

Scheduling of Parallel Jobs in a Heterogeneous Multi-Site Environment∗∗∗∗

Gerald Sabin, Rajkumar Kettimuthu, Arun Rajan and P Sadayappan

The Ohio State University

Columbus OH 43201

{ sabin, kettimut, rajan, saday} @cis.ohio-state.edu

Abstract

Most previous research on job scheduling for heterogeneous systems considers a
scenario where each job or task is mapped to a single processor. On the other hand,
research on parallel job scheduling has concentrated primarily on the homogeneous
context. In this paper, we address the scheduling of parallel jobs in a heterogeneous
multi-site environment, where each site has a homogeneous cluster of processors, but
processors at different sites have different speeds. Starting with a simple greedy
scheduling strategy, we propose and evaluate several enhancements using trace driven
simulations. We consider the use of multiple simultaneous reservations at different sites,
use of relative job efficacy as a queuing priority, and compare the use of conservative
versus aggressive backfilling. Unlike the single-site case, conservative backfilling is
found to be consistently superior to aggressive backfilling for the heterogeneous multi-
site environment.

∗ Supported in part by NSF grant EIA-9986052

1. Introduction

Considerable research has been conducted
over the last decade on the topic of job
scheduling for parallel systems, such as those
used for batch processing at Supercomputer
Centers. Much of this research has been
presented at the annual “Workshops on Job
Scheduling Strategies for Parallel Processing
[39].” With significant recent developments in
creating the infrastructure for grid computing,
the transparent sharing of resources at multiple
geographically distributed sites is being
facilitated. An important aspect of significance
to multi-site job scheduling is that of
heterogeneity – different sites are generally
unlikely to have identical configurations of their
processors and can be expected to have different

performance characteristics. Much of the
research to date on job scheduling for
heterogeneous systems has only addressed the
scheduling of independent sequential jobs or
precedence constrained task graphs where each
task is sequential [2][20][35]. A direct
extension of the heterogeneous scheduling
strategies for sequential jobs and coarse-grained
task-graphs is not attractive for scheduling
thousands of processors, across multiple sites,
due to the explosion in computational
complexity. Instead we seek to extend the
practically effective back-filling based parallel
job scheduling strategies [11] used in practice
for single-site scheduling. In this paper, we
address the problem of heterogeneous multi-site
job scheduling, with a homogeneous cluster of
processors at each site.

The paper is organized as follows. In

Section 2, we provide some background
information about parallel job scheduling and
heterogeneous job scheduling. Section 3
provides information about the simulation
environment used for this study. In Section 4,
we begin by considering a simple greedy
scheduling strategy for scheduling parallel jobs
in a multi-site environment, where each site has
a homogeneous cluster of processors, but
processors at different sites have different
speeds. We progressively improve on the simple
greedy scheme, starting with the use of multiple
simultaneous reservations at different sites. In
Section 5, we compare the use of conservative
versus aggressive backfilling in the
heterogeneous context, and show that the trends
are very different from the single-site case. In
Section 6, we evaluate a scheduling scheme that
uses the relative performance of jobs at different
sites as the queue priority criterion for back-
filling. In Section 7, we evaluate the
implications of restricting the number of sites
used for simultaneous reservations. Section 8
discusses related work. We conclude in Section
9.

2. Background

The problem we address in this paper is

the following: Given a number of heterogeneous
sites, with a homogeneous cluster of processors
at each site, and a stream of parallel jobs
submitted to a metascheduler, find an effective
schedule for the jobs so that the average
turnaround time of jobs is optimized. There has
been a considerable body of work that has
addressed the parallel job scheduling problem in
the homogeneous context [5][30][32][26][12].
There has also been work on heterogeneous job
scheduling [2][20][34][35], but this has
generally been restricted to the case of
sequential jobs or coarse-grained precedence
constrained task graphs. The fundamental
approach used for scheduling in these two

contexts has been very different. We provide a
very brief overview.

 The Min-Min algorithm is representative
of the scheduling approaches proposed for
scheduling tasks on heterogeneous systems. A
set of N tasks is given, with their runtimes on
each of a set of P processors. Given a partial
schedule of already scheduled jobs, for each
unscheduled task, the earliest possible
completion time is determined by considering
each of the P processors. After the minimum
possible completion time for each task is
determined, the task that has the lowest "earliest
completion time" is identified and is scheduled
on the processor that provides its earliest
completion time. This process is repeated N
times, till all N tasks are scheduled. The
problem has primarily been evaluated in a static
"off-line" context - where all tasks are known
before scheduling begins, and the objective is
the minimization of makespan, i.e. the time to
finish all tasks. The algorithms can be applied
also in the dynamic "on-line" context, by
"unscheduling" all non-started jobs at each
scheduling event - when either a new job arrives
or a job completes.

