

LOMARC—Lookahead Matchmaking for Multi-Resource Coscheduling

Angela C. Sodan and Lei Lan
University of Windsor, Canada

acsodan@cs.uwindsor.ca, lan_lei@hotmail.com

Abstract

Job scheduling typically focuses on the CPU
with little work existing to include I/O or memory.
Time-shared execution provides the chance to hide
I/O and long-communication latencies though
potentially creating a memory conflict. We consider
two different cases: standard local CPU scheduling
and coscheduling on hyperthreaded CPUs. The latter
supports coscheduling without any context switches
and provides additional options for CPU-internal
resource sharing. We present an approach that
includes all possible resources into the schedule
optimization and improves utilization by
coscheduling two jobs if feasible. Our LOMARC
approach partially reorders the queue by lookahead to
increase the potential to find good matches. In
simulations based on the workload model of
[Lublin2003], we have obtained improvements of
about 50% in both response times and relative
bounded response times on hyperthreaded CPUs (i.e.
cut times by half) and of about 25% on standard
CPUs for our LOMARC scheduling approach.

1. Introduction

The primary goal in job scheduling is to provide
good response times to users. A secondary goal is to
improve utilization. Both objectives may conflict
with each other though often improved response
times also mean improved (though potentially not
optimum) utilization. The relationship between them
is typically not well expressed. The best response-
time behavior so far has been reported for gang
scheduling [Moreira1998, Feitelson1997]. Gang
scheduling is a time-sharing approach and means that
all processes of the same job are scheduled across
nodes at the same time by globally synchronous time
slicing [Feitelson1997]. Gang scheduling has
shortcomings as regards latency hiding for I/O and
long-latency communication. Latency hiding plays an
increasingly significant role for the emerging class of
data-intensive applications like datamining. Long-

latency hiding is important also for potential grid
applications. Loosely coordinated coscheduling
[Arpaci1996, Sobalvarro1998, Nagar1999,
Zhang2000, Sodan2004] (avoiding the globally
synchronous execution and enabling to release the
CPU if waiting) and relaxed combinations of gang
and local CPU scheduling [Silva1999] provide
alternatives performing better in this regard. Loosely
coordinated coscheduling requires modifications of
the communication software and potentially the OS,
typically using a spin-blocking approach to release
the CPU after some time of waiting and a priority
boost to schedule processes that have been waiting
for communication. Hyperthreading processors like
the Xeon and the new Intel Pentium 4 make it
possible to run two applications at the same time
without any context switches and without the need to
change the communication software. However, the
processes compete for CPU-internal and network
resources in addition to memory and I/O. Thus,
interesting new options for time-shared execution are
available but have to be handled carefully. The target
architecture considered is a cluster with high-
performance network (like Myrinet or Quadrics
[Zhou2004]) and user-level communication. In this
paper, we only consider single-CPU nodes
(hyperthreaded or standard) but our approach would
be extendible to multi-way nodes. Considering the
possibilities of hyperthreaded CPUs, we limit our
coscheduling to a maximum of two jobs, i.e. a
multiprogramming level of 2. In the following, we
use the term coscheduling in the sense of running
multiple jobs together.

The objectives for our own LOMARC job
scheduler are:

 Inclusion of all relevant resources (CPU,
network, disk, memory)

 Support of standard time-shared execution
on standard CPU and coscheduling on
hyperthreaded CPUs

 Increase of utilization though keeping basic
primary goal of improved response times

 Usage of application characteristics via a-
priori knowledge

 Usage of otherwise standard state-of-the-art
scheduling approaches (priorities,
backfilling etc.)

We address our objectives by the following
innovative solutions:

 Optimizing the schedule by matching two
applications whenever possible to share
resources for high utilization

 Calculating estimates for response-time
impact and utilization improvement while
considering reordering to match jobs

 Including application characteristics (CPU,
network, disk, memory) via an integrated
cost model to estimate matchability and
slowdowns

 Relaxing the scheduling order and sorting
jobs more flexibly by permitting jobs to
move ahead in the schedule if they pair well
with other jobs though potentially to some
extent pushing other jobs backward in the
queue

We apply the standard per-job approach for
scheduling jobs, i.e. do not attempt any global
optimization. The reasons are that global
optimization has a high—O(n3)—time complexity
and that its benefit is even questionable, considering
that the submissions are dynamic and, in standard
approaches with priorities, the overall context of jobs
changes permanently.

We have tested our approach via an event-based
simulation and the workload described in
[Lublin2003], comparing it to standard space-shared
job scheduling. Our tests include investigations of
different heuristics, focusing either on utilization or
response-time impact. We present a maximum
slowdown model for the cases of resource
competition and validate our estimates by practical
tests with synthetic programs on a cluster with
hyperthreaded CPUs.

2. Related Scheduling Work

Space/time-shared execution of parallel
programs has been shown to outperform mere space
sharing by providing better response times
[Moreira1998]. The typical practically applied
approach for time/space sharing is gang scheduling
which means globally synchronized execution of
parallel programs [Ousterhout1982]. We have shown
that with adaptive space allocation, we can obtain
even better response times with a lower
multiprogramming level [SodanHuang2004]. This

has the essential benefit of reducing memory
pressure. Furthermore, gang scheduling has
shortcomings with respect to the overhead involved
and not being able to hide I/O and other long
latencies unless the application internally is doing
that. Most parallel applications avoid I/O and
compute in-core. However, data-intensive
applications like datamining are emerging. Several
different approaches have been proposed for a
loosely coordinated form of coscheduling (implicit
and dynamic coscheduling, periodic boost) which is
more flexible and can hide latencies. [Arpaci1996,
Sobalvarro1998, Nagar1999, Zhang2000]. See also
[Sodan2004] for a survey. Most loosely-coordinated
coscheduling approaches apply spin-blocking at the
waiting side to avoid wasting CPU time if the partner
process is not currently scheduled. Furthermore,
some form of priority boost is applied at the receiving
side for processes that are waiting for communication
but are not currently scheduled. These mechanisms
are supposed to keep jobs coscheduled if they are in
synchrony and drive processes into synchrony if they
are not currently coscheduled but communicating
with each other. Loosely coordinated coscheduling is,
however, in experimental status. One system
reflecting some of these findings is Sun MPI
[SunMPI2001], though in own experiments on an
SMP server, we found that it does not satisfactorily
accomplishes coscheduling [SodanHuang2004,
SodanRiyadh2002]. To overcome the I/O problems
of gang scheduling and the problems of proper
coscheduling for applications with high
communication intensity, flexible coscheduling with
a combination of gang and local CPU scheduling has
been proposed [Silva1999, Fracht2003]. The main
idea is to keep frequently communicating
applications gang scheduled, while relaxing the
scheduling toward local CPU scheduling for coarse-
grain applications that potentially have I/O or
communication with long latencies. The decision can
be made dynamically and per node.

One possible approach to schedule jobs with
different combinations of I/O-bound and
computation-bound jobs in gang scheduling is to
reorder the gang-matrix rows to match jobs in the
schedule and schedule them together
[Wiseman2003]. The benefit of this approach is that
it is dynamic, i.e. does not depend on pre-knowledge
about characteristics and can accommodate different
phases of the programs, e.g. jobs switching between
I/O-bound and computation-bound phases. Then, jobs
can be paired or not be paired in different phases.
However, this approach needs to use the maximum
I/O time of different jobs per row and requires a
larger number of rows for choice, i.e. a high

multiprogramming level. However, a large
multiprogramming level is undesirable as regards
memory pressure and the probability of actually
finding pairs on large machines with potentially
many different jobs per row is low. Flexible
coscheduling as described above [Silva1999,
Fracht2003] overcomes the problem of different jobs
in the row behaving differently and the dependence
on the maximum per row but still depends on which
jobs are randomly allocated to the same nodes as
candidates for matching.

