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Abstract systems is in trying to achieve good mechanisms and poli-
cies for co-allocation.

In multicluster systems, and more generally in grids,  Among the simplest types of applications that need co-
jobs may require co-allocation, i.e., the simultaneous-all  allocation are parallel applications that require the siau
cation of resources such as processors in multiple clustersneous allocation of processors managed by different sched-
to improve their performance. In previous work, we have ulers. The feasibility of running such applications in mul-
studied processor co-allocation through simulations.éjer ticluster systems with their relatively slow wide-area con
we extend this work with the design and implementation of nections has been demonstrated for instance in [4]. One of
a dynamic processor co-allocation service in multicluster the main problems of processor co-allocation is to achieve
systems. While an implementation of basic co-allocationthe simultaneous availability of the processors managed by
mechanisms has existed for some years in the form of thedlifferent local schedulers. The basic mechanisms for pro-
DUROC component of the Globus Toolkit, DUROC does notcessor co-allocation have existed for a number of years in
provide resource-brokering functionality or fault toleree the form of the Dynamically Updated Request Online Co-
in the face of job submission or completion failures. Our allocator (DUROC) [8] component of the Globus Toolkit
design adds these two elements in the form of a softwarg2]. However, even though DUROC serves its basic purpose
layer on top of DUROC. We have performed experiments of submitting multicomponent jobs, it cannot be regarded as
that show that our co-allocation service works reliably. a co-allocating scheduler for general use in multiclusbers
in grids. First, it lacks resource allocation policies bgui-
ing jobs to specify exactly the sites where their components
should run. Secondly, DUROC does not provide good fault
tolerance in that it may wait for enough available resources
for an unspecified amount of time, and in that it requires the

Computer systgms consisting of mult|ple clusters, and ,seps intervention when the submission or completion of a
more generally grids, offer the promise of transparent ac'job fails.

cess to large collections of resources for very demanding In previous work we have studied processor co-

applications. In fapt, the.needs., of asingle applicatior_l MaY allocation by means of simulations [4, 6, 7]. In this paper,
exceed the capacity available in any subsystem making u e extend this work by the design and implementation of a

such a system, and sm)—alloc_atlon .., the simultaneous prototype called the Dynamic Co-Allocation Service (DCS)
access to resources of possibly multiple types (processors

. X . . on our wide-area Distributed ASESupercomputer (DAS,
dgta, network bandwidth) in multiple Iocatlong, managed by see Section 4.1) that implements mechanisms and policies
@fferent resource managers [8], may l_)e requwed. Then, thefor processor co-allocation in multicluster systems. Gas d
jobs executing such applications consist of multiple compo sign is built on top of DUROC and consists of a Sched-
nents, with each component using resources in a differentuler that implements policies such as FCFS and a form of
subsystem. When co-allocation is not used in multiclustersbaCkfiIIing a Resource Monitor that reports on the avail-
and grids, such systems only act as large load-balancing de- '

vices with higher-level schedulers trying to find goqd sengl LASCI is the acronym of the Advanced School for Computing and
locations for jobs to run. The real challenge of using such Imaging in the Netherlands.

1 Introduction




able resources, a Resource Broker that maps jobs onto theomponent of the Globus Toolkit that contains the basic

most suitable clusters, and a Co-allocator that submits job
to DUROC. In particular, our DCS solves the two problems
with DUROC mentioned above. The results of the experi-
ments with our prototype show that it works reliably.

2 The Problem of Processor Co-allocation

In this section we formulate the problem of co-allocation
in multiclusters, we discuss the DUROC component of

Globus, and we describe the structure of multicomponenture
r

jobs and the placement and scheduling policies used in ou
design.

2.1 Processor Co-allocation
In itself, processor co-allocation is a simple notion: As-

sign processors in different systems in a multicluster or a
grid to single jobs simultaneously. The potential advaatag

toajob is that it may employ more processors than available
in a single cluster and so may experience a shorter runtime

and the potential advantage to the system is that the syste

load may be increased. Of course, due to the relatively slow

wide-area communications, not all applicatons will benefit

from using processors in clusters connected by a wide-area

network, but some definitely will [4].
An important issue in processor co-allocation is that the

processors in the different clusters have to be available ath
the same time. What would be very helpful to guarantee the

simultaneous allocation of processors is a reservatiolmec

anism of the local resource managers. However, hardly any
of the popular local resource managers such as PBS [3] sup
ports such a mechanism. A processor co-allocation mecha

nism built on top of resource managers without reservation

capabilities cannot do anything else than repeatedly try to
assess whether sufficient numbers of processors are avail

able, and then claim these.
2.2 Motivation

Currently, the only available standard tool for proces-
sor co-allocation in grids is the DUROC component of the
Globus Toolkit. In general, Globus can accept job descrip-
tions written in the Globus Resource Specification Lan-
guage (RSL), in which such things as the name of the ex-

ecutable and the input and output files can be specified.

