
Enhancements to the Decision Process of the Self-Tuning dynP

Scheduler

Achim Streit

PC2- Paderborn Center for Parallel Computing

Paderborn University

33102 Paderborn, Germany

Email: streit@upb.de

http://www.upb.de/pc2

Abstract

The self-tuning dynP scheduler for modern cluster
resource management systems switches between differ-
ent basic scheduling policies dynamically during run
time. This allows to react on changing characteris-
tics of the waiting jobs. In this paper we present en-
hancements to the decision process of the self-tuning
dynP scheduler and evaluate their impact on the per-
formance: (i) While doing a self-tuning step a perfor-
mance metric is needed for ranking the schedules gen-
erated by the different basic scheduling policies. This
allows different objectives for the self-tuning process,
e. g. more user centric by improving the response time,
or more owner centric by improving the makespan. (ii)
Furthermore, a self-tuning process can be called at dif-
ferent times of the scheduling process: only at times
when the characteristics of waiting jobs change (half
self-tuning), i. e. new jobs are submitted; or always
when the schedule changes (full self-tuning), i. e. when
jobs are submitted or running jobs terminate.

We use discrete event simulations to evaluate the
achieved performance. As job input for driving the sim-
ulations we use original traces from real supercomputer
installations. The evaluation of the two enhancements
to the decision process of the self-tuning dynP scheduler
shows that a good performance is achieved, if the self-
tuning metric is the same as the metric used measuring
the overall performance at the end of the simulation.
Additionally, calling the self-tuning process only when
new jobs are submitted, is sufficient in most scenar-
ios and the performance difference to full self-tuning is
small.

1 Introduction

Resource management systems (RMS) for modern
high performance computing (HPC) clusters consist of
many components which are all vital in keeping the
machine fully operational. An efficient usage of the
machines is important for users and owners, as such
systems are rare and high in cost. With regards to
performance aspects all components of a modern RMS
should perform their assigned tasks efficiently and fast,
so that no additional overhead is induced. However,
if resource utilization and job response times are ad-
dressed, the scheduler plays a major role. A clever
scheduling strategy is essential for a high utilization
of the machine and short response times for the jobs.
However, these two objectives are contradicting. Jobs
tend to have to wait for execution on a highly utilized
system with space sharing. Short or even no waiting
times are only achievable with low utilizations or time-
sharing. Typically a scheduling policy that optimizes
the utilization prefers jobs needing many resources for
a long time. Jobs requesting few resources for a short
amount of time may have to wait longer until adequate
resources are available. If such small and short jobs are
preferred by the scheduler, the average waiting time
would be reduced. As jobs typically have different sizes
and lengths, fragmentation of the schedule occurs and
the utilization drops [1]. The task of the scheduler is
to find a good compromise between optimizing these
two contrary metrics.

Cluster systems usually have a large user commu-
nity with different resource requirements and general
job characteristics [3]. For example, some users pri-
marily submit parallel and long running jobs, whilst
others submit hundreds of short and sequential jobs.
Furthermore, the arrival patterns vary between specific



user groups. Hundreds of jobs for a parameter study
might be submitted in one go via a script. Other users
might only submit their massively parallel jobs one af-
ter the other. This results in a non-uniform workload
and job characteristics that permanently change. The
job scheduling policy used in a RMS is chosen in order
to achieve a good overall performance for the expected
workload. Most commonly used is first come first serve
(FCFS) combined with backfilling [7, 14, 9], as on av-
erage a good performance for the utilization and re-
sponse time is achieved. However, with certain job
characteristics other scheduling policies might be su-
perior to FCFS. For example, for mostly long running
jobs, longest job first (LJF) is beneficial, whilst short-
est job first (SJF) is used with mostly short jobs [1].
Hence, a single policy is not enough for an efficient re-
source management of clusters. Many modern RMSs
have several scheduling policies implemented, or it is
even possible to replace the scheduling component.

The remainder of this paper is structured as follows.
In Section 2 some related work on self-tuning and dy-
namic policy switching is given. Section 3 starts with
a short history of development, contains the concept
of the self-tuning dynP scheduler, and presents the dif-
ferent decider mechanisms and enhancements to them.
The used performance metric and the applied work-
load for the evaluation are presented in Section 4. The
evaluation in Section 5 starts with a look on the perfor-
mance of the three basic policies. Then the evaluation
results of the different self-tuning metrics and of the
comparison of half vs. full self-tuning are presented.
The paper ends with conclusions an a brief outlook on
future work.

2 Related Work

In [13] the problem of scheduling a machine room
of MPP-systems is described. Users either submit long
running batch jobs or they work interactively (typi-
cally only for a short time). To accomplish this on a
single MPP-system the resource management system
has to switch from batch mode (preferring batch jobs)
to interactive mode (preferring interactive jobs) and
back. Usually this is done manually by the adminis-
trative staff, e. g. at fixed times of the day: interactive
mode during working hours, batch mode for the rest
of the day and over weekends. In general, the over-
all job throughput is the main objective of batch pro-
cessing. As batch jobs typically have a long run time,
waiting is not very critical. On the other hand, a user
that works interactively counts the five minutes until
he/she can start working with the requested resources.
Other issues like the overall job throughput or the uti-

lization are less important while operating in interac-
tive mode. Which in comparison to batch mode jobs
are rather short. The idea [4] is to allow the users to
decide in which mode the system should be operating.
Hence, the Implicit Voting System (IVS) is introduced,
as users should not vote explicitly:

• If most of the waiting jobs are submitted for batch
processing, IVS switches to LJF (longest job first).
As batch jobs are typically long, they receive a
higher priority in the scheduling process. Hence,
resources are longer bound to jobs, less resource
fragmentation is caused and the utilization and
throughput of the system is increased.