Most approaches apply a heuristic on a per-job
basis to allocate jobs and determine the schedule.
There is little work to perform a more global
optimization. One approach optimizes the job
ordering during backfilling (instead of using the
common first-fit heuristic) to obtain better response
times and utilization. A certain lookahead window is
applied and the solution found via dynamic
programming [Shmueli2003]. Slack-based
scheduling [Talby1999] not only considers multiple
factors for priority calculation but is more ambitious
as regards finding optimum schedules. The approach,
in principle, permits free reordering of the whole
queue but sets constraints by the slack that represents
maximum delays per job. In a practical setting, the
approach boils down to a number of different
possible heuristics. In this approach, priority-based
heuristics performed best and utilization-based ones
worst.

For all approaches of job scheduling, memory
pressure creates constraints for scheduling which can
increase fragmentation and response time
significantly [Setia1999, Batat2000]. All of the above
consider only one resource (I/O or memory) in
addition to the computation. The approach in
[Lein1999] can handle several resources, trying to
balance the overall resource usage. The approach is
applied during backfilling and searches the whole
queue to find the best match. In [Cirne2003], an
optimal resource allocation in the sense of adapting
the size of the job is found by, at the time of
submission, simulating different possible job sizes
with the current job queue and selecting the optimum.

3. Hyperthreading

Hyperthreading is a special case of simultaneous
multithreading [Tullsen1995] with 2 threads (of the
same or different applications) running
simultaneously, based on the idea of letting multiple
threads share the internal CPU resources in each
cycle to increase their utilization. This addresses the
problem that modern superscalar processors often

cannot keep all their resources busy with a single
program. The Xeon hyperthreaded physical CPU has
only minor extensions (5% die) to support multiple
architectural states—the rest of the resources
including the L1 data cache and the L2-L3 unified
caches are shared [Marr2002]. Hyperthreading is not
limited to the Xeon processor but will become
widespread with the Intel Pentium 4. However, the
effectiveness of Hyperthreading depends on how well
a single thread already would utilize the resources of
the CPU and to what extent the threads compete for
resources—such as integer and floating-point units—
or complement each other. Furthermore, the impact
of stalls due to insufficient instruction-level
parallelism and branch misses is reduced. Another
problem is the sharing of the cache which is typically
a scarce resource anyway. The impact of this effect
depends on the cache behavior of the program. If the
working set is large but just fits nicely into the cache
(which may mean that the application is cache-
optimized), the competition of a second
process/thread running on the CPU can severely slow
down the program. However, future versions of
hyperthreaded CPUs may perform better by increased
cache sizes. Applications that sequentially run over a
large set of data in a single pass may perform very
well because having little locality (this may apply to,
e.g., many datamining applications in comparison to,
e.g., a matrix multiplications which use the same
rows and columns multiple times). If the program has
no cache locality (because of irregular accesses or
poor implementation), the effects of longer-latency
memory accesses can even be mitigated. Though,
memory can equally well create an additional
problem if the machine architecture does not provide
sufficient memory bandwidth to support two
processes as this is often the case [BehrSodan2001].
Parallel applications typically use different data
subsets per process/thread and thus compete for the
cache. In addition, scientific applications often use
more floating-point operations and are already well
optimized for them and, thus, can keep the floating-
point resources busy with a single thread [Leng2002].
[Magro2002] comes to the conclusion that scientific
applications typically show less improvement than
business applications (10%-30% vs. 60%). Symbiotic
scheduling [Tullsen00] and MASA [Nakajima2002]
monitor resource conflicts among running jobs on
single-CPU simultaneous multithreading processors
and coschedule the jobs that have the least resource
contention.

Hyperthreading provides a different option of
coscheduling by running multiple applications
together on the same physical CPU. This saves
overhead for context switches and coordination.

Especially applications that are dominated by
floating-point operations can run well together with
applications that are dominated by integer operations
[Nakajima2002]. Though, the threads have to share
the network, with communication not only creating
network contention but also memory-access
contention. In [Leng2002], the communication
effects were studied and, for communication-
intensive benchmarks, a degradation in performance
was observed. In [Nakajima2002], an approach is
presented to set affinity to certain physical or logical
CPUs at user level. This would make it possible to
extend our approach to run on dual SMP nodes.
Furthermore, the involved modification of the OS-
internal CPU scheduling can be used to switch
hyperthreading dynamically on and off (i.e. switch
from multithreading mode MT to single-threaded
mode ST). This can be done by using the priviledged
(OS) instruction hlt (HALT).

4. The Slowdown Estimation and
Empirical Evaluation

4.1 The Slowdown Estimation

For the following discussion, we first need to
define our view of slowdown. Note that we always
assume two jobs being coscheduled.

Definition individual-execution-slowdown: The
factor in execution time by which an application A
runs slower in joint execution with another
application B (TA,B) than it would run on its own (TA),
i.e. slA,B = TA,B / TA..

Note that this definition is different from the
slowdown definition in loosely coordinated
coscheduling such as implicit coscheduling
[Arpaci1996] which bases on jobs normally running
twice as long in joint time-shared execution. Thus,
the slowdown is the relative factor beyond that, i.e.
TA,B / (2 TA) if TA ≤ TB. For example, if two jobs with
equal runtime together run 3 times as long, the
slowdown is considered to be 3/2 = 1.5. Since our
concern is increasing utilization, this view is not
appropriate for us.

Previous research [Magro2002, Leng2002] has
investigated the performance on hyperthreaded SMP
nodes and/or cluster for applications as a whole.
Thus, no detailing into computation and
synchronization/communication cost was done and
no I/O was considered. Below we present a slightly
more detailed model which estimates the maximum
slowdown. We split execution time into the fraction
of computation time fcomp, the fraction of
communication time fcomm, and the fraction of I/O

time fio. For simplification, we assume that fcomp +
fcomm + fio = 1, i.e. we currently do not consider any
application-internal latency hiding. For applications
with many short communications, we may actually
attribute most of the communication time (similar to
[Figueira2001]) as computation time because most of
the time (fcomm,O,Lmcopy) is spent on the CPU for setting
up the communication, copying to and from buffers,
polling to wait on communication, and copying
between host and NI (network interface) memory
(because typically being buffered and handled via
Programmed I/O—PIO). Long communication
involves little CPU time because employing Direct
Memory Access—DMA—and zero-copy
communication [Zhou2004]. Similarly, I/O spends a
certain amount of time fio,OS in OS handling—
especially buffer copying—on the CPU. We basically
assume I/O is to the local disk—if I/O goes to an I/O
server, the message-passing part (fio,comm) has to be
attributed to the network. Thus,

 fCPU = fcomp + fcomm,O,Lmcopy + fio,OS
 fnetwork = fcomm – fcomm,O,Lmcopyn + fio,comm
 fdisk = fio – fio,OS – fio,comm

with fCPU being the time on the CPU, fnetwork the
time on the network, and fdisk the time on the disk.

In the perfect case, applications would exploit
different resources all the time but typically TA,B ≥ TA.

Disk, network, and CPU usages do not conflict
with each other. In the general case, applications use
all three resources though in different shares. Race
conditions may apply and, in the worst case, the
applications are using the same resources at the same
time, and we therefore have to estimate competition
on resources. Cost estimates have to consider worst
case behavior per node because the probability for
the worst case to happen increases with the number
of nodes, converging to a probability of 1. The
potential for conflicts is described below for the
different resources.

