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Abstract

In systems consisting of multiple clusters of processors
interconnected by relatively slow connections such as our
Distributed ASCI Supercomputer (DAS), applications may
benefit from the availability of processors in multiple clus-
ters. However, the performance of single-application mul-
ticluster execution may be degraded due to the slow wide-
area links. In addition, scheduling policies for such sys-
tems have to deal with more restrictions than schedulers for
single clusters in that every component of a job has to fit
in separate clusters. In this paper we present a measure-
ment study of the total runtime of two applications, and
of the communication time of one of them, both on single
clusters and on multicluster systems. In addition, we per-
form simulations of several multicluster scheduling policies
based on our measurement results. Our results show that
in spite of the fact that inter-cluster communication is much
slower then intra-cluster communication, the performance
of multicluster operation can be very reasonable compared
to single-cluster execution.

1 Introduction

Over the last decade, clusters and distributed-memory
multiprocessors consisting of hundreds or thousands of
standard CPUs have become very popular. Compared to
single-cluster systems, multicluster systems consistingof
multiple, geographically distributed clusters interconnected
by a relatively slow wide-area network can provide a larger
computational power. Instead of smaller groups of users
with exclusive access to their single clusters, larger groups
of users can share the multicluster, potentially leading to
lower turn-around times and a higher utilization, and mak-
ing larger job sizes possible. One such multicluster system
is the Distributed ASCI Supercomputer (DAS) [1], which

was designed and deployed by the Dutch Advanced School
for Computing and Imaging (ASCI) in the Netherlands. The
possibility of creating multiclusters fits with the recent in-
terest in computational and data GRIDs [2, 12], in which it
is envisioned that applications can access resources (hard-
ware resources such as processors, memory, and special in-
struments, but also data resources) in many different loca-
tions at the same time to accomplish their goals.

There are two potential problems when employing mul-
ticluster systems. First, applications may not be suitablefor
multicluster execution because they can not deal very well
with the slow wide-area links. Second, scheduling a mul-
ticomponent application across a multicluster system (i.e.,
performingco-allocation) meets with more restrictions than
scheduling a job in a single cluster because now each of the
components has to fit in a separate cluster. In this paper we
first investigate and compare the total runtimes of single-
cluster and multicluster execution of two parallel applica-
tions modeling physical phenomena by performing mea-
surements on the DAS. Our main conclusion is that both
applications, with appropriate parameter settings in one of
them, are very well suited for multicluster operation. Sub-
sequently, we assess the performance of several scheduling
policies for co-allocation in multiclusters with simulations
using the runtime measurements. We have also performed
detailed measurements of the time spent in communication
of one of the two applicatons. Because the results of these
measurements are not used in our simulations, they are rel-
egated to an appendix.

In previous papers [6, 7, 9], we have assessed the influ-
ence on the mean response time of the job structure and size,
the sizes of the clusters in the system, the ratio of the speeds
of local and wide-area communications, and of the presence
of a single or of multiple queues in the system. Also in [11],
co-allocation (called multi-site computing there) is studied,
with as performance metric the (average weighted) response
time. There, jobs only specify a total number of processors,



and are split up across the clusters. The slow wide-area
communication is accounted for by a factorr by which the
total execution times are multiplied. Co-allocation is com-
pared to keeping jobs local and to only sharing load among
the clusters, assuming that all jobs fit in a single cluster.
One of the most important findings in [11] is that forr less
than or equal to1:25, it pays to use co-allocation. In [10],
we consider the maximal utilization, i.e., the utilizationat
which the system becomes saturated, as a performance met-
ric.

Our five-cluster second-generation Distributed ASCI Su-
percomputer (DAS) [1, 13] (and its predecessor), which was
an important motivation for this work, was designed to as-
sess the feasibility of running parallel applications across
wide-area systems [5, 14, 17]. In the most general setting,
grid resources are very heterogeneous; in this paper we re-
strict ourselves to homogeneous multicluster systems such
as the DAS. Showing the viability of co-allocation in such
systems may be regarded as a first step in assessing the ben-
efit of co-allocation in more general grid environments.

2 The system model

In this section we describe our model of multicluster sys-
tems and the scheduling policies we will evaluate.

2.1 The Distributed ASCI Supercomputer

The DAS (in fact the DAS2, the second-generation sys-
tem which was installed at the end of 2001 when the first-
generation DAS1 system was discontinued) is a wide-area
computer system consisting of five clusters (one at each of
five universities in The Netherlands, amongst which Delft
University of Technology) of dual-processor nodes, one
with 72, the other four with 32 nodes each. Each node con-
tains two 1-Ghz Pentium-IIIs and at least 1GB RAM. The
clusters are interconnected by the Dutch university back-
bone for wide-area communications (100 Mbit/s), while for
local communications inside the clusters Myrinet LANs are
used (1,200 Mbit/s). The system was designed for research
on parallel and distributed computing. On single DAS clus-
ters the PBS [4] scheduler is used, while jobs spanning mul-
tiple clusters can be submitted with Globus [3]. The current
version of Globus is unable to use the fast local DAS in-
terconnect (Myrinet); all Globus communication goes over
TCP/IP sockets (this problem will be solved in the near fu-
ture).

2.2 The structure of the system

We model a multicluster system consisting ofC clusters
of processors, of possibly different sizes. We assume that all

processors have the same service rate. By a job we under-
stand a parallel application requiring some number of pro-
cessors, possibly in multiple clusters (co-allocation). Jobs
are rigid, so the numbers of processors requested by and al-
located to a job are fixed. We call a task the part of a job
that runs on a single processor. We assume that jobs only
request processors and we do not include in the model other
types of resources.