• If most of the waiting jobs are submitted for in-
teractive access, IVS switches to SJF (shortest job
first). As interactive jobs are usually short in their
run time and short jobs are preferred, the average
waiting time is reduced.

• If the system is not saturated, the default schedul-
ing strategy FCFS (first come first serve) is used.
Note, a threshold for defining when a system is
saturated and when not is defined by the admin-
istrative staff. For the authors a MPP system be-
comes saturated, if more than five jobs can not be
scheduled immediately.

Unfortunately, the idea of IVS was never realized nor
implemented and tested in a real environment.

In [3] a similar approach for the NASA Ames
iPSC/860 system is presented. In the prime time dur-
ing the day only a fraction of the resources is allocated
to the batch partition, while most of the resources are
available for interactive access. During non prime time
all resources are assigned to the batch partition. The
re-partitioning is done manually and at fixed times of
the day.

The problem of getting the best performance from
a modern resource management system is described in
[2]. Commonly such software systems are highly pa-
rameterized and the administrative staff performs a lot
of trial and error testing in order to find a good pa-
rameter setting for the current workload. If the work-
load changes, new parameter settings have to be found.
However, they are notoriously overworked and have lit-
tle or no time for this fine tuning, so the idea is to auto-
mate this process. Much information about the current
and past workload is available, which is used to run
simulations in the idle loop of the system (or on a ded-
icated machine). Various parameter settings are simu-
lated and the best setting is chosen. The authors call
such a system self-tuning, as the system itself searches



for optimized parameter settings. To create new pa-
rameter settings for the simulations, genetic algorithms
are used. New parameter settings are generated by ran-
domly combining several potential combinations from
the previous step. Chromosomes are the binary repre-
sentation of a parameter. A parameter setting is called
individual and the according parameter values are con-
catenated in their binary representation. In this exam-
ple the fitness function is the average utilization of the
system achieved by the according parameter setting.
All simulated parameter settings (individuals) in one
step represent a generation. The chromosomes of the
fittest individuals of a generation are used to produce
new individuals for the next generation. New genera-
tions are continuously created with the latest system
workload as input. The process is started with default
values. In a case study for scheduling batch jobs of the
NASA Ames iPSC/860 system the authors observed
that with the self-tuning search for parameter settings
the overall system utilization is improved from 88%
(with the default parameters) to 91%.

In [8] heuristics for the dynamic mapping of a class
of independent tasks onto heterogeneous computing
systems are introduced. The mapping problem con-
sist of two parts: matching and scheduling. In the
matching phase the assignment of tasks to machines
is computed, whilst during scheduling the execution
order of the tasks on each machine is computed. In
their work a dynamic mapping is needed, as the ar-
rival times of the tasks may be random and the set
of available machines is changing. Machines may go
off-line and new machines may come on-line. Map-
ping heuristics can be grouped in two classes: on-line
mode and batch-mode heuristics. In the on-line mode
tasks are mapped onto a machine immediately after
their submission. In the batch-mode, tasks are not im-
mediately mapped when they arrive, instead they are
stored and the mapping is invoked at pre-scheduled
mapping events. The heuristic MCT (minimum com-
pletion time) assigns each task to that machine which
results in the task’s earliest completion time. Tasks
may be assigned to machines, which do not have the
minimum execution time. In contrast, MET (mini-
mum execution time) assigns each task to that machine
that performs the task in the least amount of execution
time. As the machines ready times are not considered
by MET, load imbalance across the machines may oc-
cur. The new batch-mode SA (switching algorithm)
heuristic uses these two heuristics (MCT and MET)
in a cyclic fashion depending on the load distribution
across the machines. By switching between MCT and
MET a new heuristic with the desirable properties of
the two single heuristics is generated.

3 Self-Tuning dynP

A single scheduling policy is usually used in a re-
source management system and it typically generates
good schedules only for jobs with specific characteris-
tics (e. g. short jobs). If the job characteristics change,
other scheduling policies might perform better and
it might be beneficial that the system administrator
changes the scheduling policy. However, system ad-
ministrators are not able to monitor the situation and
continuously alter the scheduling policy in response to
workload changes.

We developed the dynP scheduler, which automati-
cally switches the active scheduling policy during run
time. In general, the set of scheduling policies to choose
from can consist of many policies one can think of. We
started with a variant of the dynP scheduler, which uses
bounds for the average estimated run time of waiting
jobs to check, which policy is best suited for the current
job characteristics. A major drawback of this version is
obvious, as the performance depends on a proper set-
ting of the bounds. And in order to reflect different job
characteristics, these bounds need to be changed. We
developed the self-tuning dynP scheduler which auto-
matically searches for the best suited policy.

3.1 Concept

At the PC2 (Paderborn Center for Parallel Com-
puting) the self-developed resource management sys-
tem CCS (Computing Center Software, [6]) is used for
managing the PSC Pentium3 cluster [12] and the pling
cluster [11]. Three scheduling policies are currently
implemented: FCFS, SJF, and LJF. According to the
classification in [5], CCS is a planning based resource
management system. Planning based resource man-
agement systems schedule the present and future re-
source usage, so that newly submitted jobs are placed
in the active schedule as soon as possible and they get
a start time assigned. With this approach backfilling is
done implicitly. By planning the future resource usage,
a sophisticated approach is possible for finding a new
policy. For all waiting jobs the scheduler computes a
full schedule, which contains planned start times for
every waiting job in the system. With this information
it is possible to measure the schedule by means of a
performance metric (e. g. response time, slowdown, or
makespan). The concept of self-tuning dynP is:

The self-tuning dynP scheduler computes full
schedules for each available policy (here:
FCFS, SJF, and LJF). These schedules are
evaluated by means of a performance metric.