Communication: Two jobs may communicate at
the same time: the communication will be serialized
on the NI and in the DMA. On different nodes,
communications may interleave in different order,
leading to delays for both applications. Since
according to our measurements, non L2/L3 cache
integer operations have little slowdown, we can
ignore additional CPU time from added polling time.
Thus, we estimate the slowdown as

slA,B,network. = min {fnetwork,A, fnetwork,B} * 2 / fnetwork,A
Hyperthreaded CPUs: they compete for floating-

point and integer CPU-internal resources and for the
cache. The former serializes instructions, the latter
creates additional cache misses. The exact resource
competition depends on how much instruction
parallelism is available per application and which

execution resources are needed at any time vs. the
available resources in the CPU. In [Magro2002], the
major difference made is between integer- and
floating-point-dominated applications. However, in
own measurements, we found a somewhat more
complex relationship. As regards the cache, we found
that often cache-miss latencies can be hidden within
the application or among applications. Thus,
coscheduling two applications with cache conflict
does not necessarily reduce performance significantly
more than if there are no conflicts. Furthermore, the
sum of the cache-space needs does not linearly
translate into cache misses because caches are not
perfectly LRU (Least Recently Used) but n-way
direct (the Xeon L2/L3 caches are 8-way) caches that
may lead to replacements even if the working set still
fits into the cache. We estimate

slA,B,CPU = (fA,B,competing * 2 + fA,B,different) *
 min {fCPU,A,fCPU,B} + slA,B,mem) / fCPU,A
with fA,B,competing being the fraction of the code

competing for CPU-internal resources and fA,B,different
= 1–fA,B,competing the fraction using different resources.
Detailed modeling would require an advanced
cache/CPU cost model and a detailed application
model (access patterns, instructions mixture) which
goes beyond the scope of this paper. Similar
arguments apply to slA,B,mem which expresses the
slowdown from paging if the two applications do not
fit into memory together. We therefore have obtained
upper-bound parameters empirically (see below).
Note that a slowdown of 2 corresponds to time-
sharing on a standard CPU and that any slowdown >
2 means a decrease in utilization.

I/O: the system calls for I/O will be partially
serialized, may interfere with each other by going to
different tracks (and therefore adding seek times),
and compete for buffer space. However, the different
I/O calls may also provide potential for OS-internal
optimization or overlapping each other on the disk.
The details depend on the OS. We make the
assumption that the same serialization of cost applies
as for the other cost components, i.e.

slA,B,disk = min {fdisk,A,fdisk,B} * 2 / fdisk,A
This leads to the following overall maximum

slowdown:
slA,B = slB,A = (fA,B,competing*2 + fA,B,different) *
 min {fCPU,A,fCPU,B} + slA,B,mem +
 min{fnetwork,A, fnetwork,B}*2 + min{fdisk,A,fdisk,B}*2
Note that the slowdown for A and B is the same

(since we count the shared parts) and that the
maximum slowdown according to the above formula
is 2 as long as no memory conflicts are involved. The
slowdown is the lower, the more different the
characteristics of the two applications are, i.e. the
smaller the shared parts on the different resources.

Information about application characteristics can
be obtained by monitoring shortened sample runs or
by monitoring normal application runs and keeping
the information for future runs in performance
databases [Gibbons1997]. A tool like Paradyn
[Miller1995] may be used to obtain the standard
characteristics fcomp, fcomm, fio. Vtune [VtuneIntel] can
obtain performance counters for CPU-internal usage
and measure, for example, retired floating-point
operations and cache misses to obtain estimates about
CPU-internal resource usage and conflicts.

Considering the discussion above, we can now
compare our coscheduling on hyperthreaded CPUs to
loosely coordinated coscheduling. The latter can hide
I/O latency though I/O intensive applications can
significantly disturb the coordinated execution of
intensively communicating jobs (and cause process
switches and delays). Thus, both types of jobs should
not be coscheduled. However, this negative effect
does not exist on hyperthreaded processors because
both applications can continue to execute at any time.
For loosely coordinated coscheduling of
communication and/or computation-dominated jobs,
the best results obtained so far are about a factor of
2.4 slowdown, and it is not even sure whether these
results generalize. Thus, the benefits are more
limited. We only coschedule jobs if we can obtain a
benefit, i.e. a slowdown below a sllimit ≤ 2. As a
benefit of loosely coordinated coscheduling, it is less
sensitive to the cache though the spin-block also in a
negative cache impact (process switches on standard
CPUs invalidate the whole cache) [Sodan2004].

Above, we have made the simplification not to
consider application-internal latency hiding. Such
consideration is, however, possible. We only have to
make sure to recognize that no external latency-
hiding potential is available anymore for the
corresponding fractions of the code. We can simply
mark these fractions as the combination of the
typically two resource types. An estimation on the
safe side, then, is to count the whole combined
fraction for each of the corresponding resource types
when estimating conflicts. Latency hiding (and
improved resource usage) is still possible for such
applications if matching with an application which is
dominant in the third resource type.

4.2 Empirical Evaluation of Slowdowns

We have tested slowdowns with synthetic
applications on a cluster with Intel Xeon processor
and Myrinet interconnect, running MPICH-GM with
user-level MPI communication. L2/L3 cache size is
512k and memory size per node 512 Mbyte. The

operating system is Linux 2.4. In all measurements,
we use fcomp, fcomm, and fio due to our current lack of
low-level monitoring tools that could reveal the CPU,
network, and disk fraction. We checked that the
single-process performance is almost identical for the
CPU set to MT or ST mode.

We first investigate hyperthreaded CPU behavior
and run applications dominating in either float or
integer calculations, dominating in complex
multiplication/division or simpler add instructions,
running totally in L1 cache or using some or much of
the L2/L3 cache. The code sequences are simple and
easily fit into the cache. The summary of results can
be seen in Table 1. As far as L2/L3 usage is involved,
we have modeled an access patterns that runs over
the same data structure serially per iteration (except
to totally irregular accesses, this is the worst situation
because under LRU all data would be repeatedly
replaced if not fitting totally into the cache). Each
computation step accesses 4 close-by elements (as

would be the case if calculating the stencil in a mesh
computation). Our results are consistent with other
research as far as available. In [Magro2002],
scientific applications benefited between 10% and
30% by running each with two threads on a
hyperthreaded CPU. However, even performance on
a dual SMP was not optimal. Thus, translating the
hyperthreading improvement to the relative best-
possible threaded performance, the slowdowns
according to our definition were approximately 1.4
which is not worse than the up to 30% improvement
measured for business applications. [Leng2002]
shows slowdowns up to 3, including communication,
for cache-intensive applications. Since the tests were
done by increasing the number of processes per
application, however, also the speedup behavior
changed (speedup curves typically flatten with larger
number of processes) and the results therefore appear
to be too negative.

Table 1. Slowdown for different types of computation. + means application uses add operations, * means it
uses mult operations; the number indicates the size of the data in L2/L3 cache.

 float+
0

int +
0

float+
40k

int +
40k

float+
400k

int +
400k

float*
0

int*
0

float*
80k

int*
80k

float*
400k

int*
400k

2x same 2.1 1.07 1 1.3 1.5 1.3 1.6 1.4 1.1 1.1 1.7 1.2
float and same
type int

1.1 /
1

 1.8 /
1.4

 1.2 /
1.1

 1.7 /
1.4

The results of our tests show that float

applications with simple add operations and no L2/L3
cache data usage provide the poorest performance as
the resources are apparently well utilized. Integer
applications generally tend to coschedule better
because utilizing the available resources less
intensively. Applications with L2/L3 cache usage
run relatively slower but coschedule in several cases
better than the versions with no L2/L3 usage. Thus,
cache misses appear to be partially hidden within the
thread or among the threads and, for detailed
estimation, an integrated model would be required.

