
A Dynamic Co-Allocation Service in Multicluster Systems

J.M.P. Sinaga, H.H. Mohamed, and D.H.J. Epema
Faculty of Electrical Engineering, Mathematics, and Computer Science

Delft University of Technology
P.O. Box 5031, 2600 GA Delft, the Netherlands

Web address:www.pds.ewi.tudelft.nl/˜epema

E-mail:D.H.J.Epema@ewi.tudelft.nl

Abstract

In multicluster systems, and more generally in grids,
jobs may require co-allocation, i.e., the simultaneous allo-
cation of resources such as processors in multiple clusters
to improve their performance. In previous work, we have
studied processor co-allocation through simulations. Here,
we extend this work with the design and implementation of
a dynamic processor co-allocation service in multicluster
systems. While an implementation of basic co-allocation
mechanisms has existed for some years in the form of the
DUROC component of the Globus Toolkit, DUROC does not
provide resource-brokering functionality or fault tolerance
in the face of job submission or completion failures. Our
design adds these two elements in the form of a software
layer on top of DUROC. We have performed experiments
that show that our co-allocation service works reliably.

1 Introduction

Computer systems consisting of multiple clusters, and
more generally grids, offer the promise of transparent ac-
cess to large collections of resources for very demanding
applications. In fact, the needs of a single application may
exceed the capacity available in any subsystem making up
such a system, and soco-allocation, i.e., the simultaneous
access to resources of possibly multiple types (processors,
data, network bandwidth) in multiple locations, managed by
different resource managers [8], may be required. Then, the
jobs executing such applications consist of multiple compo-
nents, with each component using resources in a different
subsystem. When co-allocation is not used in multiclusters
and grids, such systems only act as large load-balancing de-
vices with higher-level schedulers trying to find good single
locations for jobs to run. The real challenge of using such

systems is in trying to achieve good mechanisms and poli-
cies for co-allocation.

Among the simplest types of applications that need co-
allocation are parallel applications that require the simulta-
neous allocation of processors managed by different sched-
ulers. The feasibility of running such applications in mul-
ticluster systems with their relatively slow wide-area con-
nections has been demonstrated for instance in [4]. One of
the main problems of processor co-allocation is to achieve
the simultaneous availability of the processors managed by
different local schedulers. The basic mechanisms for pro-
cessor co-allocation have existed for a number of years in
the form of the Dynamically Updated Request Online Co-
allocator (DUROC) [8] component of the Globus Toolkit
[2]. However, even though DUROC serves its basic purpose
of submitting multicomponent jobs, it cannot be regarded as
a co-allocating scheduler for general use in multiclustersor
in grids. First, it lacks resource allocation policies by requir-
ing jobs to specify exactly the sites where their components
should run. Secondly, DUROC does not provide good fault
tolerance in that it may wait for enough available resources
for an unspecified amount of time, and in that it requires the
user’s intervention when the submission or completion of a
job fails.

In previous work we have studied processor co-
allocation by means of simulations [4, 6, 7]. In this paper,
we extend this work by the design and implementation of a
prototype called the Dynamic Co-Allocation Service (DCS)
on our wide-area Distributed ASCI1 Supercomputer (DAS,
see Section 4.1) that implements mechanisms and policies
for processor co-allocation in multicluster systems. Our de-
sign is built on top of DUROC and consists of a Sched-
uler that implements policies such as FCFS and a form of
backfilling, a Resource Monitor that reports on the avail-

1ASCI is the acronym of the Advanced School for Computing and
Imaging in the Netherlands.



able resources, a Resource Broker that maps jobs onto the
most suitable clusters, and a Co-allocator that submits jobs
to DUROC. In particular, our DCS solves the two problems
with DUROC mentioned above. The results of the experi-
ments with our prototype show that it works reliably.

2 The Problem of Processor Co-allocation

In this section we formulate the problem of co-allocation
in multiclusters, we discuss the DUROC component of
Globus, and we describe the structure of multicomponent
jobs and the placement and scheduling policies used in our
design.

2.1 Processor Co-allocation

In itself, processor co-allocation is a simple notion: As-
sign processors in different systems in a multicluster or a
grid to single jobs simultaneously. The potential advantage
to a job is that it may employ more processors than available
in a single cluster and so may experience a shorter runtime,
and the potential advantage to the system is that the system
load may be increased. Of course, due to the relatively slow
wide-area communications, not all applicatons will benefit
from using processors in clusters connected by a wide-area
network, but some definitely will [4].

