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Abstract was designed and deployed by the Dutch Advanced School
for Computing and Imaging (ASCI) in the Netherlands. The
In systems consisting of multiple clusters of processorspossibility of creating multiclusters fits with the recent i

interconnected by relatively slow connections such as ourterest in computational and data GRIDs [2, 12], in which it
Distributed ASCI Supercomputer (DAS), applications may is envisioned that applications can access resources-(hard
benefit from the availability of processors in multiple elus ware resources such as processors, memory, and special in-
ters. However, the performance of single-application mul- struments, but also data resources) in many different loca-
ticluster execution may be degraded due to the slow wide-tions at the same time to accomplish their goals.
area links. In addition, scheduling policies for such sys-
tems have to deal with more restrictions than schedulers for

single clusters in that every component of a job has 10 fit , ,icjyster execution because they can not deal very well
in separate clusters. In this paper we present a measure-is, the siow wide-area links. Second, scheduling a mul-
ment study of the total runtime of two applications, and c,mponent application across a multicluster system, (i.e
of the commun|cat|o_n time of one of them, b.o.th on single performingco-allocatior) meets with more restrictions than
cluster_s andlon multicluster sy;tems. In add|t|pn, We per- scheduling a job in a single cluster because now each of the
form simulations of several multicluster scheduling pielc components has to fit in a separate cluster. In this paper we
based on our measurement results. Our results show thal.o; jestigate and compare the total runtimes of single-
in spite of the fact that inter-cluster communicationis MUC y,ter and multicluster execution of two parallel applica
slower then intra-cluster communication, the performance tions modeling physical phenomena by performing mea-
of multicluster operation can be very reasonable compared surements on the DAS. Our main conclusion is that both

to single-cluster execution. applications, with appropriate parameter settings in dne o
them, are very well suited for multicluster operation. Sub-
sequently, we assess the performance of several scheduling

1 Introduction policies for co-allocation in multiclusters with simulatis
using the runtime measurements. We have also performed

Over the last decade, clusters and distributed-memorydeta'led measurements of the time spent in communication

multiprocessors consisting of hundreds or thousands ofOf one of the two applicatons_. Becal_Jse thg results of these
standard CPUs have become very popular. Compared tJneasurements are n.ot used in our simulations, they are rel-
single-cluster systems, multicluster systems consisbing egated to an appendix.

multiple, geographically distributed clusters interceated In previous papers [6, 7, 9], we have assessed the influ-
by a relatively slow wide-area network can provide a larger ence on the mean response time of the job structure and size,
computational power. Instead of smaller groups of usersthe sizes of the clusters in the system, the ratio of the speed
with exclusive access to their single clusters, larger gsou of local and wide-area communications, and of the presence
of users can share the multicluster, potentially leading to of a single or of multiple queues in the system. Also in [11],
lower turn-around times and a higher utilization, and mak- co-allocation (called multi-site computing there) is sadj

ing larger job sizes possible. One such multicluster systemwith as performance metric the (average weighted) response
is the Distributed ASCI Supercomputer (DAS) [1], which time. There, jobs only specify a total number of processors,

There are two potential problems when employing mul-
ticluster systems. First, applications may not be suittdle



and are split up across the clusters. The slow wide-areaprocessors have the same service rate. By a job we under-
communication is accounted for by a factoby which the stand a parallel application requiring some number of pro-
total execution times are multiplied. Co-allocation is eom cessors, possibly in multiple clustexofallocatior). Jobs
pared to keeping jobs local and to only sharing load amongare rigid, so the numbers of processors requested by and al-
the clusters, assuming that all jobs fit in a single cluster. located to a job are fixed. We call a task the part of a job
One of the most important findings in [11] is that foless that runs on a single processor. We assume that jobs only
than or equal td .25, it pays to use co-allocation. In [10], request processors and we do notinclude in the model other
we consider the maximal utilization, i.e., the utilizatian  types of resources.
which the system becomes saturated, as a performance met-
ne. o 2.3 The structure of job requests and the place-

Our five-cluster second-generation Distributed ASCI Su- ment policies
percomputer (DAS) [1, 13] (and its predecessor), which was
an important motivation for this work, was designed to as-
sess the feasibility of running parallel applications asro : X :
wide-area systems [5, 14, 17]. In the most general setting,ber and the sizes of their components, i.e., of .the.sets of
grid resources are very heterogeneous; in this paper we re;asks that have to go to the separate clusters._ Aj_ob is repre-
strict ourselves to homogeneous multicluster systems suci‘FenFe,d by atuple G[f values, atleastone OfWh'Ch_'s strictly
as the DAS. Showing the viability of co-allocation in such POSitive. We consideunordered requestsior which the

systems may be regarded as a first step in assessing the beffMPonents of the tuple specify the numbers of processors
efit of co-allocation in more general grid environments., 1€ job requires in the separate clusters, allowing thedsche
uler to choose the clusters for the components. Such re-

guests model applications like FFT, where tasks in the same
2 The system model job component share data and need intensive communica-
tion, while tasks from different components exchangedlittl
In this section we describe our model of multicluster sys- or no information. To determine whether an unordered re-

Jobs that require co-allocation have to specify the num-

tems and the scheduling policies we will evaluate. guest fits, we try to schedule its components in decreasing
order of their sizes on distinct clusters. We use Worst Fit
2.1 The Distributed ASCI Supercomputer (WF) to place the components on clusters.