In Table 2, we show results from running
applications together with a) different mixtures of
communication and computation, and b) different
communication granularity. In all cases, fio=0.
Runtime for each application on its own is 60 sec. In
all cases, the applications are run on 4 nodes and are
loosely synchronous, communicating with all 3 other
neighbors, sending to them and receiving from them
in each communication phase. The computations are
of type “int + 0” to focus on the effects of CPU vs.
network. Note that the short communication is
spending a significant amount of time on the CPU via

PIO (with integer operations), whereas the long
communication employs DMA and zero copy in a
rendezvous protocol. Csize is the number of bytes per
communication. All runtimes are in seconds.
Communication cost results into 13.3 µsec for a
message with 200 bytes and into 120 µsec for a
message with 18,000 bytes. In all cases, the actual
slowdown is lower than the estimated maximum
slowdown. As can be seen from the table, the
slowdown is different for each application if running
coarse- and fine-grain communication together. The
application with the finer communication (smaller
and more communications) suffers more. The
explanation is that if the communications interleave,
the finer-grain communications are stretched more,
adding idling time to this application. If applications
are slowed down to different extent, it would be
important to make sure that enough non-competitive
time is left for the application with the larger
slowdown to catch up with communication. Thus,
additional conditions for the matching may be
necessary to ensure that fnetwork,A+fnetwork,B ≤ 1 (not
currently considered).

Table 2. Runtimes and slowdowns for coscheduling two applications with different mixtures of computation
and communication (and different communication granularities). The left number represents the row
application, the right number the column application. Since the applications finish at different times, we have
added a projected time Pt, representing the runtime if the other application would have continued to run. Slm
is the measured slowdown, sle,max is the estimated slowdown, with the number in parenthesis being the
estimate if there would be no slowdown in the CPU part.

 fcomm=0.4, Csize=200 fcomm=0.4,
Csize=18,000

fcomm=0.6, Csize=200 fcomm=0.6,
Csize=18,000

fcomm=0.4, Csize=200 68 / 68
slm: 1.1 / 1.1
sle,max: 2 (1.4)

70.5 (Pt=72.5) / 62
slm: 1.2 / 1
sle,max: 2 (1.4)

68 / 69
slm: 1.1 / 1.1
sle,max: 1.8 (1.4)

75 (Pt=77) / 64
slm: 1.3 / 1.1
sle,max: 1.8 (1.4)

fcomm=0.4,
Csize=18000

 65 / 65
slm: 1.1 / 1.1
sle,max: 2 (1.4)

62 / 73 (Pt=76)
slm: 1 / 1.3
sle,max: 1.8 (1.4)

64 / 64
slm: 1.1 / 1.1
sle,max: 1.8 (1.4)

fcomm=0.6, Csize=200 72 / 72
slm: 1.2 / 1.2
sle,max: 2 (1.6)

79 (Pt=84) / 64
slm: 1.4 / 1/1
sle,max: 2 (1.6)

fcomm=0.6,
Csize=18,000

 67 / 67
slm: 1.1 / 1.1
sle,max: 2 (1.6)

Finally, we show in Table 3 our results of testing

different classes of applications together. In this case,
we found no difference in whether the computation is
on integers or floating points. The I/O is repeatedly
reading a 60 Mbyte file sequentially in 1k blocks
from the local disk. The communicating application
is running a standard pingpong test. Note that the
combinations using two communication or two I/O
intensive applications are stress-tests only—
LOMARC would not normally coschedule such
applications.

Table 3. Slowdown if running different classes of
applications together.

 fcomm=1,
Csize=200

fcomm=1,
Csize=18k

fcomp=1,
int + 0

fio=1

fcomm=1,
Csize=200

1.4 / 1.4

1.7 / 1.1 1 / 1 1 / 1.3

fcomm=1,
Csize=18k

 1.3 / 1.3 1 / 1 1.1 / 1.2

fcomp=1,
int + 0

 1.1/ 1.1 1 / 1.2

fio=1 1.2 / 1.2
to

2.3 / 2.3

The results show that there is little negative

impact if the job classes are different. Surprisingly,
the I/O is slowed down by communication (and not
vice versa as in loosely coordinated coscheduling).
An explanation is that both the communication and
the I/O still involve significant CPU time. The
interference of two I/O applications is very
indeterministic though in most of the cases in the
range of sl = 1.2.

Finally, we have studied the effect of paging.
Using the same type of application as for cache
measurements, we have compared the effect of
running two applications with 400 Mbyte and 267
Mbyte memory usage each. The slowdown is 2.5 in
the former and 2.2 in the latter case. Thus, the
difference is not very high though the difference in
conflict is significant.

In summary, our measurements show that there
are no unexpected superlinear slowdowns and that
conversely the slowdowns actually measured are in
many cases much lower than our maximum estimate
(though the slowdowns may increase with larger
numbers of nodes). Thus, by using these estimates,
we make very conservative assumptions for the
evaluation of our scheduling algorithm.

5. The Look-Ahead Scheduling
Algorithm

5.1 The General Algorithm

We apply a standard job-scheduling algorithm
with the following features

 Usage of priorities, classifying the jobs into
short, medium, and long and allocating
priorities according to these classes; usage
of aging to prevent starvation.

 First-fit during allocation of jobs onto nodes
 Flexible and dynamic allocation of nodes

(no fixed and contiguous partitions required)
 Backfilling (EASY backfilling)

We basically keep short response times as the
primary schedule-optimization objective and exploit

utilization as far as it does not contradict good
response times. However, we propose different
heuristics, mainly aiming at either optimization for
response times (as it would be meaningful during the
day) or optimization for utilization (as it would be
meaningful during the night). Memory consumption
currently only plays the role of a constraint.

The key special features in our LOMARC
scheduling approach are:

 Estimating the utilization gain
 Estimating the impact on the response times
 Allocating jobs to free nodes by themselves

if the accumulated node requests in the
queue ≤ the available nodes by 20%
(machine is weakly loaded)

 Finding a possible best match for the next
job subject to scheduling among
o The remaining jobs in the waiting queue
o The running jobs

This means that LOMARC never coschedules
jobs if the machine is weakly loaded, i.e. there are
empty nodes to run the job. We classify jobs into
CPU-bound, disk-bound, and network-bound,
according to which of fCPU, fdisk, or fnetwork dominates.
Only medium and long jobs are considered for
coscheduling.—short ones are not worth the effort.

LOMARC can schedule either on standard or
hyperthreaded CPUs with the following scheme:

 On a standard CPU, we only schedule CPU-
bound and disk-bound jobs together. Only
they can benefit as regards CPU utilization
in this case.

 On a hyperthreaded CPU, more options exist
to coschedule jobs. We consider joint
execution of CPU-bound and CPU-bound
jobs, CPU-bound and network-bound jobs,
and network-bound and I/O-bound jobs in
addition to CPU-bound and disk-bound jobs.

Thus, LOMARC does not depend on any special
coscheduling software (gang or implicit
coscheduling). However, LOMARC depends on the
option to share the network [Sodan2004]. Such
sharing is, however, provided by the widespread
standard native GM communication library for
Myrinet and the MPICH and LAM MPI
implementations that build on top of GM
[Zhou2004].

Figure 1 shows pseudo code of the abstracted
LOMARC algorithm. Figure 2 and Figure 3
graphically demonstrate the matchmaking.