 Scheduling of parallel jobs has been
addressed in the homogeneous context. It is
usually viewed in terms of a 2D chart with time
along one axis and the number of processors
along the other axis. Each job can be thought of
as a rectangle whose length is the user estimated
run time and width is the number of processors
required. The simplest way to schedule jobs at a
single site is to use a First-Come-First-Served
(FCFS) policy. This approach suffers from low
system utilization [22]. Backfilling was
proposed to improve the system utilization and
has been implemented in several production
schedulers. Backfilling works by identifying
"holes" in the 2D chart and moving forward
smaller jobs that fit those holes, without
delaying any jobs with future reservations.

 There are two common variations to
backfilling - conservative and aggressive
(EASY)[12][26]. In conservative backfill, every
job is given a reservation when it enters the
system. A smaller job is moved forward in the
queue as long as it does not delay any
previously queued job. In aggressive
backfilling, only the job at the head of the queue
has a reservation. A small job is allowed to leap
forward as long as it does not delay the job at
the head of the queue.
 Thus, prior work on job scheduling
algorithms for heterogeneous systems has
primarily focused on independent sequential
jobs or collections of single-processor tasks with
precedence constraints. On the other hand,
schemes for parallel job scheduling have not
considered heterogeneity of the target systems.
Extensions of algorithms like Min-Min are
possible, but their computational complexity
will be explosively high for realistic systems.
Instead, we pursue an extension to an approach
that we previously proposed for distributed
multi-site scheduling on homogeneous systems
[31]. The basic idea is to submit each job to
multiple sites, and cancel redundant submissions
when one of the sites is able to start the job.

3. Simulation Environment

In this work we employ simulations with
a locally developed job-scheduler/simulator,
using workload logs from supercomputer
centers. The job logs were obtained from the
collection of workload logs available form Dror
Feitelson's archive [10]. Results for a 5000 job
subset of the 430 node Cornell Theory Center
(CTC) trace and a 5000 job subset of a trace
from the 128 node IBM SP2 system at the San
Diego Supercomputer Center (SDSC) are
reported. The first 5000 jobs were selected,
representing roughly a one month set of jobs.
These traces were modified to vary load and to
model jobs submitted to a metascheduler from
geographically distributed users (by time-

shifting two of the traces by three hours, to
model two centers each in the Pacific and
Eastern U.S. time zones) .

The available job traces do not provide
any information about runtimes on multiple
heterogeneous systems. To model the workload
characteristics of a heterogeneous environment,
the NAS Parallel Benchmarks 2.0 [37] were
used. Four Class B benchmarks were used to
model the execution of jobs from the CTC and
SDSC trace logs on a heterogeneous system.
Each job was randomly chosen to represent one
of the NAS benchmarks. The processing power
of each remote site was modeled after one of
four parallel computers for which NAS
benchmark data was available (cluster 0:SGI
Origin 2000, cluster 1:IBM SP(WN/66), cluster
2:Cray T3E 900, cluster 3:IBM SP (P2SC 160
MHz). The run times of the various machines
were normalized with respect to IBM SP (P2SC
160 MHz) for each benchmark. The jobs were
scaled to represent their relative runtime (for the
same number of nodes) on each cluster. These
scaled runtimes represent the expected runtime
of a job on a particular cluster, assuming the
estimate from the original trace corresponded to
an estimate on the IBM SP (P2SC 160 MHz).
The number of total processors at each remote
site was chosen to be the same as the original
traces submitted to that node (430 when
simulating a trace from CTC and 128 for
SDSC). Therefore, in these simulations all jobs
can run at any of the simulated sites. In this
paper, we do not consider the scheduling of a
single job across multiple sites.

The benchmarks used were: LU (an
application benchmark, solving a finite
difference discretization of the 3-D
compressible Navier - Stokes equations[1]),
MG (Multi-Grid, a kernel benchmark,
implementing a V-cycle multi-grid algorithm to
solve the scalar discrete Poisson equation [25]),
CG (Conjugate Gradient, that computes an

approximation to the smallest eigenvalue of a
large, sparse, symmetric positive definite
matrix, and IS (Integer Sort, that tests a sorting
operation that is important in "particle method"
codes).

