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Abstract— The design and evaluation of job scheduling strate-
gies often require simulations with workload data or models.
Usually workload traces are the most realistic data source as
they include all explicit and implicit job patterns which are
not always considered in a model. In this paper, a method is
presented to enlarge and/or duplicate jobs in a given workload.
This allows the scaling of workloads for later use on parallel
machine configurations with a different number of processors.
As quality criteria the scheduling results by common algorithms
have been examined. The results show high sensitivity of schedule
attributes to modifications of the workload. To this end, different
strategies of scaling number of job copies and/or job size have
been examined. The best results had been achieved by adjusting
the scaling factors to be higher than the precise relation between
the new scaled machine size and the original source configuration.

I. I NTRODUCTION

The scheduling system is an important component of a
parallel computer. Here, the applied scheduling strategy has
direct impact to the overall performance of the computer
system with respect to the scheduling policy and objective.The
design of such a scheduling system is a complex task which
requires several steps, see [13]. The evaluation of scheduling
algorithms is important to identify the appropriate algorithm
and the corresponding parameter settings. The results of the-
oretical worst-case analysis are only of limited help as typical
workloads on production machines do normally not exhibit the
specific structure that will create a really bad case. In addition,
theoretical analysis is often very difficult to apply to many
scheduling strategies. Further, there is no random distribution
of job parameter values, see e.g. Feitelson and Nitzberg
[9]. Instead, the job parameters depend on several patterns,
relations, and dependencies. Hence, a theoretical analysis of
random workloads will not provide the desired information
either. A trial and error approach on a commercial machine
is tedious and significantly affects the system performance.
Thus, it is usually not practicable to use a production machine
for the evaluation except for the final testing. This just leaves
simulation for all other cases.

Simulations may either be based on real trace data or on a
workload model. Workload models, see e.g. Jann et al. [12]
or Feitelson and Nitzberg [9], enable a wide range of simula-
tions by allowing job modifications, like a varying amount
of assigned processor resources. However, many unknown
dependencies and patterns may cause the actual workload of
a real system. This is especially true as the characteristics
of an workload usually change over time; beginning from
daily or weekly cycles to changes in the job submissions

during a year and the lifetime of a parallel machine. Here, the
consistence of a statistical generated workload model withreal
workloads is difficult to guarantee. On the other hand, trace
data restrict the freedom of selecting different configurations
and scheduling strategies as a specific job submission depends
on the original circumstances. The trace is only valid on a sim-
ilar machine configuration and the same scheduling strategy.
For instance, trace data taken from a 128 processor parallel
machine will lead to unrealistic results on a 256 processor
machine. Therefore, the selection of the underlying data for
the simulation depends on the circumstances determined by the
MPP architecture as well as the scheduling strategy. A variety
of examples already exists for evaluations via simulation based
on a workload model, see e.g. Feitelson [5], Feitelson and Jette
[8] or on trace data, see e.g. Ernemann et al. [4].

Our research on job scheduling strategies for parallel com-
puters as well as for computational Grid environments led to
the requirement of considering different resource configura-
tions. As the individual scheduling objectives of users and
owners is of high importance in this research, we have to
ensure that the workload is very consistent with real demand.
To this end, statistical distribution of the various parameters
without the detailed dependencies between them cannot be
applied. Therefore, real workload traces have been chosen as
the source for our evaluations. In this paper, we address the
question how workload traces can be transformed to be used
on different resource configurations while retaining important
specifics. In Section II we give a brief overview on previous
works in workload modelling and analysis. In addition, we
discuss our considerations for choosing a workload for evalua-
tion. Our approach and the corresponding results are presented
in Section III. Finally, we conclude this paper with a brief
discussion on the important key observations in Section IV.

II. BACKGROUND

We consider on-line parallel job scheduling in which a
stream of jobs is submitted to a job scheduler by individual
users. The jobs are executed in a space-sharing fashion for
which a job scheduling system is responsible to decide when
and on which resource set the jobs are actually started. A
job is first known by the system at its submission time. The
job description contains information on its requirements as
e.g. number of processing nodes, memory or the estimated
execution length.

For the evaluation of scheduling methods it is a typical
task to choose one or several workloads for simulations.



The designer of a scheduling algorithm must ensure that the
workload is close to a real user demand in the examined
scenario. Workload traces are recorded on real systems and
contain information on the job requests including the actual
start and execution time of the job. Extensive research has been
done to analyze workloads as well as to propose corresponding
workload models, see e.g. [7], [3], [2], [1].