The DAS (in fact the DAS2, the second-generation sys- 2.4  The scheduling policies
tem which was installed at the end of 2001 when the first-

generation DAS1 system was discontinued) is a wide-area |n a multicluster system where co-allocation is used, jobs
computer system consisting of five clusters (one at each ofcan be either single-component or multi-component, and in
five universities in The Netherlands, amongst which Delft g general case both types are simultaneously present in the
University of Technology) of dual-processor nodes, one system. A scheduler dealing with the first type of jobs can
with 72, the other four with 32 nodes each. Each node con-pe |ocal to a cluster and does not need any knowledge about
tains two 1-Ghz Pentium-llis and at least 1GB RAM. The the rest of the system. For multi-componentjobs, the sched-
clusters are interconnected by the Dutch university back-uler needs global information for its decisions.

bone for wide-area communications (100 Mbit/s), whilefor  Treating both types of jobs equally or keeping single-
local communications inside the clusters Myrinet LANs are component jobs local and scheduling only multi-component
used (1,200 Mbit/s). The system was designed for researchops globally over the entire system, having a single global
on parallel and distributed computing. On single DAS clus- scheduler or schedulers local to each cluster, all these are
ters the PBS [4] scheduler is used, while jobs spanning mul-gecisions that influence the performance of the system. In
tiple clusters can be submitted with Globus [3]. The current [9] we have studied several policies, some of which with

version of Globus is unable to use the fast local DAS in- mytiple variations; in this paper we consider the follogin
terconnect (Myrinet); all Globus communication goes over gnproaches:

TCP/IP sockets (this problem will be solved in the near fu-

ture). 1. [GS] The system has onglobal schedulewith one
global queue, for both single- and multi-component
2.2 The structure of the system jobs. All jobs are submitted to the global queue. The
global scheduler knows at any moment the number of
We model a multicluster system consisting’6tlusters idle processors in each cluster and based on this infor-

of processors, of possibly different sizes. We assume that a mation chooses the clusters for each job.



2. [LS] Each cluster has its owlocal schedulerwith obtained from an implementation of the laws of physics.
a local queue. All queues receive both single- and This can be done by using ensemble models that do not cal-
multi-component jobs and each local scheduler hasculate the evolution of a single state but rather of a large
global knowledge about the numbers of idle proces- number (an ensemble, typically 50-500) of different states
sors. However, single-component jobs are scheduled(ensemble members). In our case there are 60 ensemble
only on the local cluster. The multi-component jobs members that evolve for a period of 20 days with a time
are co-allocated over the entire system. When schedul-step of 24 hours. Every 240 hourly time steps, an analysis
ing is performed all enabled queues are repeatedly vis-and an update of the ensemble members are done to obtain
ited, and in each round at most one job from each the optimal estimate for the past period. Each of the en-
gueue is started. When the job at the head of a queuesemble members evolves independently of the others dur-
does not fit, the queue is disabled until the next job ing the time between analysis and update. The sequence of
departs from the system. At each job departure the ensemble averages over time describes the development of
gueues are enabled in the same order in which theythe ocean’s currents best fitting the observations. The-appl
were disabled. cation has the following structure:

3. [LP] The system has both a global scheduler with a / *-------- initialisation-------- *|
global queue, and local schedulers with local queues.i nitiate 60 ensenbl es;
Multi-component jobs go to the global queue and are )
scheduled by the global scheduler using co-allocation’ *--------start main |oop------- *1
over the entire system. Single-component jobs are 'I/f time t< tSt Op—i'/m?
placed in one of the local queues and are scheduled by conput att on .

- . evol ve the 60 ensenbl es;
the local scheduler only on its corresponding cluster. . . _
.o if (time = time_to_anal yse)

The local schedulers havpriority: the global sched- /* conputation + comunication */
uler can schedule jobs only when at least one local anal yse and update ensenbl es:
gueue is empty. When a job departs, if one or more endi f
of the local queues are empty both the global queueendwhi | e
and the local queues are enabled. If no local queue is/ *--------- end main |loop-------- *|
empty only the local queues are enabled and repeat-

edly visited; the global queue is enabled and added to ] ] ] )
the list of queues which are visited when at least one  1h€ main loop is executed 20 times, with two data ad-

of the local queues gets empty. When both the g|Oba|qu'[ments. Only during the data adjustment phase_ (analy-

queue and the local queues are enabled at job deparS'S and update ensembles) data are exchanged (using MPI).
tures, they are always enabled starting with the global The data of the ensemble members are Io_cal to the proces-
queue. The order in which the local queues are enabledSO'S: and the ensemble members are distributed evenly over

does not matter since the jobs in them are only startegth€ processors. To avoid processors from being unneces-
on the local clusters. sarily idle, we choose the number of processors such that

the number of ensemble members is an exact multiple of it.

