Reconfigurable Gang Scheduling Algorithm

Luis Fabricio Wanderley Gées', Carlos Augusto Paiva da Silva Martins
Graduate Program in Electrical Engineering, Pontifical Catholic University of Minas Gerais
Av. Dom José Gaspar 500, Belo Horizonte, MG, Brazil

URL: www.pucminas.br
Y{1fwg @uol.com.br} *{capsm@pucminas.br}

Abstract—

Using a single traditional gang scheduling algorithm
cannot provide the best performance for all workloads and
parallel architectures. A solution for this problem is the use of
an algorithm that is capable of dynamically changing its form
(configuration) into a more appropriate one, according to
environment variations and user requirements. In this paper,
we propose, implement and analyze the performance of a
Reconfigurable Gang Scheduling Algorithm (RGSA) using
simulation. The RGSA uses combinations of independent
features that are often implemented in GSAs such as: packing
and re-packing schemes (alternative scheduling etc.),
multiprogramming levels etc. Ideally, the algorithm may
assume infinite configurations and it reconfigures itself
according to entry parameters such as: performance metrics
(mean utilization, mean jobs response time etc.) and workload
characteristics (mean jobs execution time, mean parallelism
degree of jobs etc.). Also ideally, a reconfiguration causes the
algorithm to output the best configuration for a particular
situation considering the system’s state at a given moment and
based on past information. The main contributions of this
paper are: the definition, proposal, implementation and
performance analysis of RGSA.

Keywords— Reconfigurable Algorithm, Gang Scheduling,
Performance Analysis.

1 INTRODUCTION

Nowadays, the service quality requirements of users and
institutions increased. Thus, computer systems that provide
many services (particularly, parallel machines) need to be
highly utilized and provide a short response time for users
jobs. Parallel job schedulers should match both
requirements and workload (jobs) with resource availability
(architecture, processors etc.) in order to maximize the
system’s performance. The main problem is that workload,
requirements and resources change continuously. In order to
solve this problem, many works have been developed to
make job scheduling algorithms more flexible and adaptable
[11, [9], [12], [13], [14], [17], [18], [20]. Up to now, a
poorly explored solution is the use of reconfigurable
computing concepts [3], [4], [13], [14], [16] in parallel job
scheduling algorithms (like gang scheduling).

Reconfigurable computing emerged as a paradigm to fill
in the gap between hardware and software, reaching better
performance than software and more flexibility than
hardware [3], [4], [16]. The reconfigurable devices

including FPGAs (Field Programmable Gate Arrays)
contain an array of computing elements or constructive
blocks, whose functionalities are determined through the
programming of configuration bits. Thus, an FPGA can
implement different behaviors not established at design
time. Because of this, reconfigurable devices (hardware) are
improving the solutions for problems from different areas
(31, [4], [16].

Our basic idea in this paper is to use reconfigurable
computing concepts in a parallel job scheduling algorithm
(gang scheduling) to maximize system’s performance.
According to a deep bibliographic revision [3], [4], [13],
[14], [16], we found works that apply reconfigurable
computing in software, but we did not find a previous work
that used it on algorithms. In [13], we used a first approach
to build a reconfigurable algorithm of a static parallel job
scheduling algorithm. We improved this first approach to
reach our present stage.

Ideally, the algorithm may assume infinite
configurations and it reconfigures itself according to entry
parameters such as: performance metrics (utilization, mean
jobs response time etc.) and workload characteristics (mean
jobs parallelism degree etc.). Also ideally, a reconfiguration
causes the algorithm to output the best configuration for a
particular situation considering the system’s state at a given
moment and based on past information.

Gang scheduling algorithms have been intensely studied
in the last decade. They demonstrated many advantages
over other parallel job scheduling algorithms, for instance,
they: provide interactive response time for short jobs,
through preemption; prevent long jobs from monopolizing
processors; maximize the system’s utilization etc [1], [2],
[5], [6], [11], [12], [14], [18], [19], [20]. In our specific
case it presents some interesting characteristics. It is
composed of independent and well defined parts (packing
and re-packing schemes, multiprogramming level, etc.) and
each one has infinite possible solutions (implementations).

The main objectives of this paper are: to define,
propose, develop and implement the RGSA; to analyze the
performance of RGSA using simulation. The main goal is
the implementation of RGSA in our simulation tool.

In this paper, we introduce the reconfigurable gang
scheduling algorithm (RGSA) and relate it to other works in
sections 2 and 3. In section 4, we present our experimental
method: workload, metrics, configurations and parallel

architecture used in our simulations. Section 5 presents the
experimental results and the performance analysis
comparing RGSA and other traditional gang scheduling
algorithms. Finally, in section 6 we highlight our
conclusions and future works.

2 RECONFIGURABLE GANG SCHEDULING ALGORITHM

Extending the reconfigurable hardware definition, we
define a reconfigurable algorithm as an algorithm that is
composed of constructive blocks, allowing its behavior to
be modified through the form of its configuration.

A reconfigurable algorithm is composed of three layers:
Configuration Control Layer (CCL), Reconfigurable Layer
(RL) and Basic Layer (BL), as shown in Fig.1. The BL
consists of a frame set and data structures. A data structure
may be a list, a queue, an array or some structure that stores
data. For example, in Fig. 2, a wait queue (data structure)
stores jobs (data).

A frame represents a part or phase of an algorithm. For
example, in a gang scheduling algorithm, a frame may
represent a packing scheme that fits a job inside the
Ousterhout matrix, which means it is only a part of a gang
scheduling algorithm. There are two frame types: control
and action frames. A control frame controls a specific
characteristic of a data structure. In Fig. 2, the
Multiprogramming Levels ~ Frame controls the
multiprogramming level of the Ousterhout Matrix. An
action frame is responsible for process or move data
between or inside data structures and frames. In Fig. 2, the
Packing Schemes Frame receives a job from the Queue
Policies Frame and fits it inside the Ousterhout Matrix.

Configuration Control Layer

= 7

Basic Layer
_Control £ -Constructive — .Control
Frame Block Line
- Action -Data + _Flow
Frame Structure Arrow

Fig. 1. The general architecture of a reconfigurable algorithm
composed of three layers: Configuration Control Layer (CCL),
Reconfigurable Layer (RL) and Basic Layer (BL).