The performance of scheduling
strategies at different loads was simulated by
multiplying the runtimes of all jobs by a load
factor. The runtime of jobs were expanded to
leave the duration of the simulated trace
(roughly one month) unchanged. This will
generate a schedule equivalent to a trace where
the inter-arrival time of the jobs are reduced by
a constant factor. However, this model of
increasing load results in a linear increase in
turnaround time, even if the wait times remain
unchanged. However, the increase in wait time
(due to the higher load), may cause the
turnaround time to increase at a faster rate (i.e.
an exponential increase in wait time will cause
an exponential increase in turnaround time).
Simulations were run with load factors ranging
from 1.0 to 2.0, in increments of 0.2.

In these simulations all jobs are
submitted to the metascheduler, however, none

of the schemes presented require this. These
scheduling strategies do not prevent local jobs
from being submitted to the local queues.

4. Greedy Metascheduling

We first consider a simple greedy
scheduling scheme, where jobs are processed in
arrival order by the meta-scheduler, and each
job is assigned to the site with the lowest
instantaneous load. The instantaneous load at a
site is considered to be the ratio of the total
remaining processor-runtime product for all jobs
(either queued or running at that site) to the
number of processors at the site. It thus
represents the total amount of time needed to
run all jobs assuming no processor cycles are
wasted (i.e. jobs can be ideally packed).

Recently, we had evaluated a scheduling
strategy that uses multiple simultaneous
requests for the homogeneous multi-site context
[31] and showed that it provided significant
improvement in turnaround time. We first
applied the idea of multiple simultaneous

Figure 1: Greedy Metascheduling in a Heterogeneous Environment: Turnaround Time

Making multiple redundant requests only improves the turnaround time slightly.

SDSC Trace

0

100000

200000

300000

400000

500000

600000

700000

1.0 1.2 1.4 1.6 1.8 2.0

Runtime Expansion Factor

A
ve

ra
ge

 T
ur

n
A

ro
un

d
T

im
e

 Greedy
Greedy-MR

CTC Trace

19000

29000

39000

49000

59000

69000

79000

89000

99000

109000

119000

1.0 1.2 1.4 1.6 1.8 2.0

Runtime Expansion Factor

A
ve

ra
g

e
T

u
rn

ar
o

u
n

d
 T

im
e

Greedy
Greedy - MR

requests to the heterogeneous environment and
compared its performance with the simple
greedy scheme. With the MR (Multiple
Requests) scheme, each job is sent to the "K"
least loaded sites. Each of these K sites
schedules the job locally. The scheduling
scheme at the sites is aggressive backfilling,
using a FCFS queue priority. When a job is able
to start at any of the sites, the site informs the
metascheduler, which in turn contacts the K-1
other local schedulers to cancel that redundant
request from their respective queues. This
operation must be atomic to ensure that the job
is only executed at one site. By placing each job
in multiple queues, the expectation is that more
jobs will be available in all local queues;
thereby the jobs will fit into a backfill window.
Furthermore, more "holes" will be created in the
schedule due to K - 1 reservations being
removed when a job starts running, enhancing
backfill opportunities for queued jobs.

The MR scheme was simulated with
K=4, i.e. each job was submitted to all four
sites. It was hoped that these additional

backfilling opportunities would lead to
improved system utilization and reduced
turnaround times. However, as shown in Figure
1, the average turnaround time decreases only
very slightly with the MR scheme, when
compared to the simple greedy scheme. Figure 2
shows that the average system utilization for the
greedy-MR scheme improves only slightly
when compared to the simple greedy scheme,
and utilization is quite high for both schemes.

In a heterogeneous environment, the
same application may perform differently when
run on different clusters. Table 1 shows the
measured runtime for three applications (NAS
benchmarks) on the four parallel systems
mentioned earlier, for execution on 8 or 256
nodes. It can be seen that performance differs
for each application on the different machines.
Further, no machine is the fastest on all
applications; the relative performance of
different applications on the machines can be
very different. With the simple greedy and MR
schemes, it is possible that jobs may execute on
machines where their performance is not the

Figure 2: Greedy Metascheduling: Utilization

With respect to utilization, making multiple requests results in a slight improvement over the
greedy scheme

CTC Trace

66%

70%

74%

78%

82%

86%

1.0 1.2 1.4 1.6 1.8 2.0

Runtime Expansion Factor

U
ti

liz
at

io
n

Greedy
Greedy - MR

SDSC Trace

90%

92%

94%

96%

98%

100%

1.0 1.2 1.4 1.6 1.8 2.0

Runtime Expansion factor

U
ti

liz
at

io
n

Greedy
Greedy-MR

TABLE 1 (Heterogeneous Job Runtimes)

