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Abstract 
Using a single traditional gang scheduling algorithm 

cannot provide the best performance for all workloads and 
parallel architectures. A solution for this problem is the use of 
an algorithm that is capable of dynamically changing its form 
(configuration) into a more appropriate one, according to 
environment variations and user requirements. In this paper, 
we propose, implement and analyze the performance of a 
Reconfigurable Gang Scheduling Algorithm (RGSA) using 
simulation. The RGSA uses combinations of independent 
features that are often implemented in GSAs such as: packing 
and re-packing schemes (alternative scheduling etc.), 
multiprogramming levels etc. Ideally, the algorithm may 
assume infinite configurations and it reconfigures itself 
according to entry parameters such as: performance metrics 
(mean utilization, mean jobs response time etc.) and workload 
characteristics (mean jobs execution time, mean parallelism 
degree of jobs etc.). Also ideally, a reconfiguration causes the 
algorithm to output the best configuration for a particular 
situation considering the system’s state at a given moment and 
based on past information. The main contributions of this 
paper are: the definition, proposal, implementation and 
performance analysis of RGSA.  

Keywords Reconfigurable Algorithm, Gang Scheduling, 
Performance Analysis.  

 

1   INTRODUCTION 

Nowadays, the service quality requirements of users and 
institutions increased. Thus, computer systems that provide 
many services (particularly, parallel machines) need to be 
highly utilized and provide a short response time for users 
jobs. Parallel job schedulers should match both 
requirements and workload (jobs) with resource availability 
(architecture, processors etc.) in order to maximize the 
system’s performance. The main problem is that workload, 
requirements and resources change continuously. In order to 
solve this problem, many works have been developed to 
make job scheduling algorithms more flexible and adaptable 
[1], [9], [12], [13], [14], [17], [18], [20]. Up to now, a 
poorly explored solution is the use of reconfigurable 
computing concepts [3], [4], [13], [14], [16] in parallel job 
scheduling algorithms (like gang scheduling).  

Reconfigurable computing emerged as a paradigm to fill 
in the gap between hardware and software, reaching better 
performance than software and more flexibility than 
hardware [3], [4], [16]. The reconfigurable devices 

including FPGAs (Field Programmable Gate Arrays) 
contain an array of computing elements or constructive 
blocks, whose functionalities are determined through the 
programming of configuration bits. Thus, an FPGA can 
implement different behaviors not established at design 
time. Because of this, reconfigurable devices (hardware) are 
improving the solutions for problems from different areas 
[3], [4], [16]. 

Our basic idea in this paper is to use reconfigurable 
computing concepts in a parallel job scheduling algorithm 
(gang scheduling) to maximize system’s performance. 
According to a deep bibliographic revision [3], [4], [13], 
[14], [16], we found works that apply reconfigurable 
computing in software, but we did not find a previous work 
that used it on algorithms. In [13], we used a first approach 
to build a reconfigurable algorithm of a static parallel job 
scheduling algorithm. We improved this first approach to 
reach our present stage.  

Ideally, the algorithm may assume infinite 
configurations and it reconfigures itself according to entry 
parameters such as: performance metrics (utilization, mean 
jobs response time etc.) and workload characteristics (mean 
jobs parallelism degree etc.). Also ideally, a reconfiguration 
causes the algorithm to output the best configuration for a 
particular situation considering the system’s state at a given 
moment and based on past information. 

Gang scheduling algorithms have been intensely studied 
in the last decade. They demonstrated many advantages 
over other parallel job scheduling algorithms, for instance, 
they: provide interactive response time for short jobs, 
through preemption; prevent long jobs from monopolizing 
processors; maximize the system’s utilization etc [1], [2], 
[5], [6], [11], [12], [14], [18], [19], [20]. In our specific 
case it presents some interesting characteristics. It is 
composed of independent and well defined parts (packing 
and re-packing schemes, multiprogramming level, etc.) and 
each one has infinite possible solutions (implementations).  

The main objectives of this paper are: to define, 
propose, develop and implement the RGSA; to analyze the 
performance of RGSA using simulation. The main goal is 
the implementation of RGSA in our simulation tool. 

In this paper, we introduce the reconfigurable gang 
scheduling algorithm (RGSA) and relate it to other works in 
sections 2 and 3. In section 4, we present our experimental 
method: workload, metrics, configurations and parallel 



architecture used in our simulations.  Section 5 presents the 
experimental results and the performance analysis 
comparing RGSA and other traditional gang scheduling 
algorithms. Finally, in section 6 we highlight our 
conclusions and future works. 

