
Exploiting Replication and Data Reuse to Efficiently Schedule
Data-intensive Applications on Grids

Elizeu Santos-Neto, Walfredo Cirne, Francisco Brasileiro, Aliandro Lima
Universidade Federal de Campina Grande

http://www.ourgrid.orgfelizeu,walfredo,fubica,aliandrog@dsc.ufcg.edu.br

Abstract

Data-intensive applications executing over a compu-
tational grid demand large data transfers. These are
costly operations. Therefore, taking them into account
is mandatory to achieve efficient scheduling of data-
intensive applications on grids. Further, within a het-
erogeneous and ever changing environment such as a
grid, better schedules are typically attained by heuris-
tics that use dynamic information about the grid and the
applications. However, this information is often difficult
to be accurately obtained. On the other hand, although
there are schedulers that attain good performance with-
out requiring dynamic information, they were not de-
signed to take data transfer into account. This paper
presents Storage Affinity, a novel scheduling heuristic
for bag-of-tasks data-intensive applications running on
grid environments. Storage Affinity exploits a data reuse
pattern, common on many data-intensive applications,
that allows it to take data transfer delays into account
and reduce the makespan of the application. Further,
it uses a replication strategy that yields efficient sched-
ules without relying upon dynamic information that is
difficult to obtain. Our results show that Storage Affin-
ity may attain better performance than the state-of-the-
art knowledge-dependent schedulers. This is achieved at
the expense of consuming more CPU cycles and network
bandwidth.

1 Introduction

Each year more data are generated and need to be
processed [1]. Currently, there are many scientific and
enterprise applications that deal with a huge amount
of data [2][3][4]. These applications are calleddata-
intensive. In order to process large datasets, these ap-
plications typically need a high performance comput-

ing infrastructure. Fortunately, since the data splitting
procedure is easy and each data element can often be
processed independently, a solution based on data paral-
lelism can often be employed.

Task independence is the main characteristic of par-
allel Bag-of-Tasks(BOT) applications [5][6]. A BOT
application is composed of tasks that do not need to
communicate to proceed with their computation. In this
work, we are interested in the class of applications which
has both BOT and data-intensivecharacteristics. We
have named itprocessors of huge data(PHD). Shortly,
PHD = BoT + data-intensive. There are innumerous im-
portant applications that fall in this category.

This is the case, for instance, of data mining, image
processing, and genomics.

Due to the independence of their tasks, BoT ap-
plications are normally suitable to be executed on
grids [7][5]. However, since resources in the grid are
connected by wide area network links (WAN), the band-
width limitation is an issue that must be considered
when runningPHD applications on such environments.
This is particularly relevant for thosePHD applications
that present a data reutilization pattern. For these ap-
plications, the data reuse pattern can be exploited to
achieve better performance. Data reutilization can be
either among tasks of a particular application or among
a succession of applications executions. For instance, in
the visualization process of quantum optics simulations
results [4] it is common to perform a sequence of ex-
ecutions of the same parallel visualization application,
simply sweeping some arguments (e.g. zoom, view an-
gle) and preserving a huge portion of the data input from
the previous executions.

There exists some algorithms that are able to take
data transfer into account when schedulingPHD appli-
cations on grid environments [8][9][10][11]. However,
they require knowledge that is not trivial to be accurately
obtained in practice, especially on a widely dispersed
environment such as a computational grid [7]. For ex-

ample, XSufferage [9] uses information about the CPU
and network loads, as well as the execution time of each
task on each machine, all of which must be known a pri-
ori, to perform the scheduling.

On the other hand, forCPU-intensiveBOT applica-
tions, there are schedulers that do not use dynamic infor-
mation, yet achieve good performance (e.g. Workqueue
with Replication - WQR [12][13]). They use replica-
tion to tolerate inefficient scheduling decisions taken due
to the lack of accurate information about both the envi-
ronment and the application. However, these schedulers
were conceived to target CPU-intensive applications and
thus data transfers are not taken into account by them.

In this paper we introduceStorage Affinity, a new
heuristic for schedulingPHD applications on grids. Stor-
age Affinity takes into account the fact that input data is
frequently reused either by multiple tasks of aPHD ap-
plication or by successive executions of the application.
It tracks the location of data to produce schedules that
avoid, as much as possible, large data transfers. Further,
it reduces the effect of inefficient task-processor assign-
ments via the judicious use of task replication.

The rest of the paper is organized in the following
way. In the next section we present the system model
that is considered in this work. In Section 3, we present
the Storage Affinity heuristic as well as other heuristics
used for comparative purposes. In Section 4, we eval-
uate the performance of the discussed schedulers. Sec-
tion 5 concludes the paper with our final remarks and a
brief discussion on future perspectives.

2 System Model

This section formally describes the problem investi-
gated and also provides the terminology used in the rest
of the paper.

2.1 System Environment

We consider the scheduling of a sequence of jobs1

over a grid infrastructure. The gridG is formed by a
collection of sites. Each site is comprised of a number
of processors, which are able to run tasks, and a single
data server which is able to store input data required in
the execution of a task, and output data generated by the
execution of a task. More formally:G = fsite1; : : : ; sitegg; g > 0; andsitei = Pi [fSig,

wherePi is the non-empty set of processors atsitei
andSi is the data server atsitei. We assume that the

1We use the terms job and application interchangeably.

WAN
Link

Local
File System

...

Site 1

Network
File System

LAN
Link

p
i

home

S
home

S1

Site n

Network
File System

LAN
Link

p
j

Sn

P

Figure 1. The system environment model

resources owned by the various sites are disjoint,i.e.8i; j; i 6= j; sitei \ sitej = ?.
Processors belonging to the same site are connected

to each other through a high bandwidth local area net-
work, whose latency is small and throughput is large
when compared to those experienced by the wide area
networks that interconnect processors belonging to dif-
ferent sites. Because of this assumption we only con-
sider one data server per site,i.e. the collection of data
servers that may be present in a site is collapsed into a
single data server.

