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Abstract 

Job scheduling typically focuses on the CPU 
with little work existing to include I/O or memory. 
Time-shared execution provides the chance to hide 
I/O and long-communication latencies though 
potentially creating a memory conflict. We consider 
two different cases: standard local CPU scheduling 
and coscheduling on hyperthreaded CPUs. The latter 
supports coscheduling without any context switches 
and provides additional options for CPU-internal 
resource sharing. We present an approach that 
includes all possible resources into the schedule 
optimization and improves utilization by 
coscheduling two jobs if feasible. Our LOMARC 
approach partially reorders the queue by lookahead to 
increase the potential to find good matches. In 
simulations based on the workload model of 
[Lublin2003], we have obtained improvements of 
about 50% in both response times and relative 
bounded response times on hyperthreaded CPUs (i.e. 
cut times by half) and of about 25% on standard 
CPUs for our LOMARC scheduling approach. 

1. Introduction 

The primary goal in job scheduling is to provide 
good response times to users. A secondary goal is to 
improve utilization. Both objectives may conflict 
with each other though often improved response 
times also mean improved (though potentially not 
optimum) utilization. The relationship between them 
is typically not well expressed. The best response-
time behavior so far has been reported for gang 
scheduling [Moreira1998, Feitelson1997]. Gang 
scheduling is a time-sharing approach and means that 
all processes of the same job are scheduled across 
nodes at the same time by globally synchronous time 
slicing [Feitelson1997]. Gang scheduling has 
shortcomings as regards latency hiding for I/O and 
long-latency communication. Latency hiding plays an 
increasingly significant role for the emerging class of 
data-intensive applications like datamining. Long-

latency hiding is important also for potential grid 
applications. Loosely coordinated coscheduling 
[Arpaci1996, Sobalvarro1998, Nagar1999, 
Zhang2000, Sodan2004] (avoiding the globally 
synchronous execution and enabling to release the 
CPU if waiting) and relaxed combinations of gang 
and local CPU scheduling [Silva1999] provide 
alternatives performing better in this regard. Loosely 
coordinated coscheduling requires modifications of 
the communication software and potentially the OS, 
typically using a spin-blocking approach to release 
the CPU after some time of waiting and a priority 
boost to schedule processes that have been waiting 
for communication. Hyperthreading processors like 
the Xeon and the new Intel Pentium 4 make it 
possible to run two applications at the same time 
without any context switches and without the need to 
change the communication software. However, the 
processes compete for CPU-internal and network 
resources in addition to memory and I/O. Thus, 
interesting new options for time-shared execution are 
available but have to be handled carefully. The target 
architecture considered is a cluster with high-
performance network (like Myrinet or Quadrics 
[Zhou2004]) and user-level communication. In this 
paper, we only consider single-CPU nodes 
(hyperthreaded or standard) but our approach would 
be extendible to multi-way nodes. Considering the 
possibilities of hyperthreaded CPUs, we limit our 
coscheduling to a maximum of two jobs, i.e. a 
multiprogramming level of 2.  In the following, we 
use the term coscheduling in the sense of running 
multiple jobs together. 

The objectives for our own LOMARC job 
scheduler are: 

 Inclusion of all relevant resources (CPU, 
network, disk, memory) 

 Support of standard time-shared execution 
on standard CPU and coscheduling on 
hyperthreaded CPUs 

 Increase of utilization though keeping basic 
primary goal of improved response times 



 

 Usage of application characteristics via a-
priori knowledge  

 Usage of otherwise standard state-of-the-art 
scheduling approaches (priorities, 
backfilling etc.) 

We address our objectives by the following 
innovative solutions: 

 Optimizing the schedule by matching two 
applications whenever possible to share 
resources for high utilization 

 Calculating estimates for response-time 
impact and utilization improvement while 
considering reordering to match jobs 

 Including application characteristics (CPU, 
network, disk, memory) via an integrated 
cost model to estimate matchability and 
slowdowns 

 Relaxing the scheduling order and sorting 
jobs more flexibly by permitting jobs to 
move ahead in the schedule if they pair well 
with other jobs though potentially to some 
extent pushing other jobs  backward in the 
queue 

We apply the standard per-job approach for 
scheduling jobs, i.e. do not attempt any global 
optimization. The reasons are that global 
optimization has a high—O(n3)—time complexity 
and that its benefit is even questionable, considering 
that the submissions are dynamic and, in standard 
approaches with priorities, the overall context of jobs 
changes permanently.  

We have tested our approach via an event-based 
simulation and the workload described in 
[Lublin2003], comparing it to standard space-shared 
job scheduling.  Our tests include investigations of 
different heuristics, focusing either on utilization or 
response-time impact. We present a maximum 
slowdown model for the cases of resource 
competition and validate our estimates by practical 
tests with synthetic programs on a cluster with 
hyperthreaded CPUs. 

2. Related Scheduling Work 

Space/time-shared execution of parallel 
programs has been shown to outperform mere space 
sharing by providing better response times 
[Moreira1998]. The typical practically applied 
approach for time/space sharing is gang scheduling 
which means globally synchronized execution of 
parallel programs [Ousterhout1982]. We have shown 
that with adaptive space allocation, we can obtain 
even better response times with a lower 
multiprogramming level [SodanHuang2004]. This 

has the essential benefit of reducing memory 
pressure. Furthermore, gang scheduling has 
shortcomings with respect to the overhead involved 
and not being able to hide I/O and other long 
latencies unless the application internally is doing 
that. Most parallel applications avoid I/O and 
compute in-core. However, data-intensive 
applications like datamining are emerging. Several 
different approaches have been proposed for a 
loosely coordinated form of coscheduling (implicit 
and dynamic coscheduling, periodic boost) which is 
more flexible and can hide latencies. [Arpaci1996, 
Sobalvarro1998, Nagar1999, Zhang2000]. See also 
[Sodan2004] for a survey. Most loosely-coordinated 
coscheduling approaches apply spin-blocking at the 
waiting side to avoid wasting CPU time if the partner 
process is not currently scheduled. Furthermore, 
some form of priority boost is applied at the receiving 
side for processes that are waiting for communication 
but are not currently scheduled. These mechanisms 
are supposed to keep jobs coscheduled if they are in 
synchrony and drive processes into synchrony if they 
are not currently coscheduled but communicating 
with each other. Loosely coordinated coscheduling is, 
however, in experimental status. One system 
reflecting some of these findings is Sun MPI 
[SunMPI2001], though in own experiments on an 
SMP server, we found that it does not satisfactorily 
accomplishes coscheduling [SodanHuang2004, 
SodanRiyadh2002]. To overcome the I/O problems 
of gang scheduling and the problems of proper 
coscheduling for applications with high 
communication intensity, flexible coscheduling with 
a combination of gang and local CPU scheduling has 
been proposed [Silva1999, Fracht2003]. The main 
idea is to keep frequently communicating 
applications gang scheduled, while relaxing the 
scheduling toward local CPU scheduling for coarse-
grain applications that potentially have I/O or 
communication with long latencies. The decision can 
be made dynamically and per node. 