m

mechanisms for co-allocation. It accepts what are called
multirequests, which consist of multiple simple requests,
each written in RSL and each specifying a component of a
multicomponent job. DUROC supports two approaches for
co-allocating resources to jobs. In the atomic trannsactio
approach, all resources specified by a job have to be avail-
able otherwise the job’s submission fails. In the intexaxcti
transaction approach, some resources may be specified as
nonessential or optional, in order to tolerate resourde fai
S.

DUROC cannot be regarded as a full-blown co-
allocating scheduler in multiclusters or grids, as it lacks
certain functionality. First, it does not do any resouroe-br
kering by picking suitable resources for a job, and the RSL
specification of a job request must be complete in that the
subsystems (clusters) to be used by a job must be exactly
specified in advance. In other words, DUROC implements
what we call astatic co-allocation mechanism, and it can
only deal with what we call ordered jobs (see Section 2.3).
Secondly, a job submission may fail because the resources
fequired by the job are not immediately available, or be-
cause a job may not complete successfully. When the first
happens, DUROC cannot do anything except sending an er-
ror message to the user telling that the submission haslfaile
or just waiting until sufficient resources do become avail-
able. In the latter case, there is no time-out mechanism for
removing jobs that are waiting too long. When the second
appens, the user simply has to resubmit the job.

This situation has motivated us to design our Dynamic
Co-Allocation Service (DCS) for multicluster systems on
top of DUROC. The DCS detects the states of the clus-
ters anddynamicallyallocates resources according to those

states. It gives users a more flexible way of specifying mul-
ticomponent jobs in that they do not have to tell in advance
the locations where the the jobs’ components have to run.
In addition, the DCS will repeatedly submit a job that ex-
periences submission failures (for a maximum number of
times), and it will repeatedly resubmit a job that experi-
ences completion failures (again for a maximum number of
times).

2.3 The Structure of the System and of Job Re-
quests

Our model of multicluster systems is very simple: We

When ajob consists of a single component, one of the thingsassume a system of sa&y clusters consisting of possibly
that also has to be specified is the name of the resource mandifferent numbers of identical processors.

ager of the system where the job has to run. After having

Jobs submitted to our DCS that consist of multiple com-

parsed the RSL specification of a job, Globus sends the jobponents and require co-allocation, have to specify the num-
to the Globus Resource Allocation Manager (GRAM) run- ber and the sizes of their components, i.e., of the numbers
ning on the specified resource, which in turn hands over of processors needed in the separate clusters. We assume
the job to the local resource manager. DUROC [8] is the jobs to be rigid, which means that they do not change size



over their lifetime. So a job is represented by a tupl€’of  be replaced by any other placement policy that better suits
values (some of which may be zero), indicating its compo- a multicluster’s objectives.
nent sizes. We will consider two cases for the structure of  As we will see in Section 3, the DCS maintains a single
job requests: global queue. As the scheduling policy we use First Come
First Served (FCFS) or Fit Processors First Served (FPFS).
1. In anordered requesthe positions of the request com- |, FPFS, when the job at the head of the queue does not
ponents in the tuple specify the clusters from which the it the queue is scanned from head to tail for any jobs that
processors must be allocated. may fit. FPFS may cause starvation, which may for instance
be repaired by putting a maximum to the number of times

tuple the job only specifies the numbers of processorsa job can be overtaken by other jobs, but we have not im-

it needs in the separate clusters. allowing the SCheduIeIplemented this. FPFS is a variation of backfilling [16], for
P ’ 9 which it is usually assumed that (estimates of) the service

f’jlg\r/]voc?i?firtgr?tccl:gfrgefnfgrrr[tgifc 8?532?2536?523’ V\c')etgotimes are available before jobs start, and in which the job
P J 9 at the head of the queue may not be delayed by jobs over-

the same cluster. taking it. However, we assume that we do not have runtime

Ordered requests are used in practice when a user hagstimates, and so we cannot implement this type of backfill-
enough information about the complete system to take full 'N9-
advantage of the characteristics of the different clusters
Unordered requests model applications like FFT, which 3 The Design of the Dynamic Co-allocation
needs few data, and in which tasks in the same job com-  Service
ponent share data and need intensive communication, while
tasks from different components exchange little or no infor In this section we will present the design of our Dynamic
mation. Co-allocation Service (DCS). We will first give an overview