Thereby, the performance of each policy is ex-
pressed by a single value. These values are
compared and a decider mechanism chooses
the best value, i. e. the smallest value.

In the following, the performance metric used in the
self-tuning process is called self-tuning metric for sim-
plicity.

3.2 Decider Mechanisms

For the required decision, several levels of sophis-
tication are thinkable. In [16] we presented the sim-
ple decider that basically consists of three if-then-else
constructs. It chooses that policy which generates the
minimum value of the applied self-tuning metric. The
simple decider also has drawbacks, as it does not con-
sider the old policy. In particular if two policies are
equal and a decision between them is needed, informa-
tion about the old policy is helpful. Table 5 shows a
detailed analysis of the simple decider. FCFS is favored
in three and SJF in one case, although staying with the
old policy is the correct decision with these cases. This
behavior is implemented in the advanced decider. At
a first glance it does not make any difference which
policy among equals is chosen. At this stage the sched-
uler only knows estimates of the job’s run time and
usually the job’s actual run time is shorter than esti-
mated. When a job ends earlier than estimated, the
schedule changes and new planning is necessary. De-
pending on the chosen policy different jobs might have
been started in the meantime. Therefore, even a deci-
sion between two equal policies is required. Previously,
the fairness among the policies was of major interest.
However, it might be interesting to explicitly prefer one
of the policies and neglect the others. For that purpose
we developed the preferred decider [17]. The preferred
policy is not switched unless any other policy is bet-
ter. Whenever any of the other policies are currently
used, the preferred policy only has to achieve an equal
performance and the decider switches back.

The deciders of the self-tuning dynP scheduler
consider only the three policies FCFS, SJF, and LJF
for three reasons. First of all, we evaluate the general
behavior and performance of self-tuning dynP sched-
ulers for the resource management of HPC systems.
We do not evaluate, which combination of policies is
best suited for specific job characteristics. Presumably,
combinations with other and more scheduling policies
exist, which generate even better results. Secondly,
FCFS, SJF, and LJF are the most known scheduling
policies and many resource management systems
have at least these three implemented. And thirdly,
these three policies are implemented in the resource

management software CCS, which depicts the basis
and starting position for our work.

In previous work we already presented the basics of
the self-tuning dynP scheduler. It started with the sim-
ple decider in [16]. Next, we developed the advanced
decider [15] and recently the preferred decider [17]. In
this paper we present further enhancements to the de-
cision process, which can be applied to all three men-
tioned decider mechanisms.

3.3 Enhancements to the Decision Process

As previously mentioned the aim of the self-tuning
dynP scheduler is to eliminate input parameters for
the scheduler, especially those which depend on the
characteristics of the processed jobs and need to be
re-adapted continuously. Nevertheless, enhancements
that influence the scheduler in a more general way are
thinkable. Of course they should be independent of
any job characteristics and easy to handle, so that a
continuous manual re-adaptation is not needed.

Different Self-Tuning Metrics

The concept of the self-tuning dynP scheduler is based
on the planning-based scheduling approach, where all
waiting jobs are placed in a schedule. With assign-
ing a proposed start time to each job, it is possible to
compute the waiting time of the jobs, so that sched-
ules can be compared. For this, different self-tuning
metrics can be applied, e. g. user centric metrics like
the average response time or the slowdown (both un-
weighted or weighted), and owner centric metrics like
the makespan. By choosing a specific metric, the self-
tuning dynP scheduler optimizes its behavior accord-
ing to this metric. We use the following metrics, which
are all defined in the next section: average response
time (ART), average response time weighted by area
(ARTwA), average response time weighted by width
(ARTwW), average slowdown (SLD), average slow-
down weighted by area (SLDwA), average slowdown
weighted by width (SLDwW) and makespan.

Calling of Self-Tuning

Doing self-tuning and potentially switching the active
scheduling policy, should be done whenever the sched-
ule or the set of waiting jobs changes, i. e. whenever
a new job is submitted or an already running job ter-
minates earlier than estimated. In the following, we
call this full self-tuning. However, it might also be suf-
ficient to do the self-tuning step only when new jobs
are submitted, i. e. the characteristics of waiting jobs



in the system change. We call this option half self-
tuning, as roughly only half as much self-tuning calls
are performed. This option is interesting to evaluate
in combination with the compute time to do the self-
tuning process. It might be beneficial to save up some
compute time and make the scheduling behavior more
comprehensible for the users.

4 Evaluation

It is common practice to use discrete event simu-
lations for the evaluation of job-scheduling strategies.
For this purpose we developed MuPSiE (Multi Purpose
Scheduling Simulation Environment). Several policies
and the planning-based scheduling approach from [5]
are implemented. All presented results are generated
with MuPSiE.

4.1 Performance Metrics

We use the user centric slowdown metric for mea-
suring the simulated schedules with all processed jobs.
The slowdown of a job is also often called stretch [10] or
relative response time, as the jobs response time is di-
vided by the jobs run time. The slowdown comes with-
out a dimension in contrast to e. g. response time. Ad-
ditionally, we weight each job’s slowdown with its area.
Thereby, it is circumvented that jobs with the same run
time, but with different resource requirements, have the
same impact on the overall performance.