Generally, statistical models use distributions or a collection
of distributions to describe the important features of real
workload attributes and the correlations among them. Then
synthetic workloads are generated by sampling from the
probability distributions [12], [7]. Statistical workload models
have the advantage that new sets of job submissions can be
generated easily. The consistence with real traces dependson
the knowledge about the different examined parameters in
the original workload. Many factors contribute to the actual
process of workload generation on a real machine. Some of
them are known, some are hidden and hard to deduce. It is
difficult to find rules for job submissions by individual users.
The analysis of workloads shows several correlations and
patterns of the workload statistics. For example, jobs on many
parallel computers require job sizes of a power of two [15], [5],
[16]. Other examples are the job distribution during the daily
cycle obviously caused by the individual working hours of
the users, or the job distribution of different week days. Most
approaches consider the different statistical moments isolated.
Some correlations are included in several methods. However,
it is very difficult to identify whether the important rules and
patterns are extracted. In the same way it is difficult to tell
whether the inclusion of the result is actually relevant to the
the evaluation and therefore also relevant for the design ofan
algorithm.

In general, only a limited number of users are active on
a parallel computer, for instance, several dozens. Therefore,
for some purposes it is not clear if a given statistical model
comes reasonable close to a real system. For example, some
workload traces include singular outliers which significantly
influence the overall scheduling result. In this case, a statistical
modelling without this outlier might significantly deviatefrom
the real world result. In the same way, it may make a vast
difference to have several outliers of the same or similar kind.
The relevance to the corresponding evaluation is difficult to
judge, but this also renders the validity of the results undefined.

Due to the above mentioned reasons, it emerged to be
difficult to use statistical workload models for our research
work. Therefore, we decided to use workload traces for our
evaluations. The standard parallel workload archive [19] is a
good source for job traces. However, the number of available
traces is limited. Most of the workloads are observed on
different supercomputers. Mainly, the total number of available
processors differs in those workloads. Therefore, our aim was
to find a reasonable method to scale workload traces to fit
on a standard supercomputer. However, special care must be
taken to keep the new workload as consistent as possible to the
original trace. To this end, criteria for measuring the validity
had to be chosen for the examined methods for scaling the

workload.
The following well-known workloads have been used: of

the CTC [11], the NASA [9], the LANL [6], the KTH [17]
and three workloads from the SCSD [20]. All traces are
available from the Parallel Workload Archive, see [19]. As
shown in Table I, the supercomputer from the LANL has
the highest number of processors from the given computers
and so this number of processors was chosen as the standard
configuration. Therefore the given workload from the LANL
does not need to be modified and as a result the following
modification will only be applied to the other given workloads.

In comparison to statistical workload models, the use of
actual workload traces is simpler as they inherently include all
submission patterns and underlying mechanisms. The traces
reflect the real workload exactly. However, it is difficult to
perform several simulations as the data basis is usually limited.
In addition, the applicability of workload traces to other
resource configuration with a different number of processors
is complicated. For instance, this could result in a too high
workload and an unrealistic long wait time for a job. Or,
contrary, the machine is not fully utilized if the amount of
computational work is too low. However, it is difficult to
change any parameter of the original workload trace as it has
an influence on its overall validity. For example, the reduction
of the inter-arrival time destroys the distribution of the daily
cycle. Therefore, modifications on the job length are inappro-
priate. Modifications of the requested processor number of a
job change the original job size distribution. For instance, we
might invalid an existing preference of jobs with a power of 2
processor requirement. In the same way, an alternative scaling
of the number of requested processors by a job would lead to
an unrealistic job size submission pattern. For example, scaling
a trace taken from a 128 node MPP system to 256 node system
by just duplicating each job preserves the temporal distribution
of job submissions. However, this transformation leads also to
an unrealistic distribution as no larger jobs are submitted.

Note, that the scaling of a workload to match a different
machine configuration always alters the original distribution
whatsoever. Therefore, as a trade-off special care must be
taken to preserve original time correlations and job size
distribution.

III. SCALING WORKLOADS TO A DIFFERENTMACHINE

SIZE

The following 3 sections present the examined methods to
scale the workload. We briefly discuss the different methods
as the results of each step motivated the next.

First, it is necessary to select quality criteria for comparing
the workload modifications. Distribution functions could be
used to compare the similarity of the modified with the
corresponding original workloads. This method might be valid,
however, it is unknown whether the new workload has a sim-
ilar effect on the resulting schedule as the original workload.