The Reconfigurable Layer represents a configuration or
an instance of the BL, in which every frame is filled out

with one or more compatible constructive blocks at a
certain moment. A constructive block is a possible
implementation that can fill out with a specific frame. For
example, the Re-Packing Schemes Frame, shown in Fig. 2,
can be filled out with different re-packing schemes like slot
unification and alternative scheduling, one at a time or
simultaneously. So, each re-packing scheme implementation
is a constructive block. When two or more constructive
blocks simultaneously fill out a frame, they are executed in
sequence. The maximum number of possible constructive
blocks that fill out a frame is the number of different known
implementations, for example, the number of known re-
packing schemes.

The Configuration Control Layer chooses the
constructive blocks that will fill out each frame at a given
moment, thus it controls the configuration swapping. The
choice is made based on entry parameters. The CCL can be
implemented as a static table with pre-defined decisions, an
evolutionary algorithm, a learning-based algorithm (neural
network) etc. For example, we have a workload composed
of long jobs and the most important metric for the user is
the reaction time. So, the CCL will set a configuration that
reduces the reaction time of the long jobs. In our case, the
CCL should fill the Multiprogramming Levels Frame with
the Unlimited Constructive Block, allowing a job to start its
execution as soon as it was submitted.

Re-Packing
Schemes Frame

-

su. | :as
Block | : Block:
.

mammmnad

Queue Packing
Wait Policies Schemes
Ousterhout
Queue Frame Frame Matrix
FCFS F.Fit
!EZ} # Block - Block - #
! SJF I B.Fit:
S E]

Multiprogramming
Levels Frame

amsmnsany
Limited | :Unlimit..
Block | : Bln:ki

Fig. 2. The Basic Layer of the Reconfigurable Gang Scheduling
Algorithm (RGSA) and some possible constructive blocks of the
Reconfigurable Layer.

A gang scheduling algorithm may be composed of four
parts: a packing scheme, a re-packing scheme, a queue
policy and a multiprogramming level. In our Reconfigurable
Gang Scheduling Algorithm (RGSA), as show in Fig. 2,
each part is a different frame with two constructive blocks,
to simplify our study. The first three are action frames and
the last one is a control frame.

The Packing Schemes Frame may be filled out with two
different packing schemes based on capacity: first fit or best
fit. The Re-Packing Schemes Frame may be filled out with
the slot unification and/or alternative scheduling re-packing
schemes. The Queue Policies Frame can use the First Come
First Served (FCEFS) or Short Job First (SJF) policies.
Finally, the Multiprogramming Levels Frame can be filled
out with the Unlimited or Limited Multiprogramming Level
Constructive Blocks.

In our RGSA, the CCL is implemented as a table (or
switch case structure) that knows the best configuration
according to some workload parameters, as shown in Table
1. The workload parameters and possible values are:
execution time (high (H) or low (L)), parallelism degree
(high (H) or low (L)), predominance degree (60%, 80% or
100%) and the most important metric (utilization (UT),
reaction time (ReacT), slowdown (SD), response time
(RespT) or simulation time (ST)). Then CCL evaluates
these parameters and reconfigures RGSA to the best
configuration. The workload parameters chosen and
configurations will be better discussed in the Experimental
Method section.

Table 1. The actual CCL implementation that chooses the best
configuration according to some workload parameters.

Wiorkload Faramnebers

: : : Corfigu-

Case . Exotin | Paallelon | Predominamce]
Tyetric i TAtion
Time Degree Lemrel

1 TTor 5T Hizh Lowr 100 Comd 2
2 TTor ST Lomr High g0 Comd 2
3 RepT Hizh High a0 Comd 2
4 TTor ST Lomr Lomr 100 Comd 4
b RespT Lomr Lomr a0 Comd 4
fi TTor 8T Lomr High 100 Cond 5
7 Beac T Hizh High 100 Comd 5
a2 Eeac Tor RespTor SO | High Lomr a0 Comd 5
Q RerpT Lomr High a0 Cond 5
10 Reac Tor RespT Lomr High a0 Comd 5
11 Reac T Lomr Lomr G0 or#0or 100 | Cowd 5
12 5D Lomr Lowr 100 Comd 5
13 S or Beac T High High a0 Comd 6
14 S or Beac T High Lowr 100 Comd 6
15 D Lomr Lomr a0 or 81 Cod 6
16 o Hizh Lowr a0 Comd 6
17 RespT High High 100 Cowd 7
18 RepT Hizh Lomr 100 Cowd 7
12 RespT Lomr Lomr 100 Cowd 7
an TTor ST Hizh Lomr a0 Comd 8
21 TTor 8T Lomr High a0 Cond 2
a2 RespT Hizh High an Comd 8
23 RerpT Lomr High 100 Cond 3
24 RerpT Lomr Lomr a0 Cond 3
25 TTor ST Hizh Lomr a0 Comd 10
26 TUTor ST Hizh High G0crd0or 100 | Cowf 11
a7 TTor 5T Lomr Lowr G0 or &0 Comf 11
28 Eear T High High a0 Cord 11
29 Reac Tor RespT High Lowr a0 Comf 11
30 18] Lomr High [<11] Cord 11
31 Beac Tor SD Lomr High 100 Cond 12
32 18] High High 80 oz 100 Cowd 12
33 o] Lomr High a0 Comf 12

The backfilling scheduling algorithm needs an estimated
execution time for all submitted jobs as an input parameter
[17]. As described before, the RGSA also needs input

parameters, but these ones don’t need to be introduced by
each user (per job). Using past information (log files etc.),
depending on the day and time, we can classify or divide
workloads in groups (sub-workloads) in a time interval by
the predominance level of a job type. For example, in Fig.
3, on Mondays between 0 a.m. to 6 a.m., based on a
hypothetical log file, we noted that all executed jobs
(predominance level equal to 100%) have a high execution
time and high parallelism degree (HH100%). And in this
period (night), the most important metric is utilization. So,

according to our CCL implementation, the RGSA
reconfigures to the configuration 11.
-
=
'Q_\
z
g
A LL60%
k3 LL 80%
_g HL
HH 100°% B0
2 s HHeow | HHB0%
L L L L] 1] L 1 >
0 4 8 12 16 20 0 4 8
Time (Hours)

Fig. 3. The classification of a log file in sub-workloads, along the
time, by predominance level of a job type.