2.3 The structure of job requests and the place-
ment policies

Jobs that require co-allocation have to specify the num-
ber and the sizes of their components, i.e., of the sets of
tasks that have to go to the separate clusters. A job is repre-
sented by a tuple ofC values, at least one of which is strictly
positive. We considerunordered requests, for which the
components of the tuple specify the numbers of processors
the job requires in the separate clusters, allowing the sched-
uler to choose the clusters for the components. Such re-
quests model applications like FFT, where tasks in the same
job component share data and need intensive communica-
tion, while tasks from different components exchange little
or no information. To determine whether an unordered re-
quest fits, we try to schedule its components in decreasing
order of their sizes on distinct clusters. We use Worst Fit
(WF) to place the components on clusters.

2.4 The scheduling policies

In a multicluster system where co-allocation is used, jobs
can be either single-component or multi-component, and in
a general case both types are simultaneously present in the
system. A scheduler dealing with the first type of jobs can
be local to a cluster and does not need any knowledge about
the rest of the system. For multi-component jobs, the sched-
uler needs global information for its decisions.

Treating both types of jobs equally or keeping single-
component jobs local and scheduling only multi-component
jobs globally over the entire system, having a single global
scheduler or schedulers local to each cluster, all these are
decisions that influence the performance of the system. In
[9] we have studied several policies, some of which with
multiple variations; in this paper we consider the following
approaches:

1. [GS] The system has oneglobal schedulerwith one
global queue, for both single- and multi-component
jobs. All jobs are submitted to the global queue. The
global scheduler knows at any moment the number of
idle processors in each cluster and based on this infor-
mation chooses the clusters for each job.



2. [LS] Each cluster has its ownlocal schedulerwith
a local queue. All queues receive both single- and
multi-component jobs and each local scheduler has
global knowledge about the numbers of idle proces-
sors. However, single-component jobs are scheduled
only on the local cluster. The multi-component jobs
are co-allocated over the entire system. When schedul-
ing is performed all enabled queues are repeatedly vis-
ited, and in each round at most one job from each
queue is started. When the job at the head of a queue
does not fit, the queue is disabled until the next job
departs from the system. At each job departure the
queues are enabled in the same order in which they
were disabled.

3. [LP] The system has both a global scheduler with a
global queue, and local schedulers with local queues.
Multi-component jobs go to the global queue and are
scheduled by the global scheduler using co-allocation
over the entire system. Single-component jobs are
placed in one of the local queues and are scheduled by
the local scheduler only on its corresponding cluster.
The local schedulers havepriority: the global sched-
uler can schedule jobs only when at least one local
queue is empty. When a job departs, if one or more
of the local queues are empty both the global queue
and the local queues are enabled. If no local queue is
empty only the local queues are enabled and repeat-
edly visited; the global queue is enabled and added to
the list of queues which are visited when at least one
of the local queues gets empty. When both the global
queue and the local queues are enabled at job depar-
tures, they are always enabled starting with the global
queue. The order in which the local queues are enabled
does not matter since the jobs in them are only started
on the local clusters.

In all the cases considered, both the local and the global
schedulers use the FCFS policy to choose the next job to
run.

3 The Applications

In this section we describe the two applications for which
we will perform measurements on the DAS.

3.1 The Ensflow Application

The Ensflow application [18] uses the data-assimilation
technique to understand the evolution of streams and ed-
dies in the ocean near the southern tip of Africa. In this
technique, information from observations of the system is
combined with information on the evolution of the system

obtained from an implementation of the laws of physics.
This can be done by using ensemble models that do not cal-
culate the evolution of a single state but rather of a large
number (an ensemble, typically 50-500) of different states
(ensemble members). In our case there are 60 ensemble
members that evolve for a period of 20 days with a time
step of 24 hours. Every 240 hourly time steps, an analysis
and an update of the ensemble members are done to obtain
the optimal estimate for the past period. Each of the en-
semble members evolves independently of the others dur-
ing the time between analysis and update. The sequence of
ensemble averages over time describes the development of
the ocean’s currents best fitting the observations. The appli-
cation has the following structure:

/*--------initialisation--------*/
initiate 60 ensembles;

/*--------start main loop-------*/
while time < stop_time

/* computation */
evolve the 60 ensembles;
if (time = time_to_analyse)

/* computation + communication */
analyse and update ensembles;

endif
endwhile
/*---------end main loop--------*/

The main loop is executed 20 times, with two data ad-
justments. Only during the data adjustment phase (analy-
sis and update ensembles) data are exchanged (using MPI).
The data of the ensemble members are local to the proces-
sors, and the ensemble members are distributed evenly over
the processors. To avoid processors from being unneces-
sarily idle, we choose the number of processors such that
the number of ensemble members is an exact multiple of it.
In [18], the Ensflow application is described in more detail,
and measurements of the total runtime on two multiproces-
sors are presented.