As mentioned above, the scheduling algorithm that has
been used on the original parallel machine also influences the
submission behavior of the users. If a different scheduling



Workload CTC NASA KTH LANL SDSC95 SDSC96 SDSC00
Number of jobs 79302 42264 28490 201387 76872 38719 67667
Number of nodes 430 128 100 1024 416 416 128
Size of the biggest job 336 128 100 1024 400 320 128
Static factorf 3 8 10 1 3 3 8

TABLE I

THE EXAMINED ORIGINAL WORKLOAD TRACES.

system is applied and causes different response times, this
will most certainly influence the submission pattern of later
arriving jobs. This is a general problem [3], [1] that has to
be kept in mind if workload traces or statistical models are
used to evaluate new scheduling systems. This problem can be
solved if the feedback mechanisms of prior scheduling results
on new job submissions is known. However, such a feedback
modelling is a difficult topic as the underlying mechanisms
vary between individual users and between single jobs.

For our evaluation, we have chosen the Average Weighted
Response Time (AWRT) and the Average Weighted Wait Time
(AWWT) generated by the scheduling process. Several other
scheduling criteria, for instance the slowdown, can be derived
from AWRT and AWWT. To match the original scheduling
systems, we used First-Come-First-Serve [18] and EASY-
Backfilling [17], [14] for generating the AWRT and AWWT.
These scheduling methods are well known and used for most
of the original workloads. Note, that the focus of this paper
is not to compare the quality of both scheduling strategies.
Instead, we use the results of each algorithm to compare the
similarity of each modified workload with the corresponding
original workload.

The definitions (1) to (3) apply whereas indexj represents
job j.

In addition, the makespan is considered, which is the end
time of the last job within the workload. The Squashed Area
is given as a measurement for the amount of consumed
processing power for the workloads which is defined in (4).

Note, that in the following we refer to jobs with a higher
number of requested processor asbigger jobs, while calling
jobs with a smaller demand in processor number assmaller
jobs respectively.

Scaling only the number of requested processors of a job
results in the problem that the whole workload distributionis
transformed by a factor. In this case the modified workload
might not contain jobs requesting 1 or a small number of
processors. In addition, the favor of jobs requesting a power of
2 processors is not modelled correctly for most scaling factors.
Alternatively, the number of jobs can be scaled. Each original
job is duplicated to several jobs in the new workload. Using
only this approach has the disadvantage that the new workload
has more smaller jobs in relation to the original workload. For
instance, if the biggest job in the original workload uses the
whole machine, a duplication of each job for a machine with
twice the number of processors leads to a new workload in
which no job requests the maximum number of processors at
all.

A. Precise Scaling of Job Size

Based on the considerations above, a factorf is calculated
for combining the scaling of the requested processor numberof
each job with the scaling of the total number of jobs. In Table
I the requested maximum number of processors requested by
a job is given as well as the total number number of available
processors.

As explained above multiplying solely the number of pro-
cessors of a job or the number of jobs by a constant factor is
not reasonable. Therefore, the following combination of both
strategies has been applied. In order to analyze the influence
of both possibilities the workloads were modified by using a
probabilistic approach: a probability factorp is used to specify
whether the requested number of processors is multiplied for
a job or copies of this job are created. During the scaling
process each job of the original workload is modified by only
one of the given alternatives. A random value between 0 and
100 is generated for probabilityp. A decision valued is used
to discriminate which alternative is applied for a job. Ifp

produced by the probabilistic generator is greaterd the number
of processors is scaled for the job. Otherwise,f identical, new
job are included in the new workload. So, ifd has a greater
value, the system prefers the creation of smaller jobs while
resulting in less bigger jobs otherwise.

As a first approach, integer scaling factors had been chosen
based on the relation to a 1024 processor machine. We
restricted ourselves to integer factors as it would require
additional considerations to model fractional job parts. For
the KTH a factorf of 10 is chosen, for the NASA and the
SDSC00 workloads a factor of 8 and for all other workloads a
factor of 3. Note, that for the SDSC95 workload one job yields
more than 1024 processors if multiplied by 3. Therefore, this
single job is reduced to 1024.

For the examination of the influence ofd, we created 100
modified workloads for each original workload withd between
0 and 100. However, with exception to the NASA traces, our
method did not produce satisfying results for the workload
scaling. The imprecise factors increased the overall amount
of workload at most 26% which lead to a jump of several
factors for AWRT and AWWT. This shows how important the
precise scaling of the overall amount of workload is. Second,
if the chosen factorf is smaller than the precise scaling factor
the workloads which prefer smaller jobs scale better than the
workloads with bigger jobs. Iff is smaller or equal to the
precise scaling factor, the modified workloads scale betterfor
smaller values ofd.