We define two sets to encompass all processors (PG)
and all data servers (SG) present in a gridG. That is to
say: PG = [1�i�jGjPi; and SG = [1�i�jGjfSig:

We assume that the user spawns the execution of ap-
plications from ahomemachine that does not belong to
the grid (phome 62 G). Further, we assume that before
the first execution of an application, all its input data
are stored at the local file system of the home machine
(Shome). The bandwidth is shared equally among the
transfers initiated by the user in thehomemachine. Fig-
ure 1 illustrates the assumed environment.

2.2 Application

JobJj , j > 0, is thejth execution of the applica-
tion J . A job is composed by a non-empty collection of
tasks, in which each task is defined by two datasets: the
input and the output datasets. Formally:Jj = ftj1; : : : ; tjng; n > 0, andtjt = (I; O); I [O 6= ?,

wheretjt :I andtjt :O are the input and the output datasets
of tasktjt , respectively.

For each data serverSi; Si 2 SG, let dsj(Si) be the
set of data elements that are stored atSi before the exe-
cution of thejth job was started, and letds(Shome) be
the set of data elements that are stored at the home ma-
chine. We defineDj as the set of all data elements that
are available to be taken as input by thejth job to be
executed.Dj is given by:Dj = ds(Shome) [([Si2SG dsj(Si)) :

We have thattjt :I � Dj and after the execution of thejth job, the set of available data elementsDj+1 is given
by the union ofDj with all data elements that have been
output byJj :Dj+1 = Dj [8<: [1�t�jJjj tjt :O9=; :

We also define the input dataset of the entire applica-
tion as the union of the input dataset of each task in the
job. It is expressed by:Jj :I = jJj j[k=1 tjk:I
2.3 Job Scheduling and Performance Metrics

A schedule�j of the jobJj comprises the schedule
of each one of the tasks that formJj . The schedule of
a particular tasktjt of Jj specifies the processor that is
assigned to executetjt . Note that it is possible for the
same processor to be assigned to more than one task.
Formally,�j = fpj1; : : : ; pjng; n = jJj j; pjt 2 PG; 0 6 t 6 n

We assume that a task can only access the data server
at the same site of the processor on which the task is
running. Consequently, if all data elements in the datasettjt :I are not already stored atSi, the absent data elements
must be first transferred toSi before the execution oftjt
can be started atpjt . Thus, aftertjt is executed atpjt 2sitei, Si will have stored all data elements in the datasettjt :O.

We measure the application execution time to evalu-
ate the efficiency of a scheduling. Thus, the heuristic we
propose in this paper and also the others that we discuss,
all have a common goal, which is to minimize this met-
ric. The application execution time, normally referred as

its makespan[14], is the time elapsed between the mo-
ment the first task is started until the earliest moment in
which all tasks have finished their execution.

3 Scheduling Heuristics

Despite the fact thatPHD applications are suitable
to run on computational grids, the efficient schedul-
ing of these applications on grid environments is not
trivial. The difficulty in schedulingPHD application
is twofold. The first problem relates to the very na-
ture of PHD applications, which must deal with a huge
amount of data. The issue here is that the applica-
tion overall performance is greatly affected by the large
data transfers that occur before the execution of tasks.
The second problem is related to obtaining accurate in-
formation about the performance resources will deliver
to the application. Despite the fact that this informa-
tion is typically not available a priori, they are input
for most available schedulers. In fact, there has been
a great deal of research on predicting future CPU and
network performance as well as application execution
time [15][16][17][18][19]. As the results of these efforts
show, this is by no means an easy task. To complicate
matters further, the lack of central grid control poses an
obstacle for deploying resource monitoring middleware.

We can observe that the difficulty in obtaining
dynamic information and the impact of large data
transfers have been individually attacked. Therefore,
we comment two scheduling heuristics that deal with
these problems separately, Workqueue with Replication
(WQR) [12] and XSufferage [9]. We also introduce our
approach to address the twoPHD scheduling problems
together.

3.1 Workqueue with Replication

The WQR scheduling heuristic [12] has been con-
ceived to solve the problem of obtaining precise infor-
mation about the future performance tasks will expe-
rience on grid resources. Initially, WQR is similar to
the traditional Workqueue scheduling heuristic. Tasks
are sent at random to idle processors and when a pro-
cessor finishes a task, it receives a new task to exe-
cute. WQR differs from Workqueue when a processor
becomes available and there is no waiting task to start.
At this point, Workqueue would just wait for all tasks
to finish. WQR, however, starts replicating the tasks yet
running. The result from a task comes from the first
replica to finish. After the first replica completes, all
other replicas are killed.

The idea behind the task replication is to improve
the application performance by increasing the chances

of running a task on a fast/unloaded processors. WQR
achieves good performance for CPU-intensive applica-
tion [12] without using any kind of dynamic information
about processors, network links or tasks. The drawback
is that some CPU cycles are wasted with the replicas that
do not complete. Moreover, WQR does not take data
transfers into account, what results in poor performance
for PHD applications, as we shall see in Section 4.

3.2 XSufferage

XSufferage [9] is a knowledge-based scheduling
heuristic that deals with the impact of large data trans-
fers onPHD applications running on grid environments.
XSufferage is an extension of theSufferagescheduling
heuristic [20]. Sufferageprioritizes the task that would
“suffer” the most if not assigned to the processor that
fastest runs it. How much a task would suffer is gauged
by itssufferage value, which is defined as the difference
between the best and the second best completion time
for the task.