An important issue in processor co-allocation is that the
processors in the different clusters have to be available at
the same time. What would be very helpful to guarantee the
simultaneous allocation of processors is a reservation mech-
anism of the local resource managers. However, hardly any
of the popular local resource managers such as PBS [3] sup-
ports such a mechanism. A processor co-allocation mecha-
nism built on top of resource managers without reservation
capabilities cannot do anything else than repeatedly try to
assess whether sufficient numbers of processors are avail-
able, and then claim these.

2.2 Motivation

Currently, the only available standard tool for proces-
sor co-allocation in grids is the DUROC component of the
Globus Toolkit. In general, Globus can accept job descrip-
tions written in the Globus Resource Specification Lan-
guage (RSL), in which such things as the name of the ex-
ecutable and the input and output files can be specified.
When a job consists of a single component, one of the things
that also has to be specified is the name of the resource man-
ager of the system where the job has to run. After having
parsed the RSL specification of a job, Globus sends the job
to the Globus Resource Allocation Manager (GRAM) run-
ning on the specified resource, which in turn hands over
the job to the local resource manager. DUROC [8] is the

component of the Globus Toolkit that contains the basic
mechanisms for co-allocation. It accepts what are called
multirequests, which consist of multiple simple requests,
each written in RSL and each specifying a component of a
multicomponent job. DUROC supports two approaches for
co-allocating resources to jobs. In the atomic trannsaction
approach, all resources specified by a job have to be avail-
able otherwise the job’s submission fails. In the interactive
transaction approach, some resources may be specified as
nonessential or optional, in order to tolerate resource fail-
ures.

DUROC cannot be regarded as a full-blown co-
allocating scheduler in multiclusters or grids, as it lacks
certain functionality. First, it does not do any resource bro-
kering by picking suitable resources for a job, and the RSL
specification of a job request must be complete in that the
subsystems (clusters) to be used by a job must be exactly
specified in advance. In other words, DUROC implements
what we call astaticco-allocation mechanism, and it can
only deal with what we call ordered jobs (see Section 2.3).
Secondly, a job submission may fail because the resources
required by the job are not immediately available, or be-
cause a job may not complete successfully. When the first
happens, DUROC cannot do anything except sending an er-
ror message to the user telling that the submission has failed
or just waiting until sufficient resources do become avail-
able. In the latter case, there is no time-out mechanism for
removing jobs that are waiting too long. When the second
happens, the user simply has to resubmit the job.

This situation has motivated us to design our Dynamic
Co-Allocation Service (DCS) for multicluster systems on
top of DUROC. The DCS detects the states of the clus-
ters anddynamicallyallocates resources according to those
states. It gives users a more flexible way of specifying mul-
ticomponent jobs in that they do not have to tell in advance
the locations where the the jobs’ components have to run.
In addition, the DCS will repeatedly submit a job that ex-
periences submission failures (for a maximum number of
times), and it will repeatedly resubmit a job that experi-
ences completion failures (again for a maximum number of
times).

2.3 The Structure of the System and of Job Re-
quests

Our model of multicluster systems is very simple: We
assume a system of sayC clusters consisting of possibly
different numbers of identical processors.

Jobs submitted to our DCS that consist of multiple com-
ponents and require co-allocation, have to specify the num-
ber and the sizes of their components, i.e., of the numbers
of processors needed in the separate clusters. We assume
jobs to be rigid, which means that they do not change size



over their lifetime. So a job is represented by a tuple ofC
values (some of which may be zero), indicating its compo-
nent sizes. We will consider two cases for the structure of
job requests:

1. In anordered requestthe positions of the request com-
ponents in the tuple specify the clusters from which the
processors must be allocated.

2. For anunordered request, by the components of the
tuple the job only specifies the numbers of processors
it needs in the separate clusters, allowing the scheduler
to choose the clusters for the components. Here, we do
allow different components of unordered jobs to go to
the same cluster.

Ordered requests are used in practice when a user has
enough information about the complete system to take full
advantage of the characteristics of the different clusters.
Unordered requests model applications like FFT, which
needs few data, and in which tasks in the same job com-
ponent share data and need intensive communication, while
tasks from different components exchange little or no infor-
mation.