Based on these results, we introduced a precise scaling



ResourceConsumptionj =
(

requestedResourcesj · (endTimej − startTimej)
)

(1)

AWRT =

∑

j∈Jobs

(

ResourceConsumptionj · (endTimej − submitTimej)
)

∑

j∈Jobs
ResourceConsumptionj

(2)

AWWT =

∑

j∈Jobs

(

ResourceConsumptionj · (startTimej − submitTimej)
)

∑

j∈Jobs
ResourceConsumptionj

(3)

SquashedArea =
∑

j∈Jobs

ResourceConsumptionj (4)

for the job size. As the scaling factors for the workloads
CTC, KTH, SDSC95 and SDSC96 are not integer values an
extension to the previous method was necessary. In the case
that a single large job is being created the number of jobs is
multiplied by the precise scaling factor and rounded.

The scheduling results for the modified workloads are
presented in Table II. Only the results for the original workload
(ref) and the modified workloads with the parameter settings
of d = {1, 50, 99} are shown. Now the modified CTC based
workloads are close to the original workloads in terms of
AWWT, AWRT and utilization if only bigger jobs are created
(d = 1). For increasing values ford, also AWRT, AWWT
and utilization increase. Overall, the results are closer to the
original results in comparison to using an integer factor. A
similar behavior can be found for the SDSC95 and SDSC96
workload modifications. For KTH the results are similar with
the exception that we converge to the original workload for
decreasingd.

The results for the modified NASA workloads present very
similar results for the AWRT and AWWT for the derived and
original workloads independently from the used scheduling
algorithm. Note, that the NASA workload itself is quite
different in comparison to the other workloads as it includes
a high percentage of interactive jobs.

In general, the results for this method are still not satisfying.
Using a factor ofd = 1 is not realistic as mentioned in
Section II because small jobs are missing in relation to the
original workload.

B. Precise Scaling of Number and Size of Jobs

Consequently, the precise factor is also used for the dupli-
cation of jobs. However, as mentioned above, it is not trivial to
create fractions of jobs. To this end, a second random variable
p1 was introduced with values between 0 and 100. The variable
p1 is used to decide whether the lower or upper integer bound
of the precise scaling factor is considered. For instance, the
precise scaling factor for the CTC workload is 2.3814 we used
the value ofp1 to decide whether to use the scaling factor
of 2 or 3. If p1 is smaller than 38.14 the factor of 2 will

be used, 3 otherwise. The average should result in a scaling
factor of around 2.3814. For the other workloads we used the
same scaling strategy with the decision values of 24.00 for the
KTH workload and with 46.15 for the SDSC95 and SDSC96
workloads.

This enhanced method improves the results significantly.
In Table III the main results are summarized. Except for the
simulations with the SDSC00 workload all other results show
a clear improvement in terms of similar utilization for eachof
the according workloads. The results for the CTC show again
that only small values ofd lead to convergence of AWRT
and AWWT to the original workload. The same qualitative
behavior can be observed for the workloads which are derived
from the KTH and SDSC00 workloads.

The results for the NASA workload show that AWRT and
AWWT do not change between the presented methods. This
leads to the assumption that this specific NASA workload
does not contain enough workload to produce job delays. The
results of the modifications for the SDSC9* derived workloads
are already acceptable as the AWRT and AWWT between the
original workloads and the modified workloads with a mixture
of smaller and bigger jobs (d = 50) are already very close.
For this two workloads the scaling is acceptable.

In general, it can be summarized that the modification still
do not produce matching results for all original workloads.
Although we use precise factors for scaling job number and job
width, some of the scaled workloads yield better results than
the original workload. This is probably caused due to the fact
that according to the factord the scaled workload is distributed
over either more but smaller (d = 99) or less but bigger
jobs (d = 1). As mentioned before, the existence of more
smaller jobs in a workload usually improves the scheduling
result. The results show that a larger machine leads to smaller
AWRT and AWWT values. Or contrary, a larger machine can
execute relatively more workload than an according number
of smaller machine for the same AWRT or AWWT. However,
this applies only for the described workload modifications.
Here, we generate relatively more smaller jobs in relation to
the original workload.
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430 ref 79285 29306750 66 13905 53442 8335013015
1 82509 29306750 66 13851 53377 19798151305

1024 50 158681 29306750 75 21567 61117 22259040765
99

E
A

S
Y

236269 29306750 83 30555 70083 24960709755

C
T

C

430 ref 79285 29306750 66 19460 58996 8335013015
1 82509 29306750 66 19579 59105 19798151305

1024 50 158681 29306750 75 28116 67666 22259040765
99

F
C

F
S

236269 29306750 83 35724 75253 24960709755

100 ref 28482 29363625 69 24677 75805 2024854282
1 30984 29363625 69 25002 76102 20698771517

1024 50 157614 29363625 68 17786 68877 20485558974
99

E
A

S
Y

282228 29363625 67 10820 61948 20258322777

K
T

H

100 ref 28482 29381343 69 400649 451777 2024854282
1 30984 29373429 69 386539 437640 20698771517