3.2 The Poisson Application

Our Poisson application implements a parallel iterative
algorithm to find a discrete approximation to the solution
of the two-dimensional Poisson equation (a second-order
differential equation governing steady-state heat flow in a
two-dimensional domain) on the unit square. For the dis-
cretization, a uniform grid of points in the unit square with
a constant step in both directions is considered. The ap-
plication uses a red-black Gauss-Seidel scheme (see for in-
stance [15], pp. 429–433), for which the grid is split up into
”black” and ”red” points, with every red point having only
black neighbours and vice versa. In every iteration, each



grid point has its value updated as a function of its previ-
ous value and the values of its neighbours, and all points of
one colour are visited first followed by the ones of the other
colour. The application, which is implemented in MPI, has
the following structure:

/*--------initialisation--------*/
if proc_index = 0

read the initial data;
/* communication */
broadcast data to all the processes;

endif

/*--------start main loop-------*/
while global-error => limit

/* computation */
update black points;
update red points;
/* communication */
exchange borders with neighbours;
/* communication + synchronization */
collect/distribute global error;

endwhile
/*---------end main loop--------*/

The domain of the problem is split up into a two-
dimensional pattern of rectangles of equal size among the
participating processes. In our experiments, we assign only
one process to a processor. A way of splitting up the do-
main is called a process(or) configuration, and is indicated
by h � v, with h; v the numbers of processes in the hori-
zontal and vertical directions, respectively. In Section 4we
will consider the numbers of processors and the processor
configurations as shown in Table 1.

Table 1. The processor configurations used
in our measurements.

total number processor
of processors configuration

8 4x2
16 4x4
32 8x4
64 8x8

Every process communicates with each of its neighbours
in order to exchange the values of the grid points on the
borders and to compute a global stopping criterion. Ex-
changing borders takes place in four consecutive steps; first
all communication in the direction top is performed, and
then in the directions bottom, left and right. The amount of
communication depends on the size of the grid, the num-
ber of participating processes, and the initial data. When

we execute the Poisson application on multiple clusters, the
process grid is split up into adjacent vertical strips of equal
width, with each cluster running an equal consecutive num-
ber of processes (we assume processes to be numbered in
column-major order). For instance, for process configura-
tion 4x4 and two clusters, the processes are split up as de-
picted in Figure 1. Here, processors 4–11 have to exchange
border information with processors in the other cluster.

3 7 11 15
2 6 10 14
1 5 9 13
0 4 8 12

Figure 1. The process grid for the Poisson
application for process configuration 4x4 di-
vided over two clusters (left–right).

4 Runtime Measurements

In this section we present the results of the measurements
of our two applications on the DAS. We use Globus for sub-
mitting multicomponent jobs to the DAS. In all of our ex-
periments, the jobs always have components of equal size.
Since Globus is currently unable to use the fast local DAS
interconnect (Myrinet) but uses the slower local Ethernet
instead, we employ both PBS and Globus for running the
applications in a single DAS cluster. The PBS measure-
ments yield the best performance of single-cluster opera-
tion, but the single-cluster Globus measurements make for
a fairer comparison with the multicluster results. Measure-
ments with Globus on a system withC clusters are labeled
with Globus-C.

4.1 Total runtime of the Ensflow application

For an investigation of the total runtime we ran the Ens-
flow application once for different numbers of processors
and clusters. The results of the measurements are presented
in Fig. 2.

The gaps for 15 processors and Globus-2 and Globus-
4, for 20 processors and Globus-3, and for 30 processors
and Globus-4 are due to the fact that then we cannot have
equal-size job components. The gap for Globus-1 with 60
processors is caused by the limitation of 32 processors in
a single cluster when using Globus. We find that the per-
formance of multicluster execution for all numbers of clus-
ters considered compared to single-cluster execution is very
good for this application. In addition, the speedup is quite
reasonable. Relative to the 12-processor case, the efficiency
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Figure 2. The total runtime of the Ensflow application (in sec onds) for different numbers of processors
and clusters. (No data when the number of processors is not a m ultiple of the number of clusters,
and for 60 processors with Globus-1.)

slowly decreases to about 0.7 for 60 processors. The expla-
nation of the good performance of multicluster execution is
that this application has a relatively small communication
component.

4.2 Total runtime of the Poisson application

For a first investigation of the total runtime of the Pois-
son application, we ran the application once varying the grid
size, the total number of processors (see Table 1 for the cor-
responding processor configurations), and the number of
clusters. In addition to the total runtime, we also record
the number of iterations needed to reach convergence. The
results of the measurements are presented in Table 2, and
graphically in Fig. 3. (Because of the numbers of proces-
sors we consider, we cannot use three clusters.) Again there
are gaps for Globus-1, this time for 64 processors in a single
cluster, for the same reason as above.

We find that for a very small grid size, the runtime may
increase considerably when using more clusters. However,
for a large grid size, the performance of multicluster ex-
ecution compared to single-cluster execution is quite rea-
sonable. Since the processor configuration influences the
number of iterations needed to reach convergence (which
determines the total runtime), it is difficult to make a gen-
eral statement about the speedup. In particular for grid sizes
1000x1000 and 2000x2000, the number of iterations is very
variable. However, for grid size 4000x4000 the number of
iterations is almost constant, and the speedup when going
from 8 to 64 processors for PBS, Globus-2, and Globus-4 is
6.5, 6.0, and 5.8, respectively.

For a further investigation of the total runtime we now fix

the processor configuration to 4x4, and we add a few grid
sizes. For every set-up (grid size and number of clusters) we
ran the application ten times. The results of the measure-
ments (minimum, average, and maximum) are presented in
Table 3. For a better comparison, we depict in Fig. 4 for ev-
ery grid size the (average) runtimes relative to the (average)
single-cluster PBS runtimes (which are normalized to 1).

