, replication im-
proves performance significantly and is thus able to
improve the efficiency of both large and small programs.

In Fig. 2(b) we vary the degree of replicationd on the x-axis and view its effect on the minimum
parallelism which is plotted on the y-axis. A lower de-
gree of replication improves the efficiency for programs
with smaller parallelism than does a higher degree of
replication. Note, for higher degrees of replication where
the efficiency ratio is less than 1, it is the case that higher
speedup is achieved, but at the cost of a lower efficiency.

1) Allocating extra workstations to the same pro-
gram with equal replication:In the previous sections
we considered the benefit of replicating all of the tasks
relative to no replication. In this section we investigate
the best way to allocate additional replicas when we
do not have enough workstations available to replicate
all the tasks an additional time. Suppose we havek
workstations (1 � k � N ) to allocate to a program
of parallelismN , whose tasks are all replicatedd times.
The question we have is : Is it better to use all thesek
workstations to replicate just one task of the programk
additional times, or to use them to replicatek tasks of
the program 1 additional time?

Lemma 5.1:If 0 < p < 1, n > 0 andk > 0, then8m > n, we have1� pn+k1� pn > 1� pm+k1� pm
Theorem 3.1:Replicating k tasks one additional

time gives better speedup (and response time) than
replicating one of the tasksk additional times.

Proof: Let Sd+k, Sd+1 denote the estimated
speedups when one task is replicatedk additional times
and whenk tasks are replicated one additional time
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Fig. 2: Minimum parallelism for which replication
improves efficiency

respectively. We haveSd+k = N(1� pdr)N�1(1� pd+kr )Sd+1 = N(1� pdr)N�k(1� pd+1r )k
For k = 1, we haveSd+1 = Sd+k = N(1 �pdr)N�1(1� pd+1r ). For k = 2, we haveSd+k = N(1� pdr)N�1(1� pd+2r )Sd+k = N(1� pdr)N�1(1� pd+1r ) (1� pd+2r )(1� pd+1r )Sd+1 = N(1� pdr)N�1(1� pd+1r ) (1� pd+1r )(1� pdr)



By Lemma 5.1 (Section V) we knowSd+1 > Sd+k.
Similarly, for k > 2, we can reapply Lemma 5.1k � 1
times to show thatSd+1 > Sd+k.

Thus it is better to replicatek tasks of the program
one additional time, than to replicate one taskk times.

In Fig. 3 we present plots of the ratio of speedup
(Sd+1) when one workstation is allocated to each ofk
tasks over the speedup (Sd+k) when all k workstations
are allocated to one of the tasks. In all four graphs, we
plot the speedup ratioSd+1=Sd+k, as the y-axis. Unless
varied, we assumepr = 0:1, d = 2, N = 32, and the
number of extra workstations to be allocatedk = 4.
Before allocation of the extra workstations, each of the
tasks has an equal degree of replication.

In Fig. 3(a) we vary the parallelismN . We plotN only for values whereN � k. Assume, without loss
of generality, that the allocation of thek workstations
is done among the firstk tasks. For every value ofN
allocating the additional workstation evenly results in a
speedup ratio of 1.03 ford = 2 and 1.32 ford = 1. From
the expressions forSd+1 andSd+k, we can see that the
tasksk+1 throughN contribute equally to the speedup
in both cases. Consequently, they do not affect the ratioSd+1=Sd+k. For N � k, the ratio of the speedups is
independent ofN .

In Fig. 3(b) we vary the initial degree of replicationd (before allocating thek extra workstations) and study
its effect on the ratioSd+1=Sd+k. For a lower initial
degree of replication, the allocation ofk workstations
to the program has a greater effect. Asd increases,
the k workstations have a smaller effect on the overall
speedup. Thus the ratio of speedups approaches 1 for
higher values ofd.