The main difference between XSufferage and Suf-
ferage algorithms is the sufferage value determination
method. In XSufferage, the sufferage value is calculated
using thesite-leveltask completion times. Thesite-level
completion time of a given task is the minimum com-
pletion time achieved among all processors within the
site. Thesite-level sufferageis the difference between
the best and second bestsite-levelcompletion times of
the task. The other difference is that XSufferage consid-
ers input data transfers in the calculation of the comple-
tion time of the task, thus, differently from Sufferage, it
requires information about network available bandwidth
as input.

The algorithm input is a jobJj and a gridG. The
algorithm traverses the setJj until it finds the tasktjt
with the highest sufferage value. This task is assigned to
the processor that has presented the earliest completion
time. This action is repeated until all tasks inJj are
scheduled.

The rationale behind XSufferage is to consider the
data location when performing the task-to-host assign-
ments. The expected effect is the minimization of the
impact of unnecessary data transfers on the application
makespan. The evaluation of XSufferage shows that
avoiding unnecessary data transfers indeed improves
the application’s performance [9]. However, XSuffer-
age calculates sufferage values based on the knowledge
about CPU loads, network bandwidth utilization and
task execution times. In general, this information is not
easy to obtain.

input : G, Jj
output : �j [�r
while (Jj 6= ?) do

- Get(tjt) whichSA(tjt) is the largest.
- Schedule(tjt) to a processor atsitei.
- Jj Jj � tjt
if (8p 2 PG; p is busy) thenwaitForATaskCompletionEvent()
end

endJr getAllRunningTasks()
while (Jr 6= ?) do

- Remove from (Jr) which:� SA(tjt ; sitei) = 0� getReplicationDegree(trt) > Degreemin
- Get the(trt) which (SA(trt ; sitei)) is the largest.
- Schedule replica ((trt)d) to a processor atsitei.
if (8 p 2 PG j p is busy) then

waitForATaskCompletionEvent()
killAllReplicasOfTheCompletedTask()

end
- Jr getAllTasksRunning()

end

Algorithm 1: Storage Affinity scheduling heuristic

3.3 Storage Affinity

Storage Affinity was conceived to exploit data reuti-
lization to improve the performance of the application.
Data reutilization appears in two basic flavors:inter-job
and inter-task. The former arises when a job uses the
data already used by (or produced by) a job that exe-
cuted previously, while the latter appears in applications
whose tasks share the same input data. More formally,
the inter-job data reutilization pattern occurs if the fol-
lowing relation holds:(j < k) ^ ((Jj :I [Jj :O) \ Jk:I 6= ?)

On the other hand, theinter-task data reutilization
pattern occurs if this other relation holds:jJj j\t=1 tjt :I 6= ?

In order to take advantage of the data reutilization
pattern and improve the performance ofPHD applica-
tions, we introduce thestorage affinitymetric. This met-
ric determineshow closeto a site a given task is. Byhow
closewe meanhow many bytesof the task input dataset
are already stored at a specific site. Thus,storage affinity
of a task to a siteis the number of bytes within the task

input dataset that are already stored in the site. For-
mally, thestorage affinityvalue betweentjt andsitei is
given by: SA(tjt ; sitei) = Xd2(tjt :I\dsj(Si)) jdj
in which, jdj represents the number of bytes of the data
elementd.

We claim that information about data size and data
location can be obtained a priori without difficulty and
loss of accuracy, unlike, for example, CPU and network
loads or the completion time of tasks. For instance, this
information can be obtained if a data server is able to
answer the requests aboutwhichdata elements it stores
andhow large is each data element. Alternatively, an
implementation of a Storage Affinity scheduler can eas-
ily store a history of previous data transfer operations
containing the required information.

Naturally, sinceStorage Affinitydoes not use dy-
namic information about the grid and the applica-
tion which is difficult to obtain, inefficienttask-to-
processorassignments may occur. In order to circum-
vent this problem, Storage Affinity appliestask repli-
cation. Replicas have a chance to be submitted to faster
processors than those processors assigned to the original
task, thus increasing the chance of the task completion
time be decreased.

Algorithm 1 presentsStorage Affinity. Note that this
heuristic is divided in two phases. In the first phase
Storage Affinity assigns each tasktjt 2 Jj to a proces-
sorp 2 G. During this phase, the algorithm calculates
the highest storage affinity value for each task. After
this calculation, the task with the largest storage affinity
value is chosen and scheduled. This continues until all
tasks have been scheduled. The second phase consists of
task replication. It starts when there are no more waiting
tasks and there is, at least, one available processor. A
replica could be created for any running task. Consider-
ing that the replication degree of a particular task is the
number of replicas that have been created for the task,
whenever a processor is available, the following crite-
ria are considered to choose the task to be replicated: i)
the task must have a positive storage affinity with the
site that has an available processor; ii) the current repli-
cation degree of the task must be the smallest among
all running tasks; and iii) the task must have the largest
storage affinity value among all remaining candidates.
When a task completes its execution, the scheduler kills
all remaining replicas of the task. The algorithm finishes
when all the running tasks complete. Until this occurs
the algorithm proceeds with replications.

4 Performance Evaluation

In this section we analyze the performance of Storage
Affinity, comparing it against WQR and XSufferage. We
have decided to compare our approach to these heuris-
tics because WQR represents the state-of-the-art solu-
tion to circumvent the dynamic information dependence,
whereas XSufferage is the state-of-the-art for dealing
with the impact of large data transfers. We have used
simulations to evaluate the performance of the schedul-
ing algorithms. These simulations were validated by
performing a set of real-life experiments (see Section
4.5).

Since the performance attained by a scheduler is
strongly influenced by the workload [21] [22][23], we
have designed experiments that cover a wide variety of
scenarios. The scenarios vary in the heterogeneity of
both the grid and the application, as well as the appli-
cation granularity (see Section 4.2). Our hope was not
only to identify which scheduler performs better, but
also to understand how different factors impact their per-
formance.