The RSL descriptions of unordered jobs submitted to the
system are incomplete in that the locations where the com-
ponents should run have not been filled out; the RSL de-
scriptions of the ordered jobs submitted are complete.

2.4 The Placement and Scheduling Policies

For ordered requests it is clear when a job fits on the sys-
tem or not, given the current numbers of idle processors.
To determine whether an unordered request fits, we use the
Worst-Fit (WF) placement policy avoiding as much as pos-
sible reusing the same clusters. When placing a job, we
first order the job components according to decreasing size,
and then assign the job components in that order. When as-
signing a job, we keep two lists of clusters, both ordered
according to decreasing numbers of idle processors. The
first is the listN of clusters that do not yet have a job com-
ponent assigned (initially all clusters), and the second isthe
(initially empty) listY of clusters that already have at least
one job component assigned to them. For every job com-
ponent, if it fits on the cluster at the head of listN , it is
assigned to that cluster and that cluster is removed fromN
and inserted into the appropriate place into listY . If it does
not fit on the cluster at the head of listN , the job component
is assigned to the cluster at the head of listY if it fits there,
and then that list is reordered if necessary. If the component
also does not fit on the cluster at the head of listY , then the
whole job cannot be placed. Our motivation for using WF
is that it balances the load, leaving roughly equal numbers
of idle processors in all clusters. However, WF can easily

be replaced by any other placement policy that better suits
a multicluster’s objectives.

As we will see in Section 3, the DCS maintains a single
global queue. As the scheduling policy we use First Come
First Served (FCFS) or Fit Processors First Served (FPFS).
In FPFS, when the job at the head of the queue does not
fit, the queue is scanned from head to tail for any jobs that
may fit. FPFS may cause starvation, which may for instance
be repaired by putting a maximum to the number of times
a job can be overtaken by other jobs, but we have not im-
plemented this. FPFS is a variation of backfilling [16], for
which it is usually assumed that (estimates of) the service
times are available before jobs start, and in which the job
at the head of the queue may not be delayed by jobs over-
taking it. However, we assume that we do not have runtime
estimates, and so we cannot implement this type of backfill-
ing.

3 The Design of the Dynamic Co-allocation
Service

In this section we will present the design of our Dynamic
Co-allocation Service (DCS). We will first give an overview
of the architecture of the DCS and the flow of a multicom-
ponent job through it. Then, we will focus on each compo-
nent of the DCS in more detail.

3.1 An Overview of the DCS

The basic idea underlying our design is to employ
DUROC and to add several higher-level components to it to
implement fault-tolerant dynamic co-allocation. The soft-
ware components of the DCS are the Scheduler, the Re-
source Broker, the Resource Monitor, and the Co-allocator.
In addition, we maintain as data structures a wait queue and
a run list. Figure 1 depicts all of these components.

When a user submits a job to the system, the Scheduler
appends it to the tail of thewait queue, which contains all
jobs submitted but not yet allocated. As long as the wait
queue is not empty, the Scheduler tries to schedule jobs
from it by contacting the Resource Broker.

When the Resource Broker receives a job request from
the Scheduler, it attempts to fit the job on the system tak-
ing into account the job type and the available resources.
If there are sufficient resources, the Resource Broker de-
cides on an allocation and sends the job request back to
the Scheduler; otherwise it sends a failure message back
to the Scheduler. In order to fit a job to the resources, the
Resource Broker needs to know about the current resource
status, which it gets from the Resource Monitor.

When the Scheduler gets a failure message from the Re-
source Broker, it will simply keep the job in its current lo-
cation in the wait queue, and it will later attempt to resched-



Figure 1. The architecture of the Dynamic Co-allocation Ser vice.

ule it. When the Scheduler gets a completed RSL file from
the Resource Broker, it will send the job request to the Co-
allocator, which in turn will forward it to DUROC. DUROC
will use its co-allocation mechanism to submit all subjobs
to their destination clusters.

The success or failure of a job submission to DUROC
is noted by the Co-allocator in a so-called submission sta-
tus, which it returns to the Scheduler. If the job submission
is successful, the Scheduler removes the corresponding el-
ement from the wait queue, and the Co-allocator puts the
job request into therun list, which contains a record of all
currently running jobs so that the Co-allocator can monitor
their progress.