This classification process can be done by a system
administrator or an automated system that examines log
files and classifies into sub-workloads. Along the time, the
CCL table can be updated. As suggested in [9], the RGSA
can use idle cycles to simulate the last executed sub-
workload with all possible different configurations and
update the table with the best configuration for this sub-
workload. As we know, some system’s behaviors repeat
over the time. For example, if on last Monday at night, the
RGSA found that configuration 11 was the best one,
probably this configuration will achieve a good
performance if RGSA uses it in the next Monday at night.

The selection of the most important metric can be done
according to the predominance level of interactive and
batch jobs in a workload. For interactive jobs, reaction time
and response time are generally most important, because
users want a quick answer. And for batch jobs, utilization is
the most important, because the system administrator needs
to use the maximum of the system resources. The definition
of thresholds between high and low execution time and
parallelism degree must be determined according to each
system.

3 RELATED WORK

This paper presents the main results of a master’s thesis
[14]. In this research, we found many works about gang
scheduling [1], [2], [5], [6], [L1], [12], [14], [18], [19],

[20], few works about reconfigurable software [13], [14],
[16] and algorithms, and none about reconfigurable parallel
job scheduling algorithms. Even so, all related works are
deeply discussed in [14] and really helped us to reach our
objectives and goals. In this paper, we will discuss only four
papers that are more relevant and close to our work [6], [9],
[12], [17].

In [12], a flexible co-scheduling algorithm is proposed
and implemented. As well as our proposal, it uses a
different algorithm depending on the workload. The gang
scheduling is only used with jobs that really need it, while
other jobs can be scheduled with no restrictions. This
approach is limited to a couple of scheduling options.
Moreover, the used gang scheduling algorithm is the
traditional one.

Regarding the experimental results, [6] is the work that
presents the closest experimental results to our research. By
simulation, Feitelson compares many different packing
schemes and few re-packing schemes, looking for the one
which best performs on average for the used workload.
Thus he does not present the idea that the same algorithm
can assume different configurations, by changing its
packing schemes, for example. Moreover he does not vary
others parameters like the multiprogramming level and
queue policies. Even so, it is very important to compare that
work with some results that were achieved in our
simulations.

In [9], Feiltelson presents the idea of self-tuning
systems, in which the process to tune the system is
automated. It uses genetic algorithms and log files as input
for simulations. These simulations are performed during
idle cycles, increasing the utilization of the system, with no
cost.

Finally, in [17], a self-tuning job scheduler with
dynamic policy switching is simulated and analyzed using
trace information from some computing centers. Like
backfilling schedulers it needs information about the job’s
estimated execution time. It is limited to three policies and
conservative backfilling. It presents a fine idea of self-
tuning that can be used in our Configuration Control Layer
to change configurations.

4 EXPERIMENTAL METHOD

In this section, we first describe the metrics, parallel
architecture and workload used in our simulations.
Afterwards, we describe the experimental design in which
we highlight the used configurations.

4.1 Metrics

In order to analyze a parallel job scheduling algorithm,
we can use different metrics. The most common are:
utilization, response time, reaction time and slowdown [7],

(8], [15].

The mean utilization of a parallel architecture may be
calculated through Eq.1, where CPUBusyTime is the time in
which a processor was busy and TotalTime is the total time
involved in the execution of all the workload. The
utilization value is always between 0 and 1. The utilization
depends directly on the input load. To compare different job
scheduling algorithms under the same load and workload,
the relative difference of the utilization is an important
parameter to evaluate the obtained performance.

Y CPUBusyTime (1)

NumberOfProcessorsxTotalTime

MeanUtilization =

The mean job response time (in seconds), defined in
Eq.2, is the mean time interval between the submission and
end of a job.

Z (JobEndTime — JobSubmissionTime))
NumberOflobs

MeanResponseTime =

The mean job reaction time (in seconds), defined in
Eq.3, is the mean time interval between the submission and
the start of a job.

Z (JobSmrtTime - JobSubmissionTime) 3)
NumberOfjobs

MeanReactionTime =

As shown in Eq.4, the mean jobs slowdown is the sum
of jobs response times (reaction time + execution time)
divided by the jobs execution times (dedicated time). This
metric emerges as a solution to normalize the high variation
of the jobs response time. The nearest the value is from 1,
the better is the slowdown.

JobResponseTime

JobExecutionTime 4)
NumberOfjobs

MeanSlowdown =

We decided to use the mean simulation time of the
workload as a metric too, which is the time interval between
the beginning and the end of the simulation (when the last
job ends).

4.2 Parallel Architecture

The selected parallel architecture is a cluster composed
of 16 nodes and a front-end node interconnected by a Fast
Ethernet switch. Each node has a Pentium III 1 Ghz (real
frequency = 0.938Ghz) processor. In Table 1, we see the
main values of the cluster's characteristics, obtained from
benchmarks and performance libraries (Sandra 2003, PAPI
2.3 etc.). These values are essential as input parameters to
ClusterSim, a simulation tool developed by our group.

The ClusterSim is a Java-based parallel discrete-event
simulation tool for cluster computing. It supports visual
modeling and simulation of clusters and their workloads for
performance analysis. In the simulation model, a cluster is
composed of single or multi-processed nodes, parallel job
schedulers, network topologies and technologies. A
workload is represented by users that submit jobs composed
of tasks described by probability distributions and their
internal structure (CPU, I/O and communication
instructions). The simulation model supports a lot of
events: job arrival, end of job, unblock task, end of task,
message arrival etc. For that reason, depending on cluster
size and especially on the number of jobs, the execution of a
simulation can be too long and the simulation tool can
become out of memory [14].

Table 2. Cluster characteristics and respective values.

Characteristic Value
Number of Processors 16 + 1
Processor Frequency 0.938 Ghz
Cycles per Instruction 0.9997105

Primary Memory Transfer 11.146 MB/s
Rate
Secondary Memory 23.0 MB/s

Transfer Rate

Network Fast Ethernet
Network Latency 0.000179 s
Max. Segment Size 1460 bytes
Network Bandwidth (Max.
Throughput) 11.0516 MB/s
Protocol Overhead 58 bytes

4.3 Workload

As described before, in our simulation tool, a workload
is composed of a set of jobs featured by: their types, internal
structures, submission probabilities and inter-arrival
distributions. Due to the lack of information about the
internal structure of the jobs, we decided to create a
synthetic set of jobs [8], [10], [15].