1024 50 157614 29376374 68 38411 89503 20485558974
99

F
C

F
S

282228 29363625 67 11645 62773 20258322777

128 ref 42049 7945421 47 6 9482 474928903
1 44926 7945421 47 6 9482 3799431224

1024 50 190022 7945421 47 5 9481 3799431224
99

E
A

S
Y

333571 7945421 47 1 9477 3799431224

N
A

S
A

128 ref 42049 7945421 47 6 9482 474928903
1 44926 7945421 47 6 9482 3799431224

1024 50 190022 7945421 47 5 9481 3799431224
99

F
C

F
S

333571 7945421 47 1 9477 3799431224

128 ref 67655 63192267 83 76059 116516 6749918264
1 72492 63201878 83 74241 114698 53999346112

1024 50 305879 63189633 83 54728 95185 53999346112
99

E
A

S
Y

536403 63189633 83 35683 76140 53999346112

S
D

S
C

00

128 ref 67655 68623991 77 2182091 2222548 6749918264
1 72492 68569657 77 2165698 2206155 53999346112

1024 50 305879 64177724 82 516788 557245 53999346112
99

F
C

F
S

536403 63189633 83 38787 79244 53999346112

416 ref 75730 31662080 63 13723 46907 8284847126
1 77266 31662080 63 14505 47685 20439580820

1024 50 151384 31662080 70 19454 52652 22595059348
99

E
A

S
Y

225684 31662080 77 25183 58367 24805524723

S
D

S
C

95

416 ref 75730 31662080 63 17474 50658 8284847126
1 77266 31662080 63 18735 51914 20439580820

1024 50 151384 31662080 70 24159 57357 22595059348
99

F
C

F
S

225684 31662080 77 28474 61659 24805524723

416 ref 37910 31842431 62 9134 48732 8163457982
1 38678 31842431 62 9503 49070 20140010107

1024 50 75562 31842431 68 14858 54305 22307362421
99

E
A

S
Y

112200 31842431 75 22966 62540 24410540372

S
D

S
C

96

416 ref 37910 31842431 62 10594 50192 8163457982
1 38678 31842431 62 11175 50741 20140010107

1024 50 75562 31842431 68 18448 57896 22307362421
99

F
C

F
S

112200 31842431 75 26058 65632 24410540372
TABLE II: Results for Precise Scaling for the Job Size and Estimated Scaling
for Job Number.
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430 ref 79285 29306750 66 13905 53442 8335013015
1 80407 29306750 66 13695 53250 19679217185

1024 50 133981 29306750 66 12422 51890 19734862061
99

E
A

S
Y

187605 29306750 66 10527 50033 19930294802

C
T

C

430 ref 79285 29306750 66 19460 58996 8335013015
1 80407 29306750 66 18706 58261 19679217185

1024 50 133981 29306750 66 15256 54724 19734862061
99

F
C

F
S

187605 29306750 66 12014 51519 19930294802

100 ref 28482 29363625 69 24677 75805 2024854282
1 31160 29363625 69 24457 75562 20702184590

1024 50 159096 29363625 69 18868 70002 20725223128
99

E
A

S
Y

289030 29363625 69 11903 62981 20737513457

K
T

H

100 ref 28482 29381343 69 400649 451777 2024854282
1 31160 29381343 69 383217 434322 20702184590

1024 50 159096 29371792 69 41962 93097 20725223128
99

F
C

F
S

289030 29363625 69 12935 64013 20737513457

128 ref 42049 7945421 47 6 9482 474928903
1 44870 7945421 47 6 9482 3799431224

1024 50 188706 7945421 47 2 9478 3799431224
99

E
A

S
Y

333774 7945421 47 1 9477 3799431224

N
A

S
A

128 ref 42049 7945421 47 6 9482 474928903
1 44870 7945421 47 6 9482 3799431224

1024 50 188706 7945421 47 3 9479 3799431224
99

F
C

F
S

333774 7945421 47 1 9477 3799431224

128 ref 67655 63192267 83 76059 116516 6749918264
1 77462 63192267 83 75056 115513 53999346112

1024 50 305802 63189633 83 61472 101929 53999346112
99

E
A

S
Y

536564 63189633 83 35881 76338 53999346112

S
D

S
C

00

128 ref 67655 68623991 77 2182091 2222548 6749918264
1 77462 68486537 77 2141633 2182090 53999346112

1024 50 305802 64341025 82 585902 626359 53999346112
99

F
C

F
S

536564 63189633 83 38729 79186 53999346112

416 ref 75730 31662080 63 13723 46907 8284847126
1 76850 31662080 63 14453 47641 20411681280