 

2   RECONFIGURABLE GANG SCHEDULING ALGORITHM 

Extending the reconfigurable hardware definition, we 
define a reconfigurable algorithm as an algorithm that is 
composed of constructive blocks, allowing its behavior to 
be modified through the form of its configuration.  

A reconfigurable algorithm is composed of three layers: 
Configuration Control Layer (CCL), Reconfigurable Layer 
(RL) and Basic Layer (BL), as shown in Fig.1. The BL 
consists of a frame set and data structures. A data structure 
may be a list, a queue, an array or some structure that stores 
data. For example, in Fig. 2, a wait queue (data structure) 
stores jobs (data).  

A frame represents a part or phase of an algorithm. For 
example, in a gang scheduling algorithm, a frame may 
represent a packing scheme that fits a job inside the 
Ousterhout matrix, which means it is only a part of a gang 
scheduling algorithm. There are two frame types: control 
and action frames. A control frame controls a specific 
characteristic of a data structure. In Fig. 2, the 
Multiprogramming Levels Frame controls the 
multiprogramming level of the Ousterhout Matrix. An 
action frame is responsible for process or move data 
between or inside data structures and frames. In Fig. 2, the 
Packing Schemes Frame receives a job from the Queue 
Policies Frame and fits it inside the Ousterhout Matrix. 
  

 
Fig. 1. The general architecture of a reconfigurable algorithm 
composed of three layers: Configuration Control Layer (CCL), 
Reconfigurable Layer (RL) and Basic Layer (BL). 

The Reconfigurable Layer represents a configuration or 
an instance of the BL, in which every frame is filled out 

with one or more compatible constructive blocks at a 
certain moment. A constructive block is a possible 
implementation that can fill out with a specific frame. For 
example, the Re-Packing Schemes Frame, shown in Fig. 2, 
can be filled out with different re-packing schemes like slot 
unification and alternative scheduling, one at a time or 
simultaneously. So, each re-packing scheme implementation 
is a constructive block. When two or more constructive 
blocks simultaneously fill out a frame, they are executed in 
sequence. The maximum number of possible constructive 
blocks that fill out a frame is the number of different known 
implementations, for example, the number of known re-
packing schemes. 

The Configuration Control Layer chooses the 
constructive blocks that will fill out each frame at a given 
moment, thus it controls the configuration swapping. The 
choice is made based on entry parameters. The CCL can be 
implemented as a static table with pre-defined decisions, an 
evolutionary algorithm, a learning-based algorithm (neural 
network) etc. For example, we have a workload composed 
of long jobs and the most important metric for the user is 
the reaction time. So, the CCL will set a configuration that 
reduces the reaction time of the long jobs. In our case, the 
CCL should fill the Multiprogramming Levels Frame with 
the Unlimited Constructive Block, allowing a job to start its 
execution as soon as it was submitted. 
 

 
Fig. 2. The Basic Layer of the Reconfigurable Gang Scheduling 
Algorithm (RGSA) and some possible constructive blocks of the 
Reconfigurable Layer. 

A gang scheduling algorithm may be composed of four 
parts: a packing scheme, a re-packing scheme, a queue 
policy and a multiprogramming level. In our Reconfigurable 
Gang Scheduling Algorithm (RGSA), as show in Fig. 2, 
each part is a different frame with two constructive blocks, 
to simplify our study. The first three are action frames and 
the last one is a control frame. 



The Packing Schemes Frame may be filled out with two 
different packing schemes based on capacity: first fit or best 
fit. The Re-Packing Schemes Frame may be filled out with 
the slot unification and/or alternative scheduling re-packing 
schemes. The Queue Policies Frame can use the First Come 
First Served (FCFS) or Short Job First (SJF) policies. 
Finally, the Multiprogramming Levels Frame can be filled 
out with the Unlimited or Limited Multiprogramming Level 
Constructive Blocks.  

In our RGSA, the CCL is implemented as a table (or 
switch case structure) that knows the best configuration 
according to some workload parameters, as shown in Table 
1. The workload parameters and possible values are: 
execution time (high (H) or low (L)), parallelism degree 
(high (H) or low (L)), predominance degree (60%, 80% or 
100%) and the most important metric (utilization (UT), 
reaction time (ReacT), slowdown (SD), response time 
(RespT) or simulation time (ST)). Then CCL evaluates 
these parameters and reconfigures RGSA to the best 
configuration. The workload parameters chosen and 
configurations will be better discussed in the Experimental 
Method section. 