In Fig. 3(c) we varypr. The benefit of allocating
thek workstations is greater for higher amounts of owner
interference. Thus the benefit of distributing the extra
workstations among thek tasks is more pronounced for
higher values ofpr.

In Fig. 3(d) we vary the number of extra work-
stationsk. When k = 1 the ratio of speedups equals1. As the number of extra workstations is increased,
the difference in the performance of the two allocation
policies increases.

2) Allocating an extra workstation to the same
program with non-identical replication:Let us assume
we have a programJ with N tasks (T1, T2, ... TN )
running in parallel. Let us assume each taskTi hasdi
replicas. If we have an extra workstation to allocate to

one of these tasks, we wish to determine the allocation
that will maximize speedup.

Lemma 5.1:If 0 < p < 1, n > 0 andk > 0, then8m > n, we have1� pn+k1� pn > 1� pm+k1� pm
Theorem 3.2:Speedup is maximized when the ex-

tra workstation is allocated to the task that has the least
replicas.

Proof: The speedup of the program before allocat-
ing the extra workstation is given byS = N(1�pd1r )(1�pd2r ):::(1 � pdNr ) = NQNi=1(1 � pdir ). Let Sj denote
the speedup of the program when the extra workstation
is allocated to taskTj (i.e. taskTj is replicated one

additional time).Sj = N(1� pdj+1r )QNi 6=j;i=1(1� pdir ).
Also, SjS = N(1� pdj+1r )QNi 6=j;i=1(1� pdir )NQNi=1(1� pdir )SjS = (1� pdj+1r )(1� pdjr )

We can assume, without loss of generality, thatT1
has the least replicas, i.e.d1 � dj , 8j 6= 1. By Lemma
5.1 we know thatS1=S � Sj=S, 8j, 1 < j � N . ThusS1 � Sj . Therefore we maximize speedup by allocating
the extra workstation to the least replicated task.

In Fig. 4 we plot the ratio of the speedup when
we allocate the extra workstation to the task with degree
of replicationd1 over the speedup when we allocate the
extra workstation to the task with degree of replicationdj , whered1 � dj .

In Fig. 4(a), we varyd1 with a fixed value ofdj =10. As the difference in the initial degrees of replication
between the two tasks (before the extra workstation is
allocated) is low, the ratio of the speedups approaches1. It is more important to allocate the extra workstation
to the least replicated task, when the difference in their
degrees of replication is high.

In Fig. 4(b), we varypr. At higher values of owner
interference using the extra workstation to replicate the
least replicated task becomes more important.

3) Allocating extra workstations to identical pro-
grams: We now consider the case where we have TWO
parallel jobs, each with equal parallelism, and want to
allocate additional replicas in the best way possible.
Consider the problem of allocatingk extra workstations
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Fig. 3: Speedup ratio (One-to-each over All-to-one)

to jobsJ1 andJ2 which each haveN � k tasks. Each
task of both the programs hasd replicas. In other words,
the parallelism and replication of each job is equal. Our
objective is to allocate the additionalk workstations so
as to minimize mean response time.

Lemma 5.3:If x � 1, m � 0, n � 0 and wlogm � n, then1 + xm+n � xm + xn.

Theorem 3.3:Giving some extra workstations to
each program results in a better mean response time than
giving all of them to one of the programs.

Proof: Let Rd+k be the mean response time when
all k additional workstations are allocated to one of the
programs, sayJ1. LetRd+k1 be the mean response time
whenk1, (0 < k1 < k), workstations are allocated toJ1