However, even if the Resource Broker has found a suit-
able allocation for a job request, it is possible that the
job submission fails. For instance, there may have been a
change in the resource availability while the Resource Bro-
ker is working to fit the job on the system so that the al-
located resources are not available anymore, the executable
file cannot be found, etc. If this happens, the Co-allocator

will cancel the job submission and tell the Scheduler about
the failure. The job request is then moved to the tail of the
wait queue.

The Co-allocator also keeps track of the completion sta-
tus of jobs, which indicates whether or not a runnning job
has completed its execution successfully. If a running job
fails to complete its execution, the Co-allocator will put the
job request back at the tail of the wait queue so that it can
later be rescheduled. When a running job finishes success-
fully, the Co-allocator removes the job from the run list, and
sends a message to the Scheduler that contains the number
of jobs that have successfully finished so far.

Now, we will see in more detail how each main compo-
nent is designed.

3.2 The Scheduler and the Wait Queue

The Scheduler is the central component in our design. It
manages the wait queue as the place for the requests of jobs
that have not yet been allocated, it gets allocations of jobs



from the Resource Broker, and it calls the Co-allocator to
actually submit jobs to DUROC.

An element of the wait queue includes the following
fields:� The type of the job request (ordered or unordered).� The text of the original job request in RSL that is still

incomplete in case of unordered jobs.� The number of times the job has suffered a submission
failure.� The number of times the job has suffered a completion
failure.

As long as the wait queue is not empty, the Scheduler
tries to schedule jobs, based on the scheduling policy, which
is FCFS or FPFS. The Scheduler does this whenever it gets
a signal from the Resource Monitor that a change in the re-
source availability has occurred. With FCFS, the Scheduler
then invokes the Resource Broker for the job at the head
of the wait queue. Only when that job fits does the Sched-
uler invoke the Resource Broker for the next job, etc. With
FPFS, the Resource Broker is invoked once for every job re-
quest in the queue. Nevertheless, with FPFS, the Resource
Monitor will be invoked only once during the activity of the
Resource Broker in a single scheduling action.

If the Resource Broker finds that an ordered job fits, or is
able to find a suitable allocation of an unordered job and can
fill out its RSL specification, the Scheduler sends the job to
the Co-allocator, and waits until the Co-allocator notifiesit
whether or not the job has been successfully submitted.

If there is a submission failure, the Scheduler increments
the relevant field of the job request in the wait queue. If the
number of submission failures is then still less than a con-
figurable maximum number, the job request will be moved
from its current position to the tail of the queue. If the num-
ber of submission failures has reached the maximum num-
ber, the Scheduler will remove the job from the queue.

3.3 The Resource Monitor

The Resource Monitor is responsible for collecting infor-
mation about the resource status of all the clusters and for
providing this to the Resource Broker. In our case, the only
such information is the processor availability in the clus-
ters. We considered two options for the Resource Moni-
tor to retrieve the processor availability, namely using the
Globus Toolkit’s MDS component, and directly contacting
the local resource managers, all of which in our case are
PBS [3]. The MDS commandgrid-info-search in
principle provides the information we need, but unfortu-
nately, the MDS information is often not up-to-date since
the GRAM reporter is not activated all the time to collect

the resource status and report it to the MDS. Therefore, we
rejected the MDS as the basis for the Resource Monitor.

PBS provides theqstat command to retrieve status in-
formation from a cluster, which gives us the number of jobs
running in the cluster, the number of compute nodes that
are used by each job, and the identifier of each processor
executing job processes, etc. After straightening out some
little problems in the output ofqstat , we found that we
get accurate and timely information on processor availabil-
ity, and so this is the option we used. The Resource Monitor
stores the information in an output file, which is read by the
Resource Broker.

3.4 The Resource Broker

When the Resource Broker gets a job request from the
Scheduler, it depends on the request type how it operates.
For ordered requests it simply checks whether the requested
numbers of processors the job wants to use are available in
the specified clusters. After it has done so, the Resource
Broker sends a message back to the Scheduler whether the
job fits or not.

For unordered jobs the Resource Broker employs the WF
algorithm avoiding reusing clusters as much as possible (see
Section 2.4). When the job can indeed be assigned to the
system according to this algorithm, the Resource Broker
completes the RSL specification of the job with the iden-
tifications of the clusters to which it has assigned the job’s
components, and sends it back to the Scheduler. Otherwise
it sends a failure message back.

Note that compared to the situation with only plain
DUROC, when a job does not fit, in our design DUROC
is not called unnecessarily.

