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Abstract 
 

Computer system batch schedulers typically require information from the user upon 
job submission, including a runtime estimate. Inaccuracy of these runtime estimates, 
relative to the actual runtime of the job, has been well documented and is a perennial 
problem mentioned in the job scheduling literature. Typically users provide these 
estimates under circumstances where their job will be killed after the provided 
amount of time elapses. Also, users may be unaware of the potential benefits of 
providing accurate estimates, such as increased likelihood of backfilling. This study 
examines user behavior when the threat of job killing is removed, and when a tangible 
reward is provided for accuracy. We show that under these conditions, about half of 
users provide an improved estimate, but there is not a substantial improvement in the 
overall average accuracy. 
 

 
1 Introduction 
 
It is a well-documented fact that user-provided 
runtime estimates are inaccurate. Characterizations 
of this error in various real workload traces can be 
found in several classic and recent papers. Cirne 
and Berman [1] showed that in four different 
traces, 50 to 60% of jobs use less than 20% of their 
requested time. Ward, Mahood and West [7] report 
that jobs on a Cray T3E used on average only 29% 
of their requested time. Chiang, Arpaci-Dusseau 
and Vernon [4] studied the workload of a system 
where there is a 1-hour grace period before jobs 
are killed, but found that users still grossly 
overestimate their jobs’ runtime, with 35% of jobs 
using less than 10% of their requested time 
(includes only jobs requesting more than one 
minute). Similar patterns are seen in other 
workload analyses [2,3,5]. 
 
Many factors contribute to the inaccuracy of user 
estimates. All workloads show a significant portion 
of jobs that crash immediately upon loading. This 
is likely more indicative of users’ difficulties with 
configuring their job to run correctly, than 
difficulties with providing accurate runtime 
estimate [2]. However, a job’s runtime may also 
vary from run to run due to load conditions on the 

system. In an extreme example, Nitzberg and Jones 
[9] found that on an Origin system where different 
jobs on the same node share memory resources, 
job runtime varied 30% on a lightly loaded system, 
to 300% on a heavily loaded system. 
 
Mu’alem and Feitelson [2] note that because many 
systems kill jobs after the estimated time has 
elapsed, users may be influenced to “pad” their 
estimates, to avoid any possibility of having their 
job killed. Therefore, we believe that it is 
important to be precise about what users are 
typically asked to provide, which is a time after 
which they would be willing to have their jobs 
killed, and to distinguish this from the abstract 
notion of an estimate of their jobs’ runtime. This 
leads us to prefer the term, requested runtime for 
the former, reserving the term estimated runtime 
for a best guess the user can make without any 
penalty (and possibly even with an incentive for 
accuracy). 
 
This paper focuses on two specific causes of error 
in user provided runtime estimates:  

(1) Requested runtimes are used as a “kill 
time” in other words, jobs are killed after 
the provided time has elapsed.  



(2) Users may be insufficiently motivated to 
provide accurate runtime estimates. Many 
users are likely unaware of the potential 
benefits of providing an accurate request, 
such as higher probability of receiving 
quicker turnaround (because of an 
increased likelihood of backfilling), or this 
motivation may not be strong enough to 
elicit maximum accuracy.  

A significant unanswered question is, can and 
would users be accurate if these two barriers to 
accuracy were removed? This study addresses this 
question by asking users of the Blue Horizon 
system at the San Diego Supercomputer Center 
(SDSC) [8] for a non-kill-time estimate of their 
jobs’ runtime, and offering rewards for accuracy.  
 
The rest of the paper is organized as follows. In 
Section 2, we describe the experiment design. In 
Sections 3 and 4 we present the results of the 
accuracy of users’ non-kill estimates, and their 
confidence in their estimates, respectively. Section 
5 reviews related work on the impact of user 
inaccuracy on scheduler performance. Finally, 
Sections 6 and 7 present the conclusions and future 
work. 
 
2 Survey Experiment Design 
 
Users of the Blue Horizon system submit jobs by 
using the command llsubmit, passing as an 
argument the name of a file called the job script. 
The script contains vital job information such as 
the location and name of the executable, the 
number of nodes and processors required, and a 
requested runtime. An analysis of the requested 
runtimes from the period prior to the experiment 
shows that the error has a similar distribution to 
that observed in other workloads. Specifically, a 

majority of jobs use less than 20% of their 
requested time.  
 