andk � k1 workstations are allocated toJ2. Assuming
that the program is composed of one barrier, and all the
tasks are of unit length, the expected response time ofJ1 (or J2) before allocation of the extra workstations is1(1�pdr)N . Therefore we haveRd+k = 12( 1(1� pdr)N + 1(1� pdr)N�k(1� pd+1r )k )
and Rd+k1 = 12( 1(1� pdr)N�k1(1� pd+1r )k1+ 1(1� pdr)N�k+k1 (1� pd+1r )k�k1 )
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Since d � 1, we know 1�pd+1r1�pdr � 1. As k � 1 and0 < k1 < k, applying Lemma 5.3 we get1 + (1� pd+1r1� pdr )k � (1� pd+1r1� pdr )k�k1 + (1� pd+1r1� pdr )k11(1� pdr)N�k(1� pd+1r )k [1 + (1� pd+1r )k(1� pdr)k ℄ �1(1� pdr)N�k(1� pd+1r )k [ (1� pd+1r )k�k1(1� pdr)k�k1+ (1� pd+1r )k1(1� pdr)k1 ℄

1(1� pdr)N�k(1� pd+1r )k [ 1(1� pdr)k(1� pd+1r )�k+1℄ �1(1� pdr)N�k(1� pd+1r )k [ 1(1� pdr)k�k1 (1� pd+1r )�k+k1+ 1(1� pdr)k1(1� pd+1r )�k1 ℄1(1� pdr)N + 1(1� pdr)N�k(1� pd+1r )k �1(1� pdr)N�k1(1� pd+1r )k1+ 1(1� pdr)N�k+k1(1� pd+1r )k�k1
HenceRd+k � Rd+k1 , so we get a better mean response
time by splitting the extra workstations among the two
programs than by giving them all to one of them.

Theorem 3.4:The mean response time of two pro-
grams is minimized when the extra workstations are split
equally among the two programs.

Proof: Now, for a fixed k, we find k1 so as
to minimize the mean response time. Note, we can
minimize the mean response time, by minimizing(1� pd+1r1� pdr )k�k1 + (1� pd+1r1� pdr )k1
Let a = 1�pd+1r1�pdr , and letf(x) = ak�x + ax.f 0(x) = log a (ax � ak�x)f 0(x) = 0 whenax = ak�x which is true whenx = k=2.f 00(x) = log2 a (ax + ak�x)f 00(k=2) > 0, thereforex = k=2 is the minima off(x).

Hence, we get the best mean response time when
we equally share the additional workstations among the
two programsJ1 andJ2.

In Fig. 5 we plot the effect of distributingk extra
workstations among two identical programs on their
mean job response times. Unless varied, we assumeN = 32, pr = 0:1, d = 2, k = 32. A distribution(ki; kj)
means, without loss of generality,ki workstations are
allocated to the first program andkj workstations are
allocated to the second program.

In both the graphs, we plot the ratio of the mean
job response time for the distribution(k1; k) over the
response time for the distribution(k=2; k=2). We use
different values ofk1 for the plots.



1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

0 5 10 15 20 25 30

R
(k

1,
k-

k 1
)/R

(k
/2

,k
/2

)

k1

d=1
d=2,3,4

(a) pr = 0:1, d = 2, N = 32, k = 32

1

10

100

1000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
(k

1,
k-

k 1
)/R

(k
/2

,k
/2

)

pr (Reclamation probability)

k1=0
k1=3
k1=6
k1=9

k1=12

(b) d = 2, N = 32, k = 32
Fig. 5: Mean Response Time Ratio

In Fig. 5(a), we varyk1 (x-axis) in the range0
throughk = N = 32. We plot the curves corresponding
to d values of1, 2, 3 and 4. In each case, the plot is
symmetric about the linex = k=2 and the minimum
mean job response time is reached for(k=2; k=2). The
ratio is higher for lower values ofd. So it is especially
important to divide the extra workstations equally among
the two programs for low initial degree of replication.
As seen earlier, increasing replication for higher values
of d does not improve peroformance significantly. Thus
the benefit of distributing the workstations among the
programs is low ford = 2, 3, 4. In the plot the difference
betweend = 2, 3 and4 is not discernible.