1024 50 131013 31662080 63 13215 46319 20466656625
99

E
A

S
Y

185126 31662080 62 11635 44739 20446439351

S
D

S
C

95

416 ref 75730 31662080 63 17474 50658 8284847126
1 76850 31662080 63 18511 51698 20411681280

1024 50 131013 31662080 63 15580 48684 20466656625
99

F
C

F
S

185126 31662080 62 12764 45867 20446439351

416 ref 37910 31842431 62 9134 48732 8163457982
1 38459 31842431 62 9504 49084 20100153862

1024 50 66059 31842431 62 9214 49087 20106192767
99

E
A

S
Y

92750 31842431 62 8040 47796 20171317735

S
D

S
C

96

416 ref 37910 31842431 62 10594 50192 8163457982
1 38459 31842431 62 11079 50658 20100153862

1024 50 65627 31842431 62 10126 49823 20106192767
99

F
C

F
S

92750 31842431 62 8604 48360 20171317735
TABLE III: Results using Precise Factors for Job Number and Size.
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430 ref 79285 29306750 66 13905 53442 8335013015
1024 2.45

EASY
136922 29306750 68 14480 54036 20322861231

430 ref 79285 29306750 66 19460 58996 8335013015

C
T

C

1024 2.45
FCFS

136922 29306750 68 19503 59058 20322861231

100 ref 28482 29363625 69 24677 75805 2024854282
1024 10.71

EASY
165396 29363625 72 24672 75826 21708443586

100 ref 28482 29381343 69 400649 451777 2024854282

K
T

H

1024 10.71
FCFS

165396 29379434 72 167185 218339 21708443586

128 ref 42049 7945421 47 6 9482 474928903
1024 8.00

EASY
188706 7945421 47 2 9478 3799431224

128 ref 42049 7945421 47 6 9482 474928903

N
A

S
A

1024 8.00
FCFS

188258 7945421 47 4 9480 3799431224

128 ref 67655 63192267 83 76059 116516 6749918264
1024 8.21

EASY
312219 63204664 86 75787 116408 55369411171

128 ref 67655 68623991 77 2182091 2222548 6749918264

S
D

S
C

00

1024 8.58
FCFS

323903 69074629 82 2180614 2221139 58020939264

416 ref 75730 31662080 63 13723 46907 8284847126
1024 2.48

EASY
131884 31662080 63 13840 46985 20534988559

416 ref 75730 31662080 63 17474 50658 8284847126

S
D

S
C

95

1024 2.48
FCFS

131884 31662080 63 17327 50472 20534988559

416 ref 37910 31842431 62 9134 48732 8163457982
1024 2.48

EASY
66007 31842431 62 8799 48357 20184805564

416 ref 37910 31842431 62 10594 50192 8163457982

S
D

S
C

96

1024 2.48
FCFS

66007 31842431 62 10008 49566 20184805564
TABLE IV: Results for Increased Scaling Factors withd = 50.



C. Adjusting the Scaling Factor

In order to compensate the above mentioned scheduling
advantage of having more small jobs in relation to the original
workload, the scaling factorf was modified to increase the
overall amount of workload. The aim is to find a scaling
factor f that the results in terms of the AWRT and AWWT
match to the original workload ford = 50. In this way, a
combination of bigger as well as more smaller jobs exists.
To this end, additional simulations have been performed with
small increments off .

In Table IV the corresponding results are summarized, more
extended results are shown in Table V in the appendix. It can
be observed that the scheduling behavior is not strict linear
corresponding to the incremented scaling factorf . The precise
scaling factor for the CTC workload is 2.3814, whereas a
slightly higher scaling factor corresponds to a AWRT and
AWWT close to the original workload results. The actual
values slightly differ e.g. for the EASY (f = 2.43) and the
FCFS strategy (f = 2.45). Note, that the makespan stays
constant for different scaling factors. Obviously the makespan
is dominated by a later job and is therefore independent of
the increasing amount of computational tasks (squashed area,
utilization and the number of jobs). This underlines that the
makespan is predominantly an off-line scheduling criterion
[10]. In an on-line scenario new jobs are submitted to the
system where the last submitted jobs influence the makespan
without regard to the overall scheduling performance of the
whole workload. An analogous procedure can be applied to the
KTH, SDSC95 and SDSC96 workloads. The achieved results
are very similar.

The increment of the scaling factorf for the NASA work-
loads leads to different effects. A marginal increase causes a
significant change of the scheduling behavior. The values of
the AWRT and AWWT are drastically increasing. However,
the makespan, the utilization and the workload stay almost
constant. This indicates that the original NASA workload has
almost no wait time while a new job is started when the
previous job is finished.

