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Abstract 

Most previous research on job scheduling for heterogeneous systems considers a 
scenario where each job or task is mapped to a single processor. On the other hand, 
research on parallel job scheduling has concentrated primarily on the homogeneous 
context. In this paper, we address the scheduling of parallel jobs in a heterogeneous 
multi-site environment, where each site has a homogeneous cluster of processors, but 
processors at different sites have different speeds. Starting with a simple greedy 
scheduling strategy, we propose and evaluate several enhancements using trace driven 
simulations. We consider the use of multiple simultaneous reservations at different sites, 
use of relative job efficacy as a queuing priority, and compare the use of conservative 
versus aggressive backfilling. Unlike the single-site case, conservative backfilling is 
found to be consistently superior to aggressive backfilling for the heterogeneous multi-
site environment. 
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1. Introduction 
 

Considerable research has been conducted 
over the last decade on the topic of job 
scheduling for parallel systems, such as those 
used for batch processing at Supercomputer 
Centers. Much of this research has been 
presented at the annual “Workshops on Job 
Scheduling Strategies for Parallel Processing 
[39].”  With significant recent developments in 
creating the infrastructure for grid computing, 
the transparent sharing of resources at multiple 
geographically distributed sites is being 
facilitated. An important aspect of significance 
to multi-site job scheduling is that of 
heterogeneity – different sites are generally 
unlikely to have identical configurations of their 
processors and can be expected to have different 

performance characteristics. Much of the 
research to date on job scheduling for 
heterogeneous systems has only addressed the 
scheduling of independent sequential jobs or 
precedence constrained task graphs where each 
task is sequential [2][20][35].  A direct 
extension of the heterogeneous scheduling 
strategies for sequential jobs and coarse-grained 
task-graphs is not attractive for scheduling 
thousands of processors, across multiple sites, 
due to the explosion in computational 
complexity. Instead we seek to extend the 
practically effective back-filling based parallel 
job scheduling strategies [11] used in practice 
for single-site scheduling. In this paper, we 
address the problem of heterogeneous multi-site 
job scheduling, with a homogeneous cluster of 
processors at each site. 



 
The paper is organized as follows. In 

Section 2, we provide some background 
information about parallel job scheduling and 
heterogeneous job scheduling. Section 3 
provides information about the simulation 
environment used for this study. In Section 4, 
we begin by considering a simple greedy 
scheduling strategy for scheduling parallel jobs 
in a multi-site environment, where each site has 
a homogeneous cluster of processors, but 
processors at different sites have different 
speeds. We progressively improve on the simple 
greedy scheme, starting with the use of multiple 
simultaneous reservations at different sites. In 
Section 5, we compare the use of conservative 
versus aggressive backfilling in the 
heterogeneous context, and show that the trends 
are very different from the single-site case. In 
Section 6, we evaluate a scheduling scheme that 
uses the relative performance of jobs at different 
sites as the queue priority criterion for back-
filling. In Section 7, we evaluate the 
implications of restricting the number of sites 
used for simultaneous reservations. Section 8 
discusses related work. We conclude in Section 
9. 

 

2. Background 
 
The problem we address in this paper is 

the following: Given a number of heterogeneous 
sites, with a homogeneous cluster of processors 
at each site, and a stream of parallel jobs 
submitted to a metascheduler, find an effective 
schedule for the jobs so that the average 
turnaround time of jobs is optimized. There has 
been a considerable body of work that has 
addressed the parallel job scheduling problem in 
the homogeneous context [5][30][32][26][12]. 
There has also been work on heterogeneous job 
scheduling [2][20][34][35], but this has 
generally been restricted to the case of 
sequential jobs or coarse-grained precedence 
constrained task graphs. The fundamental 
approach used for scheduling in these two 

contexts has been very different. We provide a 
very brief overview. 