In Fig. 5(b), we varypr along the x-axis and plot
the response time ratio from top to bottom fork1 values

of 0, 3, 6, 9 and 12. The y-axis has a logarithmic
scale. A higher owner interference causes the ratio to
increase significantly. For high values ofpr, even a slight
imbalance in the allocation of the workstations among
the two programs has a stiff penalty in terms of mean
job response time.

B. Loosely Coupled Barrier

Here we consider barrier synchronized programs
whose tasks do not have to be co-scheduled. So a job
makes a barrier so long as all the tasks in the set
are completed irrespective of whether they were all
running simultaneously or not. In this master-worker
scenario, the time a program needs to reach a barrier
is the maximum of the time needed for each task of the
corresponding set to complete. When a task is replicated,
it is sufficient for one of the replicas to finish. Thus we
only need to consider the replica that has the minimum
completion time. Hence for a program with replicated
tasks, the time needed to complete a set of tasks (reach
a barrier) is the maximum of the time required to
complete each of the individual tasks, which is in turn the
minimum of the completion times of the task’s replicas.

The probability that a task gets completed follows a
geometric distribution with parameter(1�pr). The c.d.f
of the distribution is given byF (t) = 1�(1�(1�pr))t =1� ptr. FN (t) = (1� ptr)N . The mean of the maximum
of N geometric variables with parameter1� pr [16] is�N :N =P1t=0(1� FN (t)) =P1t=0(1� (1� ptr)N ).

Now consider the case where each task is replicatedd times. The time needed to complete a task is the
minimum of d geometric variables with the parameter1 � pr. The minimum ofd geometric variables (with
parameter1� pr ) follows a geometric distribution with
parameter1 � (1 � (1 � pr))d = 1 � pdr . The c.d.f
of the geometric distribution with parameter1 � pdr is
given byFd(t) = 1 � (1 � (1 � pdr))t = 1 � pdtr . The
mean of the maximum ofN such geometric variables
(with parameter1� pdr) is given by�0N :N =P1t=0(1�FNd (t)) =P1t=0(1� (1� pdtr )N ).�0N :N gives the mean time required to complete one
barrier. If a program hasB such barriers, then the time
needed to complete the program isB�0N :N . Similarly the
time needed to complete a program with no replication
is B�N :N .

The completion time of the sequential version of
the program isBN . Hence the speedup of the program
without replication isS1 = BNB�N:N = NP1t=0(1�(1�ptr)N )
and the speedup of the program withd replicas isSd =



BNB�0N:N = NP1t=0(1�(1�pdtr )N ) . The ratio of the speedup

with replication to the speedup without replication is
given by SdS1 = N=(P1t=0(1� (1� pdtr )N ))N=(P1t=0(1� (1� ptr)N ))SdS1 = P1t=0(1� (1� ptr)N ))P1t=0(1� (1� pdtr )N ))

Since 0 < pr < 1 and d � 1, we havepdr �pr. Given t � 0, pdtr � ptr. (1 � pdtr ) � (1 � ptr) and(1�pdtr )N � (1�ptr)N , whereN � 1. Hence,(1�(1�pdtr )N ) � (1� (1� ptr)N ), 8t � 0. ThereforeSd � S1.
Note for d > 1, Sd > S1.

From the above we conclude that replication al-
ways results in better speedups when0 < pr < 1.

In both the graphs of Fig. 6 we plot, on the y-axis,
the ratio of speedup with replication over the speedup
without replication. Unless varied, we assumeN = 32,pr = 0:1 andd = 2.

In Fig. 6(a), we plot the speedup ratio as we vary
the parallelismN on the x-axis. The speedup ratio is
greater than1, as replication provides at least as much
speedup as no replication. The speedup improvement
is better for larger jobs (higher values ofN ) than for
smaller jobs. The graph tends to level off for largerN , because for largerN values, the chances of one of
the workstations being reclaimed are much higher, so
adding just one degree of replication is not as effective
(as compared to smaller jobs).