It is clear that for large grid sizes, this application is well
suited for multicluster execution. The explanation is that
the two major components of the total runtime, the time for
updating all grid points (computation) and the time for ex-
changing border grid points (communication), increase in a
different way when the grid size increases. When the total
number of grid points increases with a factorg, the number
of grid points to be exchanged increases with a factor

pg.
Since communication is the component that causes the poor
performance of multicluster execution, it is to be expected
that for larger grid sizes (with relatively smaller communi-
cation components), multicluster execution performs rela-
tively better.

5 Performance Evaluation of the Scheduling
Policies

In this section we assess the performance of the multi-
cluster scheduling policies introduced in Sect. 2.4 with sim-
ulations for several workloads differentiated by the numbers
of components into which jobs are split and by the per-
centages of jobs running each of the two applications in-
troduced in Sect. 3. The simulations are for a multicluster
with 4 clusters of32 processors each. The simulation pro-
grams were implemented using the CSIM simulation pack-



Table 2. The number of iterations and the total runtime (in se conds) of the Poisson application for
different grid sizes and numbers of processors and clusters .

grid size total number number of PBS Globus-1 Globus-2 Globus-4
of processors iterations

100 x 100 8 2436 0.74 3.23 11.5 15.0
16 2132 0.74 3.59 12.1 11.8
32 2158 0.93 4.54 17.4 17.4
64 2429 1.21 — 24.2 21.1

1000 x 1000 8 2630 70.9 86.6 109 114
16 4347 60.2 78.6 119 125
32 4356 34.3 46.7 68.8 67.4
64 2650 8.1 — 30.7 31.7

2000 x 2000 8 2630 291 335 358 365
16 4387 265 292 339 332
32 4387 134 161 193 191
64 2650 46.8 — 80.4 85.1

4000 x 4000 8 2630 1230 1277 1390 1463
16 2644 649 725 766 767
32 2651 357 371 402 440
64 2650 188 — 231 251

age [16].
We will present our simulation results in terms of re-

sponse time as a function of the utilization. We define the
gross utilizationas the utilization computed from the actual
service times experienced by jobs, which for multicompo-
nent jobs includes the time spent in the slow wide-area com-
munication. Thenet utilizationis defined as the utilization
computed from the single-cluster service times of jobs of
the same total size, which gives a measure of the through-
put of the system. When there is no co-allocation, there is
no wide-area communication and the net utilization is equal
to the gross utilization. In this section we only look at the
gross utilization and depict the response time as a function
of this utilization, because that is a fair basis for comparing
the policies.

In Sect. 5.1 we present the workloads in the simula-
tions. Section 5.2 discusses the influence of the numbers
and sizes of the job components on the performance, while
in Sect. 5.3 the benefits and disadvantages of co-allocation
are discussed, compared to a system without co-allocation.
In Sect. 5.4 we make a general comparison of the policies.
Section 6 compares for all the policies and workloads the
gross and the net utilization, which shows how efficient the
global applications use the gross utilization offered.

5.1 The workloads

Each of the jobs in the simulated workload is supposed
to run one of our two applications; in the case of the Pois-
son application, we assume the grid size to be 4000x4000.

We assess three cases:100% of the jobs in the system run
the Poisson application,100% of the jobs run the Ensflow
application, and each of the two applications is represented
by 50% of the jobs in the system. Tables 4 and 5 display the
execution times measured on the DAS for the two applica-
tions in the several configurations that we are using in the
simulations. These values are the same as the ones depicted
in Fig. 2, and in Fig. 3 for grid size 4000x4000; for a single
cluster we use the PBS runtimes. We assume the interarrival
times to be exponentially distributed.

Table 4. The execution times (in seconds) for
the Poisson application, depending on the to-
tal job size and the number of components,
used in the simulations.

Total job size Number of job components
1 2 4

8 1230.0 1390.0 —
16 649.0 766.0 767.0
32 357.0 402.0 440.0

Jobs are split up in different ways, but their components
are always of equal size, and we also keep the percentages
of jobs for each total size always equal. For the same total
size, the various splitting choices admitted in the system
receive equal probabilities.

We compare a no co-allocation case, when only single-



Table 3. The total runtime (minimum, average, and maximum) o f the Poisson application (in seconds)
for processor configuration 4x4 for different grid sizes and numbers of clusters.

grid size PBS Globus-1 Globus-2 Globus-4
min. avg. max. min. avg. max. min. avg. max. min. avg. max.

50 x 50 0.22 0.23 0.29 1.35 1.60 2.28 5.93 6.29 6.86 6.12 7.62 11.4
100 x 100 0.65 0.72 0.77 3.35 4.12 6.51 14.7 15.3 16.7 14.3 16.7 22.8
200 x 200 1.73 1.83 1.88 6.55 6.87 8.01 26.4 27.6 30.0 24.0 26.5 33.9
400 x 400 4.67 4.95 5.72 12.4 12.8 13.6 32.0 36.5 38.7 28.6 30.8 39.8

1000 x 1000 60.7 63.7 68.3 78.4 78.9 79.4 101 105 108 103 107 118
2000 x 2000 248 257 274 291 296 310 306 309 311 306 323 349
4000 x 4000 701 706 712 720 733 766 743 750 757 728 751 794

10000 x 10000 3734 3841 3948 3878 3960 4078 4012 4081 4160 4215 4235 4285

Table 5. The execution times (in seconds) for
the Ensflow application, depending on the to-
tal job size and the number of components,
used in the simulations.