 
 The Min-Min algorithm is representative 
of the scheduling approaches proposed for 
scheduling tasks on heterogeneous systems. A 
set of N tasks is given, with their runtimes on 
each of a set of P processors. Given a partial 
schedule of already scheduled jobs, for each 
unscheduled task, the earliest possible 
completion time is determined by considering 
each of the P processors. After the minimum 
possible completion time for each task is 
determined, the task that has the lowest "earliest 
completion time" is identified and is scheduled 
on the processor that provides its earliest 
completion time. This process is repeated N 
times, till all N tasks are scheduled. The 
problem has primarily been evaluated in a static 
"off-line" context - where all tasks are known 
before scheduling begins, and the objective is 
the minimization of makespan, i.e. the time to 
finish all tasks. The algorithms can be applied 
also in the dynamic "on-line" context, by 
"unscheduling" all non-started jobs at each 
scheduling event - when either a new job arrives 
or a job completes. 
  
 Scheduling of parallel jobs has been 
addressed in the homogeneous context. It is 
usually viewed in terms of a 2D chart with time 
along one axis and the number of processors 
along the other axis. Each job can be thought of 
as a rectangle whose length is the user estimated 
run time and width is the number of processors 
required. The simplest way to schedule jobs at a 
single site is to use a First-Come-First-Served 
(FCFS) policy. This approach suffers from low 
system utilization [22]. Backfilling was 
proposed to improve the system utilization and 
has been implemented in several production 
schedulers. Backfilling works by identifying 
"holes" in the 2D chart and moving forward 
smaller jobs that fit those holes, without 
delaying any jobs with future reservations.  
 



 There are two common variations to 
backfilling - conservative and aggressive 
(EASY)[12][26]. In conservative backfill, every 
job is given a reservation when it enters the 
system. A smaller job is moved forward in the 
queue as long as it does not delay any 
previously queued job. In aggressive 
backfilling, only the job at the head of the queue 
has a reservation. A small job is allowed to leap 
forward as long as it does not delay the job at 
the head of the queue.  
 Thus, prior work on job scheduling 
algorithms for heterogeneous systems has 
primarily focused on independent sequential 
jobs or collections of single-processor tasks with 
precedence constraints. On the other hand, 
schemes for parallel job scheduling have not 
considered heterogeneity of the target systems. 
Extensions of algorithms like Min-Min are 
possible, but their computational complexity 
will be explosively high for realistic systems. 
Instead, we pursue an extension to an approach 
that we previously proposed for distributed 
multi-site scheduling on homogeneous systems 
[31]. The basic idea is to submit each job to 
multiple sites, and cancel redundant submissions 
when one of the sites is able to start the job. 

 

3. Simulation Environment 
 

In this work we employ simulations with 
a locally developed job-scheduler/simulator, 
using workload logs from supercomputer 
centers. The job logs were obtained from the 
collection of workload logs available form Dror 
Feitelson's archive [10].  Results for a 5000 job 
subset of the 430 node Cornell Theory Center 
(CTC) trace and a 5000 job subset of a trace 
from the 128 node IBM SP2 system at the San 
Diego Supercomputer Center (SDSC) are 
reported.  The first 5000 jobs were selected, 
representing roughly a one month set of jobs.  
These traces were modified to vary load and to 
model jobs submitted to a metascheduler from 
geographically distributed users (by time-

shifting two of the traces by three hours, to 
model two centers each in the Pacific and 
Eastern U.S. time zones) . 

 