3.5 The Co-allocator and the Run List

The Co-allocator is responsible for the submission to
DUROC of job requests it gets from the Scheduler. It is also
responsible for monitoring the progress of all subjobs in ev-
ery job while they are being executed. Therefore, it needs a
so-called run list which stores the elements representing the
running jobs. Each element of this list includes:� The ID given by DUROC to the job during its execu-

tion.� The number of subjobs in the job.� A set of states describing the status of every subjob in
the job.

The Co-allocator continuously waits for the Scheduler to
send it a job request. When it receives such a request, the
Co-allocator calls DUROC’s job request function to submit
the job through DUROC to the system. This function is



synchronous (blocking) so the Co-allocator must wait until
the function returns. When it does, the Co-allocator gets
the information of whether each subjob has been able to
get to its destination cluster. If any subjob fails to do so,
the Co-allocator will call the DUROC job cancel function
to remove all subjobs associated to the job from their clus-
ters, and it will send a submission failure message to the
Scheduler. We have DCS use the Global Access to Sec-
ondary Storage (GASS) component of the Globus toolkit to
automatically move the executable of the job to all clusters
where a job component is going to run.

If all subjobs do get to their destination clusters, the Co-
allocator must guarantee the job submission success by call-
ing the DUROC barrier release function. This function will
hold until all subjobs have entered their own barriers. It may
happen that there is a subjob that fails to enter the barrier;
after a time-out, the function then returns a failure message
to the Co-allocator. However, if the function returns cor-
rectly, all the subjobs have been released from their barri-
ers, and the Co-allocator will send a success message to the
Scheduler. If the job submission succeeds, the Co-allocator
creates a run list element for the job.

The monitoring component of the Co-allocator is
active as long as the run list is not empty. For each
element in this list, the Co-allocator will call DUROC’s
globus-duroc-control-subjob-states func-
tion which has theSubjob States array as its output
parameter. The Co-allocator can get the status of every
subjob of the corresponding job from this array. If all
subjobs have completed their execution successfully, the
Co-allocator will remove the element of the completed
job from the run list, and record the time when the job
completes. When a job experiences a completion failure,
the job’s number of completion failures is incremented, and
when this number does not exceed a maximum, the job is
appended to the tail of the wait queue and its number of
submission failures is reset to zero. All the progress of the
job will be recorded in a log file.

As a note on the implementation, the whole of the DCS
consists of four threads, one for the Scheduler and Resource
Broker together, one for Resource Monitor, one for the sub-
mission function of the Co-Allocator, and one for the mon-
itoring function of the Co-Allocator.

4 Experiments with the DCS

In this section we present some experiments with our
Dynamic Co-allocation Service on the DAS. The purpose of
these experiments is to show that indeed this service works
correctly and reliably, we do not pretend to do a complete
performance analysis of it here. Before we present the re-
sults of our experiments, we describe the DAS and the ap-
plication we submit to it in our experiments.

4.1 The Distributed ASCI Supercomputer

The DAS [1] is a wide-area computer system consisting
of five clusters (one at each of five universities in the Nether-
lands, amongst which Delft) of dual-processor Pentium-
based nodes, one with 72, the other four with 32 nodes
each. The clusters are interconnected by the Dutch univer-
sity backbone (100 Mbit/s), while for local communications
inside the clusters Myrinet LANs are used (1200 Mbit/s).
The system was designed for research on parallel and dis-
tributed computing. On single DAS clusters the scheduler
is PBS [3]. Before the DCS was implemented, jobs span-
ning multiple clusters could only be submitted with plain
DUROC [2].

4.2 The Application

The application that we repeatedly submit to the DAS
to test the DCS implements a parallel iterative algorithm
to find a discrete approximation to the solution of the
two-dimensional Poisson equation (a second-order differ-
ential equation governing steady-state heat flow in a two-
dimensional domain) on the unit square. For the discretiza-
tion, a uniform grid of points in the unit square with a con-
stant step in both directions is considered. The application
uses a red-black Gauss-Seidel scheme (see for instance [15],
pp. 429–433), for which the grid is split up into ”black” and
”red” points, with every red point having only black neigh-
bours and vice versa. In every iteration, each grid point has
its value updated as a function of its previous value and the
values of its four neighbours, and all points of one colour
are visited first followed by the ones of the other colour.