Total job size Number of job components
1 2 3 4

12 3485.0 3494.0 3504.0 3507.0
15 2836.0 — 2884.0 —
20 1935.0 2207.0 — 2155.0
30 1563.0 1541.0 1584.0 —

component jobs are admitted, to several co-allocation cases.
We define the following co-allocation rules:

1. [no] There are only single-component jobs, co-
allocation is not allowed.

2. [co] Both single- and multi-component jobs are al-
lowed, without restrictions on the sizes of job compo-
nents and the numbers of components.

3. [rco] Both single- and multi-component jobs are al-
lowed, but the job-component sizes are restricted to
half of the clusters’ sizes.

4. [fco] Both single- and multi-component jobs. The job-
component sizes are restricted to half of the clusters’
sizes, and only multi-component jobs with two com-
ponents are allowed.

In Tables 6, 7, and 8 we show the resulting percentages of
jobs for the numbers of components allowed for the Poisson
application (here we disallow jobs of size 8 to be split into
4 components), for the Ensflow application, and for an even
mix of these, respectively.

5.2 The influence of the numbers and sizes of the
job components

In Fig. 5 we show the response time as a function of the
(gross) utilization for the three job mixes, the three schedul-
ing policies, and the four co-allocation rules. (In Fig. 5 and
in all subsequent figures, the legends are in the right-to-left
order of the curves, and the average response time is in sec-
onds.) Because our two applications have very different ser-
vice times, we assess the performance more in terms of the
point where the system saturates (where the reponse-time
curves rise very steeply) than in terms of the actual reponse
times. The performance is the best for the Poisson applica-
tion; a reason for this is that in that case all the job sizes are
also powers of two, like the clusters’ sizes, which makes
them fit better in the system. For the Ensflow application
the utilization achieved is worse because of the job sizes,
which in most combinations add up in a way that leaves
more idle processors in the system than in the case of the
Poisson application. For all policies and co-allocation rules
considered the worst performance is displayed by the mix
of the two applications, where the different sizes of jobs are
even more difficult to fit in an efficient way.

In all the graphs in Fig. 5 the [co] co-allocation rule
yields the poorest performance. This shows that although
in general co-allocation provides more flexibility in plac-
ing jobs on the system, jobs with conflicting requirements
can make the performance worse than that in the absence
of co-allocation. The bad performance is due to the simul-
taneous presence in the system of large single-component
jobs, using (almost) entire clusters, and of jobs with many
components, even equal to the number of clusters in which
case on each of the clusters there has to be enough room
to accommodate a job component. Possible improvements
are to restrict the maximum size of job components and
to limit the number of components of the multi-component
jobs. The [rco] co-allocation rule includes the first restric-



Table 6. The percentages of jobs with different numbers of co mponents for the four job compositions
for the Poisson application.

Total job size Number of job components
[no] [co] [rco] [fco]

1 1 2 4 1 2 4 1 2

8 33.34% 16.67% 16.67% — 16.67% 16.67% — 16.67% 16.67%
16 33.33% 11.11% 11.11% 11.11% 11.11% 11.11% 11.11% 16.665% 16.665%
32 33.33% 11.11% 11.11% 11.11% 0.0% 16.665% 16.665% 0.0% 33.33%

Table 7. The percentages of jobs with different numbers of co mponents for the four co-allocation
rules for the Ensflow application.

[no] [rco]
Total job size Number of job components

1 2 3 4

12 25.0% 0.0% 0.0% 0.0%
15 25.0% — 0.0% —
20 25.0% 0.0% — 0.0%
30 25.0% 0.0% 0.0% —

Total job size Number of job components
1 2 3 4

12 6.25% 6.25% 6.25% 6.25%
15 12.5% — 12.5% —
20 8.34% 8.33% — 8.33%
30 8.34% 8.33% 8.33% —

[co] [fco]
Total job size Number of job components

1 2 3 4

12 6.25% 6.25% 6.25% 6.25%
15 12.5% — 12.5% —
20 0.0% 12.5% — 12.5%
30 0.0% 12.5% 12.5% —

Total job size Number of job components
1 2 3 4

12 12.5% 12.5% 0.0% 0.0%
15 25.0% — 0.0% —
20 0.0% 25.0% — 0.0%
30 0.0% 25.0% 0.0% —

tion, while [fco] includes both. The graphs show that in
all the cases considered imposing these restrictions signifi-
cantly improves the performance. For LS, the performance
for both the [rco] and [fco] cases proves to be much better
than for the no co-allocation case. The same result holds for
LP. When there are only single-component jobs LP becomes
LS, and that is why for the no co-allocation case with LP
the curve for LS is depicted. For GS, co-allocation does not
enhance the performance, but maintains or only slightly im-
proves it with the [fco] restrictions—large jobs are always
split and only maximum two components are allowed—
and deteriorates it in the other cases. For GS, the advan-
tage of more flexibility brought by co-allocation does not
compensate the disadvantage of longer service times due to
the inter-cluster communication. The GS policy does not
restrict single-component jobs to the local clusters, which
makes the performance in the absence of communication
rather good. Jobs are scheduled in a FCFS manner from the
single queue and the more freedom in spreading the jobs on
the clusters introduced by co-allocation is not used enough.