Table 1.  The actual CCL implementation that chooses the best 
configuration according to some workload parameters.  

 
 

The backfilling scheduling algorithm needs an estimated 
execution time for all submitted jobs as an input parameter 
[17]. As described before, the RGSA also needs input 

parameters, but these ones don’ t need to be introduced by 
each user (per job). Using past information (log files etc.), 
depending on the day and time, we can classify or divide 
workloads in groups (sub-workloads) in a time interval by 
the predominance level of a job type. For example, in Fig. 
3, on Mondays between 0 a.m. to 6 a.m., based on a 
hypothetical log file, we noted that all executed jobs 
(predominance level equal to 100%) have a high execution 
time and high parallelism degree (HH100%). And in this 
period (night), the most important metric is utilization. So, 
according to our CCL implementation, the RGSA 
reconfigures to the configuration 11.  

 

 
Fig. 3. The classification of a log file in sub-workloads, along the 
time, by predominance level of a job type. 

This classification process can be done by a system 
administrator or an automated system that examines log 
files and classifies into sub-workloads. Along the time, the 
CCL table can be updated. As suggested in [9], the RGSA 
can use idle cycles to simulate the last executed sub-
workload with all possible different configurations and 
update the table with the best configuration for this sub-
workload. As we know, some system’ s behaviors repeat 
over the time. For example, if on last Monday at night, the 
RGSA found that configuration 11 was the best one, 
probably this configuration will achieve a good 
performance if RGSA uses it in the next Monday at night.  

The selection of the most important metric can be done 
according to the predominance level of interactive and 
batch jobs in a workload. For interactive jobs, reaction time 
and response time are generally most important, because 
users want a quick answer. And for batch jobs, utilization is 
the most important, because the system administrator needs 
to use the maximum of the system resources. The definition 
of thresholds between high and low execution time and 
parallelism degree must be determined according to each 
system.  

 

3   RELATED WORK 

This paper presents the main results of a master’ s thesis 
[14]. In this research, we found many works about gang 
scheduling [1], [2], [5], [6], [11], [12], [14], [18], [19], 



[20], few works about reconfigurable software [13], [14], 
[16] and algorithms, and none about reconfigurable parallel 
job scheduling algorithms. Even so, all related works are 
deeply discussed in [14] and really helped us to reach our 
objectives and goals. In this paper, we will discuss only four 
papers that are more relevant and close to our work [6], [9], 
[12], [17].  

In [12], a flexible co-scheduling algorithm is proposed 
and implemented. As well as our proposal, it uses a 
different algorithm depending on the workload. The gang 
scheduling is only used with jobs that really need it, while 
other jobs can be scheduled with no restrictions. This 
approach is limited to a couple of scheduling options. 
Moreover, the used gang scheduling algorithm is the 
traditional one.  

Regarding the experimental results, [6] is the work that 
presents the closest experimental results to our research. By 
simulation, Feitelson compares many different packing 
schemes and few re-packing schemes, looking for the one 
which best performs on average for the used workload. 
Thus he does not present the idea that the same algorithm 
can assume different configurations, by changing its 
packing schemes, for example. Moreover he does not vary 
others parameters like the multiprogramming level and 
queue policies. Even so, it is very important to compare that 
work with some results that were achieved in our 
simulations. 

In [9], Feiltelson presents the idea of self-tuning 
systems, in which the process to tune the system is 
automated. It uses genetic algorithms and log files as input 
for simulations. These simulations are performed during 
idle cycles, increasing the utilization of the system, with no 
cost.  

Finally, in [17], a self-tuning job scheduler with 
dynamic policy switching is simulated and analyzed using 
trace information from some computing centers. Like 
backfilling schedulers it needs information about the job’ s 
estimated execution time. It is limited to three policies and 
conservative backfilling. It presents a fine idea of self-
tuning that can be used in our Configuration Control Layer 
to change configurations. 

 

4   EXPERIMENTAL METHOD 

 In this section, we first describe the metrics, parallel 
architecture and workload used in our simulations. 
Afterwards, we describe the experimental design in which 
we highlight the used configurations. 

 

4.1   Metrics 

In order to analyze a parallel job scheduling algorithm, 
we can use different metrics. The most common are: 
utilization, response time, reaction time and slowdown [7], 
[8], [15]. 