In all the cases considered, both the local and the globalln [18], the Ensflow application is described in more detail,

schedulers use the FCFS policy to choose the next job toand measurements of the total runtime on two multiproces-
run. sors are presented.

3 The Applications 3.2 The Poisson Application

) i ) o ] Our Poisson application implements a parallel iterative
In this section we describe the two applications for which algorithm to find a discrete approximation to the solution

we will perform measurements on the DAS. of the two-dimensional Poisson equation (a second-order
o differential equation governing steady-state heat flow in a
3.1 The Ensflow Application two-dimensional domain) on the unit square. For the dis-

cretization, a uniform grid of points in the unit square with
The Ensflow application [18] uses the data-assimilation a constant step in both directions is considered. The ap-
technique to understand the evolution of streams and ed-plication uses a red-black Gauss-Seidel scheme (see for in-
dies in the ocean near the southern tip of Africa. In this stance [15], pp. 429—-433), for which the grid is split up into
technigue, information from observations of the system is "black” and "red” points, with every red point having only
combined with information on the evolution of the system black neighbours and vice versa. In every iteration, each



grid point has its value updated as a function of its previ- we execute the Poisson application on multiple clustess, th
ous value and the values of its neighbours, and all points ofprocess grid is split up into adjacent vertical strips ofaqu
one colour are visited first followed by the ones of the other width, with each cluster running an equal consecutive num-
colour. The application, which is implemented in MPI, has ber of processes (we assume processes to be numbered in
the following structure: column-major order). For instance, for process configura-
tion 4x4 and two clusters, the processes are split up as de-
picted in Figure 1. Here, processors 4-11 have to exchange
border information with processors in the other cluster.

initialisation
proc_i ndex 0

read the initial data;
/* comunication */

if =

broadcast data to all the processes; 3|7 11|15
endi f 2|16 10| 14
115]| 9|13

A start main |loop------- */ 0O|4| 8|12

while global-error => limt
/* conputation */

updat e bl ack points;
update red points;
/* comuni cation */

Figure 1. The process grid for the Poisson
application for process configuration 4x4 di-
vided over two clusters (left-right).

exchange borders with nei ghbours;

/* communi cati on + synchroni zation */

collect/distribute global error;
endwhi | e

_________ 4 Runtime Measurements

In this section we present the results of the measurements
of our two applications on the DAS. We use Globus for sub-
emitting multicomponent jobs to the DAS. In all of our ex-
periments, the jobs always have components of equal size.
Since Globus is currently unable to use the fast local DAS
interconnect (Myrinet) but uses the slower local Ethernet
instead, we employ both PBS and Globus for running the
applications in a single DAS cluster. The PBS measure-
‘ments yield the best performance of single-cluster opera-
tion, but the single-cluster Globus measurements make for
a fairer comparison with the multicluster results. Measure
ments with Globus on a system with clusters are labeled

with Globus<'.

The domain of the problem is split up into a two-
dimensional pattern of rectangles of equal size among th
participating processes. In our experiments, we assign onl
one process to a processor. A way of splitting up the do-
main is called a process(or) configuration, and is indicated
by h x v, with h, v the numbers of processes in the hori-
zontal and vertical directions, respectively. In Sectiomet
will consider the numbers of processors and the processo
configurations as shown in Table 1.

Table 1. The processor configurations used
in our measurements.

total number| processor 4.1 Total runtime of the Ensflow application

of processorg configuration
8 4x2 For an investigation of the total runtime we ran the Ens-
16 4x4 flow application once for different numbers of processors
32 8x4 and clusters. The results of the measurements are presented
64 8x8 in Fig. 2.

The gaps for 15 processors and Globus-2 and Globus-
4, for 20 processors and Globus-3, and for 30 processors

Every process communicates with each of its neighboursand Globus-4 are due to the fact that then we cannot have
in order to exchange the values of the grid points on the equal-size job components. The gap for Globus-1 with 60
borders and to compute a global stopping criterion. Ex- processors is caused by the limitation of 32 processors in
changing borders takes place in four consecutive stepss; firsa single cluster when using Globus. We find that the per-
all communication in the direction top is performed, and formance of multicluster execution for all numbers of clus-
then in the directions bottom, left and right. The amount of ters considered compared to single-cluster executionys ve
communication depends on the size of the grid, the num-good for this application. In addition, the speedup is quite
ber of participating processes, and the initial data. Whenreasonable. Relative to the 12-processor case, the efficien
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Figure 2. The total runtime of the Ensflow application (in sec onds) for different numbers of processors
and clusters. (No data when the number of processors is hot a m ultiple of the number of clusters,
and for 60 processors with Globus-1.)

slowly decreases to about 0.7 for 60 processors. The explathe processor configuration to 4x4, and we add a few grid
nation of the good performance of multicluster execution is sizes. For every set-up (grid size and number of clusters) we
that this application has a relatively small communication ran the application ten times. The results of the measure-

component. ments (minimum, average, and maximum) are presented in
Table 3. For a better comparison, we depict in Fig. 4 for ev-
4.2 Total runtime of the Poisson application ery grid size the (average) runtimes relative to the (avarag

single-cluster PBS runtimes (which are normalized to 1).
Itis clear that for large grid sizes, this application is el