In Fig. 6(b), we plot the speedup ratio as we vary
the degree of replicationd. The speedup improvement
increases significantly until aboutd = 3 (for N = 32,pr = 0:1), after which the improvement levels off.

1) Allocating extra workstations to the same pro-
gram with equal replication:Now consider the problem
of allocating1 � k � N additional workstations to a
program whose tasks are all replicatedd times.

Lemma 5.2:If 0 < p < 1, t > 0, d > 0, andn � 1, then8k, k,n integers and1 � k � n, we have(1� pdt)n�k(1� p(d+1)t)k � (1� pdt)n�1(1� p(d+k)t)
Theorem 3.5:Replicating k tasks one additional

time gives better speedup (and response time) than
replicating one of the tasksk additional times.

Proof: Let Sd+k, Sd+1 denote the speedups when
one task is replicatedk additional times (d+k times) and
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whenk tasks are replicated one additional time (d + 1
times) respectively. Thus we haveSd+k = NP1t=0(1� (1� pdtr )N�1(1� p(d+k)tr ))Sd+1 = NP1t=0(1� (1� pdtr )N�k(1� p(d+1)tr )k)Sd+1Sd+k = P1t=0(1� (1� pdtr )N�1(1� p(d+k)tr ))P1t=0(1� (1� pdtr )N�k(1� p(d+1)tr )k)

From Lemma 5.2 we know that8t � 0, (1 �pdtr )N�k(1 � p(d+1)tr )k � (1 � pdtr )N�1(1 � p(d+k)tr ).



Therefore,1� (1 � pdtr )N�k(1� p(d+1)tr )k � 1� (1 �pdtr )N�1(1� p(d+k)tr ) which impliesSd+1Sd+k � 1
Thus it is better to replicatek tasks one additional time
than to use all thek workstations to replicate just one
proessk times more.

2) Allocating extra workstations to the same pro-
gram with different replication: Suppose we have a
program that has one task,T1 with m total replicas
and another task,T2 with n total replicas, wherem >n. Since the change in speedup of the program, after
allocatingk � 1 additional workstations to one of these
tasks, only depends on the change in speedups due to
the additional replication of one of these tasks, we can
assume, without loss of generality, that the program only
has 2 tasksT1, T2.

Lemma 5.1:If x � 1, m � 0, n � 0 and wlogm � n, then1 + xm+n � xm + xn.

Theorem 3.6:Allocating extra workstations to the
task that is replicated the least results in better speedup
(and response time) than allocating extra workstations to
other tasks.

Proof: The speedup of the program when thek
extra workstations are allocated toT1 isSm+k = NP1t=0(1� (1� p(m+k)tr )(1� pntr ))
and the speedup of the program when thek workstations
are used to replicateT2 isSn+k = NP1t=0(1� (1� pmtr )(1� p(n+k)tr ))
where,N = 2.

From Lemma 5.1, we know8t � 0, (1�pmtr )(1�p(n+k)tr ) � (1 � p(m+k)tr )(1 � pntr ). Hence,(1 � (1 �pmtr )(1 � p(n+k)tr )) � (1 � (1 � p(m+k)tr )(1 � pntr )).
Therefore,Sn+k � Sm+k. So allocating thek additional
workstations to the task which is replicated fewer times
(before the allocation) is better.

3) Allocating extra workstations to identical pro-
grams: Consider two programsJ1 and J2 which haveN � k � 1 tasks each. The tasks of both the programs
are replicated a total ofd times each. Now we wish to
allocatek additional workstations to the two programs so
as to minimize the mean response time of the programs.
We claim that allocating allk workstations to just one

of the two programs is at least as good (better in most
cases) as allocating some to each program.

Lemma 5.3:If x � 1, m � 0, n � 0 and wlogm � n, then1 + xm+n � xm + xn.

Theorem 3.7:The mean response time is lower
when all the extra workstations are allocated to either
one of the programs, rather than split among both the
programs.