The RSL descriptions of unordered jobs submitted to the of the architecture of the DCS and the flow of a multicom-

system are incomplete in that the locations where the com-ponent job through it. Then, we will focus on each compo-
ponents should run have not been filled out; the RSL de- nent of the DCS in more detail.

scriptions of the ordered jobs submitted are complete.

2. For anunordered requestby the components of the

3.1 An Overview of the DCS
2.4 The Placement and Scheduling Policies
The basic idea underlying our design is to employ

For ordered requests it is clear when a job fits on the sys-DUROC and to add several higher-level componentstoitto
tem or not, given the current numbers of idle processors.implement fault-tolerant dynamic co-allocation. The soft
To determine whether an unordered request fits, we use thevare components of the DCS are the Scheduler, the Re-
Worst-Fit (WF) placement policy avoiding as much as pos- source Broker, the Resource Monitor, and the Co-allocator.
sible reusing the same clusters. When placing a job, weln addition, we maintain as data structures a wait queue and
first order the job components according to decreasing sizea run list. Figure 1 depicts all of these components.
and then assign the job components in that order. When as- When a user submits a job to the system, the Scheduler
signing a job, we keep two lists of clusters, both ordered appends it to the tail of th&ait queue which contains all
according to decreasing numbers of idle processors. Thgobs submitted but not yet allocated. As long as the wait
firstis the listV of clusters that do not yet have a job com- queue is not empty, the Scheduler tries to schedule jobs
ponent assigned (initially all clusters), and the secortidds  from it by contacting the Resource Broker.
(initially empty) listY of clusters that already have at least ~ When the Resource Broker receives a job request from
one job component assigned to them. For every job com-the Scheduler, it attempts to fit the job on the system tak-
ponent, if it fits on the cluster at the head of Iigt it is ing into account the job type and the available resources.
assigned to that cluster and that cluster is removed fikbm  If there are sufficient resources, the Resource Broker de-
and inserted into the appropriate place intoYistlf it does cides on an allocation and sends the job request back to
not fit on the cluster at the head of Iist, the job component  the Scheduler; otherwise it sends a failure message back
is assigned to the cluster at the head ofYidf it fits there, to the Scheduler. In order to fit a job to the resources, the
and then that list is reordered if necessary. If the compbnen Resource Broker needs to know about the current resource
also does not fit on the cluster at the head ofttisthen the status, which it gets from the Resource Monitor.
whole job cannot be placed. Our motivation for using WF  When the Scheduler gets a failure message from the Re-
is that it balances the load, leaving roughly equal numberssource Broker, it will simply keep the job in its current lo-
of idle processors in all clusters. However, WF can easily cation in the wait queue, and it will later attempt to resched
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Figure 1. The architecture of the Dynamic Co-allocation Ser  vice.

ule it. When the Scheduler gets a completed RSL file from will cancel the job submission and tell the Scheduler about

the Resource Broker, it will send the job request to the Co- the failure. The job request is then moved to the tail of the

allocator, which in turn will forward it to DUROC. DUROC  wait queue.

will use its co-allocation mechanism to submit all subjobs  The Co-allocator also keeps track of the completion sta-

to their destination clusters. tus of jobs, which indicates whether or not a runnning job
The success or failure of a job submission to DUROC has completed its execution successfully. If a running job

is noted by the Co-allocator in a so-called submission sta-fails to complete its execution, the Co-allocator will et

tus, which it returns to the Scheduler. If the job submission job request back at the tail of the wait queue so that it can

is successful, the Scheduler removes the corresponding ellater be rescheduled. When a running job finishes success-

ement from the wait queue, and the Co-allocator puts thefully, the Co-allocator removes the job from the run listdlan

job request into theun list, which contains a record of all  sends a message to the Scheduler that contains the number

currently running jobs so that the Co-allocator can monitor of jobs that have successfully finished so far.