One possible approach to schedule jobs with 
different combinations of I/O-bound and 
computation-bound jobs in gang scheduling is to 
reorder the gang-matrix rows to match jobs in the 
schedule and schedule them together 
[Wiseman2003]. The benefit of this approach is that 
it is dynamic, i.e. does not depend on pre-knowledge 
about characteristics and can accommodate different 
phases of the programs, e.g. jobs switching between 
I/O-bound and computation-bound phases. Then, jobs 
can be paired or not be paired in different phases. 
However, this approach needs to use the maximum 
I/O time of different jobs per row and requires a 
larger number of rows for choice, i.e. a high 



 

multiprogramming level. However, a large 
multiprogramming level is undesirable as regards 
memory pressure and the probability of actually 
finding pairs on large machines with potentially 
many different jobs per row is low.  Flexible 
coscheduling as described above [Silva1999, 
Fracht2003] overcomes the problem of different jobs 
in the row behaving differently and the dependence 
on the maximum per row but still depends on which 
jobs are randomly allocated to the same nodes as 
candidates for matching. 

Most approaches apply a heuristic on a per-job 
basis to allocate jobs and determine the schedule. 
There is little work to perform a more global 
optimization. One approach optimizes the job 
ordering during backfilling (instead of using the 
common first-fit heuristic) to obtain better response 
times and utilization. A certain lookahead window is 
applied and the solution found via dynamic 
programming [Shmueli2003]. Slack-based 
scheduling [Talby1999] not only considers multiple 
factors for priority calculation but is more ambitious 
as regards finding optimum schedules. The approach, 
in principle, permits free reordering of the whole 
queue but sets constraints by the slack that represents 
maximum delays per job. In a practical setting, the 
approach boils down to a number of different 
possible heuristics. In this approach, priority-based 
heuristics performed best and utilization-based ones 
worst.  

For all approaches of job scheduling, memory 
pressure creates constraints for scheduling which can 
increase fragmentation and response time 
significantly [Setia1999, Batat2000]. All of the above 
consider only one resource (I/O or memory) in 
addition to the computation. The approach in 
[Lein1999] can handle several resources, trying to 
balance the overall resource usage. The approach is 
applied during backfilling and searches the whole 
queue to find the best match. In [Cirne2003], an 
optimal resource allocation in the sense of adapting 
the size of the job is found by, at the time of 
submission, simulating different possible job sizes 
with the current job queue and selecting the optimum. 

3. Hyperthreading 

Hyperthreading is a special case of simultaneous 
multithreading [Tullsen1995] with 2 threads (of the 
same or different applications) running 
simultaneously, based on the idea of letting multiple 
threads share the internal CPU resources in each 
cycle to increase their utilization. This addresses the 
problem that modern superscalar processors often 

cannot keep all their resources busy with a single 
program. The Xeon hyperthreaded physical CPU has 
only minor extensions (5% die) to support multiple 
architectural states—the rest of the resources 
including the L1 data cache and the L2-L3 unified 
caches are shared [Marr2002]. Hyperthreading is not 
limited to the Xeon processor but will become 
widespread with the Intel Pentium 4. However, the 
effectiveness of Hyperthreading depends on how well 
a single thread already would utilize the resources of 
the CPU and to what extent the threads compete for 
resources—such as integer and floating-point units—
or complement each other. Furthermore, the impact 
of stalls due to insufficient instruction-level 
parallelism and branch misses is reduced. Another 
problem is the sharing of the cache which is typically 
a scarce resource anyway. The impact of this effect 
depends on the cache behavior of the program. If the 
working set is large but just fits nicely into the cache 
(which may mean that the application is cache-
optimized), the competition of a second 
process/thread running on the CPU can severely slow 
down the program. However, future versions of 
hyperthreaded CPUs may perform better by increased 
cache sizes. Applications that sequentially run over a 
large set of data in a single pass may perform very 
well because having little locality (this may apply to, 
e.g., many datamining applications in comparison to, 
e.g., a matrix multiplications which use the same 
rows and columns multiple times). If the program has 
no cache locality (because of irregular accesses or 
poor implementation), the effects of longer-latency 
memory accesses can even be mitigated. Though, 
memory can equally well create an additional 
problem if the machine architecture does not provide 
sufficient memory bandwidth to support two 
processes as this is often the case [BehrSodan2001]. 
Parallel applications typically use different data 
subsets per process/thread and thus compete for the 
cache. In addition, scientific applications often use 
more floating-point operations and are already well 
optimized for them and, thus, can keep the floating-
point resources busy with a single thread [Leng2002]. 
[Magro2002] comes to the conclusion that scientific 
applications typically show less improvement than 
business applications (10%-30% vs. 60%). Symbiotic 
scheduling [Tullsen00] and MASA [Nakajima2002] 
monitor resource conflicts among running jobs on 
single-CPU simultaneous multithreading processors 
and coschedule the jobs that have the least resource 
contention. 

Hyperthreading provides a different option of 
coscheduling by running multiple applications 
together on the same physical CPU. This saves 
overhead for context switches and coordination. 



 

Especially applications that are dominated by 
floating-point operations can run well together with 
applications that are dominated by integer operations 
[Nakajima2002]. Though, the threads have to share 
the network, with communication not only creating 
network contention but also memory-access 
contention. In [Leng2002], the communication 
effects were studied and, for communication-
intensive benchmarks, a degradation in performance 
was observed. In [Nakajima2002], an approach is 
presented to set affinity to certain physical or logical 
CPUs at user level. This would make it possible to 
extend our approach to run on dual SMP nodes. 
Furthermore, the involved modification of the OS-
internal CPU scheduling can be used to switch 
hyperthreading dynamically on and off (i.e. switch 
from multithreading mode MT to single-threaded 
mode ST). This can be done by using the priviledged 
(OS) instruction hlt (HALT). 

4. The Slowdown Estimation and 
Empirical Evaluation 

4.1 The Slowdown Estimation 

For the following discussion, we first need to 
define our view of slowdown. Note that we always 
assume two jobs being coscheduled. 

Definition individual-execution-slowdown: The 
factor in execution time by which an application A 
runs slower in joint execution with another 
application B (TA,B) than it would run on its own (TA), 
i.e. slA,B = TA,B / TA.. 

Note that this definition is different from the 
slowdown definition in loosely coordinated 
coscheduling such as implicit coscheduling 
[Arpaci1996] which bases on jobs normally running 
twice as long in joint time-shared execution. Thus, 
the slowdown is the relative factor beyond that, i.e. 
TA,B / (2 TA) if TA ≤ TB. For example, if two jobs with 
equal runtime together run 3 times as long, the 
slowdown is considered to be 3/2 = 1.5. Since our 
concern is increasing utilization, this view is not 
appropriate for us. 