For a_ﬂrst. investigation of th? toFaI runtime of.the P0|s? suited for multicluster execution. The explanation is that
son application, we ran the application once varying the gri the two major components of the total runtime, the time for

size, the total number of processors (see Table 1 for the Cor'updating all grid points (computation) and the time for ex-

responding processor conﬂguratlons)_, and the number Ofchanging border grid points (communication), increase in a
clusters. In addition to the total runtime, we also record different way when the grid size increases. When the total
the number of iterations needed to reach convergence. Th umber of grid points increases with a facj;the number
results of the measurements are presented in Table 2, an f grid points to be exchanged increases with a fagtgr

graphically in Fig. 3. (Because of the numbers of proces- Since communication is the component that causes the poor

sors we c;nnsu?etr), we carr:.no.t us?\ thgie clusters.) Aga'n.th?r%erformance of multicluster execution, it is to be expected
are gaps for Globus-1, this time for 64 processors in a sing Cthat for larger grid sizes (with relatively smaller communi

cluster,.forthe Same reason as ab,o"e_- , cation components), multicluster execution performs-rela
We find that for a very small grid size, the runtime may tively better.

increase considerably when using more clusters. However,

for a large grid size, the performance of multicluster ex- . .

ecution compared to single-cluster execution is quite rea-2 Per_fo_rmance Evaluation of the Scheduling

sonable. Since the processor configuration influences the ~ Policies

number of iterations needed to reach convergence (which

determines the total runtime), it is difficult to make a gen- In this section we assess the performance of the multi-

eral statement about the speedup. In particular for gressiz  cluster scheduling policies introduced in Sect. 2.4 with-si

1000x1000 and 2000x2000, the number of iterations is very ulations for several workloads differentiated by the nurabe

variable. However, for grid size 4000x4000 the number of of components into which jobs are split and by the per-

iterations is almost constant, and the speedup when goingentages of jobs running each of the two applications in-

from 8 to 64 processors for PBS, Globus-2, and Globus-4 istroduced in Sect. 3. The simulations are for a multicluster

6.5, 6.0, and 5.8, respectively. with 4 clusters of32 processors each. The simulation pro-
For a further investigation of the total runtime we now fix grams were implemented using the CSIM simulation pack-



Table 2. The number of iterations and the total runtime (in se conds) of the Poisson application for
different grid sizes and numbers of processors and clusters

grid size total number || numberof| PBS | Globus-1| Globus-2| Globus-4
of processors| iterations
100 x 100 8 2436 0.74 3.23 11.5 15.0
16 2132 0.74 3.59 12.1 11.8
32 2158 0.93 4.54 17.4 17.4
64 2429 1.21 — 24.2 21.1
1000 x 1000 8 2630 70.9 86.6 109 114
16 4347 60.2 78.6 119 125
32 4356 34.3 46.7 68.8 67.4
64 2650 8.1 — 30.7 31.7
2000 x 2000 8 2630 291 335 358 365
16 4387 265 292 339 332
32 4387 134 161 193 191
64 2650 46.8 — 80.4 85.1
4000 x 4000 8 2630 1230 1277 1390 1463
16 2644 649 725 766 767
32 2651 357 371 402 440
64 2650 188 — 231 251
age [16]. We assess three casd$i0% of the jobs in the system run

We will present our simulation results in terms of re- the Poisson application(0% of the jobs run the Ensflow
sponse time as a function of the utilization. We define the application, and each of the two applications is represente
gross utilizatioras the utilization computed from the actual by 50% of the jobs in the system. Tables 4 and 5 display the
service times experienced by jobs, which for multicompo- execution times measured on the DAS for the two applica-
nent jobs includes the time spent in the slow wide-area com-tions in the several configurations that we are using in the
munication. Thenet utilizationis defined as the utilization  simulations. These values are the same as the ones depicted
computed from the single-cluster service times of jobs of in Fig. 2, and in Fig. 3 for grid size 4000x4000; for a single
the same total size, which gives a measure of the through-cluster we use the PBS runtimes. We assume the interarrival
put of the system. When there is no co-allocation, there istimes to be exponentially distributed.
no wide-area communication and the net utilizationis equal
to the gross utilization. In this section we only look at the
gross utilization and depict the response time as a function Table 4. The execution times (in seconds) for
of this utilization, because that is a fair basis for compgri the Poisson application, depending on the to-
the policies. tal job size and the number of components,

In Sect. 5.1 we present the workloads in the simula- used in the simulations.
tions. Section 5.2 discusses the influence of the numbers

and sizes of the job components on the performance, while Total job size || Number of job components
in Sect. 5.3 the benefits and disadvantages of co-allocation 1 [ 2 | 4

are discussed, compared to a system without co-allocation. 8 1230.0| 1390.0] —

In Sect. 5.4 we make a general comparison of the policies. 16 649.0 | 766.0 | 767.0
Section 6 compares for all the policies and workloads the 32 357.0 | 402.0 | 440.0

gross and the net utilization, which shows how efficient the

global applications use the gross utilization offered.
Jobs are split up in different ways, but their components