their progress. Now, we will see in more detail how each main compo-
However, even if the Resource Broker has found a suit- Nent is designed.

able allocation for a job request, it is possible that the

job submission fails. For instance, there may have been a3.2 The Scheduler and the Wait Queue

change in the resource availability while the Resource Bro-

ker is working to fit the job on the system so that the al-  The Scheduler is the central component in our design. It

located resources are not available anymore, the exeeutablmanages the wait queue as the place for the requests of jobs

file cannot be found, etc. If this happens, the Co-allocatorthat have not yet been allocated, it gets allocations of jobs



from the Resource Broker, and it calls the Co-allocator to the resource status and report it to the MDS. Therefore, we

actually submit jobs to DUROC. rejected the MDS as the basis for the Resource Monitor.
An element of the wait queue includes the following PBS provides thgstat command to retrieve status in-
fields: formation from a cluster, which gives us the number of jobs

i running in the cluster, the number of compute nodes that

e The type of the job request (ordered or unordered). 416 ysed by each job, and the identifier of each processor
executing job processes, etc. After straightening out some
little problems in the output ofistat , we found that we
get accurate and timely information on processor avaHabil
o The number of times the job has suffered a submissionity, and so this is the option we used. The Resource Monitor

failure. stores the information in an output file, which is read by the

Resource Broker.

e The number of times the job has suffered a completion

failure. 3.4 The Resource Broker

As long as the wait queue is not empty, the Scheduler ,
tries to schedule jobs, based on the scheduling policy,twhic _ When the Resource Broker gets a job request from the
is FCFS or FPFS. The Scheduler does this whenever it getscheduler, it depends on the request type how it operates.
a signal from the Resource Monitor that a change in the re- For ordered requests it S|mp_ly checks whether the requestgd
source availability has occurred. With FCFS, the Scheduler"Umbers of processors the job wants to use are available in
then invokes the Resource Broker for the job at the heagdthe specified clusters. After it has done so, the Resource
of the wait queue. Only when that job fits does the Sched- Broker sends a message back to the Scheduler whether the

uler invoke the Resource Broker for the next job, etc. With 0P fitsornot.
FPFS, the Resource Broker is invoked once for every job re- FOr unordered jobs the Resource Broker employs the WF

quest in the queue. Nevertheless, with FPFS, the Resourc&!90rithmavoiding reusing clusters as much as possibée (se

Monitor will be invoked only once during the activity of the >€ction 2.4). When the job can indeed be assigned to the

Resource Broker in a single scheduling action. system according to thls_ glgquthm, the_ Resqurce Broker
If the Resource Broker finds that an ordered job fits, or is cOmpletes the RSL specification of the job with the iden-

able tofind a suitable allocation of an unordered job and cantifications of the clusters to which it has assigned the job’s

fill out its RSL specification, the Scheduler sends the job to COMPonents, and sends it back to the Scheduler. Otherwise

the Co-allocator, and waits until the Co-allocator notiftles 't Sends a failure message back. , ,

whether or not the job has been successfully submitted. Note that compared to the situation with only plain
Ifthere is a submission failure, the Scheduler increments PUROC, when a job does not fit, in our design DUROC

the relevant field of the job request in the wait queue. If the 1S N0t called unnecessarily.

number of submission failures is then still less than a con- )

figurable maximum number, the job request will be moved 3-5 The Co-allocator and the Run List

from its current position to the tail of the queue. If the num-

ber of submission failures has reached the maximum num-  1he Co-allocator is responsible for the submission to

ber, the Scheduler will remove the job from the queue. DUROC of job requests it gets from the Scheduler. Itis also
responsible for monitoring the progress of all subjobs in ev

ery job while they are being executed. Therefore, it needs a
so-called run list which stores the elements representieg t
running jobs. Each element of this list includes:

e The text of the original job request in RSL that is still
incomplete in case of unordered jobs.