Previous research [Magro2002, Leng2002] has 
investigated the performance on hyperthreaded SMP 
nodes and/or cluster for applications as a whole. 
Thus, no detailing into computation and 
synchronization/communication cost was done and 
no I/O was considered. Below we present a slightly 
more detailed model which estimates the maximum 
slowdown. We split execution time into the fraction 
of computation time fcomp, the fraction of 
communication time fcomm, and the fraction of I/O 

time fio. For simplification, we assume that fcomp + 
fcomm + fio = 1, i.e. we currently do not consider any 
application-internal latency hiding. For applications 
with many short communications, we may actually 
attribute most of the communication time (similar to 
[Figueira2001]) as computation time because most of 
the time (fcomm,O,Lmcopy) is spent on the CPU for setting 
up the communication, copying to and from buffers, 
polling to wait on communication, and copying 
between host and NI (network interface) memory 
(because typically being buffered and handled via 
Programmed I/O—PIO). Long communication 
involves little CPU time because employing Direct 
Memory Access—DMA—and zero-copy 
communication [Zhou2004]. Similarly, I/O spends a 
certain amount of time fio,OS in OS handling—
especially buffer copying—on the CPU. We basically 
assume I/O is to the local disk—if I/O goes to an I/O 
server, the message-passing part (fio,comm) has to be 
attributed to the network. Thus,  

 fCPU  = fcomp + fcomm,O,Lmcopy + fio,OS  
 fnetwork  = fcomm – fcomm,O,Lmcopyn  + fio,comm 
 fdisk  = fio – fio,OS – fio,comm 

with fCPU being the time on the CPU, fnetwork the 
time on the network, and fdisk the time on the disk.  

In the perfect case, applications would exploit 
different resources all the time but typically TA,B ≥ TA. 

Disk, network, and CPU usages do not conflict 
with each other. In the general case, applications use 
all three resources though in different shares. Race 
conditions may apply and, in the worst case, the 
applications are using the same resources at the same 
time, and we therefore have to estimate competition 
on resources. Cost estimates have to consider worst 
case behavior per node because the probability for 
the worst case to happen increases with the number 
of nodes, converging to a probability of 1. The 
potential for conflicts is described below for the 
different resources. 

Communication: Two jobs may communicate at 
the same time: the communication will be serialized 
on the NI and in the DMA. On different nodes, 
communications may interleave in different order, 
leading to delays for both applications. Since 
according to our measurements, non L2/L3 cache 
integer operations have little slowdown, we can 
ignore additional CPU time from added polling time. 
Thus, we estimate the slowdown as 

slA,B,network. = min {fnetwork,A, fnetwork,B} * 2  / fnetwork,A  
Hyperthreaded CPUs: they compete for floating-

point and integer CPU-internal resources and for the 
cache. The former serializes instructions, the latter 
creates additional cache misses. The exact resource 
competition depends on how much instruction 
parallelism is available per application and which 



 

execution resources are needed at any time vs. the 
available resources in the CPU. In [Magro2002], the 
major difference made is between integer- and 
floating-point-dominated applications. However, in 
own measurements, we found a somewhat more 
complex relationship. As regards the cache, we found 
that often cache-miss latencies can be hidden within 
the application or among applications. Thus, 
coscheduling two applications with cache conflict 
does not necessarily reduce performance significantly 
more than if there are no conflicts. Furthermore, the 
sum of the cache-space needs does not linearly 
translate into cache misses because caches are not 
perfectly LRU (Least Recently Used) but n-way 
direct (the Xeon L2/L3 caches are 8-way) caches that 
may lead to replacements even if the working set still 
fits into the cache. We estimate 

slA,B,CPU = (fA,B,competing * 2 + fA,B,different) *  
        min {fCPU,A,fCPU,B} + slA,B,mem) / fCPU,A  
with fA,B,competing being the fraction of the code 

competing for CPU-internal resources and fA,B,different 
= 1–fA,B,competing the fraction using different resources. 
Detailed modeling would require an advanced 
cache/CPU cost model and a detailed application 
model (access patterns, instructions mixture) which 
goes beyond the scope of this paper. Similar 
arguments apply to slA,B,mem which expresses the 
slowdown from paging if the two applications do not 
fit into memory together. We therefore have obtained 
upper-bound parameters empirically (see below). 
Note that a slowdown of 2 corresponds to time-
sharing on a standard CPU and that any slowdown > 
2 means a decrease in utilization. 

I/O: the system calls for I/O will be partially 
serialized, may interfere with each other by going to 
different tracks (and therefore adding seek times), 
and compete for buffer space. However, the different 
I/O calls may also provide potential for OS-internal 
optimization or overlapping each other on the disk. 
The details depend on the OS. We make the 
assumption that the same serialization of cost applies 
as for the other cost components, i.e. 

slA,B,disk = min {fdisk,A,fdisk,B} * 2 / fdisk,A 
This leads to the following overall maximum 

slowdown:  
slA,B = slB,A = (fA,B,competing*2 + fA,B,different) *  
    min {fCPU,A,fCPU,B} + slA,B,mem + 
    min{fnetwork,A, fnetwork,B}*2  +  min{fdisk,A,fdisk,B}*2 
Note that the slowdown for A and B is the same 

(since we count the shared parts) and that the 
maximum slowdown according to the above formula 
is 2 as long as no memory conflicts are involved. The 
slowdown is the lower, the more different the 
characteristics of the two applications are, i.e. the 
smaller the shared parts on the different resources. 

Information about application characteristics can 
be obtained by monitoring shortened sample runs or 
by monitoring normal application runs and keeping 
the information for future runs in performance 
databases [Gibbons1997]. A tool like Paradyn 
[Miller1995] may be used to obtain the standard 
characteristics fcomp, fcomm, fio. Vtune [VtuneIntel] can 
obtain performance counters for CPU-internal usage 
and measure, for example, retired floating-point 
operations and cache misses to obtain estimates about 
CPU-internal resource usage and conflicts. 

Considering the discussion above, we can now 
compare our coscheduling on hyperthreaded CPUs to 
loosely coordinated coscheduling. The latter can hide 
I/O latency though I/O intensive applications can 
significantly disturb the coordinated execution of 
intensively communicating jobs (and cause process 
switches and delays). Thus, both types of jobs should 
not be coscheduled. However, this negative effect 
does not exist on hyperthreaded processors because 
both applications can continue to execute at any time. 
For loosely coordinated coscheduling of 
communication and/or computation-dominated jobs, 
the best results obtained so far are about a factor of 
2.4 slowdown, and it is not even sure whether these 
results generalize. Thus, the benefits are more 
limited. We only coschedule jobs if we can obtain a 
benefit, i.e. a slowdown below a sllimit ≤ 2. As a 
benefit of loosely coordinated coscheduling, it is less 
sensitive to the cache though the spin-block also in a 
negative cache impact (process switches on standard 
CPUs invalidate the whole cache) [Sodan2004]. 