4.1 Grid Environment

Each task has a computational cost, which expresses
how long the task would take to execute in a dedi-
cated reference processor. Processors may run at dif-
ferent speeds. By definition, the reference processor hasspeed = 1. So, a processor withspeed = 2 runs a 100-
second task in 50 seconds (when dedicated). Since the
computational grid may comprise processors acquired at
different points in time, grids tend to be very heteroge-
neous (i.e. their processors speed may vary widely). In
order to investigate the impact of grid heterogeneity on
scheduling, we consider four levels of grid heterogene-
ity, as shown in Table 12. Thus, for heterogeneity1x,
we always havespeed = 10, and the grid is homoge-
neous. On the other hand, for heterogeneity8x, we have
maximal heterogeneity, with the fastest machines being
up to8 times faster than the slowest ones. Note that, in
all cases, the average speed of the machines forming the
grid is10.

The grid power is the sum of the speed of all proces-
sors that comprise the grid. For all experiments we fixed
the grid power to1; 000. Since the speed of processors
are obtained from the Processor Speed Distributions, a
grid is “constructed” by adding one processor at a time
until the grid power reaches1; 000. Therefore, the aver-
age number of processors in the grid is100. Processors
are distributed over the sites that form the grid in equal

2Note theU(x; y) denotes the uniform distribution in the[x; y℄
range.

Grid Heterogeneity Processor Speed Distributions1x U(10; 10)2x U(6:7; 13:4)4x U(4; 16)8x U(2:2; 17:6)
Table 1. Grid heterogeneity levels and the
distributions of the relative speed of pro-
cessors

proportions. Similarly to Casanova et al [9], we assume
that a grid hasU(2; 12) sites.

For simplicity, we assume that the data servers do
not run out of disk space (i.e., we do not address data
replacement policies in the present work). As previ-
ously indicated, we neglect data transfers within a site.
Inter-site communication is modeled as a single shared1Mbps link that connects thehomemachine to several
sites. It important to highlight that, in the model,1Mbps
is the maximum bandwidth that an application can use
in the wide area network. However, the connections are
frequently shared among several applications, thus, the
limit is often not achieved by a particular application.
We used NWS [24] real traces to simulate contention
for both CPU cycles and network bandwidth. For exam-
ple, a processor ofspeed = 1 andavailability = 50%
runs a 100-second task in 200 seconds.

4.2 PHD Applications

In PHD applications, the application execution time
is typically related to the size of the input data. The ex-
planation for this fact is quite simple. The more data
there is to process, the longer the tasks take to complete.
In fact, there arePHD applications whose cost is com-
pletely determined by the size of the input data. This
is the case, for example, of a scientific data visualiza-
tion application, which processes the whole input data
to produce the output image [4]. There are other appli-
cations that have the cost influenced, but not completely
determined, by the size of the input data. This is the case
of a pattern searchapplication, in which the size of the
input data of each task determines an upper bound for
the cost of the task, not the cost of the task itself. We
simulated both kinds of applications.

The total size of the input data of each simulated ap-
plication was fixed in2GBytes. Based on experimental
data available [4], we were able to convert the amount
of input data processed by each task of the visualization
application into the time (in seconds) required to process
the data, which is its computational cost. We have used
the same proportionality factor (1:602171ms/KByte) to
calculate the computational cost of the pattern search

application, as a function of the amount of data actu-
ally processed by its tasks. To determine the computa-
tional cost of each task of the pattern search application,
we used an uniform distributionU(1; UpperBound), in
which UpperBound is the computational cost to pro-
cess the entire input of a particular task.

We also wanted to analyze how the relation between
the average number of tasks and the number of pro-
cessors in the grid would impact the performance of a
schedule. Note that when both application and grid sizes
are fixed, this relation is inversely proportional to the av-
erage size of the input data of the tasks that comprise the
application, i.e. theapplication granularity. We have
considered three application groups that are defined by
the following application granularity values:3MBytes,15MBytes and75MBytes.

The tasks that comprise the application can vary
in size. Therefore, to simulate this variation, we
introduced an application heterogeneity factor. The
heterogeneity factor determines how different are the
sizes of the input data elements of the tasks that form
the job, and consequently their costs. The size of
the input data are taken from the uniform distributionU(AverageSize � (1 � Ha2); AverageSize �(1 + Ha2)), in which AverageSize 2f3MBytes; 15MBytes; 75MBytesg andHa 2 f0%; 25%; 50%; 75%; 100%g.

4.3 Simulation Setting and Environment

A total of 3; 000 simulations were performed, with
half of them for each type of application (Visualization
and Pattern Search). As we shall see in Section 4.4.1,3; 000 simulations make for good precision of results (in95% confidence interval). Each simulation consists of
a sequence of6 executions of the same job. Those6
executions are repeated for each of3 analyzed schedul-
ing heuristics (Workqueue with Replication, XSuffer-
age and Storage Affinity). Therefore, we have18000
makespan values for each scheduling heuristic analyzed.

Our simulation tool has been developed using an
adapted version of the Simgrid toolkit [25]. The Sim-
grid toolkit provides the basic functionalities for the
simulation of distributed applications on grid environ-
ments. Since the set of simulations is itself a BOT ap-
plication, we have executed it over a grid composed
of 107 machines distributed among five different ad-
ministrative domains (LSD/UFCG, Instituto Eldorado,
LCAD/UFES, UniSantos and GridLab/UCSD). We have
used the MyGrid middleware [5] to execute the simula-
tions.

4.4 Simulation Results

In this section we show the results obtained in the
simulations of the scheduling heuristics and discuss their
statistical validity. We also analyze the influence of the
application granularity, as well as the heterogeneity of
both the grid and the application on the performance of
the application scheduling.