The domain of the problem is split up into a two-
dimensional pattern of rectangles of equal size among the
participating processes; in our experiments, only one pro-
cess is assigned to each processor. Every process commu-
nicates with each of its neighbours in order to exchange the
values of the grid points on the borders and to compute a
global stopping criterion. When we execute the Poisson ap-
plication on multiple clusters, the process grid is split up
into adjacent vertical strips of equal width, with each clus-
ter running an equal consecutive number of processes (we
assume processes to be numbered in column-major order).

In [4] we have reported extensive measurements on the
multicluster performance of this application, showing that
for this type of applications, co-allocating them across
wide-area systems is a viable option.

4.3 The Experimental Setup

In all of our experiments, we submit a batch of 40 jobs
to the system, all of which run the application explained in
Section 4.2. That is, rather than have the jobs arrive over



response time runtime overhead
(seconds)

avg 377.2 79.4 32.9
stdev 177.2 29.8 17.8

Figure 2. The system loads and the job response time for the ex periment with 4 clusters (144+3x64),
unordered jobs of size 4x8, and FCFS.

some period of time, they arrive simultaneously. We note
that this strains our DCS more than when the jobs would
not arrive together, as now many jobs will initially not fit
and the wait queue will be long. In all but one experiment
we submit only ordered or unordered jobs; in the remaining
experiment we submit an even mix of these types. All jobs
always have 4 components of equal size, which is either 4
or 8 (indicated by 4x4 and 4x8). In none of our experiments
was any job removed from the system because it reached
the maximum number of submission or completion failures,
which were both set to 3.

Only one of our experiments uses 4 clusters of the DAS,
namely the largest cluster with 144 processors and three
clusters with 64 processors each (indicated by 144+3x64).
In all the other experiments, we could only employ two
clusters, one of 144 and one of 64 processors (indicated by
144+64). In our experiments we use both the FCFS and the
FPFS policies.

4.4 Experimental Results

We will present the results of five experiments. For each
experiment we show a graph that plots the system loads due
to our own jobs and due to the jobs of other users, and the
sum of these over the time period from the jobs’ submis-
sion until the last one of our jobs completes. These system
loads are normalized with respect to the total capacity of
the clusters that are actually used. In all of our five exper-

iments the system loads due to our jobs is (much) higher
than the load due to the jobs of other users. In addition, for
all experiments we report the average and the standard de-
viation of the job response time (total time in the system),
of the run time, and of the time due to the overhead caused
by DUROC. As it turns out, the standard deviation of the re-
sponse time is rather large, which is caused by all jobs being
submitted at the same time. The overhead due to DUROC
has two components, one at job initialization and one at the
job completion—the former is by far the largest.

In the first experiment, 4 clusters are employed, all jobs
are unordered, and the scheduling policy is FCFS; the re-
sults are in Figure 2. We find that the DCS is able to drive
the system load to very high levels. This is not very sur-
prising as the jobs are unordered and the job component
sizes are relatively small. The sudden drops in system load
due to our jobs and the subsequent increase occur at job
departures. This phenomenon is caused by the overhead
of DUROC and of the DCS. When a job departs from the
system, it takes at least a few seconds before the Resource
Monitor notices a change in resource status, and then the
Scheduler and Resource Broker have to do their work be-
fore the Co-Allocator can submit another job to DUROC.
Note that here FPFS would have exhibited the same perfor-
mance as FCFS because all jobs are of equal size.

In Figure 3 we compare two situations with 2 clusters,
unordered jobs, and FCFS, where the only difference is the
job size. The graphs show the same high total system load



and spiky behavior as in Figure 2. Note that the total dura-
tion of the experiment with the large job size is much longer,
which is due to the larger job size but also to the longer av-
erage job runtime. Similarly, a comparison of the graph in
Figure 2 and the top graph in Figure 3 shows that with iden-
tical workloads, the experiment in the 2-cluster case takes
much longer (although not quite twice as long because the
background load is lower).