In the related works [2], [5], [6], [10], [19], we found
only information about the execution time of the jobs, but
our simulation tool simulates a job execution based on its
number of instructions. So we performed some pilot tests to
define some of these values (number of instructions,
granularity etc.) for our synthetic jobs. In order to simplify
our jobs internal structures, we fixed some of the values and
characteristics (Table 3).

In the workload jobs, at each one of the iterations, the
master task sends a different message to each slave task. On
their turn, they process a certain number of instructions,
according to the previously defined granularity, and then
they return a message to the master task. The total number
of instructions that is to be processed by the job and the size
of the messages are divided among the slave tasks, that is,
the greater is the number of tasks (high parallelism degree)

the least is the number of instructions that a single task has
to process.

With regard to the parallelism level, which is
represented by a probability distribution, we considered
jobs between 1 and 4 tasks as low parallelism degree and
between 5 and 16 as high parallelism degree. As we know,
real workload analyses show that for large parallel machines
(bigger than 64 processors), there are more small jobs. In
our case, we did a relative equivalence. For example, in a
128-processors machine, short jobs are less than 32 tasks
(one quarter). So, for a 16-processor machine, we
considered a short job as less than 4 tasks (one quarter). As
usual, we used a uniform distribution to represent the
parallelism level, another more realistic way could be the
use of a uniform distribution that samples power of 2
numbers. Combining the parallelism level, number of
instructions and granularity characteristics, we had 8
different basic job types.

There are two main aspects through which a job can
influence in a gang scheduling: space and time [7]. In our
case, space is related with the parallelism degree and time
with the: number of instructions, granularity and the other
factors. Combining space (parallelism degree) and time
(execution time), we can cover the majority of possible
workloads. So, after the simulation, we can identify, in a log
file, sub-workloads that fit into any of these combinations.
Thus we combine these orthogonal aspects to form 4
workload types.

Table 3. Workload characteristics and their values.

Characteristic Value

Low — 1 million instructions

(Ere gy High — 10 million instructions

Low — 100 million instructions

N3 O LB i O High — 1 billion instructions

Low — uniform distribution (1,4)

It T et High — uniform distribution (5,16)

Parallel Algorithm Model Process Farm (Master Slave)

Message Size 16 Kbytes

In the first type, the most predominant are the jobs with
a high parallelism degree and a structure that leads to a high
execution time. In the second type, jobs with a high
parallelism level and a low execution time predominate.
The third one has the majority of jobs with a low
parallelism degree and a high execution time. In the last
workload, jobs with a low parallelism degree and a low
execution time prevail. For each workload we varied the
predominance level between 60%, 80% and 100%
(homogeneous). For example, a workload HH60 is a
workload composed of 60% jobs with a high execution time
and a high parallelism degree, and the other 40% is
composed of the opposite workload (low execution time
and parallelism degree). So, we created 12 workloads to test
the gang scheduling algorithms: HH60, HH80 and HH100;

HL60, HL80 and HL100; LH60, LH80 and LH100; LL60,
LL80 and LL100.

In all workloads we use a total number of jobs equal to
100 (due to the ClusterSim simulation time and memory
limitations) and the inter-arrival represented by an Erlang
hyper-exponential distribution. To simulate a heavy load,
we divided the inter-arrival time by a load factor equal to
100.

4.4 Experimental Design

It is important to note that each RGSA configuration is a
traditional gang scheduling algorithm (TGSA). Because in a
TGSA, its parts are fixed and cannot be changed over time.
For example, in Table 4, ConfO1 has the first fit, alternative
scheduling, limited multiprogramming level and FCFS, and
it cannot changes over time. Through the rest of this paper,
TGSA and configuration will be treated as synonyms.

In order to test and analyze the performance of the
RGSA, we used a full factorial model. A configuration of
RGSA or a traditional gang scheduling algorithm is
composed of a packing scheme, a re-packing scheme, a
multiprogramming level and a queue policy. In Table 4, we
observe the possible configurations of RGSA. The
multiprogramming level was limited in 3. When the
multiprogramming level is unlimited, it does not make sense
to use a wait queue. Because, as soon as a job arrives, it will
always fit into the matrix.

Table 4. RGSA configurations composed of packing and re-
packing schemes, mulitprogramming levels and queue policies.

Configs yel‘l,l:l (Pl(:ll‘;lcl; }S)zlilzﬁeg Re-Packing Scheme
Conf 01 | Limited FCFS First Fit | Alternative Scheduling
Conf 02 | Limited SJF First Fit | Alternative Scheduling
Conf 03 | Limited FCFS First Fit | Slot Unification

Conf 04 | Limited SJF First Fit | Slot Unification

Conf 05 | Unlimited | X First Fit | Alternative Scheduling
Conf 06 | Unlimited | X First Fit | Slot Unification

Conf 07 | Limited FCFS Best Fit | Alternative Scheduling
Conf 08 | Limited SJF Best Fit | Alternative Scheduling
Conf 09 | Limited FCFS Best Fit | Slot Unification

Conf 10 | Limited SJF Best Fit | Slot Unification

Conf 11 | Unlimited | X Best Fit | Alternative Scheduling
Conf 12 | Unlimited | X Best Fit | Slot Unification

Each one of the 12 configurations was tested with each
workload, using 10 different simulation seeds. The selected
seeds were: 51, 173, 19, 531, 211, 739, 413, 967, 733 and
13. So we made a total of 1440 (12 configurations X 12
workloads X 10 seeds) simulations.

5 EXPERIMENTAL RESULTS

In this section, we present and analyze the performance
of RGSA. First, for each metric, we present the results

obtained by simulation and analyze the performance and
influence of every frame. To do it, we compare sets of
configurations in which the analyzed frame is filled out with
different blocks and the other frames have a fixed block. At
the end of this section, we compare between the
performance of RGSA and every configuration individually.

5.1 Utilization

In Fig. 4, we present the relative mean utilization of the
cluster among each configuration for all workloads.
Considering the packing schemes (Fig. 5(a)), when the
multiprogramming level is unlimited, the first fit provides
higher utilization for HL and LH workloads.