4.4.1 Summary of the results

Table 2 presents a summary of the simulation results.
It is possible to note that, in average, Storage Affin-
ity and XSufferage achieve comparable performances.
Nevertheless, the standard deviation values indicate that
the makespan presents a smaller variation when the ap-
plication is scheduled by Storage Affinity when com-
pared to the other two heuristics. It is important to ex-
plain that theresource wastingpercentage is given by:TimeConsumedByKilledRepli
asT imeConsumedByFinishedTasks . Obviously, we do not
report any wasting values in Table 2 for XSufferage be-
cause this heuristic does not apply any replication strat-
egy, consequently it does not kill any running task.

Makespan(seconds) Storage Affinity WQR XSufferage

Mean (x) 14377 42919 14665
Standard deviation (�) 10653 24542 11451

CPU Wasting Storage Affinity WQR XSufferage

Mean (x) 59:243% 1:0175% �
Standard deviation (�) 52:715% 4:1195% �
Bandwidth Wasting Storage Affinity WQR XSufferage

Mean (x) 3:1937% 130:88% �
Standard deviation (�) 8:5670% 135:82% �

Table 2. Summary of simulation results

In order to evaluate the precision and confidence of
the summarized means presented in Table 2, we have de-
termined the95% confidence interval[26] for the popu-
lation mean (�) based on those values in Table 2. That
is, using the sample mean, standard deviation and the
sample size (number of makespan values) we estimate
the confidence intervals, as shown in Table 3.

Heuristic 95% Confidence interval

Storage Affinity 14241 < � < 14513
Workqueue with Replication 42547 < � < 43291

XSufferage 14498 < � < 14832
Table 3. 95% confidence intervals for the
mean of the makespan for each heuristic.

Since the width of the confidence interval (w) is rel-
atively small compared to the results (see Table 4), we
feel that we have performed enough simulation to obtain
a good precision in the results.

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 1 2 3 4 5 6

A
ve

ra
ge

 A
pp

lic
at

io
n

M
ak

es
pa

n
(s

ec
on

ds
)

Number of Executions (#)

XSufferage
Storage Affinity

WQR

Figure 2. Summary of the performance of
the scheduling heuristics

Heuristic w % with respect the makespan

Storage Affinity 330 2:2%
Workqueue with Replication 330 2:2%

XSufferage 850 2%
Table 4. Width of the confidence intervals
and proportion with respect the mean

In Figure 2 we show the average application
makespan and in Figure 3 we present the resource
waste for all performed simulations with respect to all
heuristics analyzed. The results show that both data-
aware heuristics attain much better performance than
WQR. This is because data transfer delays dominate the
makespan of the application, thus not taking them into
account severely hurts the performance of the applica-
tion. In the case of WQR, the execution of each task is
always preceded by a costly data transfer operation (as

 0

 20

 40

 60

 80

 100

 120

 140

 1 2 3 4 5 6

W
as

te
 (

%
)

Number of Executions (#)

Storage Affinity CPU Waste
WQR CPU Waste

Storage Affinity Bandwidth Waste
WQR Bandwidth Waste

Figure 3. Summary of resource waste

can be inferred from the large bandwidth and small CPU
waste shown in Figure 3). This impairs any improve-
ment that the replication strategy of WQR could bring.
On the other hand, the replication strategy of Storage
Affinity is able to cope with the lack of dynamic in-
formation and yield a performance very similar to that
of XSufferage. The main inconvenience of XSufferage
is the need for knowledge about dynamic information,
whereas the drawback of Storage Affinity is the con-
sumption of extra resources due to its replication strat-
egy (an average of59% of extra CPU cycles and a neg-
ligible amount of extra bandwidth). From this result we
can state that the Storage Affinity task replication strat-
egy is a feasible technique to obviate the need for dy-
namic information when schedulingPHD applications,
although at the expenses of consuming more CPU.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 1 2 3 4 5 6

A
ve

ra
ge

 A
pp

lic
at

io
n

M
ak

es
pa

n
(s

ec
on

ds
)

Number of Executions (#)

Storage Affinity - 75MBytes
XSufferage - 75MBytes

Storage Affinity - 15MBytes
XSufferage - 15MBytes

Storage Affinity - 3MBytes
XSufferage - 3MBytes

Figure 4. Impact of application granularity

4.4.2 Application granularity

Next, we investigate the impact of application granular-
ity on the application scheduling performance. In Fig-
ure 4 we can see the influence of the three different gran-
ularities on the data-aware schedulers. From the results
presented we conclude that no matter the heuristic used,
smaller granularities yield better performance. This is
because smaller tasks allow greater parallelism. We can
further observe that XSufferage achieves better perfor-
mance than Storage Affinity only when the granularity
of the application is75Mbytes. This is because the
larger a particular task is, the bigger its influence in the
makespan of the application. Thus, the impact of a pos-
sible inefficient task-host assignment for a larger task is
greater than that for a smaller one. In other words, the
replication strategy of Storage Affinity is more efficient
when circumventing the effects of inefficient task-host
assignments when the application granularity is small.
Nevertheless, forPHD applications, it is normally pos-

sible - and quite easy - to reduce the application granu-
larity by converting a task with a large input into several
tasks with smaller input datasets. The conversion is per-
formed by simply slicing large input datasets into several
smaller ones. It is important to note that there is a trade
off here, because the scheduling overhead when running
on real environments.

 5000

 10000

 15000

 20000

 25000

 30000

 1 2 3 4 5 6
A

ve
ra

ge
 A

pp
lic

at
io

n
M

ak
es

pa
n

(s
ec

on
ds

)
Number of Executions (#)

XSufferage
Storage Affinity

WQR

Figure 5. Performance of the heuristics
with respect to the granularities 3Mbytes
and 15MBytes
Given the above discussion, we show in Figure 5 the

values for the makespan of the applications, consider-
ing only the granularities3Mbytes and15Mbytes. For
these simulations, Storage Affinity outperforms XSuf-
ferage by42%, in average. Further, as can be seen in
Figure 6, the percentage of CPU cycles wasted is re-
duced from59% to 31%, in average. We emphasize that
reducing the application granularity is a good policy as
smaller tasks yields more parallelism (see Figure 4).