The available job traces do not provide 
any information about runtimes on multiple 
heterogeneous systems. To model the workload 
characteristics of a heterogeneous environment, 
the NAS Parallel Benchmarks 2.0 [37] were 
used.  Four Class B benchmarks were used to 
model the execution of jobs from the CTC and 
SDSC trace logs on a heterogeneous system.  
Each job was randomly chosen to represent one 
of the NAS benchmarks.  The processing power 
of each remote site was modeled after one of 
four parallel computers for which NAS 
benchmark data was available (cluster 0:SGI 
Origin 2000, cluster 1:IBM SP(WN/66), cluster 
2:Cray T3E 900, cluster 3:IBM SP (P2SC 160 
MHz).  The run times of the various machines 
were normalized with respect to IBM SP (P2SC 
160 MHz) for each benchmark.  The jobs were 
scaled to represent their relative runtime (for the 
same number of nodes) on each cluster.  These 
scaled runtimes represent the expected runtime 
of a job on a particular cluster, assuming the 
estimate from the original trace corresponded to 
an estimate on the IBM SP (P2SC 160 MHz).  
The number of total processors at each remote 
site was chosen to be the same as the original 
traces submitted to that node (430 when 
simulating a trace from CTC and 128 for 
SDSC).  Therefore, in these simulations all jobs 
can run at any of the simulated sites.  In this 
paper, we do not consider the scheduling of a 
single job across multiple sites. 

 

The benchmarks used were: LU (an 
application benchmark, solving a finite 
difference discretization of the 3-D 
compressible Navier - Stokes equations[1]),  
MG (Multi-Grid, a kernel benchmark, 
implementing a V-cycle multi-grid algorithm to 
solve the scalar discrete Poisson equation [25]), 
CG (Conjugate Gradient, that computes an 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

approximation to the smallest eigenvalue of a 
large, sparse, symmetric positive definite 
matrix, and IS (Integer Sort, that tests a sorting 
operation that is important in "particle method" 
codes).   

 

The performance of scheduling 
strategies at different loads was simulated by 
multiplying the runtimes of all jobs by a load 
factor.  The runtime of jobs were expanded to 
leave the duration of the simulated trace 
(roughly one month) unchanged.  This will 
generate a schedule equivalent to a trace where 
the inter-arrival time of the jobs are reduced by 
a constant factor.  However, this model of 
increasing load results in a linear increase in 
turnaround time, even if the wait times remain 
unchanged.  However, the increase in wait time 
(due to the higher load), may cause the 
turnaround time to increase at a faster rate (i.e. 
an exponential increase in wait time will cause 
an exponential increase in turnaround time).  
Simulations were run with load factors ranging 
from 1.0 to 2.0, in increments of 0.2.   

In these simulations all jobs are 
submitted to the metascheduler, however, none 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of the schemes presented require this.  These 
scheduling strategies do not prevent local jobs 
from being submitted to the local queues. 

 

4. Greedy Metascheduling 
 

We first consider a simple greedy 
scheduling scheme, where jobs are processed in 
arrival order by the meta-scheduler, and each 
job is assigned to the site with the lowest 
instantaneous load. The instantaneous load at a 
site is considered to be the ratio of the total 
remaining processor-runtime product for all jobs 
(either queued or running at that site) to the 
number of processors at the site. It thus 
represents the total amount of time needed to 
run all jobs assuming no processor cycles are 
wasted (i.e. jobs can be ideally packed).  

 

Recently, we had evaluated a scheduling 
strategy that uses multiple simultaneous 
requests for the homogeneous multi-site context 
[31] and showed that it provided significant 
improvement in turnaround time. We first 
applied the idea of multiple simultaneous  

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Greedy Metascheduling in a Heterogeneous Environment: Turnaround Time 

Making multiple redundant requests only improves the turnaround time slightly.  
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requests to the heterogeneous environment and 
compared its performance with the simple 
greedy scheme. With the MR (Multiple 
Requests) scheme, each job is sent to the "K" 
least loaded sites. Each of these K sites 
schedules the job locally. The scheduling 
scheme at the sites is aggressive backfilling, 
using a FCFS queue priority. When a job is able 
to start at any of the sites, the site informs the 
metascheduler, which in turn contacts the K-1 
other local schedulers to cancel that redundant 
request from their respective queues. This 
operation must be atomic to ensure that the job 
is only executed at one site. By placing each job 
in multiple queues, the expectation is that more 
jobs will be available in all local queues; 
thereby the jobs will fit into a backfill window.  
Furthermore, more "holes" will be created in the 
schedule due to K - 1 reservations being 
removed when a job starts running, enhancing 
backfill opportunities for queued jobs.   