Utilization x Workload
9.0

g0
7.0

13 Confl 2 (U/BF/SL)

O Confl1 (UEFIAS)

= Conf1 0 (LISJF/EFISU)

W Conid (LFCFSEFISL)
Confe (LISJFEFAS)

£ Conf? (LFCFSBFIAS)

0 Conis (UFFISL)

7, Confs (LFFIAS)

0 Confé (LISJFFFISL)

45 Conf3 (LFCFSFFISL)

B Conf2 (LISJFFFiAS)

15 Confl (LFCFSFFIAS)

6.0
50
40

Utilization

3.0
20
1.0
oo

RO T
N Pad g e
ET RO e

HLED [(T~ MR
M
i Wmioee =]

LHeo [FER (T !

i Y el oo

b T e

G AP e
LLt00 [oEEr OO R

R IR

HHED
HHs0 [
HH100
HLE0
HL100 |
LHED
LH100
LLED
LLao [

Workload

Fig. 4. The relative mean utilization among each configuration for
all workloads.

Initially, the best fit scheme finds the best slot for a job,
but at long term, this decision may prevent new jobs from
entering in more appropriate positions. In the case of HL
and LH workloads, this chance increases, because the long
jobs (with a low parallelism degree) that remain after the
execution of short jobs (with a high parallelism degree) will
probably occupy columns in common, thus, making it
difficult to defragment the matrix. On the other hand, the
first fit initially makes the matrix more fragmented. Besides,
it increases the multiprogramming level. But at long term, it
will make it easier to defragment the matrix, because the
jobs will have fewer time slot columns in common. In the
other cases, the best fit scheme presents a slightly better
performance. In general, both packing schemes have a quite
similar performance. The same happens to the re-packing
schemes (Fig. 5 (b)).

Regarding the multiprogramming level, we reached two
conclusions: the unlimited is better for HH and LL
workloads (Fig. 5 (c)), but it is very bad for HL and LH
workloads (Fig. 5 (d)). With an unlimited
multiprogramming level, for each new job that does not fit
into the matrix, a new time slot is created. At the end of the
simulation, as the load is high, a large number of time slots
existed. In this case, the big jobs (high parallelism level) are

the long ones. So when the small jobs terminate, the idle
space is significantly smaller than the space occupied by the
big jobs, that is, the fragmentation is low and the utilization

18 maximized.

Packing Schemes
o1
D5
5 os
5o @ First Fit
= i mBestFit
-
- 0z
0.
o
CO 0T 02 OO0 SO0 COS11 CDR-12
Con uration s
(@)
Re-Packing Schemes
o 7
13
0.5 o Athe e
Ao Scheduling
B mEiot
§, Unitoaton
202
o
o
0 =00 CO0-0 b CO5-06 COT-00 COE-10 C11-12
Confl gura Sone
k)
Mudtipr ogranmving Levels HH and LL
e Worloads
05 |
pa |
s mlimited
LE SJF
202 o Unlimited
b
a B _B N |
COO205 CO0I-06 COF-0B-11 COB-10-12
CDI'ITIQIJFI‘.I)HI
(c)
Mukiprogramming Levels HL and LH
ois Worloads

505 o Umied
o4 FCFS
§ . B Limited
£ oz uf#ﬁm
E o

g !

COMIZ05 COBO4-05 COT-0B-11 COB-10-12
Corfigorations
(@
Fig. 5. Mean utilization considering the (a) packing schemes; (b)

re-packing schemes; multiprogramming level for (c) HH and LL
workloads; and (d) HL and LH workloads.

When we use LH and HL workloads, each matrix slot
will be occupied by long and short jobs. As time goes by,
the short jobs will end, leaving idle spaces on the matrix. In
this case, the big jobs can not be the long ones, so a big
space can become idle. Even if we use re-packing schemes,
the fragmentation becomes high.

With reference to the queue policies, the SJF policy
presented a higher utilization in all cases. When we remove
the short jobs first, there is a higher probability that short
idle slots exist where they can fit. Using the FCFES policy, if
the first job is a big one, it can not fit into the matrix, thus,
preventing other short jobs from being executed. So some
slots become idle and the utilization low.

5.2 Reaction Time

In Fig. 7 we present the relative mean reaction time of
jobs among each configuration for all workloads. Packing
schemes have a very small influence on reaction time,
because they depend on the new job that came from the wait
queue. According to Fig. 6 (a), we can say that the both
packing schemes are quite similar. The same happens to the
re-packing schemes, because the defragmentation occurs
after the beginning of the job’s execution (Fig. 6 (b)).

The multiprogramming level has a direct influence on
the jobs reaction time, because with an unlimited number of
slots, a job can always fit into the matrix without waiting in
the queue. In the worst case, the reaction time of a job will
be equal to the number of slots multiplied by the slot
quantum.

Packing Schemes

BEFistFit
BEe==iFi

C01-07 COZ-08 @309 Cd-10 (0511 D612
Corfigur dions

()

Re-Packing Schemes
3E0 5

w3|]]|:l-
Ezﬂ]n-
& 2000
= 180 4
T 1000 4 (B
E 0

101883
-1

00102 0204 CO6-06 DO7.09 COB-10 CI1.02
Condi gurst ore

ib)

Multipro gr anming Levels
3600

« 3000

& 2400 o Limited
§ FCFS
£ 1500 B Limited
o SIF
Emm : O Unmited
= &0 : 1 3 -

1] - T T

C01-02-05 O3-04-D8 CO7-06- 10 COB-10-1Z

Corfigurations
(ch
Cuene Policies
3500
w2000 o
£ 400 |
E 2000 4 mFCFS
5 1500 4 W SJIF
=
c 1000
E 500
o4
o102 O3 0 0708 Cog-10
Corfigurations
{cly

Fig. 6. Mean jobs reaction time considering the (a) packing
schemes; (b) re-packing schemes; (c) multiprogramming levels;
(d) queue policies.

Configurations with an unlimited multiprogramming
level present an insignificant reaction time in comparison
with those with a limited multiprogramming level, as shown
in Fig. 6 (c).

Reaction Time x Workload
45000.0

5 Conf1 2 (L/EF/5L)
400000 4

'3 OCanf1 (LEFIAS)
_ 35000.0 4 'i i % Confl 0 (LASJFEFSU)
2 300000 I g W Confd (LFCFSEBF/SEL)
E 2som00] i |] Confs (LISJFBFIAS)
= i g @ o7 (LIFCFSBFIAS)
S 200000 4 5 i
g '] I I O Conffs (UFFISU)
1500004 B = H 13 CanfS (UFFIAS)
= o000 ﬁ I E 1 [00Canf4 (LISJFFFSL)
oo | B a g E E g B H = 3 Cont3 (LIFCFSFFISU)
e R O T =Nl 2t
(U LSS5 NEE R 5 e L - SRSl -
28 2 2 2 2 2 2 2 g o o |5t LFCFSFRAS)
T T = 433 2 F F =285 5=
T T % T T f 3 3 5 oo 4
Workload

Fig. 7. The relative mean jobs reaction time among each
configuration for all workloads.