Proof: Let Rd+k be the mean response time of
the programs whenk workstations are all allocated to
one of the programs and none to the other. LetRd+k1
be the mean response time of the programs whenk1,1 � k1 < k workstations are allocated to one of the
programs andk � k1 workstations are allocated to the
other program. Here we assume the (identical) programs
both have one set of tasks (barrier).Rd+k = 12[ 1Xt=0(1� (1� pdtr )N )+ 1Xt=0(1� (1� pdtr )N�k(1� p(d+1)tr )k)℄Rd+k1 = 12[ 1Xt=0(1� (1� pdtr )N�k1(1� p(d+1)tr )k1)+ 1Xt=0(1� (1� pdtr )N�k+k1 (1� p(d+1)tr )k�k1)℄
For d � 1, t � 0 we have(1 � p(d+1)tr ) � (1 � pdtr ).
Therefore,(1�p(d+1)tr )(1�pdtr ) � 1. By Lemma 5.3, we have1 + ((1� p(d+1)tr )(1� pdtr ) )k � ( (1� p(d+1)tr )(1� pdtr ) )k1+ ((1� p(d+1)tr )(1� pdtr ) )k�k1

1 + (1� p(d+1)tr )k(1� pdtr )k � (1� p(d+1)tr )k1(1� pdtr )k1+ (1� p(d+1)tr )k�k1(1� pdtr )k�k1(1� pdtr )k + (1� p(d+1)tr )k � (1� pdtr )k�k1(1� p(d+1)tr )k1+ (1� pdtr )k1(1� p(d+1)tr )k�k1



Multiplying both sides by(1� pdtr )N�k, we get(1� pdtr )N + (1� pdtr )N�k(1� p(d+1)tr )k �(1� pdtr )N�k1(1� p(d+1)tr )k1+ (1� pdtr )N�k+k1(1� p(d+1)tr )k�k1�(1� pdtr )N � (1� pdtr )N�k(1� p(d+1)tr )k �� (1� pdtr )N�k1(1� p(d+1)tr )k1� (1� pdtr )N�k+k1 (1� p(d+1)tr )k�k12� (1� pdtr )N � (1� pdtr )N�k(1� p(d+1)tr )k �2� (1� pdtr )N�k1(1� p(d+1)tr )k1� (1� pdtr )N�k+k1 (1� p(d+1)tr )k�k1(1� (1� pdtr )N )+ (1� (1� pdtr )N�k(1� p(d+1)tr )k) �(1� (1� pdtr )N�k1(1� p(d+1)tr )k1 )+ (1� (1� pdtr )N�k+k1 (1� p(d+1)tr )k�k1)1Xt=0(1� (1� pdtr )N )+ 1Xt=0(1� (1� pdtr )N�k(1� p(d+1)tr )k) �1Xt=0(1� (1� pdtr )N�k1(1� p(d+1)tr )k1)+ 1Xt=0(1� (1� pdtr )N�k+k1 (1� p(d+1)tr )k�k1)
ThusRd+k � Rd+k1 , so we get a better mean response
time if we allocate allk workstations to one ofJ1 orJ2.

IV. REPLICATION VS PARALLELIZATION

A. Tightly Coupled Barrier

Suppose we have a programJ1 with a sequential
fraction f . Assume there is no upper bound on the
maximum parallelism. By Amdahl’s Law, we know that
the speedup of this program has an upper bound ofS(N) = 1=(f + (1 � f)=N), whereN is the number
of tasks ofJ1. We shall assume that this speedup is
achieved by the program when run on a set ofN ded-
icated workstations, even though in a real scenario, the
speedup achieved is much lower due to other constraints.

Let us further assume that each of theN tasks has
been replicatedd times. Thus we are runningJ1 on dN
workstations. If we havedN + 1 workstations available
to us, we need to find out if it is more profitable (in terms
of speedup) to increase the parallelism ofJ1 to N + 1
or to replicate an existing task one additional time.