During the survey period, users were prompted for 
a non-kill-time estimate of their jobs’ runtime by 
the llsubmit program, randomly one of every five 
times they run. We asked, at the moment of job 
submission, hoping that this will be the most 
timely and realistic moment to measure the user’s 
forecasting abilities. The traditional requested 
runtime is not modified in the job script, we merely 
reflect that value back to the user and ask them to 
reconsider it, with the assurance that their response 
in no way affects this job. 
 
Users were notified of the study, by email and 
newsletter, a week prior to the start of the survey 
period. The notification included information about 
prizes to reward the most accurate users (with 
consideration given also to frequency of 
participation). One MP3 player (64MB Nomad, 
approximate value: 80 USD) and 18 USB pen 
drives (64MB, approximate value: 20 USD) were 
awarded. The prizes were intended to provide a 
tangible motivation for accuracy and thus to elicit 
the most accurate estimates users are capable of 
providing.  
 
The text of the survey is as follows. First, the user 
is reminded of the requested runtime (kill time) 
provided in their script. The user is then queried 
for a better estimate. Finally, the user is asked to 
rate their confidence in the new estimate they 
provided, on a scale from 0 to 5 (5 being the 
highest). This question was designed to test if users 
could self-identify as good or poor estimators. The 
survey does not provide default values. A sample 
of the survey output is shown below in Figure 1.  

 



 
 

% llsubmit job_script 
############################################################### 
#    You have been randomly selected to participate in a two-question survey  # 
#     about job scheduling <as posted on www.npaci.edu/News>. Your             # 
#    participation is greatly appreciated. If you do not wish to participate          # 
#    again, type NEVER at the prompt and you will be added to a                     # 
#    do-not-disturb list.                                                                                        # 
############################################################### 
In the submission script for this job you requested a 01:00:00 wall-clock limit. 
 
We understand this may be an overestimate of the wall clock time you expect the job to 
take. To the best of your ability, please provide a guess as to how long you think your job 
will actually run. 
**NOTE: Your response to this survey will in no way affect your job’s scheduling or 
execution on Blue Horizon. 
Your guess (HH:MM:SS)? 00:10:00 
Please rate(0-5) your confidence in your guess: (0 = no confidence, 5= most confident): 3 
Thank you for your participation. 
Your Blue Horizon job will now be submitted as usual. 
 

Figure 1.  Sample user survey and response. 
 
 
3 User Accuracy 
 
Over the 9-week period of the survey there were 
10,397 job submissions. However, only 2,870 of 
those ran until completion (many jobs are 
withdrawn while still waiting in the queue or 
cancelled while running). Since approximately one 
out of every five job submissions were requested to 
complete the survey 2,478 of the jobs that ran until 
completion were not surveyed. Furthermore, we 
did not survey automated submissions (81) or jobs 
that requested less than 20 minutes of runtime 
(172). We had 21 timeouts, where there was no 
response for more than 90 seconds; and 59 jobs 
that were submitted by the 11 people that decided 
not to take part in the survey.   
 
Of the 143 jobs that ran until completion and were 
selected to complete the survey, 20 had equal or 
slightly higher runtimes than their requested 
runtime. This situation could either indicate that 
the user was very accurate or, more likely, that the 
job got killed once it reached its requested runtime 
due to scheduling policies. We decided to discard 
these survey entries since it was not possible to 
determine whether the job was completed or killed 
from the information we collected. In 16 of the 
responses, the estimate given in response to the 
survey was higher than the requested runtime in 

the script. Taken at face value, this means that 
upon further reflection, the user thought the job 
would need more time than they had requested for 
it, in which case the job is certain to be killed 
before completing. Some of these responses 
appeared to be garbage (e.g. “99:99:99”) from 
users who perhaps did not really want to 
participate in the study or just hoped a random 
response had some chance of winning a prize. In 
our analysis, all of these higher responses were 
discarded, as well as a survey response indicating 
an expected runtime of 0 seconds. 
 
Fifty-six of the survey response runtime estimates 
were the same as the requested runtime in the 
script. Of the 51 responses where users provided a 
tighter estimate, users cut substantially—an 
average of 35%—from the requested time. The 
average inaccuracy in this group decreased from 
68% to 60%. By inaccuracy we mean the percent 
of requested (or estimated) time that was unused or 
exceeded (in the case of estimates it is possible, 
though unusual, in this survey, to underestimate 
the runtime), as given in the following formula: 
 
Inaccuracy  = abs(base – actual_runtime) / base 
 
Where base is either the requested runtime or the 
estimated time from the survey. So for example, a 



requested time inaccuracy of 68% means either 
that 32% of the requested runtime was used, or that 
168% of the requested time was used. 
 