5.1 The workloads are always of equal size, and we also keep the percentages
of jobs for each total size always equal. For the same total
Each of the jobs in the simulated workload is supposed size, the various splitting choices admitted in the system
to run one of our two applications; in the case of the Pois- receive equal probabilities.
son application, we assume the grid size to be 4000x4000. We compare a no co-allocation case, when only single-



Table 3. The total runtime (minimum, average, and maximum) o fthe Poisson application (in seconds)

for processor configuration 4x4 for different grid sizes and numbers of clusters.
grid size PBS Globus-1 Globus-2 Globus-4
min. | avg. | max. || min. | avg.[ max. ][ min. | avg.| max. || min. | avg.| max.
50 x 50 0.22| 0.23| 0.29| 1.35| 160 | 2.28| 593| 6.29| 6.86| 6.12| 7.62| 114

100 x 100 065| 0.72| 0.77| 335| 4.12| 651 14.7| 153| 16.7| 14.3| 16.7| 22.8
200 x 200 1.73| 183| 188| 655| 6.87| 8.01| 264 | 27.6| 30.0| 24.0| 265 33.9
400 x 400 467 | 495| 572 | 124 | 12.8| 136 32.0| 36.5| 38.7| 28.6| 30.8| 39.8
1000 x 1000 60.7 | 63.7| 68.3| 784 | 789 | 79.4 101 | 105| 108 103 | 107 | 118
2000 x 2000 248 | 257 | 274 291 | 296 | 310 306 | 309 | 311 306 | 323 | 349
4000 x 4000 701| 706 | 712 720 | 733 | 766 743 | 750 | 757 728 | 751 | 794
10000 x 10000|| 3734 | 3841 | 3948 || 3878 | 3960 | 4078 || 4012 | 4081 | 4160 || 4215 | 4235 | 4285

5.2 The influence of the numbers and sizes of the
Table 5. The execution times (in seconds) for job components
the Ensflow application, depending on the to-
tal job size and the number of components,

X . . In Fig. 5 we show the response time as a function of the
used in the simulations.

(gross) utilization for the three job mixes, the three scited
Total job size Number of job Components ing policies, and the four co-allocation rule.s. (In E|g. Blan
T ] 2 [ 3 | 4 in all subsequent figures, the legends are in the rightfto-le
order of the curves, and the average response time is in sec-

12 3485.0| 3494.0| 3504.0| 3507.0 L .

15 58360 — 58840 — onds.) Because our two applications have very different ser
0 193501 22070 — 51550 vice times, we assess the performance more in terms of .the
30 1563.0| 15410 158401 — point where the system saturates (where the reponse-time

curves rise very steeply) than in terms of the actual reponse
times. The performance is the best for the Poisson applica-
tion; a reason for this is that in that case all the job sizes ar
component jobs are admitted, to several co-allocatiorscase also powers of two, like the clusters’ sizes, which makes
We define the following co-allocation rules: them fit better in the system. For the Ensflow application
the utilization achieved is worse because of the job sizes,
1. [no] There are only single-component jobs, co- which in most combinations add up in a way that leaves
allocation is not allowed. more idle processors in the system than in the case of the
Poisson application. For all policies and co-allocatiolesu
considered the worst performance is displayed by the mix
of the two applications, where the different sizes of joles ar
even more difficult to fit in an efficient way.

3. [rco] Both single- and multi-component jobs are al- !N @l the graphs in Fig. 5 the [co] co-allocation rule
lowed, but the job-component sizes are restricted to Y/€/dS the poorest performance. This shows that although
half of the clusters’ sizes. in general co-allocation provides more flexibility in plac-

ing jobs on the system, jobs with conflicting requirements

4. [fco] Both single- and multi-component jobs. The job- €an make the performance worse than that in the absence
component sizes are restricted to half of the clusters’ Of co-allocation. The bad performance is due to the simul-
sizes, and only multi-component jobs with two com- taneous presence in the system of large single-component
ponents are allowed. jobs, using (almost) entire clusters, and of jobs with many

components, even equal to the number of clusters in which
In Tables 6, 7, and 8 we show the resulting percentages ofcase on each of the clusters there has to be enough room
jobs for the numbers of components allowed for the Poissonto accommodate a job component. Possible improvements
application (here we disallow jobs of size 8 to be split into are to restrict the maximum size of job components and
4 components), for the Ensflow application, and for an evento limit the number of components of the multi-component
mix of these, respectively. jobs. The [rco] co-allocation rule includes the first restri

2. [co] Both single- and multi-component jobs are al-
lowed, without restrictions on the sizes of job compo-
nents and the numbers of components.



Table 6. The percentages of jobs with different numbers of co mponents for the four job compositions
for the Poisson application.

Total job size Number of job components
[no] [co] [rco] [fco]
1 I 1 2 T +& 1 1 2 T 14 I 1 2
8 33.34% | 16.67% | 16.67% — 16.67%| 16.67% — 16.67% | 16.67%
16 33.33% | 11.11% | 11.11% | 11.11%|| 11.11%| 11.11% | 11.11% || 16.665% | 16.665%
32 33.33%|| 11.11%| 11.11%| 11.11%]|| 0.0% | 16.665%]| 16.665%]| 0.0% 33.33%

Table 7. The percentages of jobs with different numbers of co mponents for the four co-allocation
rules for the Ensflow application.