Let Sd denote the speedup ofJ1 when run on
a SNOW with increased parallelism ofP + 1, and
let Sd+1 denote the speedup ofJ1 when run on a
SNOW with parallelismN but with extra replication.
Note, for simplicity we assumepr remains constant
when the parallelism is increased toN + 1. We haveSd = S(N+1)(1�pdr)N (1�pr) andSd+1 = S(N)(1�pdr)N�1(1�pd+1r ). Sd+1 > Sd when :S(N)(1�pd+1r ) >S(N+1)(1�pdr)(1�pr). The gain in improvement when
the parallelism is increased by 1 is given bySd+1=Sd.Sd+1Sd = S(N)(1� pdr)N�1(1� pd+1r )S(N + 1)(1� pdr)N (1� pr)= S(N)(1� pd+1r )(1� pdr)(1� pr)= a S(N)S(N + 1)
wherea = (1�pd+1r )(1�pdr)(1�pr) . Notea > 1 for d > 0.Sd+1Sd = af + (1� f)=(N + 1)f + (1� f)=N= a (Nf + f + 1� f)N(Nf + 1� f)(N + 1)= a N +N2f(N + 1) + (N2 � 1)fSd+1Sd � 1 = b[a(N +N2f)� (N + 1)� (N2 � 1)f ℄
where b = 1=[N + 1 + (N2 � 1)f ℄. Note b > 0 forN > 0.Sd+1Sd � 1 = b[aN + aN2f �N �N2f � (1� f)℄= b[(a� 1)fN2 + (a� 1)N � (1� f)℄= (a� 1)b[fN2 +N � 1� fa� 1 ℄

1) Example: N=1: If N = 1,Sd+1Sd � 1 = (a� 1)b[f + 1� 1� fa� 1 ℄ = b(af + a� 2)
Thus it is always better to increase replication (rather
than parallelism) iff > 2=a� 1.
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In Fig. 7 we plot the ratio of speedup with
increased replication over the speedup with increased
parallelism. Unless varied, we assumed = 2, N = 32,pr = 0:1 and the sequential fraction of the parallel
programf = 0:2.

In Fig. 7(a), we varyN along the x-axis and study
its effect on the ratio of speedup with increased repli-
cation over speedup with increased parallelism. For this
choice of parameters it is better to increase replication
for all N � 4. ForN < 4, increasing parallelism gives
a better performance. WhenN is large, using just one
extra workstation to replicate a task has a reduced effect
on overall performance. Thus we see the ratio levelling
off.

In Fig. 7(b), we vary the initial degree of replica-

tion d (before using the extra workstation). An increase
in the initial degree of replication, means the amount
of improvement possible, by replicating one of the
tasks once more, is lower. Hence the improvement by
increased replication is less relative to the improvement
possible by increasing parallelism. So we see a drop in
the speedup ratio. For higher values ofd, using one extra
replication of one task of the program has a low effect
on overall speedup and thus we see the speedup ratio
levelling off.

In Fig. 7(c), we varypr. Replication is especially
helpful when owner interference is high. Thus whenpr
increases, the speedup ratio also increases significantly.

In Fig. 7(d), we vary the sequential fraction of the
programf . We notice that the sequential fraction of the



program has a very low effect on the speedup ratio.

V. PROOFS

Lemma 5.1:If 0 < p < 1, n > 0 andk > 0, then8m > n, we have1� pn+k1� pn > 1� pm+k1� pm
Proof: Since k > 0, n > 0 and 0 < p < 1,pn > pn+k. And also sincem > n, pm�n < 1 which