With the parameters for a finished job i of a total
of m processed jobs:

• tai is the arrival or submission time

• tsi is the start time

• tei is the end time

• wi is the width (number of requested/used re-
sources)

• li = tei − tsi is the length (run time, duration)

• twi = tsi − tai is the waiting time

• tri = twi + li is the response time

• si =
tr

i

li
= 1 +

tw

i

li
is the slowdown

• ai = wi · li is the area

The average slowdown weighted by job area (SLDwA)
for all jobs is defined as:

SLDwA =

m∑

i=1

ai · si

m∑

i=1

ai

(1)

If the processed jobs are not changed in their width or
run time, the average slowdown weighted by job area
is equal to the average response time weighted by job
width and the equation holds:

SLDwA = ARTwW ·

m∑

i=1

wi

m∑

i=1

ai

(2)

For completeness, the other metrics used during the
self-tuning process are defined as follows:

• the average response time:

ART =
1

m
·

m∑

i=1

t
r
i (3)

• the average response time weighted by job area:

ARTwA =

m∑

i=1

ai · t
r
i

m∑

i=1

ai

(4)

• the average response time weighted by job width:

ARTwW =

m∑

i=1

wi · t
r
i

m∑

i=1

wi

(5)

• the average slowdown:

SLD =
1

m
·

m∑

i=1

si (6)

• the average slowdown weighted by job width:

SLDwW =

m∑

i=1

wi · si

m∑

i=1

wi

(7)

• the makespan:
max

i=1,...,m
t
e
i (8)



4.2 Workload

An evaluation of job scheduling policies requires to
have job input. In this work a job is defined by the
submission time, the number of requested resources
(= width), and the estimated run time (= length). As
we model a planning based resource management sys-
tem [5], run time estimates are mandatory. Addition-
ally, for the simulation the actual run time is needed.

In this paper, we use four traces from the Paral-
lel Workloads Archive [18], as all other traces do not
come with information about run time estimates. The
characteristics of the four traces are shown in Table 1
(taken from [17]).

• CTC (Cornell Theory Center), system: 512-node
IBM SP2 (only 430 nodes are available for batch
processing), duration: July 1996 - May 1997, jobs:
79,302

• KTH (Swedish Royal Institute of Technology),
system: 100-node IBM SP2, duration: October
1996 - August 1997, jobs: 28,490

• LANL (Los Alamos National Lab), system: 1024-
node Connection Machine CM-5 from Thinking
Machines, duration: October 1994 - September
1996, jobs: 201,387

• SDSC (San Diego Supercomputing Center), sys-
tem: 128-node IBM SP2, duration: May 1998 -
April 2000, jobs: 67,667

5 Results

We start with presenting the results for the three ba-
sic policies FCFS, SJF, and LJF in short. This gives a
good reference for the subsequent evaluations. At first,
the results of the comparison of different self-tuning
metrics are presented. A comparison of half and full
self-tuning for the mentioned decider mechanisms fol-
lows. Finally, an analysis of the switching behavior for
the simple and advanced decider is done.

5.1 Basic Policies

As previously stated, the evaluation shows that none
of the policies is the best for every job set character-
istic. In Table 2 the best basic policy with respect to
the average slowdown weighted by area is highlighted
with bold font. Particularly for the SDSC trace, the
differences in slowdown are large as SJF is worse than
FCFS by a factor of almost two and LJF is even worse
(twice as bad as FCFS).

Backfilling is done implicitly with the planning-
based scheduling approach for all three basic scheduling
policies.

FCFS SJF LJF

CTC 2.0455 1.9277 2.5212
KTH 3.1015 2.5488 5.8118

LANL 1.6801 1.7031 2.0507
SDSC 6.8260 12.5662 26.8207

Table 2. Overall average slowdown weighted
by area (SLDwA) for the three basic policies
FCFS, SJF, and LJF.

5.2 Different Self-Tuning Metrics

In the following, the results with different self-tuning
metrics are presented. We used the following user
centric metrics: average response time (ART), aver-
age response time weighted by area (ARTwA), aver-
age response time weighted by width (ARTwW), aver-
age slowdown (SLD), average slowdown weighted by
area (SLDwA), and average slowdown weighted by
width (SLDwW). Additionally, the owner centric met-
ric makespan is used.

One can assume that the best performance is
achieved by using the same metric during the self-
tuning process and after the simulation is finished. As
stated earlier, we use the average slowdown weighted
by area (SLDwA) metric for measuring all simulated
jobs. Hence, using SLDwA during self-tuning should
lead to the best performance (i. e. the smallest values).
This is seen in the upper part of Table 3. For the CTC,
LANL, and SDSC trace the best self-tuning metric
is SLDwA and the mentioned expectation is fulfilled.
However, it is interesting that for the KTH trace us-
ing the job’s width as a weight is slightly (0.8%) better
than using the job’s area as a weight. A possible reason
for this is the overestimation factor, which is smaller
for the KTH trace (1.5) than for the other three (2.2,
cf. Table 1).

Using all other self-tuning metrics results in a sig-
nificantly worse performance. In particular this is seen
for the ARTwA metric and the SDSC trace, as the
achieved performance is twice as bad. Observing the
numbers for the ARTwW and the SLDwA self-tuning
metric shows that the numbers are equal. This is a re-
sult of Equation 2 and the fact that the processed jobs
are not changed in their width or run time.