[no] [rco]
Total job size Number of job components Total job size Number of job components
1 [ 2 [3 | 4 1 [ 2 [3 | 4
12 25.0% | 0.0% 0.0% 0.0% 12 6.25% | 6.25% | 6.25% | 6.25%
15 25.0% | — 0.0% — 15 125% | — 125% | —
20 25.0% | 0.0% — 0.0% 20 8.34% | 8.33% | — 8.33%
30 25.0% | 0.0% 0.0% — 30 8.34% | 8.33% | 8.33% | —
[co] [fco]
Total job size Number of job components Total job size Number of job components
1 [ 2 [3 | 4 1 [ 2 [3 | 4
12 6.25% | 6.25% | 6.25% | 6.25% 12 125% | 12.5% | 0.0% 0.0%
15 125% | — 125% | — 15 25.0% | — 0.0% —
20 0.0% 125% | — 12.5% 20 0.0% 25.0% | — 0.0%
30 0.0% 125% | 125% | — 30 0.0% 25.0% | 0.0% —

tion, while [fco] includes both. The graphs show that in 5.3 Co-allocation versus no co-allocation

all the cases considered imposing these restrictionsfsigni

cantly improves the performance. For LS, the performance  as Fig. 5 shows, in a large number of cases co-allocation
for both the [rco] and [fco] cases proves to be much better can enhance the performance of a multicluster system, but it
than for the no co-allocation case. The same result holds foris necessary to avoid the simultaneous presence in the sys-
LP. When there are only single-componentjobs LP becomestem of jobs with conflicting requirements. In [8] we have
LS, and that is why for the no co-allocation case with LP ghown that large single-component jobs and jobs with many
the curve for LS is depicted. For GS, co-allocation does not components deteriorate the performance. Moreover, com-
enhance the performance, but maintains or only slightly im- bining such jobs makes it even worse, which is also con-
proves it with the [fco] restrictions—large jobs are always firmed by Fig. 5. For LS and LP it is enough to avoid
split and only maximum two components are allowed— |arge single-cluster jobs to make co-allocation worthehil
and deteriorates it in the other cases. For GS, the advangince LS stores multi-component jobs in all local queues,
tage of more flexibility brought by co-allocation does not it provides (compared to the other policies) more flexibil-
compensate the disadvantage of longer service times due tgy and a larger choice—any of the jobs at the top of the
the inter-cluster communication. The GS policy does not gyeyes—at each moment when a scheduling decision has
restrict single-component jobs to the local clusters, Whic 15 pe taken. This is why avoiding jobs with many compo-
makes the performance in the absence of communicatioments does not influence the performance much. LP keeps
rather good. Jobs are scheduled in a FCFS manner from the| my|ti-component jobs in the global queue and the jobs
single queue and the more freedom in spreading the jobs ORyjith many components, which are more difficult to fit, im-
the clusters introduced by co-allocation is not used enough pact the performance more. This can be concluded from



Table 8. The percentages of jobs with different numbers of co mponents for the four co-allocation

rules and a mix of the Poisson and Ensflow applications in equa | proportions.
[no] [rco]
Total job size Number of job components Total job size Number of job components
1 [ 2 [3 | 4 1 [ 2 [3 | 4
8 16.67% | 0.0% — — 8 8.335% | 8.335% | — —
16 16.67% | 0.0% — 0.0% 16 5.557% | 5.557% | — 5.556%
32 16.66% | 0.0% — 0.0% 32 0.0% 8.33% | — 8.33%
12 12.5% | 0.0% 0.0% 0.0% 12 3.125% | 3.125% | 3.125% | 3.125%
15 125% | — 0.0% — 15 6.25% | — 6.25% | —
20 12.5% | 0.0% — 0.0% 20 4.167% | 4.167% | — 4.166%
30 12.5% | 0.0% 0.0% — 30 4.167% | 4.167% | 4.166% | —
[co] [fco]
Total job size Number of job components Total job size Number of job components
1 [ 2 [3 | 4 1 [ 2 [3 | 4
8 8.335% | 8.335% | — — 8 8.335% | 8.335% | — —
16 5.557% | 5.557% | — 5.556% 16 8.335% | 8.335% | — 0.0%
32 5.554% | 5.553% | — 5.553% 32 0.0% 16.66% | — 0.0%
12 3.125% | 3.125% | 3.125% | 3.125% 12 6.25% 6.25% | 0.0% 0.0%
15 6.25% | — 6.25% | — 15 125% | — 0.0% —
20 0.0% 6.25% | — 6.25% 20 0.0% 125% | — 0.0%
30 0.0% 6.25% | 6.25% | — 30 0.0% 12.5% | 0.0% —

the significant improvement brought by the [fco] restric- jobs, but once multi-component jobs are allowed, the extra
tions compared to the [rco] ones. GS, as mentioned beforequeue for the global jobs in LP and spreading the global

has good performance in the absence of communication dugobs among the local queues in the case of LS bring enough
to the fact that it can run jobs from the single queue on any benefits as to allow those policies to outperform GS.