4.4.3 Application type

In order to analyze the influence of the different
characteristics ofPHD applications on the application
makespan and the resource waste, we have considered
two types of applications (see Section 4.2). The results
show that the behavior of the heuristics has not been
affected by the different characteristics of the applica-
tion. On the other hand, we found out that the waste of
resources was affected by the type of application con-
sidered. Figure 9 and Figure 10 show the results at-
tained. Recall that in the data visualization application,
the computational cost of the task is completely deter-
mined by the size of its input dataset. Since Storage
Affinity prioritizes the task with the largeststorage affin-
ity value, it means that the largest tasks are scheduled
first. Therefore, task replication only starts when most

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6

W
as

te
 (

%
)

Number of Executions (#)

Storage Affinity CPU Waste
WQR CPU Waste

Storage Affinity Bandwidth Waste
WQR Bandwidth Waste

Figure 6. Resource waste with respect to
the granularities 3Mbytes and 15MBytes

of the application has already been executed. In the case
of the pattern search application, the computational cost
of the tasks is not completely determined by the size of
the input dataset of the task, thus proportionally large
tasks can be scheduled at later stages in the execution of
the application. Therefore, replication may start when
a large portion of the application is still to be accom-
plished, and consequently more resources are wasted to
improve the application makespan.

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 1 2 3 4 5 6 7 8

A
ve

ra
ge

 A
pp

lic
at

io
n

M
ak

es
pa

n
(s

ec
on

ds
)

Grid Heterogeneity

XSufferage
Storage Affinity

Workqueue With Replication

Figure 7. Grid Heterogeneity impact for
Scientific Visualization application

4.4.4 Grid and Application heterogeneity

Finally, we have analyzed the impact of the heterogene-
ity of the grid and the application in both Scientific Vi-
sualization and Pattern Search applications.

In Figure 7 and Figure 8 we can see how the het-
erogeneity of the grid influences the makespan of both

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 1 2 3 4 5 6 7 8

A
ve

ra
ge

 A
pp

lic
at

io
n

M
ak

es
pa

n
(s

ec
on

ds
)

Grid Heterogeneity

XSufferage
Storage Affinity

Workqueue With Replication

Figure 8. Grid Heterogeneity impact for
Pattern Search application

types of applications, considering the three heuristics
discussed. It is possible to see that the two data-aware
heuristics are not greatly affected by the variation of
the grid heterogeneity. It is not surprising that XSuf-
ferage presents this behavior, given that it uses informa-
tion about the environment. However, Storage Affinity
shows that its replication strategy circumvents the ef-
fects of the variations of the speed of processors in the
grid, even without using information about the environ-
ment. WQR is influenced a lot by the grid heterogeneity
variation, we can see that increasing the grid heterogene-
ity the application makespan get worse.

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6

W
as

te
 (

%
)

Number of Executions (#)

Storage Affinity CPU Waste
WQR CPU Waste

Storage Affinity Bandwidth Waste
WQR Bandwidth Waste

Figure 9. Resource waste considering the
Scientific Visualization Application

Storage Affinity and XSufferage present a similar be-
havior with respect to application heterogeneity. Both
heuristics show good tolerance to the variation of the
application heterogeneity. In Figure 11 and Figure 12

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6

W
as

te
 (

%
)

Number of Executions (#)

Storage Affinity CPU Waste
WQR CPU Waste

Storage Affinity Bandwidth Waste
WQR Bandwidth Waste

Figure 10. Resources wasted considering
the Pattern Search Application

we observe that the application makespan presents a tiny
fluctuation for both types of application (Visualization
and Search).

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 0 20 40 60 80 100

A
ve

ra
ge

 A
pp

lic
at

io
n

M
ak

es
pa

n
(s

ec
on

ds
)

Application Heterogeneity (%)

XSufferage
Storage Affinity

Workqueue With Replication

Figure 11. Application heterogeneity im-
pact for Scientific Visualization application

4.5 Validation

In order to validate our simulations, we have con-
ducted some experiments using a prototype version of
Storage Affinity. The Storage Affinityprototype has
been developed as a new scheduling heuristic for My-
Grid [5, 27].

The grid environment used in the experiments was
comprised by 18 processors located at 2 sites (Carcara
Cluster/LNCC - Teresópolis, Brazil and GridLab/UCSD
- San Diego, USA). The home machine (phome) was lo-
cated at the Laboratório de Sistemas Distribuı́dos/UFCG

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 20 40 60 80 100

A
ve

ra
ge

 A
pp

lic
at

io
n

M
ak

es
pa

n
(s

ec
on

ds
)

Application Heterogeneity (%)

XSufferage
Storage Affinity

Workqueue With Replication

Figure 12. Application heterogeneity im-
pact for Pattern Search application

- Campina Grande, Brazil. It is important to highlight
that during the experiments the resources were shared
with other applications.

With respect to the application, we have used
BLAST [2]. BLAST is an application that searches a given
sequence of characters into a database. These characters
represent a protein sequence and the database contains
several identified sequences of proteins. The application
receives two parameters: a database and a sequence of
characters to be searched. The database size is of the
order of many GBytes, but it can be sliced into many
slices of few MBytes. On the other hand, the size of
the sequence of the characters to be searched does not
surpass 4KBytes.

The application was composed of 20 tasks. Each task
of the application receives a slice of 3MBytes of a large
database downloaded from theBLAST site [28] and a
sequence of characters smaller than 4KBytes. Since
the simulations have been focused on applications that
presentinter-job data reuse pattern (Section 3.3), we
have set the application to present the same data reuse
pattern. Most of the input of each task was reused (the
database), while a minor part of the input (the search
target of few KBytes) has changed between executions.