The mean utilization of a parallel architecture may be 
calculated through Eq.1, where CPUBusyTime is the time in 
which a processor was busy and TotalTime is the total time 
involved in the execution of all the workload. The 
utilization value is always between 0 and 1. The utilization 
depends directly on the input load. To compare different job 
scheduling algorithms under the same load and workload, 
the relative difference of the utilization is an important 
parameter to evaluate the obtained performance. 
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The mean job response time (in seconds), defined in 

Eq.2, is the mean time interval between the submission and 
end of a job. 
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The mean job reaction time (in seconds), defined in 

Eq.3, is the mean time interval between the submission and 
the start of a job. 
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 As shown in Eq.4, the mean jobs slowdown is the sum 

of jobs response times (reaction time + execution time) 
divided by the jobs execution times (dedicated time). This 
metric emerges as a solution to normalize the high variation 
of the jobs response time. The nearest the value is from 1, 
the better is the slowdown. 
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We decided to use the mean simulation time of the 

workload as a metric too, which is the time interval between 
the beginning and the end of the simulation (when the last 
job ends). 

 

4.2   Parallel Architecture 

 
The selected parallel architecture is a cluster composed 

of 16 nodes and a front-end node interconnected by a Fast 
Ethernet switch. Each node has a Pentium III 1 Ghz (real 
frequency = 0.938Ghz) processor. In Table 1, we see the 
main values of the cluster's characteristics, obtained from 
benchmarks and performance libraries (Sandra 2003, PAPI 
2.3 etc.). These values are essential as input parameters to  
ClusterSim, a simulation tool developed by our group.  



The ClusterSim is a Java-based parallel discrete-event 
simulation tool for cluster computing. It supports visual 
modeling and simulation of clusters and their workloads for 
performance analysis. In the simulation model, a cluster is 
composed of single or multi-processed nodes, parallel job 
schedulers, network topologies and technologies. A 
workload is represented by users that submit jobs composed 
of tasks described by probability distributions and their 
internal structure (CPU, I/O and communication 
instructions).  The simulation model supports a lot of 
events: job arrival, end of job, unblock task, end of task, 
message arrival etc. For that reason, depending on cluster 
size and especially on the number of jobs, the execution of a 
simulation can be too long and the simulation tool can 
become out of memory [14].  

Table 2. Cluster characteristics and respective values.  

Characteristic Value 
Number of Processors 16 + 1 
Processor Frequency 0.938 Ghz 

Cycles per Instruction 0.9997105 
Primary Memory Transfer 

Rate 11.146 MB/s 

Secondary Memory 
Transfer Rate 23.0 MB/s 

Network Fast Ethernet 
Network Latency 0.000179 s 

Max. Segment Size 1460 bytes 
Network Bandwidth (Max. 

Throughput) 11.0516 MB/s 

Protocol Overhead 58 bytes 

 
4.3   Workload 

As described before, in our simulation tool, a workload 
is composed of a set of jobs featured by: their types, internal 
structures, submission probabilities and inter-arrival 
distributions.  Due to the lack of information about the 
internal structure of the jobs, we decided to create a 
synthetic set of jobs [8], [10], [15]. 

In the related works [2], [5], [6], [10], [19], we found 
only information about the execution time of the jobs, but 
our simulation tool simulates a job execution based on its 
number of instructions. So we performed some pilot tests to 
define some of these values (number of instructions, 
granularity etc.) for our synthetic jobs. In order to simplify 
our jobs internal structures, we fixed some of the values and 
characteristics (Table 3).  

In the workload jobs, at each one of the iterations, the 
master task sends a different message to each slave task. On 
their turn, they process a certain number of instructions, 
according to the previously defined granularity, and then 
they return a message to the master task. The total number 
of instructions that is to be processed by the job and the size 
of the messages are divided among the slave tasks, that is, 
the greater is the number of tasks (high parallelism degree) 

the least is the number of instructions that a single task has 
to process. 

With regard to the parallelism level, which is 
represented by a probability distribution, we considered 
jobs between 1 and 4 tasks as low parallelism degree and 
between 5 and 16 as high parallelism degree. As we know, 
real workload analyses show that for large parallel machines 
(bigger than 64 processors), there are more small jobs. In 
our case, we did a relative equivalence. For example, in a 
128-processors machine, short jobs are less than 32 tasks 
(one quarter). So, for a 16-processor machine, we 
considered a short job as less than 4 tasks (one quarter). As 
usual, we used a uniform distribution to represent the 
parallelism level, another more realistic way could be the 
use of a uniform distribution that samples power of 2 
numbers. Combining the parallelism level, number of 
instructions and granularity characteristics, we had 8 
different basic job types. 