 

The MR scheme was simulated with 
K=4, i.e. each job was submitted to all four 
sites. It was hoped that these additional 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

backfilling opportunities would lead to 
improved system utilization and reduced 
turnaround times. However, as shown in Figure 
1, the average turnaround time decreases only 
very slightly with the MR scheme, when 
compared to the simple greedy scheme. Figure 2 
shows that the average system utilization for the 
greedy-MR scheme improves only slightly 
when compared to the simple greedy scheme, 
and utilization is quite high for both schemes. 

 

In a heterogeneous environment, the 
same application may perform differently when 
run on different clusters. Table 1 shows the 
measured runtime for three applications (NAS 
benchmarks) on the four parallel systems 
mentioned earlier, for execution on 8 or 256 
nodes. It can be seen that performance differs 
for each application on the different machines. 
Further, no machine is the fastest on all 
applications; the relative performance of 
different applications on the machines can be 
very different. With the simple greedy and MR 
schemes, it is possible that jobs may execute on 
machines where their performance is not the

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Greedy Metascheduling: Utilization 

With respect to utilization, making multiple requests results in a slight improvement over the 
greedy scheme 
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TABLE 1 (Heterogeneous Job Runtimes) 

 

 SGI 

Origin 2000 

IBM 

SP (WN/66) 

Cray 

T3E 900 

IBM SP+ 

(P2SC 160 MHz) 

IS Class B 

(8 Nodes) 

23.3 22.6 16.3*  17.7 

MG Class B 

(8 Nodes) 

35.5 34.3 25.3 17.2*  

MG Class B 

(256 Nodes) 

1.3147 2.2724 1.8 1.1*  

LU Class B 

(256 Nodes) 

20.328* 94.893 35.6 24.2 

*Best runtime the a job 

+Original estimated runtime 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Greedy Metascheduling: Effective Utilization 

With respect to effective utilization, making multiple requests only results in a slight 
improvement over the greedy scheme 
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Figure 4: Performance of Conservative Multiple Request Scheme  

Using a conservative completion-based scheme has a significant impact on the Greedy –MR scheme. 
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best. In order to assess this, we computed an 
"effective utilization" metric. We first define the 
efficacy of a job at any site to be the ratio of its 
best runtime (among all the sites) to its runtime 
at that site. The effective utilization is a 
weighted utilization metric, where each job's 
processor-runtime product is weighted by its 
efficacy on that site. While utilization is a 
measure of the fraction of used processor cycles 
on the system, the effective utilization is a 
measure of the fraction of used processor cycles 
with respect to its best possible usage. 
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5. Aggressive Vs Conservative 
Scheduling 

 

So far we have used aggressive backfilling, 
and seen that using multiple requests only 
improves performance slightly.  In this scheme 
(Greedy-MR) a job runs at the site where it 
starts the earliest. In a heterogeneous context, 
the site where the job starts the earliest may not  
be the best site.  The heterogeneity of the sites 
means that any given job can have different 
runtimes at the various sites.  Thus, the site that 
gives the earliest start time need not give the 
earliest completion time. Therefore, it would be 
beneficial to use completion time when deciding 
whether a job can start or not.  However, in 
order to be able to estimate the completion of a 
job at all relevant sites, conservative backfilling 
has to be employed at each site. When a job is 
about to start at a site, the scheduler has to 
check the expected completion time of the same 
job at all sites where the job is scheduled, and 
determine if some other site has a better 
completion time.  If the job is found to have a 
better completion time at another site, the job is  
not run and is removed from the queue at this 
site.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Figure 5: Aggressive vs. Conservative Back-filling: Single Site 