Our LOMARC algorithm depends on knowing
the characteristics of the applications as regards the
fractions of time on CPU, network, and disk and
making correct upper bound estimations for
slowdowns. We assume the applications to be
occasionally monitored (we have accompanying
research work running on this topic). If the estimates

while (! waiting_queue.is_empty ()) { // run over all jobs in queue as long as can
 current_job = waiting_queue.first; // be scheduler
 while (current_job.size <= freenodes.size) { // enough space for job

 if (current_job.is_medium_or_long_job ()) // try find a match for the job among
match = find_match (current_job); // remaining jobs in waiting queue

 allocate_nodes (current_job);
 if (match != null)
 coallocate_nodes (current_job, match); // coallocate match on same nodes
 if (end_of_queue) return ();

 else current_job = waiting_queue.first;
 }
 if (current_job.is_medium_or_long_job) // current job won’t fit on free nodes
 { match = find_match_among_running (current_job) // co-schedule with running job

 if (match != null) // find best match among running
 coallocate_nodes (match, current_job); // allocate current job on same nodes
 }

 if (match == null) // current job does not match any job
 break; // current job cannot be scheduled now;

 } // continue with backfilling
} // end of loop running over queue
backfill (); // try to backfill jobs onto free nodes
 // (applying same matching as above)

Figure 1. Abstracted LOMARC scheduling algorithm as invoked upon job-termination or submission.

are severely wrong in a negative sense, one
application may be preempted and its execution be
completed when the other one is finished

[Niko2002]. Shorter overall job runtimes than
estimated, however, do not hurt at all as we can try to
find a new match if one job finishes.

Figure 2. Finding best match among currently running jobs.

Figure 3. Reordering the job queue if finding a match in the waiting queue.

5.2 The Utilization-Gain and Response-

Time-Impact Calculation

Figure 4 shows the search for the best match
among all jobs in the waiting queue (if searching
there) and the definition of matchable jobs. We first
check whether job classes can be matched (e.g.
whether their requirements fit). Furthermore, we
estimate the slowdown according to our description
above. If the slowdown is less than a certain
threshold sllimit (MAX_SLOWDOWN), the job
becomes a candidate for matching. Different
heuristics can be applied as explained below. Either
response-time impact and utilization gain can be
estimated.

The calculation of the response-time impact does
not consider any detailed packing, i.e. does not
calculate any actual schedule. The reason is that the
packing anyway is subject to change under dynamic
submission with priorities. Furthermore, the

complexity of incorporating such calculation is
high—backfilling has O(n2) time complexity and, if
trying all jobs in the waiting queue to find the
optimum, complexity increases to O(n3). Thus, we
simply assume that a perfect packing would be
possible (by taking work = runtime * size for each
job and adding the corresponding work up for all
jobs) and determine all delays on the basis of this
simple heuristic. A future improvement might be to
calculate exact order for the first few jobs in the
queue and apply the heuristic estimate for the rest.

As regards utilization, a detailed utilization
metric would have to consider the maximum capacity
of hyperthreaded CPUs, disk, and network and their
utilization by each application (making detailed
resource and application models necessary).
Therefore, instead of absolute utilization, we consider
the relative utilization improvement on the basis of
the scheduled applications.

current
job to be
scheduled

match
candidate

current job
candidate to
be scheduled time

jobs running on machine

pull-up push-down

space

match
candidate

Definition Relative Utilization Gain: We
consider the overlap in time where the two jobs run
together and calculate how much faster the jobs run if
coscheduled than they would run if scheduled
individually. We have the following two options: to
consider a timeless metric (Ugain,2) or to include the
shared (overlap) runtime that is affected by the

utilization change (Ugain,1). This leads to the
following two formulas:

Ugain,1 = (min(SA, SB)* (2/slA,B-1) –
 |SA-SB| * (1-1/slA,B)) * (min(TA,TB) /
 max(TA,TB)) /max(SA, SB)
Ugain,2 = (min(SA, SB)* (2/slA,B-1) –

 |SA-SB| * (1-1/slA,B)) / max(SA, SB)
with S being job size.

find_match (job) {
maxprofit = 0;
match = null;
for each_job_in_queue (match_cand) {
 if (matchable (job, match_cand)){

slowdown_cand = slowdown (job, match_cand); // determine slowdown
if (slowdown_cand <= MAX_SLOWDOWN) { //set limit for slowdown
switch (heuristic) {
 case 1: profit = utilization_gain_1 (job, match_cand); // utilization gain1
 case 2: profit =utilization_gain_2(job,match_cand); // utilization gain 2
 case 3: profit = response_time (job, match_cand, slowdown_cand); // response times
 }
 if profit > maxprofit // keep best match

 {maxprofit = profit;
 match = match_cand;}

 }
 } }

return match;
 }

matchable(jobi, jobj){
if (jobi.memory + jobj.memory <=1)
 if (jobi is CPU intensive && jobj is CPU intensive) return true;
 else (if jobi.type !=jobj.type) return true;
 return false;
}

Figure 4. Finding best match in waiting queue and definition of matchable jobs.

As regards relative response times, the impact
from reordering the queue can be estimated in the
following way:

 Jobs in front of the job that is matched and
thus moved ahead get delayed: For them, we
calculate an estimate of the impact by the
sum of all relative delays. We call these jobs
push-down jobs.

 Jobs behind the job that is matched get
scheduled earlier, assuming that the match
decreases the joint runtime of the two jobs
vs. running them on their own: For these
jobs, we calculate an estimate of the impact
by the sum of all relative improvements. We
call these jobs pull-up jobs.

In both cases, we include a prediction about
future job submissions and the impact of these jobs
on response times. We do a one-level prediction,
calculating new job submisssions in the time interval
which we estimate for the execution of the jobs that
are currently in the queue. To do so, we use
parameters (average work) from the workload model.
We simplify the calculation of relative response times
by taking them relative from the current time on.

See Figure 5 for the details of the algorithm.
The complexity of our algorithm is O(n2).

However, the worst case for searching through all
jobs in the queue—O (nlgn)—is always met if we
look for the optimum match. To check whether we
can reduce cost, we also incorporate a simplified
version in our experiments that takes the first match.

// calculates overall response-time impact, in increase/decrease relative to normal response time
response_time (jobi, jobj, slowdown) {
 pairruntime = min (jobi.runtime, jobj.runtime) * (slowdown-1) +
 max (jobi.runtime, jobj.runtime);
 pairsize = max (jobi.size, jobj.size);
 improvement = jobi.runtime*jobi.size / n_nodes;
 delay = (pairruntime * pairsize – jobi.runtime*jobi.size) / n_nodes;
 response_decrease = jobj.runtime*jobj.size / n_nodes – delay;
 response_increase = delay / responsetime;

 //estimate delay for push-down jobs
 for (all push_down_jobs (jobn)) {

 response_time += jobn.runtime * jobn.size / n_nodes;
 response_increase += delay / response_time;

 }
 // response time improvement for job be job being moved
 response_time += jobj.runtime* jobj.size / n_nodes;
 response_decrease = (response_time – jobj.runtime* slowdown * jobj.size / n_nodes)
 / response_time;

 // estimate improvement for pull-up jobs
 for (all_pull_up_jobs) {
 response_time += jobn.runtime * jobn.size / n_nodes;

 response_decrease += improvement / response_time;
 }

 for (future_arrival_short_jobs(jobn)) {
 response_time = jobn.runtime * jobn.size / n_nodes;

 response_increase+= delay / response_time;
 }

 for (future_arrival_med_or_long jobs (jobn)) {
 response_time = jobn.runtime * jobn.size / n_nodes;

 response_decrease+= improvement / response_time;
 }
 return (response_decrease – response_increase) / (number(push_down_job) – number(pull-up_jobs);
 }

Figure 5. Pseudo code for abstracted calculation of utilization gain and response-time impact.

6. Experimental Results

Our experiments are based on an event
simulation with parameter settings and workload
modeling as described below. The machine modeled
is a cluster with 128 single-CPU nodes.