The bottom part of Table 3 shows the overall uti-
lization with all simulated jobs. Independent of the
applied self-tuning metric the exact same utilizations



requested estimated actual average interarrival
resources run time [sec.] run time [sec.] overest. time [sec.]

trace min avg. max min avg. max min avg. max factor min avg. max

CTC 1 10.72 336 0 24,324 64,800 0 10,958 64,800 2.220 0 369 164,472
KTH 1 7.66 100 60 13,678 216,000 0 8,858 216,000 1.544 0 1,031 327,952
LANL 32 104.95 1,024 1 3,683 30,000 1 1,659 25,200 2.220 0 509 201,006
SDSC 1 10.54 128 2 14,344 172,800 0 6,077 172,800 2.360 0 934 79,503

Table 1. Basic properties of the used traces (86,400 seconds = 1 day).

are generated for the traces CTC, KTH, and LANL.
This indicates that those jobs submitted towards the
end of the schedule are always scheduled at the same
start time and are responsible for the makespan and
therefore for the utilization. Only for the SDSC trace
different utilizations are achieved, as the differences of
the basic policies are large (cf. Table 2). Using the
owner centric metric makespan leads to the best uti-
lization. This matches to the results with SLDwA, as
makespan and utilization are connected via the total
sum of job areas and the totally available resources on
the simulated machine.

These observations reflect the different switching be-
havior of the self-tuning dynP scheduler, if different per-
formance metrics are applied. It is possible to tune the
system performance in either way: user or owner cen-
tric. Using either owner or user centric metrics in the
self-tuning process to generate good overall results for
opposing metrics, i. e. user and owner, generally leads
to a poor performance and should be avoided.

Comparing the best self-tuning metric with the best
basic policy from Table 2 shows that only for the CTC
and LANL trace the self-tuning dynP scheduler is bet-
ter. The performance loss of the self-tuning dynP

scheduler is marginal (0.4%) for the KTH trace, but
almost 200% for the SDSC trace. This is a result of
the overestimation of the job’s run time by the users
and the large differences of the basic policies. This
misleads the self-tuning dynP scheduler in the decision
process and results in wrong decisions. Although this
also happens with the other traces, the impact is most
seen for the SDSC trace.

5.3 Half vs. Full Self-Tuning

For the comparison of half and full self-tuning one
can assume that applying full self-tuning is the best op-
tion. With this the self-tuning dynP scheduler chooses
the best scheduling policy every time the schedule
changes, i. e. when a new job is placed in the schedule
and a running job terminates earlier than estimated
and a re-scheduling is required. The self-tuning dynP

scheduler plans schedules for each available scheduling
policy and for all waiting jobs. This results in an in-
creased computational time of the scheduler. As this

can be unappropriate in certain scenarios, half self-
tuning is an option, as roughly only half as many self-
tuning calls are done. Some performance loss might oc-
cur with half self-tuning, as with new job submissions
the scheduling policy might be changed. In the MuP-

SiE simulation environment a single self-tuning call for
finding a new policy is completed within 6 ms for an av-
erage of 22.5 waiting jobs (simulated configuration: ad-
vanced decider, full self-tuning, ARTwW as self-tuning
metric, CTC trace) and applying half self-tuning might
not be necessary.

In Table 4 the slowdown results for the simple,
advanced, SJF- and FCFS-preferred decider are pre-
sented. One can see that the assumption from above is
not always true. In particular for the SDSC trace, half
self-tuning is better than full self-tuning. Also with the
simple decider full self-tuning is not beneficial. Looking
at the performance of the advanced and SJF-preferred
decider shows that for the CTC and LANL trace the
self-tuning dynP scheduler is always better than the
best basic policy. Furthermore, it is interesting to ob-
serve that half and full self-tuning have no major im-
pact on the performance of these two deciders. The
generated SLDwA values are closer together. Similar
to the comparison of the different self-tuning metrics,
the SDSC trace is more vulnerable for the switching be-
havior of the self-tuning dynP scheduler. In particular
the simple and FCFS-preferred deciders generate very
bad results with full self-tuning applied. In this case
doing more self-tuning calls increases the SLDwA by a
factor of two. Again this can be a result of overestimat-
ing the job run times. By doing self-tuning when jobs
terminate and by potentially switching to a disadvanta-
geous scheduling policy, different jobs are immediately
started.

One can also see that the advanced decider obvi-
ously outperforms the simple decider due to its design.
This is independent of whether full or half self-tuning
is performed. The performance benefit of the advanced
decider is different for the four traces; quite large for
the KTH and SDSC trace and smaller for the LANL
trace. For the SDSC trace and full self-tuning the dif-
ference between the two deciders is almost 70%.