For a single site, aggressive backfilling outperforms conservative backfilling. 
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Figure 4 compares the performance of 
the completion-based conservative scheme with 
the previously evaluated start-based aggressive 
scheme for the CTC and SDSC traces. It can be 
observed that the conservative scheme performs 
much better than the aggressive scheme. This is 
quite the opposite of what generally is observed 
with single-site scheduling, where aggressive 
backfilling performs better than conservative 
backfilling in regards to the turnaround time 
metric. It has been shown that aggressive 
backfilling consistently improves the 
performance of long jobs relative to 
conservative backfilling [29] and the turnaround 
time metric is dominated by the long jobs. 
Indeed, that is what we observe with single site 
scheduling for these traces (in order to make the 
overall load comparable to the four-site 
experiments, the runtime of all jobs was scaled 
down by a factor of 4).  Figures 6 and 7 provide 
insights into the reason for the superior 
performance of the completion based 
conservative scheme for multi-site scheduling. 
Even though the aggressive scheme has better 
"raw" utilization, the effective utilization is 
worse than the conservative scheme. The higher 
effective utilization with the completion-based 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

conservative scheme suggests that basing the 
decision on expected job completion time rather 
than start time improves the chances of a job 
running on a site where its efficacy is higher, 
thereby making more effective use of the 
processor cycles. The figures show similar 
trends for both CTC and SDSC traces. 

The average turnaround time for 
aggressive backfilling at a single site is better, 
compared to conservative backfilling, because 
of improved backfilling chances with aggressive 
backfilling. The backfilling opportunities in the 
single-site context are poorer with conservative 
backfilling because each waiting job has a 
reservation, and the presence of multiple 
reservations creates impediments to backfilling.  
Conservative backfilling has been shown to 
especially prevent long narrow jobs from 
backfilling. The improvement in the average 
turnaround time with conservative backfilling in 
the heterogeneous context is also attributed to 
improved backfilling caused by the holes 
created by the dynamic removal of replicated 
jobs at each site, and an increased number of 
jobs to attempt to backfill at each site. Multiple 
reservation requests causes there to be an 
increased number of jobs in all local queues at  



 

 

 

 

 

 

 

 

 

 

 

Figure 6: Utilization of Conservative Completion-Based Multiple Requests Scheme 

When using the conservative competition-based scheme, the raw utilization actually decreases, even 
though the turnaround time has improved. 
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Figure 7: Effective Utilization of Conservative Completion-Based Multiple Requests Scheme 

Using a conservative completion-based scheme significantly increases effective utilization, even 
though raw utilization decreases.   
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Figure 8: Performance of Efficacy Based Scheduling 

Explicitly accounting for efficacy (by using efficacy for the priority policy) reduces turnaround time 
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any given time.  This gives the scheduler more 
jobs to choose from, when attempting to fill a 
backfill window.  In a heterogeneous 
environment the presence of reservation replicas 
brings both backfilling advantages and the 
advantages due to reservation guarantees. 

 

We then incorporated a refinement to the 
completion-based multiple-reservation 
scheduling strategy. In the homogeneous case, 
when a job is ready to start at one of the sites, 
all other copies of that job at other sites can be 
cancelled because none of those could possibly 
produce an earlier completion time. In the 
heterogeneous context, when a job is ready to 
start at a site, and appears to have the earliest 
completion time when compared to its 
reservation at other sites, there is still a 
possibility that future backfilling at a faster site 
might allow a faster completion at the faster 
site. In order to take advantage of these possible 
backfills, it might be worthwhile to keep the 
jobs in the queues at the faster sites, even 
though the current remote reservations do not 
provide a completion time better than at the site 
where the job is ready to start. We implemented 
a version of the completion - based conservative 
backfilling scheme where only jobs at slower  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sites were cancelled when a job was started at a 
site. This improved performance, but not to a 
significant extent. 

 

6. Efficacy Based Scheduling 
 

The previous data has shown that the 
raw utilization is not a good indicator for how 
well a scheduling strategy performs in a 
heterogeneous environment.  The turnaround 
time tracks more closely with the effective 
utilization.  Therefore, a scheme which directly 
takes into account the efficacy of jobs would be 
desirable.  A strategy which increases the 
efficacy of the jobs would lead to a higher 
effective utilization, which we expect will lower 
the average turn around time. 