6.1 Metrics and Workloads

We use the following metrics to evaluate the
performance of our LOMARC scheduling algorithm:

 Average response times
 Average relative bounded response times:

response time in relation to runtime time,
bounded by a 60 sec minimum runtime to
avoid overly high impact of very small jobs

 Utilization: percentage of used-nodes time
over the makespan ; i.e., ratio of the
accumulated used nodes and the product of
makespan T and number of nodes P

 Utilization efficiency: if coscheduling, also
considers positive improvements by
increasing the utilization per CPU, indirectly
reflected by a shortened makespan:

E =
PT

tp
i ii∑

with pi and ti being size and runtime per job
 Makespan: the runtime of the whole job

batch
We have used the model in [Lublin2003] for the

workload generation. This model is a complex

statistical workload description, considering job
sizes, job runtimes, and job interarrival times. The
model includes correlations between sizes and
runtimes, fractions of sequential jobs, fractions of
power-of-two sizes, and differing interarrival times
according to day/night-cycles. All numbers are
generated in logarithmic space. A two-stage uniform
distribution is used for job sizes (including
probabilities for serial and power-of-two job sizes), a
hyper-Gamma distribution for job runtimes, and two
Gamma distributions for interarrival times (one for
peak times and one for the overall daily cycle). The
parameters of the model are extracted from three
traces of supercomputing centers and propose a
generalization from the three test cases. The nice
feature of this generalized model is that it can be
adapted to different machine sizes and, thus, be
applied to our machine size of 128 nodes. We have
modeled 8,000 jobs.

Furthermore, we have modified the original
workload by shortening the job interarrival times,
determined by the α parameter of the Gamma
distribution. Workload 1 is the original workload,
Workload 2 and Workload 3 have smaller α
parameters as shown in Table 4. The table also shows
the resulting load value Load = (r-n)/(P*a) with r
being the mean runtime, n the mean job size, and a
the mean job interarrival time [Lublin2003].

Table 4. Workloads modeled.

Workload 1 Workload 2 Workload 3
α 10.23 9.83 8.83

Load 10.6 13 21

To the best of our knowledge, there do not exist
any studies on the distribution of the application’s
resource-usage characteristics as regards CPU,
network, and disk. We model the following mixtures

 M1: 40% CPU-bound, 30% network-bound,
30% disk-bound

 M2: 40% CPU-bound, 10% network-bound,
50% disk-bound

 M3: 30% CPU-bound, 50% network-bound,
20% disk-bound

We perform the majority of our tests with the
mixture M1 which can be considered the mixture we
expect to see on clusters with a share of scientific and
datamining applications. We do some comparisons
that include M3 as a representation of what might be
the conventional mixture and M2 which might be the
mixture for clusters specializing on datamining.

Detailed job characteristics are generated
randomly, using an equal distribution per value
range, according to the following scheme:

 CPU-bound jobs: fCPU in [0.5,0.9), fdisk in
[0.05,0.4) with fcpu + fdisk in [0.6,0.95)

 Disk-bound jobs: fdisk in [0.4,0.65), fnetwork in
[0.05,0.4) with fdisk + fnetwork in [0.5,0.8)

 Network-bound jobs: fnetwork in [0.4,0.65),
fdisk in [0.05,0.4) with fnetwork + fdisk in
[0.5,0.8)

As regards the CPU-behavior, we model
different probabilities that the CPU-parts of the two
applications go well or poorly together, i.e. increase
or decrease utilization. We set the probability for the
former case to p=0.33 and for the latter to p=0.67.
We assume slCPU=1.4 in the former and slCPU=2
which picks two typical cases from our
measurements in Section 4.1. In the latter case,
LOMARC does not schedule CPU-bound
applications together.

Memory consumption is modeled by random
generation for each job in [0.05,1] with 70% of the
jobs in [0.05,0.5], 25% in (0.5,0.8), and 5% in
[0.8.1]. 1 represents the maximum memory size that
is available for applications. This distribution is
roughly modeled as an average over existing memory
studies as in [Chiang2001]. LOMARC does not
coschedule jobs that do not fit into memory together
but, for the comparison with other scheduling
approaches, we need to model the memory slowdown
and set slmem=2.5 according to our measurements in
Section 4.2.

6.2 Experiments with LOMARC Scheduler

To evaluate the benefits of our approach, we
compare to

 Standard single-job scheduling (mere space
sharing PSS)

 Always coscheduling two jobs if running on
a hyperthreaded CPU (AC)

 Coscheduling two jobs that are adjacent in
the queue if they are a match according to
the LOMARC definition (AM) if running on
hyperthreaded CPUs

For our LOMARC approach, we test the
following variants:

 Scheduling on standard CPUs (L-N) using
Ugain,1

 Optimization with different heuristics on
hyperthreaded CPUs: utilization Ugain,1 (L-
U1) and Ugain,2 (L-U2), response-time
impact (L-R), and a variant which selects the
first match found (L-FM)

We set the maximum acceptable slowdown.
MAX_SLOWDOWN to 1.6. For all approaches, we
use priorities and EASY backfilling. We define job

classes in the following way: runtimes in [1sec,1min]
are classified as short, in (1min,1h] as medium, and
in [1h,45h] as long with 45h being the maximum
runtime modeled. Aging (to prevent starvation) is
based on average waiting time Tage. Per each Tage., the
priority of one job will be boosted to a higher level,
so it will take a long job 2Tage to have the same
priority as a short job.

In Figure 6 and Figure 7, we show the results
from comparing several LOMARC variants (L-U1 L-
U2, L-R, L-FM, and L-N) with PSS, AC, and AM
under the 3 different workloads W1, W2, and W3. In
all cases, the characteristics mix M1 is used. For all
workloads, all LOMARC variants perform clearly
better than all other approaches. The arbitrary
coscheduling AC is signficantly worse than space
sharing PSS and, thus, not a reasonable choice. This
demonstates that detailed match considerations are
necessary to make coscheduling on a hyperthreaded
CPU meaningful.

We can see that with the workload becoming
heavier, our approaches, L-U1, L-U2, L-R, L-FM and
L-N, show more obvious improvement over other
approaches in response time, relative bounded
response time and effective utilization. The
improvement in response time of L-R increases from

48% to 56%, and the improvement in relative
bounded response time of L-R increases from 50% to
66% compared to PSS. Thus, response time and
relative bounded response time are approximately
reduced to half by using our approach.

Comparing our different LOMARC heuristics,
all are pretty close to each other as regards response
times. However, L-U1 performs slightly better than
L-U2. L-U1 provides almost the same results as L-R
for all workloads. The differences are more
pronounced for the relative bounded response times.
L-U2 is again worse than L-U1. Obviously, Ugain,1
provides the more adequate estmate. L-R is better
than L-U1, especially for W1 where it is better by
19% whereas only better by 16% for W2, and by 8%
for W3. To perform better as regards relative
response times is the expected result for a metric
focusing on them. Selecting simply the first match in
L-FM is not too much worse if the workload is
lighter (W1) but becomes worse than the workload
becomes heavier where there are more choices to
select the match but ignored by this approach.
Response times are by 17% worse than L-R under
W3 and relative bounded response times by 24%.
Relating the performance to PSS, the improvement in
response times of L-FM vs. PSS is 40% for W1, 41%

0

10

20

30

40

50

60

70

80

L-U1 4.79 8.37 22.69

L-U2 5.21 8.46 23.76

L-R 4.72 8.39 21.79

L-FM 5.51 10.39 26.26

AM 6.29 14.4 36.6

L-N 7.01 12.8 34.56

PSS 9.11 17.61 50.07

AC 17.69 32.6 74.9

Workload 1 Workload 2 Workload 3

Figure 6. Response times for different scheduling approaches and different workloads.