With reference to the queue policies, on average, the
SJF is better than FCFS, because the jobs in the queue
spend less time waiting to be removed to the matrix and
start their execution (Fig. 6 (d)).

5.3 Response Time

In Fig. 8 we present the relative mean jobs response
time among each configuration for all workloads.
According Fig. 9 (a) and (b), the results showed that both
packing and re-packing schemes are equivalent. The
multiprogramming level has a direct influence on the
response time.

Response Time x Workload

Q0000.0

13 Cant1 2 (UBFISL)
O Contl1 (UBFIAS)
= Conf10 (LISJFIBFISU)

£0000.0

700000 4] M
@ 60000.0 - W Conf3 (LIFCFS/BF/SU)
E I
= sooood{ O B Conts (LISJFEFAS)
2 E o £ Conf7 (LIFCFS/MBFIAS)
g 4000007, = B Confé (LFFSLY
=
& 300000 1 E | ; E 5 Confs (LFF/AS)
& 200000 E ! : E " g 0 Conf4 (LISJFFFISL)
e i B = 13 Cont3 (LFCFSFRSU)
e WEHE LB A2 . E " = | | meonf2LsFFFAS)
8 s N S N O S
2 2 2 2 28 82 2 2 g g g |5 LFCFSFRAS
I T = 4 4 —5 T T = d d
I T % I T é 4 35 2 3 4
Workload

Fig. 8. The relative mean jobs response time among each
configuration for and all workloads.

When the multiprogramming level is unlimited, the jobs
have a short reaction time, but the execution time tends to
be higher, because there are more available time slots
(providing more concurrency). The execution time of a job
is increased by the reaction time if the multiprogramming
level was limited. On average, configurations with an
unlimited multiprogramming level are worse than those a
with limited one, that is, more jobs concurring in the matrix
is worse than more jobs waiting in the queue, but there are
some exceptions.

Packing Schemes
Q00
o, 500
£ mom
§ =0 mFirztFit
g 2000 B B=st Fd
g 500
000
; S0
o
OH-07 CO2-08 0008 (04 10 CO5 41 Lo 12
Cordigur dians
A
Re-Packing Schemes '
4000
5 B0
E 3000
- (= T
g =m Soheduling
E?;i Skt
x Uil i aeon
g 1o
g =m
0
COM-0c Cl2-04 CO5-00 00708 CO8 90 C14-12
Configurations |

(b}

Oueue Policies HL and LH Workloads

4500 1

2 3

=

g ¥

5 BFCFS
2 mEF
©

.02 o03.048 o7 -0B - 10
Confipurdions

)

Oueue Policies HH and LL Workloads

2500
000 BFCFS
W5
1200
500
o r r

conm C=0d oor -0 R0

Mearn Resporse Time
-]
o

Corfigurdions

(d)

Fig. 9. Mean response time of jobs considering the (a) packing
schemes; (b) re-packing schemes; queue policies for (¢) HL and
LH workloads and (d) HH and LL workloads.

Generally, we believe that unlimited multiprogramming
is always better if we are not considering memory paging,
but in Fig 10, we see a simple example in which the mean
jobs response time is better (smaller) for a limited
multiprogramming level. Suppose a workload composed of
three jobs with 2 tasks (each one) and an execution time
equal to 2.1 seconds; and an Ousterhout matrix with two
columns, a time slice equal to 1 and a limited
multiprogramming level equal to 2. In this example, when a
job finishes before the time slice ends, a new time slice
starts.

0
! o | I Y
2) | IR Y
3 e ———
; (3
a1 s | e
42 ¢
52 61 eI
— —] s o o 7y
69 |
I R
63
I —
4 A 4

Fig. 10. The simple workload execution using limited and
unlimited multiprogramming levels.

In Fig. 10, we observe the following response times for
limited multiprogramming level: Jobl = 4.1s; Job2 = 4.2s;

Job3 = 6.3s; mean = 4.86s. And for unlimited
multiprogramming level we observe the following response
times: Jobl = 6.1s; Job2 = 6.2s; Job3 = 6.3s; mean = 6.2s.
So, we note that the use of a limited multiprogramming
level can achieve better response times for a certain
workload, even not considering the memory paging.

With reference to the queue policies, we reached two
conclusions: the SJF policy is better for HH and LL
workloads (Fig. 9 (c)) and the FCFS policy is better for HL
and LH workloads (Fig. 9 (d)). In the first case, the LL jobs
are initially executed and terminated quickly. Thus, HH
jobs wait less time in the wait queue, reducing their reaction
time and consequently their response time.

In the last case, when we use the SJF policy, the HL jobs
are executed first. So LH jobs have to wait so much time in
the queue, which increases their reaction time and
consequently their response time.

5.4 Slowdown

In Fig. 11 we present the relative mean jobs slowdown
among each configuration for all workloads. Based on past
analysis, we conclude that both the packing and re-packing
schemes are equivalent. The slowdown is based on response
time and consequently on reaction time. When the
multiprogramming level is unlimited, the response time is
almost equal to the execution time. Thus, the slowdown
value tends to 1.

Based on the reaction time analysis and the results
shown in Fig. 9, on average, the SJF policy presents a better
slowdown, but there are exceptions.

Slowdown x Workload
7000

E00.0 4
500.0 4 % i
400.0 4

i

' Cont 2 (LUBFSL)
O Conttd (LBFAS)

2 Cont1 0 (LISJFEFSL)
w Conid (LFCFS/EF/EL)
Confs (LISJFEFi&s)
Conf? (LIFCFSEFIAS)

B Cons (LFF/EL
5 ContS (LFFIAS)
0 Cont4 (LISJFFFEL)

Slowdown

2000 4

SREEG: - N N 27
e]

W BoE o !
1000 1 g g a = 5 - L3 Cont3 (LIFCFSFFISU)
i - o | 0 OH E - = 5| | BConf2 (LSJFFFiaS)
2 8 228222322 3 =2 4 Confl (LIFCFSFFIAS)
ffzzzs 5L D3
= = I sy) —

Workload

Fig. 11. The relative mean jobs slowdown among each
configuration for all workloads.