There are two main aspects through which a job can 
influence in a gang scheduling: space and time [7]. In our 
case, space is related with the parallelism degree and time 
with the: number of instructions, granularity and the other 
factors. Combining space (parallelism degree) and time 
(execution time), we can cover the majority of possible 
workloads. So, after the simulation, we can identify, in a log 
file, sub-workloads that fit into any of these combinations. 
Thus we combine these orthogonal aspects to form 4 
workload types.  

Table 3. Workload characteristics and their values. 

Characteristic Value 

Granularity Low – 1 million instructions 
High – 10 million instructions 

Number of Instructions Low – 100 million instructions 
High – 1 billion instructions 

Parallelism Degree  Low – uniform distribution (1,4) 
High – uniform distribution (5,16) 

Parallel Algorithm Model Process Farm (Master Slave) 
Message Size 16 Kbytes 

   
In the first type, the most predominant are the jobs with 

a high parallelism degree and a structure that leads to a high 
execution time. In the second type, jobs with a high 
parallelism level and a low execution time predominate. 
The third one has the majority of jobs with a low 
parallelism degree and a high execution time. In the last 
workload, jobs with a low parallelism degree and a low 
execution time prevail. For each workload we varied the 
predominance level between 60%, 80% and 100% 
(homogeneous). For example, a workload HH60 is a 
workload composed of 60% jobs with a high execution time 
and a high parallelism degree, and the other 40% is 
composed of the opposite workload (low execution time 
and parallelism degree). So, we created 12 workloads to test 
the gang scheduling algorithms: HH60, HH80 and HH100; 



HL60, HL80 and HL100; LH60, LH80 and LH100; LL60, 
LL80 and LL100. 

In all workloads we use a total number of jobs equal to 
100 (due to the ClusterSim simulation time and memory 
limitations) and the inter-arrival represented by an Erlang 
hyper-exponential distribution. To simulate a heavy load, 
we divided the inter-arrival time by a load factor equal to 
100. 

 

4.4   Experimental Design 

It is important to note that each RGSA configuration is a 
traditional gang scheduling algorithm (TGSA). Because in a 
TGSA, its parts are fixed and cannot be changed over time. 
For example, in Table 4, Conf01 has the first fit, alternative 
scheduling, limited multiprogramming level and FCFS, and 
it cannot changes over time. Through the rest of this paper, 
TGSA and configuration will be treated as synonyms.  

In order to test and analyze the performance of the 
RGSA, we used a full factorial model. A configuration of 
RGSA or a traditional gang scheduling algorithm is 
composed of a packing scheme, a re-packing scheme, a 
multiprogramming level and a queue policy. In Table 4, we 
observe the possible configurations of RGSA. The 
multiprogramming level was limited in 3. When the 
multiprogramming level is unlimited, it does not make sense 
to use a wait queue. Because, as soon as a job arrives, it will 
always fit into the matrix. 

Table 4. RGSA configurations composed of packing and re-
packing schemes, mulitprogramming levels and queue policies. 

Configs Mult. 
Level 

Queue 
Policy 

Packing 
Scheme Re-Packing Scheme 

Conf 01 Limited FCFS First Fit Alternative Scheduling 
Conf 02 Limited SJF First Fit Alternative Scheduling 
Conf 03 Limited FCFS First Fit Slot Unification 
Conf 04 Limited SJF First Fit Slot Unification 
Conf 05 Unlimited X First Fit Alternative Scheduling 
Conf 06 Unlimited X First Fit Slot Unification 
Conf 07 Limited FCFS Best Fit Alternative Scheduling 
Conf 08 Limited SJF Best Fit Alternative Scheduling 
Conf 09 Limited FCFS Best Fit Slot Unification 
Conf 10 Limited SJF Best Fit Slot Unification 
Conf 11 Unlimited X Best Fit Alternative Scheduling 
Conf 12 Unlimited X Best Fit Slot Unification 

 
Each one of the 12 configurations was tested with each 

workload, using 10 different simulation seeds. The selected 
seeds were: 51, 173, 19, 531, 211, 739, 413, 967, 733 and 
13. So we made a total of 1440 (12 configurations X 12 
workloads X 10 seeds) simulations. 