 

To include efficacy in our strategies we 
propose using efficacy as the priority order for 
the jobs in the queue.  Changing the order of the 
reserved jobs will change the backfilling order.  
In this case jobs with higher efficacies will 
attempt to backfill before jobs with lower 
efficacies, and thus will have more backfilling 
opportunities.  In the case of identical efficacies  



 

 

 

 

 

 

 

 

 

 

Figure 9: Utilization of efficacy based scheduling 

Raw utilization is slightly decreased when using an efficacy priority queue.  Even though the 
turnaround time has improved. 
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Figure 10: Effective utilization of efficacy based scheduling 

Using an efficacy priority queue increases effective utilization, in spite of the decrease in raw 
utilization.  This explains the improvement in turnaround time. 
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the secondary priority will be FCFS.  This 
priority scheme will guarantee a starvation free 
system using any of the given strategies. 
Furthermore, in a conservative backfilling 
scheduler, a priority queue based on efficacy 
will result in bounded delays for all jobs.  This 
is due to each job being guaranteed to have an 
efficacy of 1.0 on at least one site.  The job is 
guaranteed to make progress at this site, leading 
to a starvation free system.  This has resulted in 
a minimal (<5%) increase in worst case 
turnaround time, when compared to an FCFS 
priority. 

 By changing the priority order to 
efficacy, a job will have a greater chance to run 
on its faster machines (because it will have a 
higher priority on these machines than the jobs 
with a lower efficacy).  This can be expected to 
increase the average efficacy of the system.  
This higher average efficacy (as shown by the 
effective utilization) is expected to lead to a 
lower turn around time for strategies which use 
an efficacy priority policy. Figure 10 shows that 
using an efficacy based priority policy indeed 
leads to a higher effective utilization.  This is in 
spite of a FCFS priority queue having better raw 
utilization (Figure 9).  The higher effective 
utilization provides the basis for the improved 
turn around time seen in Figure 8.  

 

7. Restricted Multi-Site Reservations 

 

So far the strategies implemented in this 
paper have concentrated on either making one 
reservation on a single site or reservations at all 
sites (where the total number of reservations is 
equal to the total number of sites).  We have 
seen that making multiple reservations shows a 
substantial improvement in the average 
turnaround time.  However, it is of interest to 
make fewer reservations, if possible.  This is 
due to the overhead involved in maintaining a 
larger number of reservations (network latency 
bound).  When a job is ready to start at a site, it 
must contact all other sites and determine 

whether it should start, based on the current 
strategy.  When a job has determined it should 
start (by contacting all other sites where a 
reservation is held and receiving a reply), it 
must inform all other sites that the job is 
starting.  This process may happen multiple 
times for each job (a maximum of once for each 
site which attempts to start the job).  Therefore, 
a minimum of 3*(K-1) messages must be 
transferred for each job to start.  Further, the job 
must be transferred to each site where a 
reservation is made (network bandwidth bound).  

 

This network overhead could be 
substantially reduced by limiting the number of 
reservations.  When fewer reservations are used 
per job, each site does not have to contact as 
many other sites before starting a job, and there 
is a lower chance that a job will be denied at 
start (there will be fewer sites to deny the job).  
These factors can substantially reduce the 
communication overhead needed. 

 

Figure 11 shows the turnaround time 
results when each job is submitted to K sites, 
with K varied from 1 to 4.  The graphs show 
that the greatest degree of improvement is when 
the number of sites is increased from one to two.  
There is less of a benefit as the number of sites 
is further increased.  Therefore, when network 
latencies are high, jobs can be submitted to a 
smaller number of sites and the multi-
reservation scheduler can still realize a 
substantial fraction of the benefits achievable 
with a scheduler that schedules each job at all 
sites. In order to avoid starvation (when using 
efficacy as the priority) the efficacy is relative to 
the sites where the job was scheduled. 
Therefore, each job will still be guaranteed to 
have an efficacy of one at least on one of the 
sites.  Hence the jobs are still guaranteed to be 
free from starvation. 