 SGI

Origin 2000

IBM

SP (WN/66)

Cray

T3E 900

IBM SP+

(P2SC 160 MHz)

IS Class B

(8 Nodes)

23.3 22.6 16.3* 17.7

MG Class B

(8 Nodes)

35.5 34.3 25.3 17.2*

MG Class B

(256 Nodes)

1.3147 2.2724 1.8 1.1*

LU Class B

(256 Nodes)

20.328* 94.893 35.6 24.2

*Best runtime the a job

+Original estimated runtime

Figure 3: Greedy Metascheduling: Effective Utilization

With respect to effective utilization, making multiple requests only results in a slight
improvement over the greedy scheme

CTC Trace

46%

48%

50%

52%

54%

56%

58%

1.0 1.2 1.4 1.6 1.8 2.0

Runtime Expansion Factor

E
ff

ec
ti

ve
 U

ti
liz

at
io

n

Greedy

Greedy - MR

SDSC Trace

60%

62%

64%

66%

68%

70%

1.0 1.2 1.4 1.6 1.8 2.0

Runtime Expansion Factor

E
ff

ec
ti

ve
 U

ti
liz

at
io

n

Greedy
Greedy-MR

Figure 4: Performance of Conservative Multiple Request Scheme

Using a conservative completion-based scheme has a significant impact on the Greedy –MR scheme.

CTC Trace

10000

30000

50000

70000

90000

110000

1.0 1.2 1.4 1.6 1.8 2.0

Runtime Expansion Factor

A
ve

ra
g

e
T

u
rn

ar
o

u
n

d
 T

im
e

Greedy - MR (Aggressive)

Conservative - MR

SDSC Trace

0

100000

200000

300000

400000

500000

600000

700000

1.0 1.2 1.4 1.6 1.8 2.0

Runtime Expansion Factor

A
ve

ra
g

e
T

u
rn

 A
o

ru
n

d
 T

im
e Greedy-MR (Aggressive)

Conservative-MR

best. In order to assess this, we computed an
"effective utilization" metric. We first define the
efficacy of a job at any site to be the ratio of its
best runtime (among all the sites) to its runtime
at that site. The effective utilization is a
weighted utilization metric, where each job's
processor-runtime product is weighted by its
efficacy on that site. While utilization is a
measure of the fraction of used processor cycles
on the system, the effective utilization is a
measure of the fraction of used processor cycles
with respect to its best possible usage.

orsrOfProcessTotalNumbeMakespan

UsedProcessorsRuntimeEfficacy

tilizationEffectiveU

iii

∗
∗∗

=

∑

Where

meMinStartTietionTimeMaxComplet

Makespan

−
=

and

ii

ii

i

essorsUsedActualProcimeActualRunt

dcessorsUseOptimalProtimeOptimalRun

Efficacy

∗
∗

=

5. Aggressive Vs Conservative
Scheduling

So far we have used aggressive backfilling,
and seen that using multiple requests only
improves performance slightly. In this scheme
(Greedy-MR) a job runs at the site where it
starts the earliest. In a heterogeneous context,
the site where the job starts the earliest may not
be the best site. The heterogeneity of the sites
means that any given job can have different
runtimes at the various sites. Thus, the site that
gives the earliest start time need not give the
earliest completion time. Therefore, it would be
beneficial to use completion time when deciding
whether a job can start or not. However, in
order to be able to estimate the completion of a
job at all relevant sites, conservative backfilling
has to be employed at each site. When a job is
about to start at a site, the scheduler has to
check the expected completion time of the same
job at all sites where the job is scheduled, and
determine if some other site has a better
completion time. If the job is found to have a
better completion time at another site, the job is
not run and is removed from the queue at this
site.

Figure 5: Aggressive vs. Conservative Back-filling: Single Site

For a single site, aggressive backfilling outperforms conservative backfilling.

Single Site

0.0E+00

5.0E+04

1.0E+05

1.5E+05

2.0E+05

2.5E+05

3.0E+05

3.5E+05

4.0E+05

4.5E+05

1 1.2 1.4 1.6 1.8 2

Runtime Expansion Factor

T
u

rn
 A

ro
u

n
d

 T
im

e

ctc easy
ctc cons
sdsc easy
sdsc cons

Figure 4 compares the performance of
the completion-based conservative scheme with
the previously evaluated start-based aggressive
scheme for the CTC and SDSC traces. It can be
observed that the conservative scheme performs
much better than the aggressive scheme. This is
quite the opposite of what generally is observed
with single-site scheduling, where aggressive
backfilling performs better than conservative
backfilling in regards to the turnaround time
metric. It has been shown that aggressive
backfilling consistently improves the
performance of long jobs relative to
conservative backfilling [29] and the turnaround
time metric is dominated by the long jobs.
Indeed, that is what we observe with single site
scheduling for these traces (in order to make the
overall load comparable to the four-site
experiments, the runtime of all jobs was scaled
down by a factor of 4). Figures 6 and 7 provide
insights into the reason for the superior
performance of the completion based
conservative scheme for multi-site scheduling.
Even though the aggressive scheme has better
"raw" utilization, the effective utilization is
worse than the conservative scheme. The higher
effective utilization with the completion-based