 

5   EXPERIMENTAL RESULTS 

In this section, we present and analyze the performance 
of RGSA. First, for each metric, we present the results 

obtained by simulation and analyze the performance and 
influence of every frame. To do it, we compare sets of 
configurations in which the analyzed frame is filled out with 
different blocks and the other frames have a fixed block. At 
the end of this section, we compare between the 
performance of RGSA and every configuration individually.  
 

5.1   Utilization 

In Fig. 4, we present the relative mean utilization of the 
cluster among each configuration for all workloads. 
Considering the packing schemes (Fig. 5(a)), when the 
multiprogramming level is unlimited, the first fit provides 
higher utilization for HL and LH workloads.  

 
Fig. 4. The relative mean utilization among each configuration for 
all workloads. 

Initially, the best fit scheme finds the best slot for a job, 
but at long term, this decision may prevent new jobs from 
entering in more appropriate positions. In the case of HL 
and LH workloads, this chance increases, because the long 
jobs (with a low parallelism degree) that remain after the 
execution of short jobs (with a high parallelism degree) will 
probably occupy columns in common, thus, making it 
difficult to defragment the matrix. On the other hand, the 
first fit initially makes the matrix more fragmented. Besides, 
it increases the multiprogramming level. But at long term, it 
will make it easier to defragment the matrix, because the 
jobs will have fewer time slot columns in common. In the 
other cases, the best fit scheme presents a slightly better 
performance. In general, both packing schemes have a quite 
similar performance. The same happens to the re-packing 
schemes (Fig. 5 (b)). 

Regarding the multiprogramming level, we reached two 
conclusions: the unlimited is better for HH and LL 
workloads (Fig. 5 (c)), but it is very bad for HL and LH 
workloads (Fig. 5 (d)). With an unlimited 
multiprogramming level, for each new job that does not fit 
into the matrix, a new time slot is created. At the end of the 
simulation, as the load is high, a large number of time slots 
existed. In this case, the big jobs (high parallelism level) are 



the long ones. So when the small jobs terminate, the idle 
space is significantly smaller than the space occupied by the 
big jobs, that is, the fragmentation is low and the utilization 
is maximized. 

 

 

 

 

 
Fig. 5. Mean utilization considering the (a) packing schemes; (b) 
re-packing schemes; multiprogramming level for (c) HH and LL 
workloads; and (d) HL and LH workloads. 
 

When we use LH and HL workloads, each matrix slot 
will be occupied by long and short jobs. As time goes by, 
the short jobs will end, leaving idle spaces on the matrix. In 
this case, the big jobs can not be the long ones, so a big 
space can become idle. Even if we use re-packing schemes, 
the fragmentation becomes high. 

With reference to the queue policies, the SJF policy 
presented a higher utilization in all cases. When we remove 
the short jobs first, there is a higher probability that short 
idle slots exist where they can fit. Using the FCFS policy, if 
the first job is a big one, it can not fit into the matrix, thus, 
preventing other short jobs from being executed. So some 
slots become idle and the utilization low. 

 

5.2   Reaction Time 

In Fig. 7 we present the relative mean reaction time of 
jobs among each configuration for all workloads. Packing 
schemes have a very small influence on reaction time, 
because they depend on the new job that came from the wait 
queue. According to Fig. 6 (a), we can say that the both 
packing schemes are quite similar. The same happens to the 
re-packing schemes, because the defragmentation occurs 
after the beginning of the job’ s execution (Fig. 6 (b)).  

The multiprogramming level has a direct influence on 
the jobs reaction time, because with an unlimited number of 
slots, a job can always fit into the matrix without waiting in 
the queue. In the worst case, the reaction time of a job will 
be equal to the number of slots multiplied by the slot 
quantum. 

    
 

 



 

 
Fig. 6. Mean jobs reaction time considering the (a) packing 
schemes; (b) re-packing schemes; (c) multiprogramming levels; 
(d) queue policies. 

Configurations with an unlimited multiprogramming 
level present an insignificant reaction time in comparison 
with those with a limited multiprogramming level, as shown 
in Fig. 6 (c).   
 

 
Fig. 7. The relative mean jobs reaction time among each 
configuration for all workloads. 

With reference to the queue policies, on average, the 
SJF is better than FCFS, because the jobs in the queue 
spend less time waiting to be removed to the matrix and 
start their execution (Fig. 6 (d)). 

 

5.3   Response Time 

In Fig. 8 we present the relative mean jobs response 
time among each configuration for all workloads. 
According Fig. 9 (a) and (b), the results showed that both 
packing and re-packing schemes are equivalent. The 
multiprogramming level has a direct influence on the 
response time.  