 

In our previous graphs and data, we use 
the instantaneous load metric (either maintained  



 

 

 

 

 

 

 

 

 

 

 

Figure 11: Performance with restricted multi-site reservation, no communication costs 

As the number of scheduling sites are increased, the turnaround time monotonically decreases 

CTC Trace

10000

30000

50000

70000

90000

110000

130000

150000

1.0 1.2 1.4 1.6 1.8 2.0

Runtime Expansion Factor

A
ve

ra
g

e 
T

u
rn

ar
o

u
n

d
 T

im
e 1 Site

2 Sites
3 Sites
4 Sites

SDSC Trace

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

1.0 1.2 1.4 1.6 1.8 2.0

Runtime Expansion Factor

A
ve

ra
g

e 
T

u
rn

 A
ro

u
n

d
 T

im
e 1 Site

2 Sites
3 Sites
4 Sites

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Effect of site selection criteria, no communication costs 

Using the completion time of the reservations, as opposed to an instantaneous load, improves the 
turnaround time. 
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at the metascheduler or by periodically polling 
the remote sites) to choose which K sites to 
schedule each job.  We next consider a more 
accurate approach to selecting the sites. Instead 
of using the instantaneous load, we query each 
site to determine the earliest completion time, 
based on its current schedule. This further takes 
into account the efficacy of the job at each 
location and there is a higher probability that the 
job will run on a site where its efficacy is 
maximum.  Figure 12 shows that changing the 
mechanism for site selection can have 
significant impact on the turn around time.  
There is of course no change when the job is 
submitted to the maximum number of sites, 
because all sites are being chosen, regardless of 
the site selection mechanism. 

 

From Figure 12 it can be observed that 
when using completion time as the site selection 
criterion, submitting to fewer sites can be almost 
as effective as submitting to all sites.  However, 
this more accurate approach does not come free.  
There is an additional initial overhead that must 
be incurred to determine a job’s K best 
completion times, which is not incurred when 
using the instantaneous load.  The load of each 
site can be maintained incrementally by the 
metascheduler, or the metascheduler can 
periodically update the load of each site; 
therefore there are no per-job communication 
costs incurred in selecting the K least loaded 
sites.  In contrast, to determine the K best 
completion times , each site must be queried for 
its expected completion time.  For N sites, the 
querying will require 2*N messages, N 
messages from the metascheduler (to contact 
each site with the job specifications) and a 
response from each site.  When using 
completion time to determine the K sites, there 
are an additional 2*N messages needed to 
determine the minimum completion times.  
Therefore, a minimum of 3*(K-1) messages per 
job are required when using the instantaneous 
load and a minimum of 2*N+3*(K-1) messages 
when using completion time.   Thus, for a 

substantially large N, if the scheduler can 
generate similar results with a smaller K the 
dependence on the network can be reduced, 
even if the K sites are chosen via the best 
completion time. 

Next we assess the impact of 
communication overhead for data transfer when  
running a job at a remote site. We assumed a 
data transfer rate of 10Mbps.  Each job was 
assigned a random size (for executable plus 
data) between 500MB and 3GB. The data 
transfer overhead was modeled by simply 
increasing the length of a job if it is run 
remotely (local jobs do not involve any data 
transfer).  Figure 13 shows the average 
turnaround time including the extra overheard.  
The turnaround times have increased due to the 
additional overhead, but relative trends remain 
the same.  Figure 14 shows the number of 
control messages which were actually needed to 
maintain the schedule.  There is a substantial 
increase in the number of messages when the 
value of K is increased.   

 

8. Related Work 
 

Recent advances in creating the 
infrastructure for grid computing (e.g. Globus 
[13], Legion[18], Condor-G[14] and UNICORE 
[24]) facilitate the deployment of 
metaschedulers that schedule jobs onto multiple 
heterogeneous sites. However there has been 
little work on developing and evaluating job 
scheduling schemes for a heterogeneous 
environment. 