In Figure 4 again we compare two situations with 2 clus-
ters, one with ordered jobs and FCFS, and one with an even
mix of ordered and unordered jobs and FPFS. Here, the or-
dered jobs consist of more components than there are clus-
ters, and we specify two components of those jobs to go to
either cluster (so in fact, we would achieve the same situ-
ation with ordered jobs of size 2x16). With only ordered
jobs and FCFS (again we would have the same behavior
with FPFS) we find that the total system load achieved is
quite low. The reason is that the cluster with 64 processors
is quite heavily used while the cluster with 144 processors
is not so, but still for every job we need equal numbers of
processors in either cluster. In the case of a mix of jobs and
FPFS, the total system load is again quite high (and the du-
ration of the experiment is much lower). This is caused by
the presence of unordered jobs (which can use the capacity
in the large cluster) and the use of FPFS which can sched-
ule unordered jobs even when an ordered job is stuck at the
head of the queue.

We conclude from our experiments first that our proto-
type works reliably. Furthermore, we can conclude from
our sketchy experiments that ordered jobs may be an ob-
stacle to achieving high utilizations, and that when there are
both unordered and ordered jobs in the system, FPFS is def-
initely to be preferred over FCFS as the scheduling policy.

5 Related Work

Not very much work has been done on the design, im-
plementation, and performance analysis of co-allocation in
multicluster systems and in grids. In terms of designs and
implementations, a system that is able to perform alloca-
tion of resources in different administrative domains to a
single job is Condor with its DAG-manager [14]. Condor’s
DAGMan takes as input job descriptions in the form of Di-
rected Acyclic Graphs (DAGs), and schedules a task in such
a graph when it is enabled (i.e., when all its precedence con-
straints have been resolved). However, no simultaneous re-
source possession implemented by a co-allocation mecha-
nism is implemented. In [17], the Condor class-ad match-
making mechanism for matching single jobs with single
machines is extended to ”gangmatching” for co-allocation.
The running example in [17] is the inclusion of a software
license in a match of a job and a machine, but it seems that
the gangmatching mechanism might be extended to the co-

allocation of processors and data.
In [9], the creation of abstract workflows consisting

of application components, their translation into concrete
workflows, and the mapping of the latter onto grid resources
is considered. These operations have been implemented us-
ing the Pegasus [10] planning tool and the Chimera [13]
data definition tool. The workflows are represented by
DAGs, which are assigned to resources using the Condor
DAGMan and Condor-G [14].

In our previous work [4, 6, 7] we have studied the perfor-
mance of processor co-allocation in multiclusters through
simulations for a wide range of such parameters as the
number and sizes of the job components, the number of
clusters, the service-time distributions, and the number of
queues in the system. There, we considered both synthet-
ics workloads, and workloads derived from the logs of the
DAS and from application runtimes on the DAS. In [11, 12],
co-allocation (called multi-site computing there) is studied
with simulations, with as performance metric the average
weighted response time. One of the most important find-
ings is that when the slowdown of jobs due to the wide-area
communication is less than or equal to1:25, it pays to use
co-allocation. In [5], we consider the maximal utilization,
i.e., the utilization at which the system becomes saturated,
as a metric for assessing the performance of processor co-
allocation.

6 Conclusions and Future Work

In this paper we have presented the design of a Dynamic
Co-Allocation Service (DCS) for processor co-allocation in
multicluster systems, which has been implemented on our
DAS multicluster system. We have also shown the results
of experiments that indeed show that this DCS works re-
liably, and that it is able to achieve a quite high total sys-
tem load, although the jobs submitted in our experiments
were not very large. As far as the authors know this is the
first implementation of processor co-allocation with proper
resource-brokering functionality and fault tolerance.

We are only at the beginning of our design and imple-
mentation efforts of co-allocation in grids. In particular,
we are planning to extend the current design of the DCS
to more types of resources, to more heterogeneous systems
both with repect to the hardware and the local resource
managers, and to more complicated job types (e.g., work
flows). We note that we have been experimenting with a de-
sign of mechanisms for the co-allocation of both processors
and information resources which does away with DUROC
altogether, but which does use components of the Globus
toolkit. Finally, we would like to do a better performance
analysis. One of the complicating factors here is the lack of
reproducibility of experiments in systems that have a back-
ground load submitted by other users that we cannot con-



trol.

References

[1] The Distributed ASCI Supercomputer (DAS).
www.cs.vu.nl/das2 .

[2] The Globus Toolkit.www.globus.org .
[3] The Portable Batch System.www.openpbs.org .
[4] S. Banen, A. Bucur, and D. Epema. A Measurement-

Based Simulation Study of Processor Co-Allocation in
Multicluster Systems. In D. Feitelson, L. Rudolph, and
U. Schwiegelshohn, editors,Proc. of the 9th Workshop on
Job Scheduling Strategies for Parallel Processing, volume
2862 ofLNCS, pages 105–128. Springer-Verlag, 2003.