Because not all users tightened their estimates, 
overall the inaccuracy decreased from an average 
of 61% to 57%. Those users who did not tighten 
their estimate were notably less inaccurate than 
those who did revise it; their initial inaccuracy was 
55%. To fully understand our two metrics it is 
helpful to understand an example. A not atypical 

user requested their job to run for 120 minutes, 
revised (estimated) the runtime at 60 minutes in 
response to the survey, and the job actually ran for 
50 seconds (!). In this example the user tightened 
their estimate by 50%. But the inaccuracy of the 
request is 99%, and the inaccuracy of the estimate 
is improved only 1% down to 98%. Intuitively, 
many users are substantially improving extreme 
overestimates, still without making the bounds 
very tight. 
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Figure 2. Histogram of percent decrease from the requested time to the estimate provided in response to the survey 
(includes only responses that were different from the requested time—72 responses had a 0% decrease). Categories 

represent a number of respondents up to the label, e.g. 20% represents 7 responses that were between 10% (exclusive) 
and 20% (inclusive) decreased from the requested time in the script. 

 
In Figure 4 we show the comparison between the 
requested runtime in the script, and the actual 
runtime for the survey entries. The results are 
similar to those seen in Figure 3, where we see the 
same information but for the entire workload 
during the survey period, suggesting that the 
survey entries collected are a representative 
population sample. The results are also similar to 
those seen in the literature, in particular see [2].  
Figure 5 shows the results if the estimate provided 
in the survey is used, instead of the requested 
runtime in the script. Note that no job’s actual 
runtime can exceed the requested runtime, but 
because the survey responses were unconstrained 
in terms of being a kill time, the actual runtime can 

be either more or less than this estimate. The great 
majority of survey responses were still 
overestimates of the actual runtime. We cannot be 
sure why this is so, but it may be a lingering 
tendency due to users having been conditioned to 
overestimate by system kill-time policies. 
 
Some degree of improvement can be seen in the 
pattern of error, for example a cluster of points on 
the right to right-bottom area of Figure 4 is largely 
dissipated in Figure 5. We can see that users still 
tend to round their times to 12, 24 and 36 hours in 
the survey, but not quite as heavily. 
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Figure 3. Comparison of actual runtime and requested runtime for all jobs on Blue Horizon during the survey period 

(Figure 4 shows the same data but only for jobs in the survey.) Note that some data points are overlapping.  

Figure 4. Correlation between requested runtime and 
actual runtime. Note that some data points are 

overlapping. 

Figure 5. Correlation between users’ survey runtime 
estimates and actual job duration. Note that some data 

points are overlapping.
 
4 User Confidence 
 
It is likely that even the most motivated of users 
will not always be able to provide an accurate 
runtime request or estimate. But it may be useful if 
users can at least self-identify when they are 
unsure of their forecast. In our study, we asked 
users to rate their confidence in the runtime 
estimate they provided in response to the survey on 
a scale from 0 (least confident) to 5 (most 

confident). Figure 6, below, shows the distribution 
of responses. In a majority (70%) of the responses, 
users rated themselves as most confident or very 
confident (5 or 4 rating) in the estimate. This is in 
spite of the fact that, overall, the accuracy of the 
requested runtimes and runtime estimates was poor 
(though typical, as observed in other workloads). It 
may be that users did not significantly adjust their 
forecasts of their jobs’ runtime to account for 
possible crashes and other problems [11,12]. 
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Figure 6. Distribution of user accuracy self-assessments (i.e. confidence). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7a. Distribution of user accuracy 
self-assessments in users who did not 

change their requested runtime in 
response to the survey. 

 

Figure 7b. Distribution of user accuracy 
self-assessments in users did change their 

requested runtime in response to the 
survey.

The responses can be divided into those users who 
provided a revised estimate in response to the 
survey, and those who reiterated the requested 
runtime in their script. In Figure 7a, we see that in 
60% of responses that were the same as the 
requested runtime, users rated themselves as most 
confident (5), with another 22% rated very 
confident (4). No users rated themselves as low or 
very low confidence (1 or 0). In contrast, of those 
responses that were a different estimate (Figure 
7b), most users rated themselves somewhere in the 
middle (4 or 3).  
 
Psychologists Kruger and Dunning [11] have 
observed that people who are most ignorant of a 
subject area are more likely to overestimate their 
own abilities than those who are knowledgeable. 