0

100

200

300

400

500

600

700

800

900

1000

L-U1 58.57 103.2 226.15

L-U2 69.32 98.34 243.88

L-R 47.62 86.68 207.25

L-FM 53.54 104.49 296.38

AM 61.91 144.04 369.4

L-N 93.66 149.84 373.33

PSS 100.93 180.49 613.72

AC 192.92 281.26 891.265

Workload 1 Workload 2 Workload 3

Figure 7. Relative bounded response times for different scheduling approaches and different workloads.

for W2, and 48% for W3. The improvement in
relative bounded response times is 47% for W1, 42%
for W2, and 52% for W3. Thus, the much simpler
heuristic provides still very good results. AM that
only matches adjacent jobs in the queue is still doing
significantly better than PSS but still significantly
worse than L-R and also worse than L-FM, especially
for heavier workloads. Considering scheduling on
standard CPUs (L-N), LOMARC still provides
significant improvements: as regards response times
23% for W1, 27% for W2, and 31% for W3. Relative
bounded response times are improved by 7% for W1,
17% for W2, and 40% for W3.

The makespans for Workload 1 are about 10
weeks and are by only 5% improved by L-R vs. PSS.
This indicates that there are often not enough jobs to
fully utilize the machine. The improvement for
Workload 2 is 20% and for Workload 33%.

In Figure 8, we show utilization and utilization
efficiency for all approaches. Utilization is almost
the same for all approaches and for all approaches
improves if the workload becomes heavier (because
more options for packing exist). For utilization
efficiency, LOMARC shows improvements,

especially under heavier workloads, for L-U1, L-U2,
and L-R: 8.5% for W1, 19% for W2, and 38% for
W3. However, there are no relevant differences
between L-U1, L-U2, and L-R. This means using a
heuristic which focuses on utilization does not make
any difference. L-FM is slightly worse—the
improvement is 6% for W1, 15% for W2, and 31%
for W3. L-N only accomplishes 2% improvement for
L1, 9% for W2, and 18% for W3.

To check how much difference the assumptions
about the characteristics mix make, we present
response times and relative bounded response times
for Workload 1 and M2 and M3 in Figure 9.

For M2 and M3, the relative improvements of L-
U1, L-U2, and L-R vs. PSS and AC are similar to
M1. However, for M2, L-N now improves upon PSS
by 34% in response times and by 38% in relative
bounded response times and for M3 it is closer to
PSS than under M1. This is consistent with the
expectation because in M2 there are more disk-bound
jobs that can still be coscheduled with CPU-bound
jobs and, in M3, there are fewer of them.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

L-U
1
L-U

2
L-RL-F

M AM L-NPSS AC
L-U

1
L-U

2
L-RL-F

M AM L-NPSS AC

Workload 1
Workload 2
Workload 3

Figure 8. Utilization (left) and utilization efficiency (right) for different scheduling approaches and different
workloads.

Response Time

0

5

10

15

R 4.99 5.11 5.17 5.9 7.21 5.64 8.54 10.9

L-U1 L-U2 L-R L-FM AM L-N PSS AC

Response Time

0

10

20

R 4.83 5.02 4.76 5.62 7.29 7.45 9.15 15.61

L-U1 L-U2 L-R L-FM AM L-N PSS AC

Relative Response Time

0

200

400

R R 49.68 61.32 44.58 70.11 90.45 82.73 132.96 296.57

L-U1 L-U2 L-R L-FM AM L-N PSS AC

Figure 9. Average response times and average relative bounded response time for M2 (upper row) and M3
(lower row).

Finally, we investigate the detailed behavior of
L-U1, L-U2, and L-R (under M1) by looking at the
average queue lengths, the number of jobs left in
each comparison step for finding a match, and which
job in the end is selected. See Table 5. As we can
see, after meeting all the constraints, the number of
jobs left as candidates to choose from by the different

heuristics is relatively small: for W1 between 5 and
7. With this small number of choices, there is not
much room for the different heuristics to create
different effects. For all heuristics, on average the 3rd
match candidate is selected. L-U1 and L-R select the
4th match candidate under Workload W2. For
Workload 3, we see a significant difference: L-U1

Relative Response Time

0

100

200

RR 52.16 57.91 51.01 52.99 69.63 57.21 91.91 109.9

L-U1 L-U2 L-R L-FM AM L-N PSS AC

selects the 6th job and L-R the 4th which is an
expected effect as optimizing with a focus on
response times should be more reluctant to select a
job which has a position further down in the queue.

However, the results for response times and relative
bounded response times as discussed above do not
really confirm this as the actual improvement of L-R
is higher for W1.

Table 5. Average queue lengths, average numbers of jobs left under the different constraints, and average
job selected for candidates.

Average
Queue
Length

Medium
or Long
Job

SizeB ≤
SizeA

Memory
Fit Matchable

Slowdown
≤ Max

Number
Selected

Workload1 36 24 10 8 6 5 3
Workload2 81 45 21 12 10 8 4

L-U1

Workload3 213 86 40 20 16 14 6
Workload1 40 25 11 8 6 5 3
Workload2 77 49 25 16 12 11 5

L-U2

Workload3 233 85 39 21 16 14 7
Workload1 36 24 13 11 8 7 3
Workload2 80 51 31 21 15 14 4

L-R

Workload3 222 87 48 25 20 17 4

7. Summary and Conclusion

We have presented an approach to find matches
between two jobs on hyperthreaded and standard
CPUs for better resource utilization via coscheduling.
The approach partially reorders the queue and
searches for the best match while estimating impacts
on relative bounded response times and utilization. In
simulations, we have shown that our LOMARC
scheduler clearly outperforms standard space sharing
as regards response times and relative bounded
response times by reducing them to about half their
original value on hyperthreaded CPUs and to about ¾
on standard CPUs. The heuristic performing best is to
estimate the response-time impact when selecting the
best match. The improvement is accomplished by an
improvement in utilization efficiency from running
multiple jobs with complementary resource
requirements. Each individual application is unlikely
to accomplish the same internally,, especially if the
application does not use multithreading per CPU but
simply doubles the number of processes. Worth to
note, our improvements from LOMARC have been
accomplished with quite conservative assumptions
about slowdowns.

Future work includes a refined slowdown model,
experiments with other simplified heuristics (like
making the choice between the first three candidates
only or selecting a candidate if it is beyond a certain
match threshold), and testing the scheduler with

conservative backfilling which may be more sensitive
to whether utilization or response-time impact is
considered. Furthermore, extension to multi-way
nodes is of interest. Then, another choice is to
schedule one or multiple applications on the different
CPUs per node. For such nodes, applications are
more likely to be prepared to use multithreading per
node and may already use the network very
intensively. Thus, there may be fewer options for
coscheduling as regards network usage but also new
options in using physical and virtual CPUs.

Acknowledgements

This research was partially supported by NSERC
and by CFI (Grant No. 6191) with contributions from
OIT and IBM. Thanks to Xuemin Huang for
providing a basic version of the job-scheduling
simulator.

References

[Arpaci1996] Andrea Dusseau, R. Arpaci and D. E. Culler.
Implicit Scheduling: Efficient Distributed Scheduling
for Parallel Workloads on Networks of Workstations.
Proc. SIGMETRICS Conf. Measurement and
Modelling of Computer Systems, Philadelphia/PA,
USA, 1996.

[Batat2000] Anat Batat and Dror G. Feitelson. Gang
Scheduling with Memory Considerations. Proc.
IPDPS, 2000.

[BehrSodan2001] Peter Behr, Samuel Pletner, and Angela
C. Sodan. The PowerMANNA Architecture. IEEE
Conference on High Performance Computer
Architecture (HPCA), Toulouse, France, January
2000, pp. 277-286.

[Chiang2001] S.-H. Chiang and M.K. Vernon.
Characteristics of a Large Shared Memory Production
Workload. Proc. JSSPP, 2001.