implies (1� pm�n) > 0. Therefore, we havepn(1� pm�n) > pn+k(1� pm�n)pn � pm > pn+k � pm+k�pm � pn+k > �pn � pm+k1� pn+k + pm+n+k � pm > 1� pm+k + pm+n+k � pn1� pn+k + pm(pn+k � 1) > 1� pm+k + pn(pm+k � 1)(1� pn+k)(1� pm) > (1� pm+k)(1� pn)1� pn+k1� pn > 1� pm+k1� pm
Lemma 5.2:If 0 < p < 1, t > 0, d > 0, andn � 1, then8k, k,n integers and1 � k � n, we have(1� pdt)n�k(1� p(d+1)t)k � (1� pdt)n�1(1� p(d+k)t)
Proof: Sinced > 0 and t > 0, from Lemma 5.1

we have for1 � i � k � 11� pdt+t1� pdt � 1� p(d+i)t+t1� p(d+i)t
Therefore,(1� pdt+t)k�1(1� pdt)k�1 � k�1Yi=1 1� p(d+i)t+t1� p(d+i)t(1� p(d+1)t)k�1 � (1� pdt)k�1 k�1Yi=1 1� p(d+i+1)t1� p(d+i)t� (1� pdt)k�1 1� p(d+k)t1� p(d+1)t(1� p(d+1)t)k � (1� pdt)k�1(1� p(d+k)t)(1� pdt)n�k(1� p(d+1)t)k � (1� pdt)n�1(1� p(d+k)t)

Lemma 5.3:If x � 1, m � 0, n � 0 and wlogm � n, then1 + xm+n � xm + xn.

Proof:

Case 1: n = 0n = 0 implies xm+n = xm andxn = 1. So 1 +xm+n = 1+xm = xm+xn. Thus,1+xm+n � xm+xn.

Case 2: n > 0
Let f(x) = 1 + xm+n � xm � xn. Now, f 0(x) =(m+ n)xm+n�1 �mxm�1 � nxn�1.f 0(x) = (m+ n)xm+n�1[1� mm+ n 1xn � nm+ n 1xm ℄= (m+ n)xm+n�1[1� 1xn ( mm+ n + nm+ n 1xm�n )℄

Since,x � 1 andm � n, 1xm�n � 1,( mm+ n + nm+ n 1xm�n ) � 1
Becausen > 0, 1xn � 1, thereforef 0(x) � 0 so f(x)
is increasing whenx � 1. At x = 1, f(1) = 0 which
implies f(x) � 0, for x � 1. Hence,1 + xm+n �xm + xn.

VI. CONCLUSIONS

We have analyzed the performance improvements
resulting from task replication of batch parallel programs
running on a SNOW. Specifically, we have derived
formulas to calculate the speedup and efficiency im-
provements due to task replication. With our analysis
we have shown that replicating tasks of parallel programs
can result in significant speedup improvements. Also, for
some workloads, replication can also improve efficiency.
Furthermore, when the probability of workstation recla-
mation rises, the speedup and efficiency improvements
due to replication increase. Likewise, as job parallelism
increases, replication becomes even more beneficial in
improving speedup.

We have also analyzed the problem of using extra
workstations to replicate tasks of a parallel program and
show how to distribute the extra workstations among the
tasks. Specifically, for the workload models considered,
if we havek extra workstations, we have shown it is
better to replicatek tasks one additional time than to
replicate one of the tasksk additional times. If there is
only one extra workstation, we have shown it is best to
allocate the extra workstation to the least replicated task.
Finally, if we have extra workstations to distribute among



two identical programs, distributing the workstations
equally between the two programs gives least mean
response time for tightly coupled workload and giving
all the extra workstations to one of the programs gives
least mean response time for loosely coupled workload.

Lastly, we have presented an analysis of the trade-
off between using an extra workstation to increase
parallelism and increasing replication, and have found
that replication can be more beneficial than increasing
parallelism for a range of tightly-coupled workloads.

We have made a strong case for considering the
use of replication in the design and implementation of
scheduling policies for SNOWs.

We plan on further investigating the speedup im-
provements of replication for the master-worker work-
load and for workloads with un-equal task demands. We
also plan to consider the problem of distributing extra
workstations among several batch parallel programs.
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