5.3 Co-allocation versus no co-allocation

As Fig. 5 shows, in a large number of cases co-allocation
can enhance the performance of a multicluster system, but it
is necessary to avoid the simultaneous presence in the sys-
tem of jobs with conflicting requirements. In [8] we have
shown that large single-component jobs and jobs with many
components deteriorate the performance. Moreover, com-
bining such jobs makes it even worse, which is also con-
firmed by Fig. 5. For LS and LP it is enough to avoid
large single-cluster jobs to make co-allocation worthwhile.
Since LS stores multi-component jobs in all local queues,
it provides (compared to the other policies) more flexibil-
ity and a larger choice—any of the jobs at the top of the
queues—at each moment when a scheduling decision has
to be taken. This is why avoiding jobs with many compo-
nents does not influence the performance much. LP keeps
all multi-component jobs in the global queue and the jobs
with many components, which are more difficult to fit, im-
pact the performance more. This can be concluded from



Table 8. The percentages of jobs with different numbers of co mponents for the four co-allocation
rules and a mix of the Poisson and Ensflow applications in equa l proportions.

[no] [rco]
Total job size Number of job components

1 2 3 4

8 16.67% 0.0% — —
16 16.67% 0.0% — 0.0%
32 16.66% 0.0% — 0.0%
12 12.5% 0.0% 0.0% 0.0%
15 12.5% — 0.0% —
20 12.5% 0.0% — 0.0%
30 12.5% 0.0% 0.0% —

Total job size Number of job components
1 2 3 4

8 8.335% 8.335% — —
16 5.557% 5.557% — 5.556%
32 0.0% 8.33% — 8.33%
12 3.125% 3.125% 3.125% 3.125%
15 6.25% — 6.25% —
20 4.167% 4.167% — 4.166%
30 4.167% 4.167% 4.166% —

[co] [fco]
Total job size Number of job components

1 2 3 4

8 8.335% 8.335% — —
16 5.557% 5.557% — 5.556%
32 5.554% 5.553% — 5.553%
12 3.125% 3.125% 3.125% 3.125%
15 6.25% — 6.25% —
20 0.0% 6.25% — 6.25%
30 0.0% 6.25% 6.25% —

Total job size Number of job components
1 2 3 4

8 8.335% 8.335% — —
16 8.335% 8.335% — 0.0%
32 0.0% 16.66% — 0.0%
12 6.25% 6.25% 0.0% 0.0%
15 12.5% — 0.0% —
20 0.0% 12.5% — 0.0%
30 0.0% 12.5% 0.0% —

the significant improvement brought by the [fco] restric-
tions compared to the [rco] ones. GS, as mentioned before,
has good performance in the absence of communication due
to the fact that it can run jobs from the single queue on any
of the clusters. However the same single queue makes co-
allocation without restrictions ([co]) perform poorly, and
only when both the numbers and sizes of the components
are restricted ([fco]) is co-allocation an advantage.

5.4 Comparing the policies

In this section we compare the three policies defined for
the three application mixes and the different co-allocation
rules. From Fig. 5 we conclude that independent of the
application mix LS provides the best results for the co-
allocation cases. When there are only single-component
jobs the performance of GS is better. LP becomes LS when
there are just single-component jobs, so the performance of
the two policies is the same in the absence of co-allocation.

With the [rco] restrictions LS display much better re-
sults than LP, the difference between the two policies being
that LP keep all multi-component jobs in a single queue.
This relates to our observation for GS that when there is
a single queue for multi-component jobs, those with many
components are hard to fit and have a strong negative im-
pact on performance. GS is better for the single-component

jobs, but once multi-component jobs are allowed, the extra
queue for the global jobs in LP and spreading the global
jobs among the local queues in the case of LS bring enough
benefits as to allow those policies to outperform GS.

Comparing all the cases considered, we concluded that
the best results are displayed by LP and LS with the [fco]
restrictions. The similar performance of LS and LP in that
case shows that for those sizes and numbers for the job com-
ponents, to have a separate queue for the multi-component
jobs is enough and the backfilling effect with a window
equal to the number of clusters induced by LS does not
bring extra improvements.

6 Gross versus Net Utilization

In Sect. 5 we have studied the average response time as
a function of the gross utilization. In this section we discuss
the difference between gross and net utilization, and quan-
tify this difference for the cases considered in Sect. 5. We
have defined the net and the gross utilization based on the
job service times in single clusters with fast local communi-
cation, and on the longer service times displayed by multi-
component jobs running the same application on multiple
clusters (thus using slow inter-cluster communication), re-
spectively. The difference between these utilizations is the
capacity lost internally in multi-component jobs due to slow



wide-area links. This internal capacity loss might be re-
duced by restructuring applications [17] or by having them
use (collective-) communication operations optimized for
wide-area systems [14].

The performance of a multicluster policy may look good
when considering the response time as a function of the
gross utilization, but, when there is much internal capacity
loss, the performance as a function of the net utilization (or
of the throughput) may be poor. This ”real” performance
of a multicluster policy would improve with more efficient
applications or with faster global communication.

In Figs. 6, 8 and 7 we depict the average response time
for our three policies, for the three application mixes and
for the different ways of co-allocation studied, as a function
of both the gross and the net utilization. To assess the dif-
ference between the two utilizations at a certain response
time, one should compare the graphs in the horizontal di-
rection. Of course, for the same workload (defined by the
arrival rate, and so, by the net utilization), the difference
between the gross and the net utilization is the same for all
scheduling policies and co-allocation rules, albeit at possi-
bly different response times.

The largest difference between the gross and the net uti-
lizations is always displayed for the Poisson application.
This is an expected consequence of the fact that this applica-
tion requires the largest amount of communication. Spread-
ing the jobs running this application on more clusters also
results in more wide-area communication than for the Ens-
flow application, or the equal mix of the two applications.