[5] A. Bucur and D. Epema. The Maximal Utilization of Proces-
sor Co-Allocation in Multicluster Systems. InProc. of the
Int’l Parallel and Distributed Processing Symp. (IPDPS),
pages 60–69. IEEE Computer Society Press, 2003.

[6] A. Bucur and D. Epema. The Performance of Processor
Co-Allocation in Multicluster Systems. InProc. of the
3rd IEEE/ACM Int’l Symp. on Cluster Computing and the
GRID (CCGrid2003), pages 302–309. IEEE Computer So-
ciety Press, 2003.

[7] A. Bucur and D. Epema. Trace-Based Simulations of Pro-
cessor Co-Allocation Policies in Multiclusters. InProc. of
the 12th IEEE Int’l Symp. on High Performance Distributed
Computing (HPDC-12), pages 70–79. IEEE Computer So-
ciety Press, 2003.

[8] K. Czajkowski, I. Foster, and C. Kesselman. Resource Co-
Allocation in Computational Grids. InProc. of the 8th IEEE
Int’l Symp. on High Performance Distributed Computing
(HPDC-8), pages 219–228, 1999.

[9] E. Deelman et al. Mapping Abstract Complex Workflows
onto Grid Environments.J. of Grid Computing, 1:25–39,
2003.

[10] E. Deelman et al. Pegasus: Mapping Scientific Workflows
onto the Grid. InProc. of the 2nd European Across Grids
Conference, 2004.

[11] C. Ernemann, V. Hamscher, U. Schwiegelshohn,
R. Yahyapour, and A. Streit. On Advantages of Grid
Computing for Parallel Job Scheduling. InProc. of the
2nd IEEE/ACM Int’l Symp. on Cluster Computing and the
GRID (CCGrid2002), pages 39–46, 2002.

[12] C. Ernemann, V. Hamscher, A. Streit, and R. Yahyapour.
Enhanced Algorithms for Multi-Site Scheduling. In3rd Int’l
Workshop on Grid Computing, pages 219–231, 2002.

[13] I. Foster, J. Vockler, M. Wilde, and Y. Zhao. Chimera: A Vir-
tual Data System for Representing, Querying, and Automat-
ing Data Derivation. In14th Int’l Conf. on Scientific and
Statistical Database Management (SSDBM 2002), 2002.

[14] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke.
Condor-G: A Computation Management Agent for Multi-
Institutional Grids. InProc. of the 10th IEEE Symp. on High
Performance Distributed Computing (HPDC-10), pages 7–
9. IEEE Computer Society Press, 2001.

[15] V. Kumar, A. Grama, A. Gupta, and G. Karypis.Introduc-
tion to Parallel Computing. Benjamin/Cummings, 1994.

[16] D. Lifka. The ANL/IBM SP Scheduling Systems. In D. Fei-
telson and L. Rudolph, editors,Proc. of the 1st Workshop on
Job Scheduling Strategies for Parallel Processing, volume
949 ofLNCS, pages 295–303. Springer-Verlag, 1995.

[17] R. Raman, M. Livny, and M. Solomon. Policy Driven
Heterogeneous Resource Co-Allocation with Gangmatch-
ing. In Proc. of the 12th IEEE Int’l Symp. on High Per-
formance Distributed Computing (HPDC-12), pages 80–89.
IEEE Computer Society Press, 2003.



response time runtime overhead
(seconds)

avg 581.3 102.1 25.4
stdev 295.2 12.5 3.5

response time runtime overhead
(seconds)

avg 267.2 76.8 26.9
stdev 108.2 17.0 3.2

Figure 3. The system loads and the job response time for the ex periments with 2 clusters (144+64),
unordered jobs of size 4x8 (top) and 4x4 (bottom), and FCFS.



response time runtime overhead
(seconds)

avg 1135.2 87.8 21.9
stdev 611.1 10.0 3.4

response time runtime overhead
(seconds)

avg 634.7 92.4 25.3
stdev 335.3 15.6 6.5

Figure 4. The system loads and the job response time for the ex periments with 2 clusters (144+64),
ordered jobs (top) and an even mix of ordered and unordered jo bs (bottom) of size 4x8, and FCFS
(top) and FPFS (bottom).