3.3 The Resource Monitor

The Resource Monitoris responsible for collecting infor-
mation about the resource status of all the clusters and for o The ID given by DUROC to the job during its execu-
providing this to the Resource Broker. In our case, the only tion.
such information is the processor availability in the clus-
ters. We considered two options for the Resource Moni- ¢ The number of subjobs in the job.
tor to retrieve the processor availability, namely using th
Globus Toolkit's MDS component, and directly contacting
the local resource managers, all of which in our case are
PBS [3]. The MDS commandrid-info-search in The Co-allocator continuously waits for the Scheduler to
principle provides the information we need, but unfortu- send it a job request. When it receives such a request, the
nately, the MDS information is often not up-to-date since Co-allocator calls DUROC's job request function to submit
the GRAM reporter is not activated all the time to collect the job through DUROC to the system. This function is

o A set of states describing the status of every subjob in
the job.



synchronous (blocking) so the Co-allocator must wait until 4.1 The Distributed ASCI Supercomputer

the function returns. When it does, the Co-allocator gets

the information of whether each subjob has been able to  The DAS [1] is a wide-area computer System consisting

get to its destination cluster. If any subjob fails to do so, of five clusters (one at each of five universities in the Nether

the Co-allocator will call the DUROC job cancel function |ands, amongst which Delft) of dual-processor Pentium-

to remove all subjobs associated to the job from their clus- based nodes, one with 72, the other four with 32 nodes

ters, and it will send a submission failure message to theeach. The clusters are interconnected by the Dutch univer-

Scheduler. We have DCS use the Global Access to Sec-sity backbone (100 Mbit/s), while for local communications

ondary Storage (GASS) component of the Globus toolkit to inside the clusters Myrinet LANs are used (1200 Mbit/s).

automatically move the executable of the job to all clusters The system was designed for research on parallel and dis-

where a job component is going to run. tributed computing. On single DAS clusters the scheduler
If all subjobs do get to their destination clusters, the Co- is PBS [3]. Before the DCS was implemented, jobs span-

allocator must guarantee the job submission success by callning multiple clusters could only be submitted with plain

ing the DUROC barrier release function. This function will DUROC [2].

hold until all subjobs have entered their own barriers. lyma

happen that there is a subjob that fails to enter the barrier,g 2 The Application

after a time-out, the function then returns a failure messag

to the Co-allocator. However, if the function returns cor- The application that we repeatedly submit to the DAS
rectly, all the subjobs have been released from their barri-i, tast the DCS implements a parallel iterative algorithm
ers, and the Co-allocator will send a success message to thg) find a discrete approximation to the solution of the

Scheduler. If the job submission succeeds, the Co-allocato two-dimensional Poisson equation (a second-order differ-

creates a run list element for the job. _ ential equation governing steady-state heat flow in a two-
The monitoring component of the Co-allocator is gimensjional domain) on the unit square. For the discretiza-
active as long as the run list is not empty. For €ach tjon 4 yniform grid of points in the unit square with a con-
element in this list, the Co-allocator will call DUROC'S  gtan¢ step in both directions is considered. The applinatio
globus-duroc-control-subjob-states ~ func- ses ared-black Gauss-Seidel scheme (see for instance [15]
tion which has theSubjob _States array as its output o, 459_433), for which the grid is split up into "black” and
parameter. The Co-allocator can get the status of everyweq» hoints, with every red point having only black neigh-
subjob of the corresponding job from this array. If all 1,55 and vice versa. In every iteration, each grid point has
subjobs have completed their execution successfully, thejig \a1ue updated as a function of its previous value and the
Co-allocator will remove the element of the completed 5,65 of its four neighbours, and all points of one colour
job from the run list, and record the time when the job e yisited first followed by the ones of the other colour.
completes. When a job experiences a completion failure, tha qomain of the problem is split up into a two-

the job’s number of completion failures is incremented, and gimensional pattern of rectangles of equal size among the
when this number does not exceed a maximum, the job iSyaicipating processes; in our experiments, only one pro-
appended to the tail of the wait queue and its number of .eqq s assigned to each processor. Every process commu-
submission failures is reset to zero. All the progress of the yjcates with each of its neighbours in order to exchange the
job will be recorded in a log file. values of the grid points on the borders and to compute a

As a note on the implementation, the whole of the DCS 555 stopping criterion. When we execute the Poisson ap-
consists of four threads, one for the Scheduler and Resourc‘f:)lication on multiple clusters, the process grid is split up

Broker together, one for Resource Monitor, one for the sub- 4 adjacent vertical strips of equal width, with each elus

mission function of the Co-Allocator, and one for the mon- o1 rynning an equal consecutive number of processes (we
itoring function of the Co-Allocator. assume processes to be numbered in column-major order).
In [4] we have reported extensive measurements on the
4 Experiments with the DCS multicluster performance of this application, showingttha
for this type of applications, co-allocating them across