The approximation of an appropriate scaling factor for the
SDSC00 workload differs from the previous described process
as the results for the EASY and FCFS strategies differ much.
Here the AWRT and the AWWT of the FCFS are more than a
magnitude higher than by using EASY-Backfilling. Obviously,
the SDSC00 workload contains highly parallel jobs as this
causes FCFS to suffer in comparison to EASY backfilling. In
our opinion, it is more reasonable to use the results of the
EASY strategy for the workload scaling, because the EASY
strategy is more representative for many current systems and
for the observed workloads. However, as discussed above, if
the presented scaling methods are applied to other traces, it is
necessary to use the original scheduling method that caused
the workload trace.

IV. CONCLUSION

In this paper we proposed a procedure for scaling dif-
ferent workloads to a uniform supercomputer. To this end,

the different development steps have been presented as each
motivated the corresponding next step. We used combinations
of duplicating jobs and/or modifying the requested processor
numbers. The results showed again how sensitive workloads
react to modifications. Therefore, several steps were necessary
to ensure that the scaled workload showed similar schedul-
ing behavior. Resulting schedule attributes as e.g. average
weighted response or wait time have been used as quality
criteria. The significant differences between the intermediate
results for modified workloads indicate the general difficulties
to generate realistic workload models. The presented method
is motivated as the development of more complex scheduling
strategies requires workloads with a careful reproductionof
real workloads. Only workload traces include all such explicit
and implicit dependencies. As simulations are commonly used
for evaluating scheduling strategies, there is demand for a
sufficient database of workload traces. However, there is only
a limited number of traces available which originate from
different systems. The presented method can be used to scale
such workload traces to a uniform resource configuration for
further evaluations.

Note, we do not propose that our method actually extrap-
olates an actual user behavior for a specific larger machine.
Moreover, we scale the real workload traces to fit on a larger
machine while maintaining original workload properties. To
this end, our method includes a combination of generating
additional job copies and extending the job width. In this way,
we ensure that some jobs utilize the same relative number of
processors as in the original traces, while original jobs still
occur in the workload. For instance, an existing preferenceof
power of 2 jobs in the original workload is still included in
the scaled workload. Similarly, other preferences or certain job
patterns maintain intact even if they are not explicitly known.

The presented model can be extended to scale other job
parameters in the same fashion. Preliminary work has been
done to include memory requirements or requested processor
ranges. This list can be extended by applying additional rules
and policies for the scaling operation.
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APPENDIX
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number
of jobs

makespan
in seconds
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ili
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n
in

%

AWWT
in
seconds

AWRT
in
seconds

Squashed Area

430 ref 79285 29306750 66 13905 53442 8335013015
2.41 135157 29306750 67 13242 52897 19890060461
2.42 135358 29306750 67 13475 52979 20013239358

1024 2.43 135754 29306750 67 14267 53771 20130844161
2.45 136922 29306750 68 14480 54036 20322861231
2.46

E
A

S
Y

136825 29306750 68 13751 53267 20455740107
2.47 137664 29306750 69 15058 54540 20563974522
2.48 137904 29306750 69 15071 54611 20486963613

C
T

C

430 ref 79285 29306750 66 19460 58996 8335013015
2.43 135754 29306750 67 17768 57272 20130844161
2.44 136524 29306750 67 18818 58326 20291066216

1024 2.45 136922 29306750 68 19503 59058 20322861231
2.46

F
C

F
S

136825 29306750 68 18233 57749 20455740107
2.47 137664 29306750 69 19333 58815 20563974522
2.48 137904 29306750 69 19058 58598 20486963613
2.49 138547 29306750 69 19774 59291 20675400432

100 ref 28482 29363625 69 24677 75805 2024854282
10.68 166184 29363625 72 24756 75880 21649282727
10.69 165766 29363625 72 24274 75233 21668432748

1024 10.70 166323 29363625 72 24344 75549 21665961992
10.71 165396 29363625 72 24672 75826 21708443586
10.72 166443 29363625 72 24648 75775 21663836681
10.75

E
A

S
Y

167581 29363625 72 24190 75273 21763427500
10.78 170046 29363625 73 24417 75546 21829946042
10.80 168153 29363625 73 25217 76284 21871159818
10.83 168770 29363625 73 25510 76587 21904565195

K
T

H

100 ref 28482 29381343 69 400649 451777 2024854282
10.71 165396 29379434 72 167185 218339 21708443586
10.72 166443 29380430 72 104541 155669 21663836681

1024 10.80 168153 29374047 73 291278 342345 21871159818
10.85 167431 29366917 73 295568 346661 21968343948
10.88 167681 29381624 73 404008 455149 22016195800
10.89