Above, we have made the simplification not to 
consider application-internal latency hiding. Such 
consideration is, however, possible. We only have to 
make sure to recognize that no external latency-
hiding potential is available anymore for the 
corresponding fractions of the code. We can simply 
mark these fractions as the combination of the 
typically two resource types. An estimation on the 
safe side, then, is to count the whole combined 
fraction for each of the corresponding resource types 
when estimating conflicts. Latency hiding (and 
improved resource usage) is still possible for such 
applications if matching with an application which is 
dominant in the third resource type.  

4.2 Empirical Evaluation of Slowdowns 

We have tested slowdowns with synthetic 
applications on a cluster with Intel Xeon processor 
and Myrinet interconnect, running MPICH-GM with 
user-level MPI communication. L2/L3 cache size is 
512k and memory size per node 512 Mbyte. The 



 

operating system is Linux 2.4. In all measurements, 
we use fcomp, fcomm, and fio due to our current lack of 
low-level monitoring tools that could reveal the CPU, 
network, and disk fraction. We checked that the 
single-process performance is almost identical for the 
CPU set to MT or ST mode.  

We first investigate hyperthreaded CPU behavior 
and run applications dominating in either float or 
integer calculations, dominating in complex 
multiplication/division or simpler add instructions, 
running totally in L1 cache or using some or much of 
the L2/L3 cache. The code sequences are simple and 
easily fit into the cache. The summary of results can 
be seen in Table 1. As far as L2/L3 usage is involved, 
we have modeled an access patterns that runs over 
the same data structure serially per iteration (except 
to totally irregular accesses, this is the worst situation 
because under LRU all data would be repeatedly 
replaced if not fitting totally into the cache). Each 
computation step accesses 4 close-by elements (as 

would be the case if calculating the stencil in a mesh 
computation). Our results are consistent with other 
research as far as available. In [Magro2002], 
scientific applications benefited between 10% and 
30% by running each with two threads on a 
hyperthreaded CPU. However, even performance on 
a dual SMP was not optimal. Thus, translating the 
hyperthreading improvement to the relative best-
possible threaded performance, the slowdowns 
according to our definition were approximately 1.4 
which is not worse than the up to 30% improvement 
measured for business applications. [Leng2002] 
shows slowdowns up to 3, including communication, 
for cache-intensive applications. Since the tests were 
done by increasing the number of processes per 
application, however, also the speedup behavior 
changed (speedup curves typically flatten with larger 
number of processes) and the results therefore appear 
to be too negative. 

 

Table 1. Slowdown for different types of computation. + means application uses add operations, * means it 
uses mult operations; the number indicates the size of the data in L2/L3 cache. 

 float+ 
0 

int + 
0  

float+ 
40k 

int + 
40k 

float+ 
400k 

int + 
400k 

float* 
0 

int* 
0  

float* 
80k 

int* 
80k 

float* 
400k 

int* 
400k 

2x same 2.1 1.07 1 1.3 1.5 1.3 1.6 1.4 1.1 1.1 1.7 1.2 
float and same 
type int 

1.1 / 
1 

     1.8 / 
1.4 

 1.2 / 
1.1 

 1.7 / 
1.4 

 

 
The results of our tests show that float 

applications with simple add operations and no L2/L3 
cache data usage provide the poorest performance as 
the resources are apparently well utilized. Integer 
applications generally tend to coschedule better 
because utilizing the available resources less 
intensively.  Applications with L2/L3 cache usage 
run relatively slower but coschedule in several cases 
better than the versions with no L2/L3 usage. Thus, 
cache misses appear to be partially hidden within the 
thread or among the threads and, for detailed 
estimation, an integrated model would be required. 

In Table 2, we show results from running 
applications together with a) different mixtures of 
communication and computation, and b) different 
communication granularity. In all cases, fio=0. 
Runtime for each application on its own is 60 sec. In 
all cases, the applications are run on 4 nodes and are 
loosely synchronous, communicating with all 3 other 
neighbors, sending to them and receiving from them 
in each communication phase. The computations are 
of type “int + 0” to focus on the effects of CPU vs. 
network. Note that the short communication is 
spending a significant amount of time on the CPU via 

PIO (with integer operations), whereas the long 
communication employs DMA and zero copy in a 
rendezvous protocol. Csize is the number of bytes per 
communication. All runtimes are in seconds. 
Communication cost results into 13.3 µsec for a 
message with 200 bytes and into 120 µsec for a 
message with 18,000 bytes. In all cases, the actual 
slowdown is lower than the estimated maximum 
slowdown. As can be seen from the table, the 
slowdown is different for each application if running 
coarse- and fine-grain communication together. The 
application with the finer communication (smaller 
and more communications) suffers more. The 
explanation is that if the communications interleave, 
the finer-grain communications are stretched more, 
adding idling time to this application. If applications 
are slowed down to different extent, it would be 
important to make sure that enough non-competitive 
time is left for the application with the larger 
slowdown to catch up with communication. Thus, 
additional conditions for the matching may be 
necessary to ensure that fnetwork,A+fnetwork,B ≤ 1 (not 
currently considered). 



 

Table 2. Runtimes and slowdowns for coscheduling two applications with different mixtures of computation 
and communication (and different communication granularities). The left number represents the row 
application, the right number the column application. Since the applications finish at different times, we have 
added a projected time Pt, representing the runtime if the other application would have continued to run. Slm 
is the measured slowdown, sle,max is the estimated slowdown, with the number in parenthesis being the 
estimate if there would be no slowdown in the CPU part. 

 fcomm=0.4, Csize=200 fcomm=0.4, 
Csize=18,000 

fcomm=0.6, Csize=200 fcomm=0.6, 
Csize=18,000 

fcomm=0.4, Csize=200 68 / 68 
slm: 1.1 / 1.1 
sle,max: 2 (1.4) 

70.5 (Pt=72.5) / 62 
slm: 1.2 / 1 
sle,max: 2 (1.4) 

68 / 69 
slm: 1.1 / 1.1 
sle,max: 1.8 (1.4) 

75 (Pt=77) / 64 
slm: 1.3 / 1.1 
sle,max: 1.8 (1.4) 

fcomm=0.4, 
Csize=18000 

 65 / 65 
slm: 1.1 / 1.1 
sle,max:  2 (1.4) 

62 / 73 (Pt=76) 
slm: 1 / 1.3 
sle,max: 1.8 (1.4) 

64 / 64 
slm: 1.1 / 1.1 
sle,max: 1.8 (1.4) 

fcomm=0.6, Csize=200   72 / 72 
slm: 1.2 / 1.2 
sle,max: 2 (1.6) 

79 (Pt=84) / 64 
slm: 1.4 / 1/1 
sle,max: 2 (1.6) 

fcomm=0.6, 
Csize=18,000 

   67 / 67 
slm: 1.1 / 1.1 
sle,max: 2 (1.6) 

 
Finally, we show in Table 3 our results of testing 

different classes of applications together. In this case, 
we found no difference in whether the computation is 
on integers or floating points. The I/O is repeatedly 
reading a 60 Mbyte file sequentially in 1k blocks 
from the local disk. The communicating application 
is running a standard pingpong test. Note that the 
combinations using two communication or two I/O 
intensive applications are stress-tests only—
LOMARC would not normally coschedule such 
applications. 