In this section we present some experiments with our Wide-area systems is a viable option.
Dynamic Co-allocation Service on the DAS. The purpose of
these experiments is to show that indeed this service works#.3  The Experimental Setup
correctly and reliably, we do not pretend to do a complete
performance analysis of it here. Before we present the re- In all of our experiments, we submit a batch of 40 jobs
sults of our experiments, we describe the DAS and the ap-to the system, all of which run the application explained in
plication we submit to it in our experiments. Section 4.2. That is, rather than have the jobs arrive over
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Figure 2. The system loads and the job response time for the ex periment with 4 clusters (144+3x64),
unordered jobs of size 4x8, and FCFS.

some period of time, they arrive simultaneously. We note iments the system loads due to our jobs is (much) higher
that this strains our DCS more than when the jobs would than the load due to the jobs of other users. In addition, for
not arrive together, as now many jobs will initially not fit all experiments we report the average and the standard de-
and the wait queue will be long. In all but one experiment viation of the job response time (total time in the system),
we submit only ordered or unordered jobs; in the remaining of the run time, and of the time due to the overhead caused
experiment we submit an even mix of these types. All jobs by DUROC. As it turns out, the standard deviation of the re-
always have 4 components of equal size, which is either 4sponse time is rather large, which is caused by all jobs being
or 8 (indicated by 4x4 and 4x8). In none of our experiments submitted at the same time. The overhead due to DUROC
was any job removed from the system because it reachechas two components, one at job initialization and one at the
the maximum number of submission or completion failures, job completion—the former is by far the largest.

which were both set to 3j In the first experiment, 4 clusters are employed, all jobs
Only one of our experiments uses 4 clusters of the DAS, 4re ynordered, and the scheduling policy is FCFS: the re-

namely the largest cluster with 144 processors and threeg it are in Figure 2. We find that the DCS is able to drive

clusters with 64 processors each (indicated by 144+3x64).theo system load to very high levels. This is not very sur-

In all the other experiments, we could only employ tWo pising as the jobs are unordered and the job component
clusters, one of 144 and one of 64 processors (indicated by, e are relatively small. The sudden drops in system load

144+64). In our experiments we use both the FCFS and theyye 1o our jobs and the subsequent increase occur at job
FPFS policies. departures. This phenomenon is caused by the overhead
of DUROC and of the DCS. When a job departs from the
4.4 Experimental Results system, it takes at least a few seconds before the Resource
Monitor notices a change in resource status, and then the
We will present the results of five experiments. For each Scheduler and Resource Broker have to do their work be-

experiment we show a graph that plots the system loads dm{\?re the Co-Allocator can submit anqther job to DURGC.
to our own jobs and due to the jobs of other users, and the ote that here FPFS would have exhibited the same perfor-

sum of these over the time period from the jobs’ submis- mance as FCFS because all jobs are of equal size.

sion until the last one of our jobs completes. These system In Figure 3 we compare two situations with 2 clusters,
loads are normalized with respect to the total capacity of unordered jobs, and FCFS, where the only difference is the
the clusters that are actually used. In all of our five exper- job size. The graphs show the same high total system load



and spiky behavior as in Figure 2. Note that the total dura- allocation of processors and data.
tion of the experiment with the large job size is much longer,  In [9], the creation of abstract workflows consisting
which is due to the larger job size but also to the longer av- of application components, their translation into coreret
erage job runtime. Similarly, a comparison of the graph in workflows, and the mapping of the latter onto grid resources
Figure 2 and the top graph in Figure 3 shows that with iden- is considered. These operations have been implemented us-
tical workloads, the experiment in the 2-cluster case takesing the Pegasus [10] planning tool and the Chimera [13]
much longer (although not quite twice as long because thedata definition tool. The workflows are represented by
background load is lower). DAGs, which are assigned to resources using the Condor