As for the CTC and KTH trace SJF is the best ba-



self-tuning metrics
ART ARTwA ARTwW SLD SLDwA SLDwW Makespan

SLDwA

CTC 2.0073 2.2866 1.8781 1.9585 1.8781 1.9021 2.4582
KTH 3.1459 5.6542 2.5754 2.6939 2.5754 2.5594 5.3823

LANL 1.7008 1.8328 1.6177 1.6626 1.6177 1.6179 2.0357
SDSC 14.6495 20.5247 10.1598 12.6742 10.1598 11.8321 24.8958

Utilization

CTC for all self-tuning metrics: 65.701%
KTH for all self-tuning metrics: 68.716%

LANL for all self-tuning metrics: 55.607%
SDSC 81.787% 81.812% 81.633% 81.762% 81.633% 81.309% 82.473%

Table 3. Overall SLDwA and utilization values for different self-tuning metrics. Advanced decider and
full self-tuning applied. Values for ARTwW and SLDwA are equ al because of Equation 2.

best basic decider mechanisms
policy self-tuning simple advanced SJF-preferred FCFS-preferred

CTC
1.9277 half 2.3036 1.9085 1.8567 2.3270

(SJF) full 2.2812 1.8781 1.8873 2.2804

KTH
2.5488 half 4.7256 2.5812 2.5734 4.9281

(SJF) full 5.7433 2.5754 2.5578 5.7492

LANL
1.6801 half 1.7534 1.6027 1.6330 1.7605

(FCFS) full 1.7610 1.6177 1.6143 1.7680

SDSC
6.8260 half 13.3353 10.0953 10.2896 16.1766

(FCFS) full 32.6934 10.1598 10.5198 32.6965

Table 4. Overall SLDwA comparison of full and half self-tuni ng with different decider mechanisms.

sic policy and FCFS for the LANL and SDSC trace,
a SJF- and FCFS-preferred policy makes sense. The
results indeed show that the SJF-preferred decider can
improve the performance of the advanced decider for
the CTC and KTH trace, but the same does not ap-
ply for the FCFS-preferred decider and the LANL and
SDSC traces. In fact the FCFS-preferred decider is
worse (almost three times for the SDSC trace) than
the advanced and SJF-preferred decider. This is sur-
prising, as FCFS proves to be a good basic policy. The
poor performance can be based on the fact that some
jobs, which are not started by FCFS, alter the sched-
ule in such a way that many subsequent jobs have to
wait long and therefore the SLDwA drops. A possible
example for this scenario could look like the following:
some jobs with a large area (requesting many resources
and/or with a long estimated run time) may induce a
policy change in order to favor these jobs. However,
the estimate of the run time may have been wrong, so
that the end after some time. In this case delaying
these jobs would be beneficial, as due to their short
actual run time their influence on the overall SLDwA
performance may only be small.

5.3.1 Detailed Analysis of the Switching Be-

havior

With full self-tuning the difference between the simple
and advanced decider is best seen for the SDSC trace,
hence a detailed case analysis is done in the following.
Table 5 shows the amount each case is reached during
the decision process. The numbers show a significant
difference in case 6b: the performance of FCFS is equal
to SJF, LJF is worse than both, and the old policy is
SJF. In 80,419 (75.11%) of 107,066 total self-tuning de-
cisions this situation occurs and the advanced decider
stays with SJF. In contrast, the simple decider reaches
this case in only 42.56% of all self-tuning decisions and
switches to FCFS in this situation.

In case 1 all three policies have the same perfor-
mance. The correct decision is to stay with the old
policy like the advanced decider does, but the simple
decider arbitrarily favors FCFS. The other two cases
8c and 10c are not reached by the simple or advanced
decider, hence they can not induce the difference in
performance. With the large differences in case 6b the
number of appearances of the other cases is also influ-
enced. This is best seen for case 4b. However, the other
cases have no influence on the different performance
of the simple and advanced decider, as both deciders



simple advanced
case combinations decider counted decider counted

1 FCFS = SJF = LJF FCFS 11,135 old policy 15,861

2 SJF < FCFS, SJF < LJF SJF 47,285 SJF 962
3 FCFS < SJF, FCFS < LJF FCFS 60 FCFS 119
4 LJF < FCFS, LJF < SJF

a FCFS < SJF LJF 19 LJF 8
b FCFS = SJF LJF 2,007 LJF 7,178
c FCFS > SJF LJF 26 LJF 10

5 FCFS = SJF, LJF < FCFS (⇔ LJF < SJF) LJF 0 LJF 0
6 FCFS = SJF, FCFS < LJF (⇔ SJF < LJF)

a old policy = FCFS FCFS 362 FCFS 603
b old policy = SJF FCFS 46,617 SJF 80,419

c old policy = LJF FCFS 254 FCFS 1085
7 FCFS = LJF, SJF < FCFS (⇔ SJF < LJF) SJF 0 SJF 0
8 FCFS = LJF, FCFS < SJF (⇔ LJF < SJF)

a old policy = FCFS FCFS 1,751 FCFS 820
b old policy = SJF FCFS 0 FCFS 0
c old policy = LJF FCFS 0 LJF 0

9 SJF = LJF, FCFS < SJF (⇔ FCFS < LJF) FCFS 3 FCFS 0
10 SJF = LJF, SJF < FCFS (⇔ LJF < FCFS)

a old policy = FCFS SJF 2 SJF 1
b old policy = SJF SJF 0 SJF 0
c old policy = LJF SJF 0 LJF 0

totally counted 109,521 107,066

Table 5. Case analysis for the SDSC trace and the simple vs. ad vanced decider with full self-tuning
applied and SLDwA as self-tuning metric.

choose the same policy (LJF) as their new policy.

Focusing on the policy usage, Table 6 shows the dif-
ferences, i. e. how many times the decider switched to
each policy and how many jobs were started with each
policy. If the advanced decider is applied almost 80%
of all jobs are started by SJF and only a minority of
6% by FCFS. About 15% of the jobs are started with
LJF. Focusing on the number of switches to each of
the policies shows that the advanced decider stays with
the current policy and does not switch it in most cases
(97%). Only in about 1,000 cases the advanced decider
switches to one of the policies. This means that once
the decider switched to a policy, many jobs are started
with this policy. This applies in particular to SJF.