Table 3. Slowdown if running different classes of 
applications together. 

 fcomm=1, 
Csize=200 

fcomm=1, 
Csize=18k 

fcomp=1, 
int + 0 

fio=1 

fcomm=1, 
Csize=200 

1.4 / 1.4 
 

1.7 / 1.1 1 / 1 1 / 1.3 

fcomm=1, 
Csize=18k 

 1.3 / 1.3 1 / 1 1.1 / 1.2 

fcomp=1, 
int + 0 

  1.1/ 1.1 1 / 1.2 

fio=1    1.2 / 1.2 
to 

2.3 / 2.3 
 
The results show that there is little negative 

impact if the job classes are different. Surprisingly, 
the I/O is slowed down by communication (and not 
vice versa as in loosely coordinated coscheduling). 
An explanation is that both the communication and 
the I/O still involve significant CPU time. The 
interference of two I/O applications is very 
indeterministic though in most of the cases in the 
range of sl = 1.2. 

Finally, we have studied the effect of paging. 
Using the same type of application as for cache 
measurements, we have compared the effect of 
running two applications with 400 Mbyte and 267 
Mbyte memory usage each. The slowdown is 2.5 in 
the former and 2.2 in the latter case. Thus, the 
difference is not very high though the difference in 
conflict is significant. 

In summary, our measurements show that there 
are no unexpected superlinear slowdowns and that 
conversely the slowdowns actually measured are in 
many cases much lower than our maximum estimate 
(though the slowdowns may increase with larger 
numbers of nodes). Thus, by using these estimates, 
we make very conservative assumptions for the 
evaluation of our scheduling algorithm. 

5. The Look-Ahead Scheduling 
Algorithm 

5.1 The General Algorithm 

We apply a standard job-scheduling algorithm 
with the following features 

 Usage of priorities, classifying the jobs into 
short, medium, and long and allocating 
priorities according to these classes; usage 
of aging  to prevent starvation. 

 First-fit during allocation of jobs onto nodes 
 Flexible and dynamic allocation of nodes 

(no fixed and contiguous partitions required) 
 Backfilling (EASY backfilling) 

We basically keep short response times as the 
primary schedule-optimization objective and exploit 



 

utilization as far as it does not contradict good 
response times. However, we propose different 
heuristics, mainly aiming at either optimization for 
response times (as it would be meaningful during the 
day) or optimization for utilization (as it would be 
meaningful during the night). Memory consumption 
currently only plays the role of a constraint. 

The key special features in our LOMARC 
scheduling approach are: 

 Estimating the utilization gain 
 Estimating the impact on the response times 
 Allocating jobs to free nodes by themselves 

if the accumulated node requests in the 
queue ≤ the available nodes by 20% 
(machine is weakly loaded) 

 Finding a possible best match for the next 
job subject to scheduling among 
o The remaining jobs in the waiting queue 
o The running jobs 

This means that LOMARC never coschedules 
jobs if the machine is weakly loaded, i.e. there are 
empty nodes to run the job. We classify jobs into 
CPU-bound, disk-bound, and network-bound, 
according to which of fCPU, fdisk, or fnetwork dominates. 
Only medium and long jobs are considered for 
coscheduling.—short ones are not worth the effort. 

LOMARC can schedule either on standard or 
hyperthreaded CPUs with the following scheme: 

 On a standard CPU, we only schedule CPU-
bound and disk-bound jobs together. Only 
they can benefit as regards CPU utilization 
in this case. 

 On a hyperthreaded CPU, more options exist 
to coschedule jobs. We consider joint 
execution of CPU-bound and CPU-bound 
jobs, CPU-bound and network-bound jobs, 
and network-bound and I/O-bound jobs in 
addition to CPU-bound and disk-bound jobs. 

Thus, LOMARC does not depend on any special 
coscheduling software (gang or implicit 
coscheduling). However, LOMARC depends on the 
option to share the network [Sodan2004].  Such 
sharing is, however, provided by the widespread 
standard native GM  communication library  for  
Myrinet and  the  MPICH and LAM MPI 
implementations that build on top of GM 
[Zhou2004]. 

Figure 1 shows pseudo code of the abstracted 
LOMARC algorithm. Figure 2 and Figure 3 
graphically demonstrate the matchmaking. 

Our LOMARC algorithm depends on knowing 
the characteristics of the applications as regards the 
fractions of time on CPU, network, and disk and 
making correct upper bound estimations for 
slowdowns. We assume the applications to be 
occasionally monitored (we have accompanying 
research work running on this topic). If the estimates

 
while (! waiting_queue.is_empty ()) {     // run over all jobs in queue as long as can 
    current_job = waiting_queue.first;     // be scheduler 
    while (current_job.size <= freenodes.size) {    // enough space for job 

 if (current_job.is_medium_or_long_job () ) // try find a match for the job among 
match = find_match (current_job); // remaining jobs in waiting queue 

 allocate_nodes (current_job); 
 if (match != null) 
          coallocate_nodes (current_job, match);  // coallocate match on same nodes 
 if (end_of_queue) return (); 

           else current_job = waiting_queue.first; 
        } 
    if (current_job.is_medium_or_long_job)     // current job won’t fit on free nodes 
       { match = find_match_among_running (current_job) // co-schedule with running job 

                       if (match != null)    // find best match among running 
                  coallocate_nodes (match, current_job);  // allocate current job on same nodes  
         } 

  if (match == null)    // current job does not match any job 
      break;      // current job cannot be scheduled now; 

    }  // continue with backfilling 
}  // end of loop running over queue 
backfill ();   // try to backfill jobs onto free nodes 
   // (applying same matching as above) 

Figure 1. Abstracted LOMARC scheduling algorithm as invoked upon job-termination or submission.



 

are severely wrong in a negative sense, one 
application may be preempted  and its execution be 
completed when the other one is finished 

[Niko2002]. Shorter overall job runtimes than 
estimated, however, do not hurt at all as we can try to 
find a new match if one job finishes. 

 

 
Figure 2. Finding best match among currently running jobs. 

 
Figure 3. Reordering the job queue if finding a match in the waiting queue. 