For all the policies and job mixes, comparing the three
co-allocation cases we observe that the largest amount of
intercluster communication is shown for the [rco] restric-
tions, and the least for the [co] restrictions. By limiting the
size of the single-component jobs, [rco] and [fco] increase
the percentage of multi-component jobs which brings more
wide-area communication. Since it limits the number of
job components, [fco] yields a lower amount of intercluster
communication compared to [rco]. These results are also
valid for the Ensflow application, even though the differ-
ences are smaller since that application requires very little
communication.

Despite the significant difference in performance, for the
same application mix and the same restrictions imposed for
co-allocation, all the three policies show very similar dif-
ferences between the graphs for net and gross utilization.
In general we could expect that policies with better perfor-
mance would show more wide-area communication for the
same set of jobs.

7 Conclusions

We have performed measurements of two applications
on our multicluster DAS system, and we have performed

simulations of three multicluster scheduling policies incor-
porating co-allocation. The performance of multicluster ex-
ecution of the Ensflow application is very good, which can
be explained by its relatively small communication compo-
nent. Also Poisson application is well suited for multiclus-
ter execution, at least for large grid sizes, when the commu-
nication component becomes relatively small. The penalty
for the slow multicluster communication can be reduced by
allowing the computation and communication parts of the
processes of a multicluster job to overlap. To be able to
make a well-considered decision when to submit an appli-
cation to a single cluster or across multiple clusters, it would
be convenient to have a synthetic application parameterized
by the way it is split up across clusters and by its communi-
cation pattern, to simulate a range of possible applications.

Our simulations of multicluster scheduling policies show
that simply allowing co-allocation without any restrictions
is not a very good idea, for none of the policies. In all
cases, one should at least limit the job-component sizes,
and preferably also the number of job components. Further-
more, we found that the policies with local queues (possibly
with a global queue for multicomponent jobs) yield better
performance than having only a single global queue.
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Figure 3. The total runtime of the Poisson application (in se conds) for different grid sizes and numbers
of processors and clusters. (No data for 64 processors with G lobus-1.)
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Figure 4. The total runtime of the Poisson application (in se conds) for processor configuration 4x4
for different grid sizes and numbers of clusters, normalize d with respect to PBS.
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Figure 5. The performance of LS, LP and GS (top-bottom) for th e Poisson application, the Ensflow
application and a mix of the two in equal proportions (left-r ight), depending on the numbers of job
components allowed in the system.
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Figure 6. The response time as a function of the gross and the n et utilization for the LS policy, the
three application mixes and the three co-allocation rules t hat allow co-allocation.
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Figure 7. The response time as a function of the gross and the n et utilization for the GS policy, the
three application mixes and the three co-allocation rules t hat allow co-allocation.
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Figure 8. The response time as a function of the gross and the n et utilization for the LP policy, the
three application mixes and the three co-allocation rules t hat allow co-allocation.



A Communication-Time Measurements

In this appendix we measure the communication time
needed for exchanging the values of border grid points in
the Poisson application with processor configuration 4x4.
All numbers presented below are averages over ten runs.

A.1 Per-process communication time for
exchanging borders

We measure for each individual process(or) the total time
(i.e., across all iterations) it spends exchanging borderswith
other processes. Figure 9 contains the results for different
numbers of clusters and grid sizes 100x100 and 4000x4000.
As expected, for Globus-2, the processes at the edges of
the clusters need more time to communicate, although for
some reason also some other processes take much time to
communicate. This effect is relatively speaking much larger
for grid size 100x100 than for grid size 4000x4000.

For Globus-2 with grid size 100x100 we also measure
for each individual process, and in each direction, the total
time it spends exchanging borders with other processes; the
results are presented in Fig. 10. We see that in the cross-
cluster directions left and right, receiving border informa-
tion takes a relatively large amount of time.

A.2 Synchronized and non-synchronized
operation

In our original Poisson application, we do not syn-
chronize processes before they start their communication
phases. So then, as soon as a process finishes its com-
putation in an iteration, it starts (trying) to communicate.
We added an MPI command to our application in order to
enable synchronized operation. Then, all processes syn-
chronize in every iteration before the communication starts,
so they all start communicating at (about) the same time.
In both synchronized and non-synchronized operation, we
measure the communication time in an iteration as the
time elapsed between the last process finishing its computa-
tion phase and the last process finishing its communication
phase. The cause of the difference between these comm-
munication times in these two modes of operation lies in
the potential parallelism of computation and communica-
tion in non-synchronized operation. In general, in this mode
of operation, the communication time is smaller, as we will
indeed see in Sect. A.3.

A.3 Total communication time for exchanging
borders

We define the total communication time for exchanging
borders as the sum of the communication times of all it-

erations, both for synchronized and non-synchronized op-
eration. In Table 9, we show the minimum, average, and
maximum (across ten runs) total communication time for
synchronized operation; the variation is in general not very
large. The difference between single-cluster and multiclus-
ter performance (and between PBS and Globus-1) is very
large.

Table 10 presents the (average) total communication
times for exchanging borders when processes are or are not
synchronized before communication. (This table contains
the average results of Table 9.) In Fig. 11 we depict the
average total communication times from Table 10 after nor-
malization with respect to PBS. We find that with synchro-
nized operation, communication in a single cluster is, de-
pending on the grid size, 10–35 times faster then multiclus-
ter communication, while for non-synchronized operation
(and realistic grid sizes), this factor is reduced to about 13.
In addition, in Table 10 we see that for large grid sizes the
performance of multicluster communication strongly im-
proves when the processes are not synchronized, but that
this is not the case for a single cluster with PBS.