If on the other hand the simple decider is applied, its
switching behavior is much more spontaneous. In only
10% of all cases the simple decider does not switch its
policy. Most of the time it switches back and forth be-
tween FCFS and SJF. This results in an almost equal
usage of the two policies over a period of time (43%)
and the difference in the number of jobs started with
FCFS and SJF is also considerably smaller than with
the advanced decider. In only 13% of all self-tuning
decisions the simple decider stays with its current pol-
icy. Discarding its previous decision leads to a sce-
nario where preceding jobs are started by alternating
policies. Compared to the advanced decider about ten
times more jobs (60%) are started with FCFS by the
simple decider, whereas about only half as many jobs
(40%) are started by SJF. Only a minority of all jobs

are started with LJF.

The number of self-tuning calls with the simple de-
cider (109,521) is larger than with the advanced de-
cider (107,066). This results from the fact that more
than one job ends at the same time. Why? As full
self-tuning is applied and the same job trace is used,
the amount of self-tuning calls at job submission does
not change for one of the deciders. However, if more
than one job ends at the same time, a reschedule takes
place only once and therefore self-tuning is also called
only once. Hence, the advanced decider performs bet-
ter than the simple decider and at the same time in-
duces less self-tuning calls.

From this fact another question arises: If only half
self-tuning is applied, i. e. self-tuning is not done when
jobs end, the number of self-tuning calls should almost
be the same for both deciders? And yes, if half self-
tuning is applied the simple decider is called 56,738
times whereas the advanced decider is called 56,208
times. Both amounts are a slightly less than the num-
ber of totally scheduled jobs (67,620). This is based
on the fact that if enough resources are free to start
all jobs immediately, these jobs do not have to wait.
Self-tuning and scheduling policies in general make no
sense in this case, as the starting order of jobs does not
matter, as long as they are started immediately.



simple decider advanced decider

FCFS 47,499 (43.37%) 1,086 (1.01%)
switches to each policy SJF 47,287 (43.17%) 963 (0.90%)

LJF 395 (0.36%) 1,085 (1.01%)
no policy switch 14,340 (13.09%) 103,932 (97.07%)

FCFS 39,936 (59.06%) 4,120 (6.09%)
job started with each policy SJF 26,737 (39.54%) 53,634 (79.32%)

LJF 947 (1.40%) 9,866 (14.59%)

Table 6. Comparison of the decision behavior and the usage of policies for the SDSC trace with full
self-tuning applied.

6 Conclusions and Future Work

In this paper we presented two options for the deci-
sion process of the self-tuning dynP scheduler. The idea
of dynamically switching the scheduling policy (dynP)
is based on the fact that usually no single policy gener-
ates good schedules for every possible job characteris-
tic. In order to achieve the best possible performance,
it becomes necessary to switch the active scheduling
policies according to the currently waiting jobs. The
scheduler switches the scheduling policies without the
need of a permanent intervention of the system ad-
ministrator. With the planning-based scheduling ap-
proach, the self-tuning dynP scheduler generates full
schedules for each available basic policy, measures the
generated schedules with a performance metric, and fi-
nally switches to the best policy. A decider mechanism
is in charge of choosing the best policy according to
the applied performance metric. In previous papers we
presented different decider mechanisms.

In this paper we evaluated two general enhance-
ments, which can be applied to all decider mechanisms.
We compared different owner and user centric perfor-
mance metrics for the self-tuning process and studied
their influence. By using different self-tuning metrics
the objective of the self-tuning dynP scheduler can be
altered. Additionally, we studied the behavior of call-
ing the self-tuning process at different times (half and
full self-tuning) of the scheduling process. The evalua-
tion is done by using discrete event simulation with job
traces from real supercomputer installations as input.

Studying the different self-tuning metrics one as-
sumes that most likely the best performance is achieved
by using the same metric during the self-tuning pro-
cess and after the simulation is finished to measure all
jobs. This is true, the user centric average slowdown
weighted by area (SLDwA) is the best self-tuning met-
ric for three traces (CTC, SDSC, and LANL). For the
KTH trace the average slowdown weighted by width
(SLDwW) slightly improves the performance slightly
by 0.8%. If the objective of the self-tuning dynP sched-

uler is to optimize the owner centric overall utilization
of the system, the makespan generates the best results,
although only for the SDSC trace. The characteristics
of the remaining three traces generate equal overall uti-
lizations for all applied self-tuning metrics.

We also compared half and full self-tuning, i. e. call-
ing the self-tuning process only when new jobs are sub-
mitted or additionally when running jobs terminate.
Although much less self-tuning calls are done with half
self-tuning, the performance different to full self-tuning
is small with the advanced and SJF-preferred decider.
Similar to the comparison of different self-tuning met-
rics, the SDSC trace is more vulnerable for the switch-
ing behavior of the self-tuning dynP scheduler. In par-
ticular the simple and FCFS-preferred decider generate
very bad results, which are almost three times as bad
as for the other deciders. Therefore, if less self-tuning
calls are intended by the system administrators, e. g. to
reduce the switching behavior of the self-tuning dynP

scheduler, the generated performance is only sightly
behind and half self-tuning is a good compromise.