F
C

F
S

167991 29366517 73 424255 475405 22051851208
10.90 169405 29378230 73 281495 332646 22080508136
10.92 168894 29371367 74 415358 466515 22127579593
10.96 169370 29381584 74 539856 590999 22204787743
10.99 170417 29380278 74 491738 542886 22263296356

128 ref 42049 7945421 47 6 9482 474928903
8.00 188706 7945421 47 2 9478 3799431224
8.01 188659 7945421 47 436 9910 3805309069
8.04 189104 7945421 47 370 9850 3813901379

1024 8.05 190463 7945421 47 466 9952 3815152286
8.06 190221 7945421 47 527 10001 3825085688
8.07

E
A

S
Y

190897 7945421 47 380 9847 3829707646
8.08 191454 7945421 47 483 9967 3829000061
8.09 190514 7945507 47 736 10220 3838797287
8.10 190580 7945421 47 243 9730 3835645184

N
A

S
A

128 ref 42049 7945421 47 6 9482 474928903
8.00 188258 7945421 47 4 9480 3799431224
8.01 188659 7945421 47 562 10036 3805309069
8.02 189563 7945421 47 629 10126 3806198375

1024 8.03 189864 7945421 47 427 9901 3810853391
8.04 189104 7945421 47 534 10013 3813901379
8.05

F
C

F
S

190463 7945421 47 562 10048 3815152286
8.06 190221 7945421 47 721 10194 3825085688
8.07 190897 7945421 47 531 9998 3829707646
8.08 191454 7945421 47 587 10070 3829000061
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8.09 190514 7945507 47 605 10088 3838797287

128 ref 67655 63192267 83 76059 116516 6749918264
8.12 308872 63209190 85 70622 111043 54813430352
8.14 309778 63189633 85 71757 112264 54908840905
8.15 310917 63195547 85 78663 119080 55003341172
8.16 310209 63189633 85 76235 116714 55030054463
8.18

E
A

S
Y

310513 63189633 85 74827 115312 55206637895
8.19 310286 63247375 85 77472 118119 55258239565
8.20 311976 63194139 86 78585 119254 55368328613
8.21 312219 63204664 86 75787 116408 55369411171

1024 8.22 313024 63200276 86 75811 116267 55499902234
128 ref 67655 68623991 77 2182091 2222548 6749918264

8.55 321966 68877042 82 2133228 2173666 57703096198
8.56 323298 69093787 82 2154991 2195442 57785593002

1024 8.58 323903 69074629 82 2180614 2221139 58020939264

S
D

S
C

00

8.59

F
C

F
S

323908 69499787 82 2346320 2386846 57999342465
8.60 325858 69428033 82 2338591 2379182 58011833809
8.61 325467 69146937 82 2248848 2289373 58074546998
8.63 325458 69258234 82 2219200 2259628 58211844138

416 ref 75730 31662080 63 13723 46907 8284847126
2.46 130380 31662080 63 13287 46492 20351822499
2.47 131399 31662080 63 13144 46288 20464087105
2.48 131884 31662080 63 13840 46985 20534988559

1024 2.49 131730 31662080 64 13957 47245 20722722130
2.50

E
A

S
Y

132536 31662080 64 14409 47682 20734539617
2.52 133289 31662080 64 14432 47628 20794582470

S
D

S
C

95

416 ref 75730 31662080 63 17474 50658 8284847126
2.48 131884 31662080 63 17327 50472 20534988559
2.49 131730 31662080 64 17053 50341 20722722130
2.50 132536 31662080 64 17624 50896 20734539617
2.52

F
C

F
S

133289 31662080 64 17676 50872 20794582470
2.53 133924 31662080 65 17639 50820 20955732920

416 ref 37910 31842431 62 9134 48732 8163457982
2.46 65498 31842431 62 9055 48736 20026074751
2.48 66007 31842431 62 8799 48357 20184805564

1024 2.50 66457 31842431 63 9386 49134 20353508244
2.51

E
A

S
Y

66497 31842431 63 9874 49315 20502723327
2.52 66653 31842431 63 9419 48715 20629070916

S
D

S
C

96

416 ref 37910 31842431 62 10594 50192 8163457982
2.47 65842 31842431 62 9674 49361 20120648801
2.48 66007 31842431 62 10008 49566 20184805564
2.49 66274 31842431 63 11312 51211 20374472890

1024 2.50

F
C

F
S

66457 31842431 63 11321 51069 20353508244
2.52 66653 31842431 63 11089 50386 20629070916

TABLE V: All Results for Increased Scaling Factors withd = 50.