In Figure 4 again we compare two situations with 2 clus- DAGMan and Condor-G [14].
ters, one with ordered jobs and FCFS, and one with an even In our previous work [4, 6, 7] we have studied the perfor-
mix of ordered and unordered jobs and FPFS. Here, the or-mance of processor co-allocation in multiclusters through
dered jobs consist of more components than there are clussimulations for a wide range of such parameters as the
ters, and we specify two components of those jobs to go tonumber and sizes of the job components, the number of
either cluster (so in fact, we would achieve the same situ-clusters, the service-time distributions, and the numiber o
ation with ordered jobs of size 2x16). With only ordered queues in the system. There, we considered both synthet-
jobs and FCFS (again we would have the same behaviorics workloads, and workloads derived from the logs of the
with FPFS) we find that the total system load achieved is DAS and from application runtimes on the DAS. In[11, 12],
quite low. The reason is that the cluster with 64 processorsco-allocation (called multi-site computing there) is sadd
is quite heavily used while the cluster with 144 processors with simulations, with as performance metric the average
is not so, but still for every job we need equal numbers of weighted response time. One of the most important find-
processors in either cluster. In the case of a mix of jobs andings is that when the slowdown of jobs due to the wide-area
FPFS, the total system load is again quite high (and the du-communication is less than or equalit@5s, it pays to use
ration of the experiment is much lower). This is caused by co-allocation. In [5], we consider the maximal utilizatjon
the presence of unordered jobs (which can use the capacity.e., the utilization at which the system becomes saturated
in the large cluster) and the use of FPFS which can sched-as a metric for assessing the performance of processor co-
ule unordered jobs even when an ordered job is stuck at theallocation.
head of the queue.

We conclud_e from our experiments first that our proto- 6 Conclusions and Future Work
type works reliably. Furthermore, we can conclude from
our sketchy experiments that ordered jobs may be an ob-
stacle to achieving high utilizations, and that when theee a
both unordered and ordered jobs in the system, FPFS is def
initely to be preferred over FCFS as the scheduling policy.

In this paper we have presented the design of a Dynamic
Co-Allocation Service (DCS) for processor co-allocation i
multicluster systems, which has been implemented on our
DAS multicluster system. We have also shown the results
of experiments that indeed show that this DCS works re-
5 Related Work liably, and that it is able to achieve a quite high total sys-
tem load, although the jobs submitted in our experiments
Not very much work has been done on the design, im- were not very large. As far as the authors know this is the
plementation, and performance analysis of co-allocation i first implementation of processor co-allocation with pnope
multicluster systems and in grids. In terms of designs andresource-brokering functionality and fault tolerance.
implementations, a system that is able to perform alloca- We are only at the beginning of our design and imple-
tion of resources in different administrative domains to a mentation efforts of co-allocation in grids. In particular
single job is Condor with its DAG-manager [14]. Condor's we are planning to extend the current design of the DCS
DAGMan takes as input job descriptions in the form of Di- to more types of resources, to more heterogeneous systems
rected Acyclic Graphs (DAGS), and schedules a task in suchboth with repect to the hardware and the local resource
agraphwhen itis enabled (i.e., when all its precedence conimanagers, and to more complicated job types (e.g., work
straints have been resolved). However, no simultaneous reflows). We note that we have been experimenting with a de-
source possession implemented by a co-allocation mechasign of mechanisms for the co-allocation of both processors
nism is implemented. In [17], the Condor class-ad match- and information resources which does away with DUROC
making mechanism for matching single jobs with single altogether, but which does use components of the Globus
machines is extended to "gangmatching” for co-allocation. toolkit. Finally, we would like to do a better performance
The running example in [17] is the inclusion of a software analysis. One of the complicating factors here is the lack of
license in a match of a job and a machine, but it seems thatreproducibility of experiments in systems that have a back-
the gangmatching mechanism might be extended to the coground load submitted by other users that we cannot con-



trol.
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Unerdered jobs (4 x 8), 2 clusters available, FCFS
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Unordered jobs {4 x 4), 2 clusters available, FCFS
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Figure 3. The system loads and the job response time for the ex periments with 2 clusters (144+64),
unordered jobs of size 4x8 (top) and 4x4 (bottom), and FCFS.



Ordered jobs (4 x 8), 2 clusters available, FCFS —total load
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Even mix of Ordered and Unordered jobs {4 x 8), 2 clusters available, FFFS
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Figure 4. The system loads and the job response time for the ex periments with 2 clusters (144+64),
ordered jobs (top) and an even mix of ordered and unordered jo bs (bottom) of size 4x8, and FCFS
(top) and FPFS (bottom).