A.4 Data transfer rate of exchanging borders

We use the results of Table 9 (with synchronized oper-
ation) to calculate the data transfer rate when exchanging
borders. For this calculation we assume that the slowest
communicating process is always an interior process with
four borders to exchange. Since the processor configuration
is 4x4, the number of grid points to communicate per iter-
ation by an interior process (send and receive) is twice the
side of the grid. For a grid point 8 bytes are reserved. In
Fig. 12 we see that for PBS the data transfer rate strongly
increases when the amount of data to be communicated in-
creases. The highest data transfer rate for PBS is 35 Mbyte/s
for grid size 4000x4000, while for multicluster execution
(Globus-2 and Globus-4) the highest data transfer rate of
over 3 Mbyte/s is reached for a grid size of 2000x2000.



grid size 100x100

0.20 0.28 0.25 0.24
0.26 0.33 0.30 0.30
0.28 0.35 0.31 0.31
0.24 0.29 0.27 0.25

0.69 1.13 1.11 1.09
1.17 1.53 1.60 1.31
1.60 1.71 1.82 1.67
1.40 1.47 1.50 1.25

5.29 6.44 6.87 0.89
0.68 6.83 6.66 1.12
1.06 12.9 11.5 5.66
0.74 5.72 7.41 5.83

7.13 8.64 7.21 8.37
1.98 5.88 2.20 8.20
3.96 7.23 8.07 9.87
0.64 4.02 2.49 4.95

PBS Globus-1 Globus-2 Globus-4
grid size 4000x4000

3.25 3.71 3.79 3.72
3.69 4.17 4.30 4.18
3.50 3.98 3.92 3.92
3.49 3.93 4.04 3.96

78 87 99 88
76 86 103 90
79 92 87 77
78 90 86 79

56 107 137 81
54 107 134 83
75 117 128 96
68 118 112 91

96 123 132 111
84 108 108 99
113 130 123 124
108 121 111 120

PBS Globus-1 Globus-2 Globus-4

Figure 9. The total per-process communication times for dif ferent grid sizes (in seconds).

5.31 0.11 0.15 0.11
0.23 0.27 0.44 0.29
0.75 5.34 4.83 0.21
0.14 0.11 0.12 0.12

0.13 0.12 0.11 0.13
0.22 0.20 0.17 0.17
0.20 0.14 0.13 0.51
0.33 0.25 0.33 0.25

0.02 6.30 0.40 0.09
0.02 6.66 0.27 0.09
0.06 5.98 0.11 0.09
0.07 6.03 0.13 0.09

0.10 0.54 6.12 0.56
0.12 0.53 6.30 0.59
0.10 0.13 6.95 4.51
0.14 0.15 6.98 4.97

Top Bottom Left Right

Figure 10. The total per-process communication times in eac h of the four directions for Globus-2 and
grid size 100x100 (in seconds).

Table 9. The total communication time for exchanging border s (in seconds) with synchronized oper-
ation for processor configuration 4x4.

grid size number of PBS Globus-1 Globus-2 Globus-4
iterations min. avg. max. min. avg. max. min. avg. max. min. avg. max.

50 x 50 865 0.15 0.16 0.19 0.52 0.62 0.87 3.81 4.67 5.33 4.82 4.96 5.13
100 x 100 2132 0.37 0.39 0.44 1.41 1.51 1.67 9.25 11.8 15.1 12.0 12.2 13.7
200 x 200 3570 0.69 0.72 0.74 2.90 3.04 3.56 15.0 19.8 23.0 20.1 20.3 20.5
400 x 400 3814 0.89 0.91 0.95 4.49 4.68 4.91 18.0 22.5 29.4 17.5 20.8 22.6

1000 x 1000 4347 2.09 2.17 2.31 9.49 10.2 11.8 22.3 28.8 36.5 26.1 29.2 32.1
2000 x 2000 4387 4.21 4.38 4.67 27.1 29.1 32.3 41.3 45.1 49.6 41.2 42.8 45.8
4000 x 4000 2644 4.50 4.88 5.47 127 134 139 154 161 171 167 179 206

10000 x 10000 2644 11.9 12.3 13.1 127 162 202 186 267 398 290 358 427

Table 10. The total communication time for exchanging borde rs (in seconds) with synchronized and
non-synchronized operation for processor configuration 4x 4.

grid size number of PBS Globus-1 Globus-2 Globus-4
iterations synchronization synchronization synchronization synchronization

yes no yes no yes no yes no

50x50 865 0.16 0.11 0.62 0.54 4.67 2.02 4.96 1.92
100x100 2132 0.39 0.28 1.51 1.31 11.8 4.16 12.2 4.72
200x200 3570 0.72 0.54 3.04 2.71 19.8 7.09 20.3 8.50
400x400 3814 0.91 0.88 4.68 4.20 22.5 9.30 20.8 12.4

1000x1000 4347 2.17 2.00 10.2 11.3 28.8 16.8 29.2 17.5
2000x2000 4387 4.38 3.59 29.1 16.5 45.1 18.5 42.8 31.4
4000x4000 2644 4.88 5.26 134 18.1 161 24.3 179 42.0

10000x10000 2644 12.3 12.7 162 39.8 267 62.5 358 172
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Figure 11. The total communication time for exchanging bord ers with synchronized (top) and non-
synchronized (bottom) operation for processor configurati on 4x4, normalized with respect to PBS.
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Figure 12. The data-transfer rate when exchanging borders.