5.5 Simulation Time

In Fig. 12, we present the relative mean simulation time
among each configuration for all workloads. The simulation
time depends directly on the utilization. So, all observations
and analyses of the utilization metric may be extended to
the simulation time.

Simulation Time x Workload
160000.0

over Conf5 increases from 18.83% to 42.32%. In the last
case, we note that Conf5 (the best on average) would be
worse than Conf3, which was previously considered the

w5 Coni1 2 (UBF/SL - .
140000.0 { a0 Deenfit (UBFS) worst configuration.
= 1200000 4 o o Conf0 (LISJFEFS) .
) | I |
z | % s Table 6. S.peedl.lp of RGSA, in percentage (%), when compared to
é 10000001 o 0 P Conff (L/SIFBFIAS) each configuration for a workload composed of HL60 and LH60
S 800000 o g E] E FIContT (LFCFSBFIAS) workloads.
] soooo.o-% g = . B Confh (LFFISU)
P ! =] W Conts (LWFFIAS) =
= Meiric:
40000.0-% E o E E N O Cont4 (LASJFFFSL) le.ﬁgu.:a- Uﬁ:liza- Rea.ciiml Res?nnse Slowdown Sl.mu].aimn Mean
200000 — H “ h ﬂ E E E E L Cont3 (LFCFSFFSU) tions tion Time Time Time
. BAS R g g R||ecn2UsFrRRS Conf0l | 26.7836 | 99.7605 | 22.5123 93.4916 27.1878 549471
"Te s s e e ge g g g | FConfLFCFSFAS) Conf02 | 03016 | 99.7739 | 319511 93,6020 0.7671 463972
B S 255z 333 Conf03 | 200247 [007647 [244460 034850 20.0702 56.1585
Conf04 | 42309 | 997309 | 341388 937164 43209 482376
Workload
Conf05 | 423255 | 40507 35764 00324 43,5040 168378
]]]] Conf06 | 503595 | 52884 19 6031 00742 51,3580 253546
Fig. 12. The relative mean simulation time among each Conf07 | 332399 | 09.7708 | 25.0613 05,7350 283798 56.1478
configuration for all workloads. Conf08 | 07319 | 907730 | 316864 937537 08703 463632
Conf09 [190913 | 997198 | 127145 93.1925 139861 49.7409
ConflD | 10836 | 99.7720 | 310171 93.7256 03443 46,4687
. Confll | 521540 | 0.0000 10.7741 00984 53,2001 232653
5.6 RGSA Analysis Confl2 | 544356 | 07533 73T | 01247 551504 | 264508
Mean 257720 | 673516 | 225466 65.7645 262191 415307

In order to analyze the performance of RGSA, we need
to compare it to each configuration or traditional gang
scheduling algorithm individually. As we said in the
proposal of RGSA, based on log files, the workload is
divided in sub-workloads that fit into one of the workload
classes (ex: LL100%). Then the CCL evaluates the entry
parameters, reconfiguring RGSA to the best configuration.
As we are not using a trace, we analyze RGSA for all
proposed workloads.

In Table 5, we observe that on average, considering all
metrics, RGSA is 36.61% better than the 12 traditional gang
scheduling algorithms. Note that if we had chosen Conf5
(the best configuration on average), RGSA would still be
11.45% better.

Table 5. Speedup, in percentage (%), of the RGSA performace
when compared to each configuration for a workload composed of
12 described workloads.

Meirics - q g g

Configura. U‘;];:“' R?Ef":" R‘Ts"h:;m Slowdown S“';‘i':;"”“ Mean
tions
Conf0l | 128153 | 006037 | 13.108% 06,6657 19.4711 | 505691
Conf02 | 55793 | 99.6545 | 12.7879 96.3408 53772 | 439479
Conf03 | 20.2381 | 99.6986 | 201357 96.6585 215047 | 51647l
Conf04 | 71421 | 096605 | 166355 96,4005 51050 | 455000
Conf05 | 122366 | 48307 | zl.lall 00366 155160 | 114502
Conf0s | 17.0448 | 114411 | 27.641% 0.14L3 250065 | 162952
Conf07 | 16.0706 | 99.6334 | 16.7349 969540 178155 | 494632
Conf08 | 51443 | 006361 | 120743 06.4352 52736 | 430083
Conf09 | 146709 | 99.6726 | 137321 963212 15.1375__| 479109
Confl0 | 60941 | 99.6576 | 13.6044 96.4374 53391 443265
Confll | 16.6605 | 146395 | 230316 12179 277065 | 164952
Confl2 | 19.0915 | 11.0755 | 28.8892 00591 29955 | 178142
Mean 132365 | 600408 | 188140 | 643977 | 166931 | 3646162

Now, we analyze another example, in which the
workload is composed of HL60 and LH60 workloads.
According to Table 6, on average, the speedup of RGSA
increases to 41.53%, and with reference to Conf5, this
speedup increases to 18.83 considering all 5 metrics. If we
consider only the utilization metric, the speedup of RGSA

With these examples, we show that the use of
reconfiguration concepts in gang scheduling algorithms may
provide a high speedup over traditional gang scheduling
algorithms.

In these examples, we considered that there weren’t
reconfiguration overheads, neither wrong workload
classifications nor classification overheads. = The
reconfiguration overhead is insignificant, it is just the time
spent to execute a switch case structure (to select the more
appropriated configuration) and fit some specific blocks in
the frames to change the configuration. The classification of
the workload based on log files in sub-workloads and the
CCL table’s update can be done using idle cycles. But how
to classify the workload and the consequences of wrong
classifications are open and interesting topics to a more
detailed research. In despite of these overheads and costs,
the speedup may be great enough to make RGSA a good
alternative.

6 CONCLUSION

In this paper, we defined, proposed, developed,
implemented (in a simulation tool) and analyzed the
performance of RGSA by simulation. As general
conclusions about the RGSA frames, we can highlight:

1. Packing Schemes Frame. Considering all metrics, on
average, both packing schemes (first fit and best fit)
presented an equivalent performance, as found in [6]. It
suggests that other constructive blocks may be used.

2. Re-Packing Schemes Frame. Considering all metrics, on
average, both re-packing schemes (slot unification and
alternative scheduling) presented an equivalent

performance. It suggests that other constructive blocks may
be used.