 
5.2 The Utilization-Gain and Response-

Time-Impact Calculation 

Figure 4 shows the search for the best match 
among all jobs in the waiting queue (if searching 
there) and the definition of matchable jobs. We first 
check whether job classes can be matched (e.g. 
whether their requirements fit). Furthermore, we 
estimate the slowdown according to our description 
above. If the slowdown is less than a certain 
threshold sllimit (MAX_SLOWDOWN), the job 
becomes a candidate for matching. Different 
heuristics can be applied as explained below. Either 
response-time impact and utilization gain can be 
estimated.  

The calculation of the response-time impact does 
not consider any detailed packing, i.e. does not 
calculate any actual schedule. The reason is that the 
packing anyway is subject to change under dynamic 
submission with priorities. Furthermore, the 

complexity of incorporating such calculation is 
high—backfilling has O(n2) time complexity and, if 
trying all jobs in the waiting queue to find the 
optimum, complexity increases to O(n3). Thus, we 
simply assume that a perfect packing would be 
possible (by taking work = runtime * size for each 
job and adding the corresponding work up for all 
jobs) and determine all delays on the basis of this 
simple heuristic. A future improvement might be to 
calculate exact order for the first few jobs in the 
queue and apply the heuristic estimate for the rest.  

As regards utilization, a detailed utilization 
metric would have to consider the maximum capacity 
of hyperthreaded CPUs, disk, and network and their 
utilization by each application (making detailed 
resource and application models necessary). 
Therefore, instead of absolute utilization, we consider 
the relative utilization improvement on the basis of 
the scheduled applications. 

current 
job to be 
scheduled 

match 
candidate 

current job 
candidate to 
be scheduled time 

jobs running on machine 

pull-up push-down 

space 

match 
candidate 



 

Definition Relative Utilization Gain: We 
consider the overlap in time where the two jobs run 
together and calculate how much faster the jobs run if 
coscheduled than they would run if scheduled 
individually. We have the following two options: to 
consider a timeless metric (Ugain,2) or to include the 
shared (overlap) runtime that is affected by the 

utilization change (Ugain,1). This leads to the 
following two formulas:  

Ugain,1 = (min(SA, SB)* (2/slA,B-1) – 
     |SA-SB| * (1-1/slA,B)) * (min(TA,TB) / 
     max(TA,TB)) /max(SA, SB) 
Ugain,2 = (min(SA, SB)* (2/slA,B-1) –  

            |SA-SB| * (1-1/slA,B)) / max(SA, SB) 
with S being job size. 

find_match (job) {  
maxprofit = 0; 
match = null; 
for each_job_in_queue (match_cand) { 
   if (matchable (job, match_cand)){ 

slowdown_cand = slowdown (job, match_cand);    // determine slowdown 
if (slowdown_cand <= MAX_SLOWDOWN) { //set limit for slowdown 
switch (heuristic) {  
   case 1: profit = utilization_gain_1 (job, match_cand); // utilization gain1 
   case 2: profit =utilization_gain_2(job,match_cand);            // utilization gain 2 
   case 3: profit = response_time (job, match_cand, slowdown_cand);  // response times 
  }  
 if profit > maxprofit // keep best match 

     {maxprofit = profit; 
       match = match_cand;} 

               } 
            } } 

return match;    
              } 
 

matchable(jobi, jobj){ 
if (jobi.memory + jobj.memory <=1) 
      if (jobi is CPU intensive && jobj is CPU intensive) return true; 
          else (if jobi.type !=jobj.type ) return true; 
 return false; 
} 

 

Figure 4. Finding best match in waiting queue and definition of matchable jobs. 

As regards relative response times, the impact 
from reordering the queue can be estimated in the 
following way: 

 Jobs in front of the job that is matched and 
thus moved ahead get delayed: For them, we 
calculate an estimate of the impact by the 
sum of all relative delays. We call these jobs 
push-down jobs. 

 Jobs behind the job that is matched get 
scheduled earlier, assuming that the match 
decreases the joint runtime of the two jobs 
vs. running them on their own: For these 
jobs, we calculate an estimate of the impact 
by the sum of all relative improvements. We 
call these jobs pull-up jobs. 

In both cases, we include a prediction about 
future job submissions and the impact of these jobs 
on response times. We do a one-level prediction, 
calculating new job submisssions in the time interval 
which we estimate for the execution of the jobs that 
are currently in the queue. To do so, we use 
parameters (average work) from the workload model.  
We simplify the calculation of relative response times 
by taking them relative from the current time on.  

See Figure 5 for the details of the algorithm. 
The complexity of our algorithm is O(n2). 

However, the worst case for searching through all 
jobs in the queue—O (nlgn)—is always met if we 
look for the optimum match. To check whether we 
can reduce cost, we also incorporate a simplified 
version in our experiments that takes the first match. 



 

  
// calculates overall response-time impact, in increase/decrease relative to normal response time 
response_time (jobi, jobj, slowdown) { 
            pairruntime = min (jobi.runtime, jobj.runtime) * (slowdown-1) +  
                                   max (jobi.runtime, jobj.runtime); 
            pairsize = max (jobi.size, jobj.size); 
            improvement = jobi.runtime*jobi.size / n_nodes; 
            delay = (pairruntime * pairsize – jobi.runtime*jobi.size) / n_nodes; 
            response_decrease = jobj.runtime*jobj.size / n_nodes – delay; 
            response_increase = delay / responsetime;  
 
           //estimate delay for push-down jobs 
           for (all push_down_jobs (jobn)) {   

    response_time += jobn.runtime * jobn.size / n_nodes; 
    response_increase += delay / response_time; 

                 } 
            // response time improvement for job be job being moved 
            response_time += jobj.runtime* jobj.size / n_nodes; 
            response_decrease = (response_time – jobj.runtime* slowdown * jobj.size / n_nodes) 
                                                                                                                                  / response_time; 

                         // estimate improvement for pull-up jobs 
           for (all_pull_up_jobs) {      
    response_time += jobn.runtime * jobn.size / n_nodes; 

      response_decrease += improvement /  response_time; 
  } 

            for (future_arrival_short_jobs(jobn)) { 
    response_time  = jobn.runtime * jobn.size  / n_nodes; 

    response_increase+= delay / response_time;  
  } 

           for (future_arrival_med_or_long jobs (jobn)) { 
      response_time  = jobn.runtime * jobn.size / n_nodes; 

         response_decrease+= improvement / response_time;  
     }   
                       return (response_decrease – response_increase) / (number(push_down_job) – number(pull-up_jobs);   
                       } 

Figure 5. Pseudo code for abstracted  calculation of utilization gain and response-time impact. 

 
6. Experimental Results 

Our experiments are based on an event 
simulation with parameter settings and workload 
modeling as described below. The machine modeled 
is a cluster with 128 single-CPU nodes. 