[Cirne2003] W. Cirne and F. Berman. When the Herd is
Smart: Aggregate Behavior in the Selection of Job
Request. IEEE Trans. on Parallel and Distributed
Systems, Vol. 14, No. 2, Feb. 2003.

[Feitelson1997] Feitelson D G. Job Scheduling in
Multiprogrammed Parallel Systems, Extended
Version. Technical Report, IBM, August 1997, RC
19790 (87657).

[Figueira2001] Silvia M. Figueira and Francine Berman. A
Slowdown Model for Applications Executing on
Time-Shared Clusters of Workstations. IEEE
Transactions on Parallel and Distributed Systems, Vol.
12, No. 6, June 2001.

[Fracht2003] Eitan Frachtenberg, Dror Feitelson, Fabrizio
Petrini, and Juan Fernandez. Flexible CoScheduling:
Mitigating Load Imbalance and Improving Utilization
of Heterogeneous Resources. Proc. Int. Parallel and
Distributed Processing Symposium (IPDPS'03), Nice,
France, April 2003.

[Gibbons1997] R.A. Gibbons Historical Application
Profiler for Use by Parallel Schedulers. Proc. IPPS
Workshop on Job Scheduling Strategies for Parallel
Processing (JSSPP), April 1997, Lecture Notes in
Computer Science 1291, Springer Verlag.

 [Lein1999] Leinberger W, Karypis G, and Kumar V. Job
Scheduling in the Presence of Multiple Resource
Requirements. Proc. IEEE/ACM Supercomputing
Conf.(SC), Seattle/WA, USA, 1999.

 [Leng2002] Tau Leng, Rizwan Ali, Jenwei Hsieh, Victor
Mashayekhi, and Reza Rooholamini. An Empirical
Study of Hyper-Threading in High Performance
Computing Clusters. Linux HPC Revolution, 2002.

[Lublin2003] U. Lublin and D.G. Feitelson.The Workload
on Parallel Supercomputers: Modeling the
Characteristics of Rigid Jobs. Journal of Parallel and
Distributed Computing Nov. 2003, 63(11):1105-1122.

[Magro2002] Wiliam Magro, Paul Peterson, and Sanjiv
Shah. Hyper-Threading Technology: Impact on
Compute-Intensive Workloads. Intel Technology
Journal Q1, Vol. 6, No. 1, 2002.

[Marr2002] D. Marr D, F. Binns, D.L. Hill, G. Hinton,
D.A. Koufaty, J.A. Miller, and M.Upton. Hyper-
Threading Technology Architecture and
Microarchitecture. Intel Technology Journal Q1, Vol.
6, No. 1, 2002.

[Miller1995] Miller B P, Callaghan M D, Cargille J M,
Hollingsworth J K, Irvin R B, Karavanic K L,
Kunchithapadam K, and Newhall T. 1995. The
Paradyn Parallel Performance Measurement Tools.
IEEE Computer, Special issue on performance
evaluation tools for parallel and distributed computer
systems, Nov. 1995, 28(11):37-46.

[Moreira1998] Jose E. Moreira, Waiman Chan, Liana
L.Fong, Hubertus Franke, and Morris A. Jette. An
Infrastructure for Efficient Parallel Job Execution in
Terascale Computing Environments.
Supercomputing’98, Nov. 1998.

[Nagar1999] Shailabh Nagar, Ajit Banerjee , Anand
Sivasubramaniam, and Chita R. Das. A Closer Look at
Coscheduling Approaches for a Network of
Workstations. Proc. ACM SPAA. Saint Malo, France,
1999.

[Nakajima2002] Jun Nakajima and Venkatesh Pallipadi.
Enhancements for Hyper-Threading Technology in the
Operating System – Seeking the Optimal Scheduling.
Proc. USENIX 2nd Workshop on Industrial
Experiences with Systems Software, Boston/MA,
USA, Dec. 2002.

[Niko2002] D.S. Nikolopoulos and C.D. Polychronopoulos.
Adaptive Scheduling under Memory Pressure on
Multiprogrammed SMPs. Proc. International Parallel
and Distributed Processing Symposium (IPDPS), Fort
Lauderdale/CA, USA, April 2002.

[Ousterhout1982] J.K. Ousterhout. Scheduling Techniques
for Concurrent Systems. Proc. 3rd Intl. Conf.
Distributed Comp. Systems, 1982, pp. 22-30.

[Setia1999] Sanjeev Setia, Mark Squillante, and Vijay K.
Naik. The Impact of Job Memory Requirements on
Gang-Scheduling Performance. Performance
Evaluation Review, March 1999.

[Shmueli2003] Edi Shmueli and Dror G. Feitelson.
Backfilling with Lookahead to Optimize the
Performance of Parallel Job Scheduling. Proc.
Workshop on Job Scheduling Strategies for Parallel
Processing (JSSPP), 2003.

[Silva1999] Fabricio Alves Barbosa da Silva and Isaac D.
Scherson. Concurrent Gang: Towards a Flexible and
Scalable Gang Scheduler. Proc. 11th Symp. On
Computer Architecture and High Performance
Computing, Natal, Brazil, Sept. 1999.

[Sobalvarro1998] Patrick G. Sobalvarro, Scott Pakin,
William E. Weihl, and Andrew A. Chien. Dynamic
Coscheduling on Workstation Clusters. Proc.
Workshop on Job Scheduling Strategies for Parallel
Processing (JSSPP), 1998.

[SodanHuang2004] Angela C. Sodan and Xuemin Huang.
Adaptive Time/Space Sharing with SCOJO. Conf. on
High Performance Computing Systems (HPCS),
Winnipeg/Manitoba, May 2004.

[SodanRiyadh02] Angela C. Sodan and Muhammad
Riyadh. Coscheduling of MPI and Adaptive Thread
Applications in a Solaris Environment. Proc. IASTED
PDCS, Cambridge/MA, USA, Nov. 2002.

[Sodan2004] Loosely Coordinated Coscheduling in the
Context of Other Dynamic Job Scheduling
Approaches–A Survey. Concurrency&Computation:
Practice & Experience. To appear.

[SunMPI2001] SUN HPC ClusterTools 4 Performance
Guide. SUN Microsystems, August 2001. Retrieved
from http://www.sun.com/products-n-
solutions/hardware/docs/Software/.

[Talby1999] Talby D and Feitelson D G. Supporting
Priorities and Improving Utilization of the IBM SP2

Scheduler Using Slack-Based Backfilling. Proc. IPPS,
1999.

[Tullsen1995] D. Tullsen, S. Eggers, and H. Levy.
Simultaneous Multithreading: Maximizing On-chip
Parallelism. Proc. Ann. Int. Symp. on Computer
Architecture (ISCA), June 1995.

[Tullsen00] D. M. Tullsen and A. Snavely. Symbiotic
Jobscheduling for a Simultaneous Multithreading
Processor. Int. Conf. on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS), Nov. 2000.

[VtuneIntel] Vtune Performance Analyzer. Intel
Corporation, http://www.intel.com

[Wiseman2003] Y. Wiseman and D. G. Feitelson, Paired
Gang Scheduling. IEEE Trans. Parallel & Distributed
Systems, 2003.

[Zhang2000] Yanyong Zhang, Anand Sivasubramaniam,
Jose Moreira,and Hubertus Franke. A Simulation-
based Study of Scheduling Mechanisms for a
Dynamic Cluster Environment. Proc. Int. Conf. on
Supercomputing (ICS), Santa Fe /NM, USA, May
2000.

[Zhou2004] Ying (Joy) Zhou and Angela C. Sodan. Survey
of Zero-Copy Optimization in User-level
Communication and Adaptive Knowledge-Based
Solution. Conf. on High Performance Computing
Systems (HPCS), May 2004.