We wondered if our results were an instance of the 
same phenomenon. In other words, perhaps users 
reiterated the same requested runtime out of 
ignorance, and were then very self-confident, as 
predicted by Kruger and Dunning. However, it 
appears that users who did not change in response 
to the survey, and had high confidence, did on 
average have more accurate estimates (as seen in 
Figure 8). For the unchanged responses, there is a 
clear pattern of decreasing average inaccuracy as 
the confidence increases. The same pattern is not 
seen in for those survey responses that were 
different from the requested runtime in the script. 
There does not seem to be a strong correlation 
between these users’ confidence and the accuracy 
of the estimates they gave in the survey.   
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Figure 8. Average percent inaccuracy of user survey responses, separated into those responses that were changed and 

not changed with respect to the requested runtime in the script.  
 
 
5 Impact of User Inaccuracy on 

Scheduler Performance 
 
One might ask what impact user inaccuracy has 
on scheduler performance—why worry if user 
estimates are inaccurate? Indeed, some studies 
have shown that if workloads are modified by 
setting the requested times to R * actual runtime, 
average slowdown for the EASY and conservative 
backfilling algorithms actually improves when R 
= 2 or R = 4, compared to R = 1 (total accuracy) 
[3,14]. Similar results have been shown when R is 
a random number with uniform distribution 
between 1 and 2, or between 1 and 4, etc. [2,14].  
 
But simply taking the accurate time and 
multiplying it by a factor does not mimic the "full 
badness of real user estimates" [2]. In other 
studies where real user-provided times were used 
[2,3], some scheduling algorithms did perform 
equivalently or slightly better, compared to the 
same workload with completely accurate times.  
 
However, some other algorithms experience 
significant performance degradation as a result of 
user inaccuracy [4,5]. Also, even for an algorithm 
such as conservative backfilling, which shows 
some improvement with inaccurate estimates, it is 
at the cost of less useful wait time guarantees at 
the time of job submittal, and causing an 
increased tendency to favor small jobs over large 
jobs (which may or may not be desirable) [4,14]. 
 
Asking the user for a more accurate time, as we 
have done in this study, is not the only approach 
to mitigating inaccuracy. One suggestion is to 
weed out some inaccurate jobs through 

speculative runs, to detect jobs that immediately 
crash [5,13]. Or, the system could generate its 
own estimates for jobs with a regular loop 
structure, via extrapolation from timings of the 
first few iterations [4]. Another proposal [6] is to 
charge users for the entire time they requested, not 
only the time they actually used. This idea, meant 
to discourage users from “padding” their 
estimates, may seem unfair to users and thus be 
unattractive to implement. 
 
6 Conclusion 
 
Mu'alem and Feitelson [2] documented and 
modeled discrepancies between user-provided 
time limits and actual execution time on several 
HPC systems, including Blue Horizon. We 
analyze a more recent trace, with similar results. 
We then ask the question, are users are capable of 
providing more accurate runtime estimates?  
 
To answer this question, we surveyed users upon 
job submittal, asking them to provide the best 
estimate they can of their job’s runtime, with the 
assurance that their job will not be killed after that 
amount of time has elapsed.  
 
We have demonstrated that some users will 
provide a substantially revised estimate but that, 
on average, the accuracy of their new estimates 
was only slightly better than their original 
requested runtime. On the other hand, many users 
were able to correctly identify themselves as more 
or less accurate in their estimating than other 
users. 
 



An inherent weakness in our survey experiment 
design is that we can never be sure if users are 
motivated “enough” to provide the best estimates 
they can. In other words, it is not clear if a bigger 
or better prize offering would have elicited better 
estimates from users. However, that most users 
were very confident in their estimates indicates 
that perhaps many were in fact exhibiting their 
“best” in our study.  
 
7 Future Work 
 
In future work, we will measure the impact that 
better user estimates have on supercomputer 
performance. We intend to carry out additional 
surveys to find a scheduling system that 
understands user behavior and uses this 
knowledge as a key scheduling factor. The survey 
will possibly include educating feedback in order 
to measure user’s improvement over the lifetime 
of the experiment. In addition, we wish to help 
users improve their estimates. One possible way 
to accomplish this is by educating them about the 
potential benefits of providing accurate estimates, 
other than the prizes offered specifically for this 
study. For example, our prototype web-based tool 
Blue View visually presents the Blue Horizon 
scheduler’s current plans for running and queued 
jobs. We hope this tool will give incentive to the 
users to give shorter time estimates with the 
promise that their jobs will fit the backfill slots 
shown in it. Furthermore, this tool will also give 
the user the opportunity to mold their job 
according to what is readily available. 
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