6.1 Metrics and Workloads 

We use the following metrics to evaluate the 
performance of our LOMARC scheduling algorithm: 

 Average response times 
 Average relative bounded response times: 

response time in relation to runtime time, 
bounded by a  60 sec minimum runtime to 
avoid overly high impact of very small jobs 

 Utilization: percentage of used-nodes time 
over the makespan ; i.e., ratio of the 
accumulated used nodes and the product of 
makespan T and number of nodes P 

 Utilization efficiency: if coscheduling, also 
considers positive improvements by 
increasing the utilization per CPU, indirectly 
reflected by a shortened makespan: 

E = 
PT

tp
i ii∑

    

with pi and ti being size and runtime per job 
 Makespan: the runtime of the whole job 

batch 
We have used the model in [Lublin2003] for the 

workload generation. This model is a complex 



 

statistical workload description, considering job 
sizes, job runtimes, and job interarrival times. The 
model includes correlations between sizes and 
runtimes, fractions of sequential jobs, fractions of 
power-of-two sizes, and differing interarrival times 
according to day/night-cycles. All numbers are 
generated in logarithmic space. A two-stage uniform 
distribution is used for job sizes (including 
probabilities for serial and power-of-two job sizes), a 
hyper-Gamma  distribution for job runtimes, and two 
Gamma distributions for interarrival times (one for 
peak times and one for the overall daily cycle). The 
parameters of the model are extracted from three 
traces of supercomputing centers and propose a 
generalization from the three test cases. The nice 
feature of this generalized model is that it can be 
adapted to different machine sizes and, thus, be 
applied to our machine size of 128 nodes.  We have 
modeled 8,000 jobs. 

Furthermore, we have modified the original 
workload by shortening the job interarrival times, 
determined by the α parameter of the Gamma 
distribution. Workload 1 is the original workload, 
Workload 2 and Workload 3 have smaller α 
parameters as shown in Table 4. The table also shows 
the resulting load value Load = (r-n)/(P*a) with r 
being the mean runtime, n the mean job size, and a  
the mean job interarrival time [Lublin2003 ]. 

Table 4. Workloads modeled. 

Workload 1 Workload 2 Workload 3 
α 10.23 9.83 8.83 

Load 10.6 13 21 

To the best of our knowledge, there do not exist 
any studies on the distribution of the application’s 
resource-usage characteristics as regards CPU, 
network, and disk. We model the following mixtures 

 M1: 40% CPU-bound, 30% network-bound, 
30% disk-bound 

 M2: 40% CPU-bound, 10% network-bound, 
50% disk-bound 

 M3: 30% CPU-bound, 50% network-bound, 
20% disk-bound 

We perform the majority of our tests with the 
mixture M1 which can be considered the mixture we 
expect to see on clusters with a share of scientific and 
datamining applications. We do some comparisons 
that include M3 as a representation of what might be 
the conventional mixture and M2 which might be the 
mixture for clusters specializing on datamining. 

Detailed job characteristics are generated 
randomly, using an equal distribution per value 
range, according to the following scheme: 

 CPU-bound jobs: fCPU in [0.5,0.9), fdisk in 
[0.05,0.4) with fcpu + fdisk in [0.6,0.95) 

 Disk-bound jobs: fdisk in [0.4,0.65), fnetwork in 
[0.05,0.4) with fdisk + fnetwork  in [0.5,0.8) 

 Network-bound jobs: fnetwork in [0.4,0.65), 
fdisk in [0.05,0.4) with fnetwork + fdisk  in 
[0.5,0.8)  

As regards the CPU-behavior, we model 
different probabilities that the CPU-parts of the two 
applications go well or poorly together, i.e. increase 
or decrease utilization. We set the probability for the 
former case to p=0.33 and for the latter to p=0.67. 
We assume slCPU=1.4 in the former and slCPU=2 
which picks two typical cases from our 
measurements in Section 4.1. In the latter case, 
LOMARC does not schedule CPU-bound 
applications together.  

Memory consumption is modeled by random 
generation for each job in [0.05,1] with 70% of the 
jobs in [0.05,0.5], 25% in (0.5,0.8), and 5% in 
[0.8.1]. 1 represents the maximum memory size that 
is available for applications. This distribution is 
roughly modeled as an average over existing memory 
studies as in [Chiang2001]. LOMARC does not 
coschedule jobs that do not fit into memory together 
but, for the comparison with other scheduling 
approaches, we need to model the memory slowdown 
and set slmem=2.5 according to our measurements in 
Section 4.2. 

6.2 Experiments with LOMARC Scheduler 

To evaluate the benefits of our approach, we 
compare to 

 Standard single-job scheduling (mere space 
sharing  PSS) 

 Always coscheduling two jobs if running on 
a hyperthreaded CPU (AC) 

 Coscheduling two jobs that are adjacent in 
the queue if they are a match according to 
the LOMARC definition (AM) if running on 
hyperthreaded CPUs 

For our LOMARC approach, we test the 
following variants: 

 Scheduling on standard CPUs (L-N) using 
Ugain,1 

 Optimization with different heuristics on 
hyperthreaded CPUs: utilization Ugain,1 (L-
U1) and Ugain,2 (L-U2), response-time 
impact (L-R), and a variant which selects the 
first match found (L-FM) 

We set the maximum acceptable slowdown. 
MAX_SLOWDOWN to 1.6.  For all approaches, we 
use priorities and EASY backfilling. We define job 



 

classes in the following way: runtimes in [1sec,1min] 
are classified as short, in (1min,1h] as medium, and 
in [1h,45h] as long with 45h being the maximum 
runtime modeled. Aging (to prevent starvation) is 
based on average waiting time Tage. Per each Tage., the 
priority of one job will be boosted to a higher level, 
so it will take a long job 2Tage to have the same 
priority as a short job. 

In Figure 6 and Figure 7, we show the results 
from comparing several LOMARC variants (L-U1 L-
U2, L-R, L-FM, and L-N) with PSS, AC, and AM 
under the 3 different workloads W1, W2, and W3. In 
all cases, the characteristics mix M1 is used.  For all 
workloads, all LOMARC variants perform clearly 
better than all other approaches.  The arbitrary 
coscheduling AC is signficantly worse than space 
sharing PSS and, thus, not a reasonable choice. This 
demonstates that detailed match considerations are 
necessary to make coscheduling on a hyperthreaded 
CPU meaningful.  

We can see that with the workload becoming 
heavier, our approaches, L-U1, L-U2, L-R, L-FM and 
L-N, show more obvious improvement over other 
approaches in response time, relative bounded 
response time and effective utilization. The 
improvement in response time of L-R increases from 

48% to 56%, and the improvement in relative 
bounded response time of L-R increases from 50% to 
66% compared to PSS. Thus, response time and 
relative bounded response time are approximately 
reduced to half by using our approach. 