3. Multiprogramming Levels Frame. Considering the
metrics: utilization and simulation time, the unlimited
multiprogramming level presented a better performance to
HH and LL workloads, and the limited one for the HL. and
LH workloads. For reaction time and slowdown metrics, the
unlimited multiprogramming level presented a best
performance in all cases. Finally, considering the response
time metric, on average, the limited multiprogramming level
was the best.

4. Queue Policies Frame. Considering the utilization and
simulation time metrics, the SJF policy was always better
than the FCFS. For reaction time and slowdown metrics, on
average, the SJF policy presented a better performance, but
in some specific cases FCFS was better than the other.
Finally, considering the response time metric, the SJF
policy presented a better performance for the HH and LL
workloads and the FCFS policy for the HL and LH
workloads.

On average, the performance of RGSA was around 40%
better than the other traditional gang scheduling algorithms
for all tested workloads. One of the most important results
was to show that depending on the selected metric and
workload, the best algorithm on average for all situations
(ConfS) may be worse than the worst algorithm on average
(Conf3). In our simulations, the performance of RGSA was
42.32% better than the one of Conf5 in a specific situation.
So, the use of a reconfigurable algorithm may largely
improve the system’s performance.

In our specific case, the longest simulation took about
13000 seconds (3 hours and 36 minutes). So we got to
reduce the simulation time in 40% (1 hour and 26 minutes)
using RGSA. But in real systems, a workload may execute
for a week. In that case, a reduction of 40% would mean to
reduce the workload execution time in 2.8 days

In this paper, we proposed a model or architecture of a
reconfigurable algorithm that was applied in gang
scheduling. But this model can be applied on any other
scheduling algorithm. Using a reconfigurable algorithm,
developers don’t need to create a monolithic algorithm
based on behavior description that works well for all
situations. They may design a set of structural algorithms or
parts of an algorithm that everyone is optimized for a
different situation.

The main contributions of this paper are: the
definition, proposal, implementation and performance
analysis of RGSA, comparing it with other traditional gang
scheduling algorithms for different workloads.

As future works we can highlight: the inclusion of new
frames and blocks in RGSA; an adaptive CCL; compare
RGSA with backfilling schemes; study on how to classify

the workload found in log files into sub-workloads; tests
with other workloads, simulation with a bigger number of
jobs, different loads, other jobs algorithm models and
communication patterns, clusters of different sizes and tests
in a real environment.

ACKNOWLEDGMENT

We would like to thank the Graduate Program in
Electrical Engineering, Computational and Digital Systems
Laboratory (LSDC), CAPES and ProPPG for the support.

REFERENCES

[1] Batat, A., Feitelson, D.: Gang Scheduling with Memory
Considerations. IEEE International Parallel and Distributed
Processing Symposium. (2000) 109-114

[2] Chapin, S.J. et all: Benchmarks and Standards for the
Evaluation of Parallel Job Schedulers. Job Scheduling Strategies
for Parallel Processing. (1999) 67-90

[3] Compton, K., Hauck, S.: Reconfigurable Computing: A
Survey of Systems and Software. ACM Computing Survey.
(2002)

[4] Dehon, A.: The Density Advantage of Configurable
Computing. IEEE Computer, Vol. 33, No. 4. (2000)

[5] Feitelson, D., Rudolph, L.: Evaluation of Design Choices for
Gang Scheduling using Distributed Hierarchical Control. Journal
of Parallel & Distributed Computing (1996) 18-34

[6] Feitelson, D. G.: Packing Schemes for Gang Scheduling. Job
Scheduling Strategies for Parallel Processing. (1996) 89-110

[7] Feitelson, D.G.: A Survey of Scheduling in Multiprogrammed
Parallel Systems. Research Report RC 19790 (87657). IBM T. J.
Watson Research Center (1997)

[8] Feitelson, D., Rudolph, L.: Metrics and Benchmarking for
Parallel Job Scheduling. Job Scheduling Strategies for Parallel
Processing. (1998) 1-24

[9] Feitelson, D. G. and Naaman,, M.: Self-tuning Systems. IEEE
Software. (1999) 52-60

[10] Feitelson, D.: Metric and Workload Effects on Computer
Systems Evaluation. IEEE Computer. (2003) 18-25

[11] Franke, H., Jann, J, Moreira, J., Pattnaik, P., Jette, M.: An
Evaluation of Parallel Job Scheduling for ASCI Blue-Pacific.
ACM/IEEE Conference on Supercomputing. (1999)

[12] Frachtenberg, E., Feitelson, D.G., Petrini, F. and Fernandez,
J.: Flexible CoScheduling: Mitigating Load Imbalance and
Improving Utilization of Heterogeneous Resources. 17th
International Parallel and Distributed Processing Symposium.
(2003)

[13] Goes, L. F. W., Martins, C. A. P. S.: RISSim: A
Reconfigurable Job Scheduling Simulator for Parallel Processing
Learning. 33rd ASEE/IEEE Frontiers in Education Conference.
Colorado (2003)

[14] Gées, L. F. W., Martins, C. A. P. S.: Proposal and
Development of a Reconfigurable Parallel Job Scheduling
Algorithm. Master’s Thesis. Belo Horizonte, Brazil (2004) (in
portuguese)

[15] Jann, J., Pattnaik, P. and Franke, H.: Modeling of Workload
in MPP’s. Job Scheduling Strategies for Parallel Processing.
(1997) 95-116

[16] Martins, C. A. P. S., Ordonez, E. D. M., Corréa, J. B. T.,
Carvalho, M. B.: Reconfigurable Computing: Concepts,
Tendencies and Applications. SBC JAI - Journey of Actualization
in Informatics. (2003) (in portuguese)

[17] Streit, A.: A Self-Tuning Job Scheduler Family with
Dynamic Policy Switching. 8th WISSPP, Springer Verlag LNCS
Vol 2537. (2002) 1-23

[18] Wiseman, Y., Feitelson, D.: Paired Gang Scheduling. IEEE
Transactions Parallel and Distributed Systems. (2003) 581-592

[19] Zhang, Y., H. Franke, Moreira, E.J., Sivasubramaniam, A.:
Improving Parallel Job Scheduling by Combining Gang
Scheduling and Backfilling Techniques. IEEE International
Parallel and Distributed Processing Symposium. (2000)

[20] Zhou, B. B., Brent, R. P.: Gang Scheduling with a Queue for
Large Jobs. IEEE International Parallel and Distributed
Processing Symposium. (2001)