of the clusters. However the same single queue makes co- Comparing all the cases considered, we concluded that
allocation without restrictions ([co]) perform poorly, &n  the best results are displayed by LP and LS with the [fco]

only when both the numbers and sizes of the componentgestrictions. The similar performance of LS and LP in that

are restricted ([fco]) is co-allocation an advantage. case shows that for those sizes and numbers for the job com-
ponents, to have a separate queue for the multi-component
5.4 Comparing the policies jobs is enough and the backfilling effect with a window

equal to the number of clusters induced by LS does not

In this section we compare the three policies defined for bring extra improvements.

the three application mixes and the different co-allocatio
rules. From Fig. 5 we conclude that independent of the 6  Gross versus Net Utilization
application mix LS provides the best results for the co-
allocation cases. When there are only single-component In Sect. 5 we have studied the average response time as
jobs the performance of GS is better. LP becomes LS whena function of the gross utilization. In this section we disgu
there are just single-component jobs, so the performance othe difference between gross and net utilization, and quan-
the two policies is the same in the absence of co-allocation.tify this difference for the cases considered in Sect. 5. We
With the [rco] restrictions LS display much better re- have defined the net and the gross utilization based on the
sults than LP, the difference between the two policies beingjob service times in single clusters with fast local communi
that LP keep all multi-component jobs in a single queue. cation, and on the longer service times displayed by multi-
This relates to our observation for GS that when there is component jobs running the same application on multiple
a single queue for multi-component jobs, those with many clusters (thus using slow inter-cluster communicatioe), r
components are hard to fit and have a strong negative im-spectively. The difference between these utilizationfés t
pact on performance. GS is better for the single-componentcapacity lost internally in multi-componentjobs due tosslo



wide-area links. This internal capacity loss might be re- simulations of three multicluster scheduling policiesanrc
duced by restructuring applications [17] or by having them porating co-allocation. The performance of multicluster e
use (collective-) communication operations optimized for ecution of the Ensflow application is very good, which can
wide-area systems [14]. be explained by its relatively small communication compo-
The performance of a multicluster policy may look good nent. Also Poisson application is well suited for multielus
when considering the response time as a function of theter execution, at least for large grid sizes, when the commu-
gross utilization, but, when there is much internal cagacit nication component becomes relatively small. The penalty
loss, the performance as a function of the net utilization (o for the slow multicluster communication can be reduced by
of the throughput) may be poor. This "real” performance allowing the computation and communication parts of the
of a multicluster policy would improve with more efficient processes of a multicluster job to overlap. To be able to
applications or with faster global communication. make a well-considered decision when to submit an appli-
In Figs. 6, 8 and 7 we depict the average response timecation to a single cluster or across multiple clusters, it\do
for our three policies, for the three application mixes and be convenient to have a synthetic application parameterize
for the different ways of co-allocation studied, as a fumeti by the way it is split up across clusters and by its communi-
of both the gross and the net utilization. To assess the dif-cation pattern, to simulate a range of possible application
ference between the two utilizations at a certain response Our simulations of multicluster scheduling policies show
time, one should compare the graphs in the horizontal di-that simply allowing co-allocation without any restriati®
rection. Of course, for the same workload (defined by the is not a very good idea, for none of the policies. In all
arrival rate, and so, by the net utilization), the differenc cases, one should at least limit the job-component sizes,
between the gross and the net utilization is the same for alland preferably also the number of job components. Further-
scheduling policies and co-allocation rules, albeit atspos more, we found that the policies with local queues (possibly
bly different response times. with a global queue for multicomponent jobs) yield better
The largest difference between the gross and the net utiperformance than having only a single global queue.
lizations is always displayed for the Poisson application.
This is an expected consequence of the fact that this applicaReferences
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Figure 4. The total runtime of the Poisson application (in se conds) for processor configuration 4x4
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A Communication-Time Measurements erations, both for synchronized and non-synchronized op-

eration. In Table 9, we show the minimum, average, and

In this appendix we measure the communication time maximum (across ten runs) total communication time for
needed for exchanging the values of border grid points in Synchronized operation; the variation is in general nog ver
the Poisson application with processor configuration 4x4.large. The difference between single-cluster and mukiclu

All numbers presented below are averages over ten runs. ter performance (and between PBS and Globus-1) is very

large.
A.1 Per-process communication time for Table 10 presents the (average) total communication
exchanging borders times for exchanging borders when processes are or are not

synchronized before communication. (This table contains

We measure for each individual process(or) the total time the average results of Table 9.) In Fig. 11 we depict the
(i.e., across all iterations) it spends exchanging bondigts ~ 2verage total communication times from Table 10 after nor-
other processes. Figure 9 contains the results for differen Malization with respect to PBS. We find that with synchro-
numbers of clusters and grid sizes 100x100 and 4000x4000Nized operation, communication in a single cluster is, de-
As expected, for Globus-2, the processes at the edges opending on t.he grld size, 10-35 times faster_then multlc!us—
the clusters need more time to communicate, although fort® communication, while for non-synchronized operation
some reason also some other processes take much time @nd realistic grid sizes), this factor is reduced to ab@ut 1
communicate. This effect is relatively speaking much large ' @ddition, in Table 10 we see that for large grid sizes the
for grid size 100x100 than for grid size 4000x4000. performance of multicluster communication sf[rongly im-