Research into scheduling for the grid 
environment can be broadly classified into two 
categories: a) projects where the focus is on 
approaches to optimize the performance of a 
single job in a grid environment, and b) projects 
that focus on performance optimization across a 
collection of independent jobs. Much of the 
work on scheduling at GRAIL (Grid Research 
And Innovation Laboratory at UCSD) and the  



 

 

 

 

 

 

 

 

 

 

Figure 14: Efficacy based queue and a contention-less network model 

Decreasing the number of scheduling sites significantly reduces the number of control messages 
needed to maintain the schedule. 
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Figure 13:  Efficacy based queue and a contention-less network model 

Adding data transfer time uniformly increase turnaround time, but does not affect the trends 
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GrADS (Grid Applications Development 
Software project headed by Rice U.) project 
belongs in the former category [1][2][4] 
[6][7][27][33]. In contrast, the scheduling 
strategy proposed in this paper falls in the latter. 

Application level scheduling techniques 
[1][4][16] have been developed to efficiently 
deploy resource intensive applications that 
require more resources than available at a single 
site and parameter sweep applications over the 
grid. There have been some studies on 
decoupling the scheduler core and application 
specific components [7] and introducing a 
Metascheduler [33] to balance the interests of 
different applications. But none of the above 
works address the problem of developing 
effective scheduling strategies for a 
heterogeneous environment. [9] proposes an 
economic model for scheduling in the 
heterogeneous grid environments where the 
objective is to minimize the cost function 
associated with each job - an aspect somewhat 
orthogonal to that addressed in this paper. [36] 
proposes a load sharing facility with emphasis 
on distributing the jobs among the various 
machines, based on the workload on the 
machines. 

Studies that have focused on developing 
job scheduling algorithms for the grid 
computing environment include 
[15][17][19][28][31]. Most of these studies do 
not address the issue of heterogeneity.  In [21] a 
few centralized schemes for sequential jobs 
were evaluated. In [15], the performance of a 
centralized metascheduler was studied under 
different levels of information exchange 
between the meta scheduler and the local 
resource management systems where the 
individual MPP’s are heterogeneous in that the 
number of processors at different sites differs, 
but processors at all sites are equally powerful. 
In [8], the impact of scheduling jobs across 
multiple homogenous MPP’s was studied, 
where  jobs can be run on a collection of 
homogenous nodes from independent MPP’s, 

where each MPP may have a different number 
of nodes.  The impact of advance reservations 
for meta-jobs on the overall system performance 
was studied in [28].  In [19][31], some 
centralized and decentralized scheduling 
algorithms were evaluated for metacomputing, 
but only the homogeneous context is 
considered.  

 
9. Current Status and Future Work 

The simulation results show that the 
proposed scheduling strategy is promising. We 
plan next to implement the strategy in the 
Silver/Maui scheduler and evaluate it on the 
Cluster Ohio distributed system. The Ohio 
Supercomputer Center recently initiated the 
Cluster Ohio project [38] to encourage increased 
academic usage of cluster computing and to 
leverage software advances in distributed 
computing.  OSC acquires and puts into 
production a large new cluster approximately 
every two years, following the budget cycle.  
OSC distributes the older machine in chunks to 
academic laboratories at universities around the 
state, with the proviso that the machines 
continue to be controlled centrally and available 
for general use by the OSC community. Each 
remote cluster is designed to be fully stand-
alone, with its own file system and scheduling 
daemons.  To allow non-trivial access by remote 
users, currently PBS and Maui/Silver are used 
with one queue for each remote cluster and 
require that users explicitly choose the remote 
destination. Remote users can access any cluster 
for a PBS job by using the Silver metascheduler.  
Globus is used to handle the mechanics of 
authentication among the many distributed 
clusters. We plan to deploy and evaluate the 
heterogeneous scheduling approach on the 
Cluster Ohio systems. 
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