4.5.1 Methodology

Two scheduling heuristics have been analyzed in the ex-
periments:Storage AffinityandWorkqueue with Repli-
cation. We did not useXSufferagedue to the very lack
of deployed monitoring infrastructure that could provide
resource load information. On the other hand, MyGrid
already has a version ofWorkqueue with Replication
heuristic available.

In order to minimize the effect of the grid dynamism

on the results, the experiment consisted ofback-to-back
executions of the two scheduling heuristics (i.e. we did
intermixed the experiments of both scheduling heuris-
tics). Following this approach, 11 experiments have
been executed. Each experiment consisted of 4 succes-
sive executions of the same application for each schedul-
ing heuristic, thus adding to a total of 88 application ex-
ecutions.

4.5.2 Results

In Figure 13 we present the average of the application
makespan for each scheduling heuristic. Figure 14 con-
tains the simulation of the scenario used in the experi-
ment. The results show that bothStorage Affinityand
Workqueue with Replicationpresent the same overall be-
havior noticed in the simulations. However, the exper-
iment does differ from the simulation in some aspects.
One is the greater fluctuation the makespan values in the
experiment. This is due to the high level of heterogene-
ity of the grid environment, and to the fact that we were
ran much fewer cases than we simulated.

 0

 200

 400

 600

 800

 1000

 1 1.5 2 2.5 3 3.5 4

M
ak

es
pa

n
(s

ec
on

ds
)

Number of Execution (#)

Storage Affinity
Workqueue with Replication

Figure 13. Real application execution us-
ing prototype version of schedulers

We can also observe a difference between the
makespan in the experiment results and the simulated
scenario. We believe there are two reasons for this dis-
crepancy. First, we could not collect CPU and network
loads experienced during the real life experiments. The
standard NWS logs we used instead. Therefore, the grid
scenario is not quite the same for the simulation and the
experiments. Second, theStorage Affinityprototype al-
ways queries the sites to obtain information on the ex-
istence and size of files. This costly remote operation
was not modeled in the simulator. However, since the
scheduler itself is the responsible for transfering files to
the sites, this information can be cached locally, thus

greatly reducing the need for remote invocations dur-
ing the execution ofStorage Affinity. We are currently
implementing such caching strategy and expect such a
modification to greatly reduce the discrepancy between
simulation and experimentation.

 0

 200

 400

 600

 800

 1000

 1 2 3 4 5 6

M
ak

es
pa

n
(s

ec
on

ds
)

Number of Execution (#)

Storage Affinity
Workqueue with Replication

Figure 14. Simulation of the scenario used
in the experiments

5 Conclusions and future work

In this paper we have presented Storage Affinity, a
novel heuristic for schedulingPHD on grid environ-
ments. We have also compared its performance against
that of two well-established heuristics, namely: XSuf-
ferage [9] and WQR [12]. The former is a knowledge-
centric heuristic that takes data transfer delays into ac-
count, while the latter is a knowledge-free approach, that
uses replication to cope with inefficient task-processor
assignments, but does not consider data transfer delays.
Storage Affinity also uses replication and avoids unnec-
essary data transfers by exploiting a data reutilization
pattern that is commonly present inPHD applications.
In contrast with the information needed by XSufferage,
the data location information required by Storage Affin-
ity is trivially obtained, even in grid environments.

Our results show that taking data transfer into account
is mandatory to achieve efficient scheduling ofPHD ap-
plications. Further, we have shown that grid and applica-
tion heterogeneity have little impact in the performance
of the studied schedulers. On the other hand, the gran-
ularity of the application has an important impact on
the performance of the two data-aware schedulers an-
alyzed. Storage Affinity is outperformed by XSuffer-
age only when application granularity is large. How-
ever, the granularity ofPHD applications can be eas-
ily reduced to levels that make Storage Affinity outper-

form XSufferage. In fact, independently of the heuris-
tic used, the smaller the application granularity the bet-
ter the performance of the scheduler (at least the gran-
ularity size which corresponds to an overhead starts to
dominate the execution time). In the favorable scenar-
ios, Storage Affinity achieves a makespan that is in av-
erage42% smaller than XSufferage. The drawback of
Storage Affinity is the waste of grid resources due to its
replication strategy. Our results show that the wasted
bandwidth is negligible and the wasted CPU can be re-
duced to31%.

As future work, we intend to investigate the following
issues: i) the impact of the inter-task data reutilization
pattern on application scheduling; ii) disk space man-
agement on data servers; iii) the emergent behavior of a
community of Storage Affinity schedulers competing for
shared resources; and iv) the use of introspection tech-
niques for data staging [29] to provide the scheduler with
information about data location and disk space utiliza-
tion. Finally, we are about to release a stable version of
Storage Affinity within the MyGrid middleware [5, 27].
We hope that practical experience with the scheduler
will help us to identify aspects of our model that need
to be refined.

References

[1] P. Lyman, H. R. Varian, J. Dunn, A. Strygin,
and K. Swearingen, “How much information?.”
http://www.sims.berkeley.edu/research/projects/how-
much-info-2003, October 2003.

[2] S. F. Altschul, W. Gish, W. Miller, E. W. My-
ers, and D. J. Lipman, “Basic local alignment
search tool,”Journal of Molecular Biology, vol. 1,
no. 215, pp. 403–410, 1990.

[3] G. Group, “http://www.griphyn.org,” 2002.

[4] E. L. Santos-Neto, L. E. F. Tenório, E. J. S. Fon-
seca, S. B. Cavalcanti, and J. M. Hickmann, “Par-
allel visualization of the optical pulse through a
doped optical fiber,” inProceedings of Annual
Meeting of the Division of Computational Physics
(abstract), June 2001.