For Globus-2 with grid size 100x100 we also measure Proves when the processes are not synchronized, but that
for each individual process, and in each direction, thd tota this is not the case for a single cluster with PBS.
time it spends exchanging borders with other processes; the
results are presented in Fig. 10. We see that in the crossA-4 Data transfer rate of exchanging borders
cluster directions left and right, receiving border infam

tion takes a relatively large amount of time. We use the results of Table 9 (with synchronized oper-
ation) to calculate the data transfer rate when exchanging

A.2 Synchronized and non-synchronized borders. For this calculation we assume that the slowest
operation communicating process is always an interior process with

four borders to exchange. Since the processor configuration
In our original Poisson application, we do not syn- IS 4x4, the number of grid points to communicate per iter-
chronize processes before they start their communication®tion by an interior process (send and receive) is twice the
phases. So then, as soon as a process finishes its conside of the grid. For a grid point 8 bytes are reserved. In

putation in an iteration, it starts (trying) to communicate Fig- 12 we see that for PBS the data transfer rate strongly
We added an MPI command to our application in order to INCreases when the amount of data to be communicated in-

enable synchronized operation. Then, all processes synCr€ases. The highestdatatrapsfer rate fc_)rPBS is 35 Mpyte/s
chronize in every iteration before the communication start fOr grid size 4000x4000, while for multicluster execution
so they all start communicating at (about) the same time. (Globus-2 and Globus-4) the highest data transfer rate of
In both synchronized and non-synchronized operation, we©ver 3 Mbyte/s is reached for a grid size of 2000x2000.
measure the communication time in an iteration as the

time elapsed between the last process finishing its computa-

tion phase and the last process finishing its communication

phase. The cause of the difference between these comm-

munication times in these two modes of operation lies in

the potential parallelism of computation and communica-

tion in non-synchronized operation. In general, in this mod

of operation, the communication time is smaller, as we will

indeed see in Sect. A.3.

A.3 Total communication time for exchanging
borders

We define the total communication time for exchanging
borders as the sum of the communication times of all it-
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Figure 10. The total per-process communication times in eac
grid size 100x100 (in seconds).

Table 9. The total communication time for exchanging border
ation for processor configuration 4x4.

h of the four directions for Globus-2 and

s (in seconds) with synchronized oper-

grid size number of PBS Globus-1 Globus-2 Globus-4
iterations || min. | avg. [ max. || min. | avg. | max. || min. | avg. | max. || min. | avg. [ max.
50 x 50 865 0.15| 0.16| 0.19 | 0.52 | 0.62 | 0.87 || 3.81 | 467 | 533 || 482 | 496 | 5.13
100 x 100 2132 037 039| 044 || 141 | 151 | 167 || 9.25| 11.8| 15.1 || 12.0| 12.2| 13.7
200 x 200 3570 0.69| 0.72| 0.74 || 290 | 3.04 | 3.56 || 15.0 | 19.8| 23.0 || 20.1 | 20.3 | 20.5
400 x 400 3814 0.89]| 091| 095 | 449 | 468 | 491 || 180 | 225| 294 || 17.5| 20.8| 22.6
1000 x 1000 4347 209|217 | 231 | 949|102 | 11.8 | 22.3| 28.8| 36.5 || 26.1| 29.2| 32.1
2000 x 2000 4387 421 438 467 || 27.1 | 29.1 | 323 || 41.3 | 45.1| 496 || 41.2 | 42.8| 45.8
4000 x 4000 2644 450 | 4.88 | 5.47 127 | 134 | 139 154 | 161 | 171 167 | 179 | 206
10000 x 10000 2644 119 123 | 13.1 | 127 | 162 | 202 186 | 267 | 398 290 | 358 | 427

Table 10. The total communication time for exchanging borde

rs (in seconds) with synchronized and

non-synchronized operation for processor configuration 4x 4,

grid size number of PBS Globus-1 Globus-2 Globus-4
iterations || synchronization|| synchronization|| synchronization|| synchronization

yes| no yes| no yes | no yes| no
50x50 865 0.16 0.11 || 0.62 0.54 || 4.67 2.02 || 4.96 1.92
100x100 2132 0.39 0.28 || 151 131 11.8 416 || 12.2 4.72
200x200 3570 0.72 0.54 || 3.04 2.71|| 19.8 7.09 || 20.3 8.50
400x400 3814 0.91 0.88 || 4.68 420 225 9.30 || 20.8 12.4
1000x1000 4347 2.17 2.00 || 10.2 11.3 || 28.8 16.8 || 29.2 17.5
2000x2000 4387 4.38 359 29.1 165 | 45.1 185 | 42.8 31.4
4000x4000 2644 4.88 526 || 134 18.1|| 161 243 | 179 42.0
10000x10000 2644 12.3 12.7 || 162 39.8 || 267 62.5| 358 172
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Figure 11. The total communication time for exchanging bord
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Figure 12. The data-transfer rate when exchanging borders.