We showed that in general the presented self-tuning
scheduler with dynamic policy switching can be bene-
ficial to commonly used static scheduling approaches.
Therefore, we think that self-tuning schedulers, which
are able to adapt their scheduling behavior accord-
ing to the job characteristics of the currently waiting
jobs, should be implemented in modern cluster resource
management systems. From a practical perspective
the self-tuning dynP scheduler might cause problems
for the users, as the scheduling behavior of the system
might become unpredictable. For practical matters a
policy switching might only be done at well established
times, e. g. only once an hour.

In the future it will be interesting to study, whether
a combination of different self-tuning performance met-
rics is beneficial. For example, the owner centric
makespan metric is considered with 20%, and the user
centric average response time weighted by job width is
considered with 80%.



References

[1] D. G. Feitelson. A Survey of Scheduling in Multi-
programmed Parallel Systems. Research report rc
19790 (87657), IBM T.J. Watson Research Center,
Yorktown Heights, NY, 1995.

[2] D. G. Feitelson and M. Naaman. Self-Tuning
Systems. In IEEE Software 16(2), pages 52–60,
April/Mai 1999.

[3] D. G. Feitelson and B. Nitzberg. Job Character-
istics of a Production Parallel Scientific Workload
on the NASA Ames iPSC/860. In D. G. Feitelson
and L. Rudolph, editor, Proc. of 1st Workshop on
Job Scheduling Strategies for Parallel Processing,
volume 949 of Lecture Notes in Computer Science,
pages 337–360. Springer, 1995.

[4] J. Gehring and F. Ramme. Architecture-
Independent Request-Scheduling with Tight
Waiting-Time Estimations. In D. G. Feitelson
and L. Rudolph, editor, Proc. of 2nd Workshop
on Job Scheduling Strategies for Parallel Process-
ing, volume 1162 of Lecture Notes in Computer
Science, pages 65–80. Springer, 1996.

[5] M. Hovestadt, O. Kao, A. Keller, and A. Streit.
Scheduling in HPC Resource Management Sys-
tems: Queuing vs. Planning. In D. G. Feitelson
and L. Rudolph, editor, Proc. of the 9th Workshop
on Job Scheduling Strategies for Parallel Process-
ing, volume 2862 of Lecture Notes in Computer
Science, pages 1–20. Springer, 2003.

[6] A. Keller and A. Reinefeld. Anatomy of a Re-
source Management System for HPC Clusters. In
Annual Review of Scalable Computing, vol. 3, Sin-
gapore University Press, pages 1–31, 2001.

[7] D. A. Lifka. The ANL/IBM SP Scheduling Sys-
tem. In D. G. Feitelson and L. Rudolph, editor,
Proc. of 1st Workshop on Job Scheduling Strate-
gies for Parallel Processing, volume 949 of Lec-
ture Notes in Computer Science, pages 295–303.
Springer, 1995.

[8] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen,
and R. F. Freund. Dynamic Mapping of a Class of
Independent Tasks onto Heterogeneous Comput-
ing Systems. Journal of Parallel and Distributed
Computing, 59(2):107–131, 1999.

[9] A. Mu’alem and D. G. Feitelson. Utilization, Pre-
dictability, Workloads, and User Runtime Esti-
mates in Scheduling the IBM SP2 with Backfill-

ing. In IEEE Trans. Parallel & Distributed Sys-
tems 12(6), pages 529–543. IEEE Computer Soci-
ety Press, June 2001.

[10] S. Muthukrishnan, R. Rajaraman, A. Shaheen,
and J. E. Gehrke. Online Scheduling to Minimize
Average Stretch. In Proceedings of the 40th An-
nual IEEE Symposium on Foundations of Com-
puter Science, pages 433–442, 1999.

[11] The pling Itanium2 Cluster at the Pader-
born Center for Parallel Computing (PC2).
http://www.upb.de/pc2/services/systems/

pling/index.html, April 2004.

[12] The PSC Pentium3 Cluster at the Pader-
born Center for Parallel Computing (PC2).
http://www.upb.de/pc2/services/systems/

psc/index.html, April 2004.

[13] F. Ramme and K. Kremer. Scheduling a Meta-
computer by an Implicit Voting System. In
3rdInt. IEEE Symposium on High-Performance
Distributed Computing, pages 106–113, 1994.

[14] J. Skovira, W. Chan, H. Zhou, and D. Lifka. The
EASY — LoadLeveler API Project. In D. G.
Feitelson and L. Rudolph, editor, Proc. of 2nd
Workshop on Job Scheduling Strategies for Par-
allel Processing, volume 1162 of Lecture Notes in
Computer Science, pages 41–47. Springer, 1996.

[15] A. Streit. A Self-Tuning Job Scheduler Family
with Dynamic Policy Switching. In D. G. Feitelson
and L. Rudolph, editor, Proc. of the 8th Workshop
on Job Scheduling Strategies for Parallel Process-
ing, volume 2537 of Lecture Notes in Computer
Science, pages 1–23. Springer, 2002.

[16] A. Streit. The Self-Tuning dynP Job-Scheduler.
In Proc. of the 11th International Heterogeneous
Computing Workshop (HCW) at IPDPS 2002,
pages 87 (book of abstracts, paper only on CD).
IEEE Computer Society Press, 2002.

[17] A. Streit. Evaluation of an Unfair Decider Mech-
anism for the Self-Tuning dynP Job Scheduler.
In Proc. of the 13th International Heterogeneous
Computing Workshop (HCW) at IPDPS, pages
108 (book of abstracts, paper only on CD). IEEE
Computer Society Press, 2004.

[18] Parallel Workloads Archive. http://www.cs.

huji.ac.il/labs/parallel/workload/, April
2004.