[5] W. Cirne, D. Paranhos, L. Costa, E. Santos-Neto,
F. Brasileiro, J. Sauvé, F. A. B. da Silva, C. O.
Barros, and C. Silveira, “Running bag-of-tasks ap-
plications on computational grids: The mygrid ap-
proach,” inProceedings of the ICCP’2003 - Inter-
national Conference on Parallel Processing, Octo-
ber 2003.

[6] J. Smith and S. K. Shrivastava, “A system for fault-
tolerant execution of data and compute intensive
programs over a network of workstations,” inLec-
ture Notes in Computer Science, vol. 1123, IEEE
Press, 1996.

[7] I. Foster and C. Kesselman, eds.,The Grid:
Blueprint for a Future Computing Infrastructure.
1999.

[8] O. Beaumont, L. Carter, J. Ferrante, and Y. Robert,
“Bandwidth-centric allocation of independent task
on heterogeneous plataforms,” inProceedings of
the Internetional Parallel and Distributed Process-
ing Symposium, (Fort Lauderdale, Florida), April
2002.

[9] H. Casanova, A. Legrand, D. Zagorodnov, and
F. Berman, “Heuristics for scheduling parame-
ter sweep applications in grid environments,” in
Proceedings of the 9th Heterogeneous Computing
Workshop, (Cancun, Mexico), pp. 349–363, IEEE
Computer Society Press, May 2000.

[10] M. Faerman, R. W. A. Su, and F. Berman,
“Adaptive performance prediction for distributed
data-intensive applications,” inProceedings of the
ACM/IEEE SC99 Conference on High Perfor-
mance Networking and Computing, (Portland, OH,
USA), ACM Press, 1999.

[11] K. Marzullo, M. Ogg, A. R. amd A. Amoroso,
A. Calkins, and E. Rothfus, “Nile: Wide-area com-
puting for high energy physics,” inProceedings
7th ACM European Operating Systems Principles
Conference. System Support for Worldwide Appli-
cations, (Connemara, Ireland), pp. 54–59, ACM
Press, Sept. 1996.

[12] D. Paranhos, W. Cirne, and F. Brasileiro, “Trad-
ing cycles for information: Using replication to
schedule bag-of-tasks applications on computa-
tional grids,” inProceedings of the Euro-Par 2003:
International Conference on Parallel and Dis-
tributed Computing, (Klagenfurt,Austria), August
2003.

[13] Z. M. Kedem, K. V. Palem, and P. G. Spirakis, “Ef-
ficient robust parallel computations (extended ab-
stract),” inACM Symposium on Theory of Comput-
ing, pp. 138–148, 1990.

[14] M. Pinedo,Scheduling: Theory, Algorithms and
Systems. New Jersey, USA: Prentice Hall, 2nd edi-
tion, August 2001.

[15] A. Downey, “Predicting queue times on space-
sharing parallel computers,” inProceedings of
11th International Parallel Processing Symposium
(IPPS’97), April 1997.

[16] R. Gibbons, “A historical application profiler for
use by parallel schedulers,”Lecture Notes in Com-
puter Science, vol. 1291, pp. 58–77, 1997.

[17] W. Smith, I. Foster, and V. Taylor, “Predicting ap-
plication run times using historical information,”
Lecture Notes in Computer Science, vol. 1459,
pp. 122–142, 1998.

[18] R. Wolski, N. Spring, and J. Hayes, “Predicting the
CPU availability of time-shared unix systems on
the computational grid,” inProceedings of 8th In-
ternational Symposium on High Performance Dis-
tributed Computing (HPDC’99), August 1999.

[19] P. Francis, S. Jamin, V. Paxson, L. Zhang, D. F.
Gryniewicz, and Y. Jim, “An architecture for a
global internet host distance estimation service,” in
Proceedings of IEEE INFOCOM, 1999.

[20] O. H. Ibarra and C. E. Kim, “Heuristic algorithms
for scheduling independent tasks on nonidentical
processors,”Journal of the ACM (JACM), vol. 24,
no. 2, pp. 280–289, 1977.

[21] D. Feitelson and L. Rudolph, “Metrics and
benchmarking for parallel job scheduling,” in
Job Scheduling Strategies for Parallel Processing
(D. Feitelson and L. Rudolph, eds.), vol. 1459,
pp. 1–24, Lecture Notes in Computer Science,
Springer-Verlag, 1998.

[22] D. G. Feitelson, “Metric and workload effects
on computer systems evaluation,”Computer,
vol. 36(9), pp. 18–25, September 2003.

[23] V. Lo, J. Mache, and K. Windisch, “A compar-
ative study of real workload traces and synthetic
workload models for parallel job scheduling,” in
Job Scheduling Strategies for Parallel Processing
(D. Feitelson and L. Rudolph, eds.), vol. 1459,
pp. 25–46, Lecture Notes in Computer Science,
Springer Verlag, 1998.

[24] R. Wolski, N. T. Spring, and J. Hayes, “The net-
work weather service: a distributed resource per-
formance forecasting service for metacomputing,”
Future Generation Computer Systems, vol. 15,
no. 5-6, pp. 757–768, 1999.

[25] H. Casanova, “Simgrid: A toolkit for the simula-
tion of application scheduling,” inProceedings of

the First IEEE/ACM International Symposium on
Cluster Computing and the Grid, (Brisbane Aus-
tralia), May 2001.

[26] J. L. Devore,Probability and Statistics for Engi-
neering and The Sciences, vol. 1. John Wiley and
Sons, Inc., 2000.

[27] “Mygrid site.” http://www.ourgrid.org/mygrid.

[28] “Blast webpage.”
http://www.ncbi.nlm.nih.giv/BLAST.

[29] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwin-
ski, P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, and
B. Zhao, “Oceanstore: An architecture for global-
scale persistent storage,” inProceedings of the
Ninth International Conference on Architectural
Support for Programming Languages and Operat-
ing Systems, IEEE Computer Society Press, Nov.
2000.