 
Fig. 8. The relative mean jobs response time among each 
configuration for and all workloads. 

When the multiprogramming level is unlimited, the jobs 
have a short reaction time, but the execution time tends to 
be higher, because there are more available time slots 
(providing more concurrency). The execution time of a job 
is increased by the reaction time if the multiprogramming 
level was limited. On average,  configurations with an 
unlimited multiprogramming level are worse than those a 
with limited one, that is, more jobs concurring in the matrix 
is worse than more jobs waiting in the queue, but there are 
some exceptions.  

 

 



  

 
Fig. 9. Mean response time of jobs considering the (a) packing 
schemes; (b) re-packing schemes; queue policies for (c) HL and 
LH workloads and (d) HH and LL workloads. 
 

Generally, we believe that unlimited multiprogramming 
is always better if we are not considering memory paging, 
but in Fig 10, we see a simple example in which the mean 
jobs response time is better (smaller) for a limited 
multiprogramming level. Suppose a workload composed of 
three jobs with 2 tasks (each one) and an execution time 
equal to 2.1 seconds; and an Ousterhout matrix with two 
columns, a time slice equal to 1 and a limited 
multiprogramming level equal to 2. In this example, when a 
job finishes before the time slice ends, a new time slice 
starts. 

 
Fig. 10. The simple workload execution using limited and 
unlimited multiprogramming levels. 
 

In Fig. 10, we observe the following response times for 
limited multiprogramming level: Job1 = 4.1s; Job2 = 4.2s; 

Job3 = 6.3s; mean = 4.86s. And for unlimited 
multiprogramming level we observe the following response 
times: Job1 = 6.1s; Job2 = 6.2s; Job3 = 6.3s; mean = 6.2s. 
So, we note that the use of a limited multiprogramming 
level can achieve better response times for a certain 
workload, even not considering the memory paging. 

With reference to the queue policies, we reached two 
conclusions: the SJF policy is better for HH and LL 
workloads (Fig. 9 (c)) and the FCFS policy is better for HL 
and LH workloads (Fig. 9 (d)). In the first case, the LL jobs 
are initially executed and terminated quickly. Thus, HH 
jobs wait less time in the wait queue, reducing their reaction 
time and consequently their response time.  

In the last case, when we use the SJF policy, the HL jobs 
are executed first. So LH jobs have to wait so much time in 
the queue, which increases their reaction time and 
consequently their response time. 

 

5.4   Slowdown 

In Fig. 11 we present the relative mean jobs slowdown 
among each configuration for all workloads. Based on past 
analysis, we conclude that both the packing and re-packing 
schemes are equivalent. The slowdown is based on response 
time and consequently on reaction time. When the 
multiprogramming level is unlimited, the response time is 
almost equal to the execution time. Thus, the slowdown 
value tends to 1.  

Based on the reaction time analysis and the results 
shown in Fig. 9, on average, the SJF policy presents a better 
slowdown, but there are exceptions. 

 

 
Fig. 11. The relative mean jobs slowdown among each 
configuration for all workloads. 

5.5   Simulation Time 

In Fig. 12, we present the relative mean simulation time 
among each configuration for all workloads. The simulation 
time depends directly on the utilization. So, all observations 
and analyses of the utilization metric may be extended to 
the simulation time. 



 

 
Fig. 12. The relative mean simulation time among each 
configuration for all workloads. 

5.6   RGSA Analysis 

In order to analyze the performance of RGSA, we need 
to compare it to each configuration or traditional gang 
scheduling algorithm individually. As we said in the 
proposal of RGSA, based on log files, the workload is 
divided in sub-workloads that fit into one of the workload 
classes (ex: LL100%). Then the CCL evaluates the entry 
parameters, reconfiguring RGSA to the best configuration. 
As we are not using a trace, we analyze RGSA for all 
proposed workloads. 

In Table 5, we observe that on average, considering all 
metrics, RGSA is 36.61% better than the 12 traditional gang 
scheduling algorithms. Note that if we had chosen Conf5 
(the best configuration on average), RGSA would still be 
11.45% better. 

Table 5. Speedup, in percentage (%), of the RGSA performace 
when compared to each configuration for a workload composed of 
12 described workloads. 