Comparing our different LOMARC heuristics, 
all are pretty close to each other as regards response 
times. However, L-U1 performs slightly better than 
L-U2. L-U1 provides almost the same results as L-R 
for all workloads.  The differences are more 
pronounced for the relative bounded response times. 
L-U2 is again worse than L-U1. Obviously, Ugain,1 
provides the more adequate estmate. L-R is better 
than L-U1, especially for W1 where it is better by 
19% whereas only better by 16% for W2, and by 8% 
for W3. To perform better as regards relative 
response times is the expected result for a metric 
focusing on them. Selecting simply the first match in 
L-FM is not too much worse if the workload is 
lighter (W1) but becomes worse than the workload 
becomes heavier where there are more choices to 
select the match but ignored by this approach. 
Response times are by 17% worse than L-R under 
W3 and relative bounded response times by 24%. 
Relating the performance to PSS, the improvement in 
response times of L-FM vs. PSS is 40% for W1, 41%
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Figure 6. Response times for different scheduling approaches and different workloads. 
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Figure 7. Relative bounded response times for different scheduling approaches and different workloads. 

 
for W2, and 48% for W3. The improvement in 
relative bounded response times is 47% for W1, 42% 
for W2, and 52% for W3. Thus, the much simpler 
heuristic provides still very good results. AM that 
only matches adjacent jobs in the queue is still doing 
significantly better than PSS but still significantly 
worse than L-R and also worse than L-FM, especially 
for heavier workloads. Considering scheduling on 
standard CPUs (L-N), LOMARC still provides 
significant improvements: as regards response times 
23% for W1, 27% for W2, and 31% for W3. Relative 
bounded response times are improved by 7% for W1, 
17% for W2, and 40% for W3.  

The makespans for Workload 1 are about 10 
weeks and are by only 5% improved by L-R vs. PSS. 
This indicates that there are often not enough jobs to 
fully utilize the machine. The improvement for 
Workload 2 is 20% and for Workload 33%. 

In Figure 8, we show utilization and utilization 
efficiency for all approaches.  Utilization is almost 
the same for all approaches and for all approaches 
improves if the workload becomes heavier (because 
more options for packing exist). For utilization 
efficiency, LOMARC shows improvements, 

especially under heavier workloads, for L-U1, L-U2, 
and L-R: 8.5% for W1, 19% for W2, and 38% for 
W3. However, there are no relevant differences 
between L-U1, L-U2, and L-R. This means using a 
heuristic which focuses on utilization does not make 
any difference. L-FM is slightly worse—the 
improvement is 6% for W1, 15% for W2, and 31% 
for W3.  L-N only accomplishes 2% improvement for 
L1, 9% for W2, and 18% for W3.  

To check how much difference the assumptions 
about the characteristics mix make, we present 
response times and relative bounded response times 
for Workload 1 and M2 and M3 in Figure 9. 

For M2 and M3, the relative improvements of L-
U1, L-U2, and L-R vs. PSS and AC are similar to 
M1. However, for M2, L-N now improves upon PSS 
by 34% in response times and by 38% in relative 
bounded response times and for M3 it is closer to 
PSS than under M1. This is consistent with the 
expectation because in M2 there are more disk-bound 
jobs that can still be coscheduled with CPU-bound 
jobs and, in M3, there are fewer of them.  
 

 



 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

L-U
1
L-U

2
L-RL-F

M AM L-NPSS AC
L-U

1
L-U

2
L-RL-F

M AM L-NPSS AC

Workload 1
Workload 2
Workload 3

 
Figure 8. Utilization (left) and utilization efficiency (right) for different scheduling approaches and different 
workloads. 
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Figure 9. Average response times and average relative bounded response time for M2 (upper row) and M3 
(lower row).  

Finally, we investigate the detailed behavior of 
L-U1, L-U2, and L-R (under M1) by looking at the 
average queue lengths, the number of jobs left in 
each comparison step for finding a match, and which 
job  in the end is selected. See Table 5. As we can 
see, after meeting all the constraints, the number of 
jobs left as candidates to choose from by the different 

heuristics is relatively small: for W1 between 5 and 
7. With this small number of choices, there is not 
much room for the different heuristics to create 
different effects. For all heuristics, on average the 3rd 
match candidate is selected. L-U1 and L-R select the 
4th match candidate under Workload W2. For 
Workload 3, we see a significant difference: L-U1 
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selects the 6th job and L-R the 4th which is an 
expected effect as optimizing with a focus on 
response times should be more reluctant to select a 
job which has a position further down in the queue. 

However, the results for response times and relative 
bounded response times as discussed above do not 
really confirm this as the actual improvement of L-R 
is higher for W1.  

Table 5. Average queue lengths, average numbers of jobs left under the different constraints, and average 
job selected for candidates.  

 

 

Average 
Queue 
Length 

Medium 
or Long 
Job 

SizeB ≤ 
SizeA 

Memory 
Fit Matchable 

Slowdown 
≤ Max 

Number 
Selected 

Workload1 36 24 10 8 6 5 3 
Workload2 81 45 21 12 10 8 4 

L-U1 

Workload3 213 86 40 20 16 14 6 
Workload1 40 25 11 8 6 5 3 
Workload2 77 49 25 16 12 11 5 

L-U2 

Workload3 233 85 39 21 16 14 7 
Workload1 36 24 13 11 8 7 3 
Workload2 80 51 31 21 15 14 4 

L-R 

Workload3 222 87 48 25 20 17 4 

7. Summary and Conclusion 

We have presented an approach to find matches 
between two jobs on hyperthreaded and standard 
CPUs for better resource utilization via coscheduling. 
The approach partially reorders the queue and 
searches for the best match while estimating impacts 
on relative bounded response times and utilization. In 
simulations, we have shown that our LOMARC 
scheduler clearly outperforms standard space sharing 
as regards response times and relative bounded 
response times by reducing them to about half their 
original value on hyperthreaded CPUs and to about ¾ 
on standard CPUs. The heuristic performing best is to 
estimate the response-time impact when selecting the 
best match. The improvement is accomplished by an 
improvement in utilization efficiency from running 
multiple jobs with complementary resource 
requirements. Each individual application is unlikely 
to accomplish the same internally,, especially if the 
application does not use multithreading per CPU but 
simply doubles the number of processes. Worth to 
note, our improvements from LOMARC have been 
accomplished with quite conservative assumptions 
about slowdowns. 

Future work includes a refined slowdown model, 
experiments with other simplified heuristics (like 
making the choice between the first three candidates 
only or selecting a candidate if it is beyond a certain 
match threshold), and testing the scheduler with 

conservative backfilling which may be more sensitive 
to whether utilization or response-time impact is 
considered. Furthermore, extension to multi-way 
nodes is of interest. Then, another choice is to 
schedule one or multiple applications on the different 
CPUs per node. For such nodes, applications are 
more likely to be prepared to use multithreading per 
node and may already use the network very 
intensively. Thus, there may be fewer options for 
coscheduling as regards network usage but also new 
options in using physical and virtual CPUs. 
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