 
 

Now, we analyze another example, in which the 
workload is composed of HL60 and LH60 workloads. 
According to Table 6, on average, the speedup of RGSA 
increases to 41.53%, and with reference to Conf5, this 
speedup increases to 18.83 considering all 5 metrics. If we 
consider only the utilization metric, the speedup of RGSA 

over Conf5 increases from 18.83% to 42.32%. In the last 
case, we note that Conf5 (the best on average) would be 
worse than Conf3, which was previously considered the 
worst configuration. 

Table 6. Speedup of RGSA, in percentage (%), when compared to 
each configuration for a workload composed of HL60 and LH60 
workloads. 

 
  

With these examples, we show that the use of 
reconfiguration concepts in gang scheduling algorithms may 
provide a high speedup over traditional gang scheduling 
algorithms. 

In these examples, we considered that there weren’ t 
reconfiguration overheads, neither wrong workload 
classifications nor classification overheads. The 
reconfiguration overhead is insignificant, it is just the time 
spent to execute a switch case structure (to select the more 
appropriated configuration) and fit some specific blocks in 
the frames to change the configuration. The classification of 
the workload based on log files in sub-workloads and the 
CCL table’ s update can be done using idle cycles. But how 
to classify the workload and the consequences of wrong 
classifications are open and interesting topics to a more 
detailed research. In despite of these overheads and costs, 
the speedup may be great enough to make RGSA a good 
alternative. 
 

6   CONCLUSION 

In this paper, we defined, proposed, developed, 
implemented (in a simulation tool) and analyzed the 
performance of RGSA by simulation. As general 
conclusions about the RGSA frames, we can highlight: 
 
1. Packing Schemes Frame. Considering all metrics, on 
average, both packing schemes (first fit and best fit) 
presented an equivalent performance, as found in [6]. It 
suggests that other constructive blocks may be used. 
 
2. Re-Packing Schemes Frame. Considering all metrics, on 
average, both re-packing schemes (slot unification and 
alternative scheduling) presented an equivalent 



performance. It suggests that other constructive blocks may 
be used. 
 
3. Multiprogramming Levels Frame. Considering the 
metrics: utilization and simulation time, the unlimited 
multiprogramming level presented a better performance to 
HH and LL workloads, and the limited one for the HL and 
LH workloads. For reaction time and slowdown metrics, the 
unlimited multiprogramming level presented a best 
performance in all cases. Finally, considering the response 
time metric, on average, the limited multiprogramming level 
was the best. 
 
4. Queue Policies Frame. Considering the utilization and 
simulation time metrics, the SJF policy was always better 
than the FCFS. For reaction time and slowdown metrics, on 
average, the SJF policy presented a better performance, but 
in some specific cases FCFS was better than the other. 
Finally, considering the response time metric, the SJF 
policy presented a better performance for the HH and LL 
workloads and the FCFS policy for the HL and LH 
workloads.   

 
On average, the performance of RGSA was around 40% 

better than the other traditional gang scheduling algorithms 
for all tested workloads. One of the most important results 
was to show that depending on the selected metric and 
workload, the best algorithm on average for all situations 
(Conf5) may be worse than the worst algorithm on average 
(Conf3). In our simulations, the performance of RGSA was 
42.32% better than the one of Conf5 in a specific situation. 
So, the use of a reconfigurable algorithm may largely 
improve the system’ s performance. 

In our specific case, the longest simulation took about 
13000 seconds (3 hours and 36 minutes). So we got to 
reduce the simulation time in 40% (1 hour and 26 minutes) 
using RGSA. But in real systems, a workload may execute 
for a week. In that case, a reduction of 40% would mean to 
reduce the workload execution time in 2.8 days  

In this paper, we proposed a model or architecture of a 
reconfigurable algorithm that was applied in gang 
scheduling. But this model can be applied on any other 
scheduling algorithm. Using a reconfigurable algorithm, 
developers don’ t need to create a monolithic algorithm 
based on behavior description that works well for all 
situations. They may design a set of structural algorithms or 
parts of an algorithm that everyone is optimized for a 
different situation.  

The main contributions of this paper are: the 
definition, proposal, implementation and performance 
analysis of RGSA, comparing it with other traditional gang 
scheduling algorithms for different workloads.  

As future works we can highlight: the inclusion of new 
frames and blocks in RGSA; an adaptive CCL; compare 
RGSA with backfilling schemes; study on how to classify 

the workload found in log files into sub-workloads; tests 
with other workloads, simulation with a bigger number of 
jobs, different loads, other jobs algorithm models and 
communication patterns, clusters of different sizes and tests 
in a real environment. 
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