conservative scheme suggests that basing the
decision on expected job completion time rather
than start time improves the chances of a job
running on a site where its efficacy is higher,
thereby making more effective use of the
processor cycles. The figures show similar
trends for both CTC and SDSC traces.

The average turnaround time for
aggressive backfilling at a single site is better,
compared to conservative backfilling, because
of improved backfilling chances with aggressive
backfilling. The backfilling opportunities in the
single-site context are poorer with conservative
backfilling because each waiting job has a
reservation, and the presence of multiple
reservations creates impediments to backfilling.
Conservative backfilling has been shown to
especially prevent long narrow jobs from
backfilling. The improvement in the average
turnaround time with conservative backfilling in
the heterogeneous context is also attributed to
improved backfilling caused by the holes
created by the dynamic removal of replicated
jobs at each site, and an increased number of
jobs to attempt to backfill at each site. Multiple
reservation requests causes there to be an
increased number of jobs in all local queues at

Figure 6: Utilization of Conservative Completion-Based Multiple Requests Scheme

When using the conservative competition-based scheme, the raw utilization actually decreases, even
though the turnaround time has improved.

CTC Trace

59%

63%

67%

71%

75%

79%

83%

87%

1.0 1.2 1.4 1.6 1.8 2.0

Runtime Expansion Factor

U
ti

liz
at

io
n

Greed - MR (Aggressive)
Conservative - MR

SDSC Trace

80%

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

1.0 1.2 1.4 1.6 1.8 2.0

Runtime Expansion Factor

U
ti

liz
at

io
n

Greedy-MR (Aggressive)
Conservative-MR

Figure 7: Effective Utilization of Conservative Completion-Based Multiple Requests Scheme

Using a conservative completion-based scheme significantly increases effective utilization, even
though raw utilization decreases.

SDSC Trace

62%

64%

66%

68%

70%

72%

1.0 1.2 1.4 1.6 1.8 2.0

Runtime Expansion Factor

E
ff

ec
ti

ve
 U

ti
liz

at
io

n

Greedy-MR (Aggressive)
Conservative-MR

CTC Trace

46%

48%

50%

52%

54%

56%

58%

60%

62%

64%

66%

1.0 1.2 1.4 1.6 1.8 2.0

Runtime Expansion Factor

E
ff

ec
ti

ve
 U

ti
liz

at
io

n

Greedy - MR (Aggressive)

Conservative - MR

Figure 8: Performance of Efficacy Based Scheduling

Explicitly accounting for efficacy (by using efficacy for the priority policy) reduces turnaround time

CTC Trace

10000

20000

30000

40000

50000

60000

70000

1.0 1.2 1.4 1.6 1.8 2.0
Runtime Expansion Factor

A
ve

ra
g

e
T

u
rn

ar
o

u
n

d
 T

im
e

FCFS Priority
Efficacy Priority

SDSC Trace

0

50000

100000

150000

200000

250000

1.0 1.2 1.4 1.6 1.8 2.0

Runtime Expansion Factor

A
ve

ra
g

e
T

u
rn

 A
ro

u
n

d
 T

im
e

FCFS Priority
Efficacy Priority

any given time. This gives the scheduler more
jobs to choose from, when attempting to fill a
backfill window. In a heterogeneous
environment the presence of reservation replicas
brings both backfilling advantages and the
advantages due to reservation guarantees.

We then incorporated a refinement to the
completion-based multiple-reservation
scheduling strategy. In the homogeneous case,
when a job is ready to start at one of the sites,
all other copies of that job at other sites can be
cancelled because none of those could possibly
produce an earlier completion time. In the
heterogeneous context, when a job is ready to
start at a site, and appears to have the earliest
completion time when compared to its
reservation at other sites, there is still a
possibility that future backfilling at a faster site
might allow a faster completion at the faster
site. In order to take advantage of these possible
backfills, it might be worthwhile to keep the
jobs in the queues at the faster sites, even
though the current remote reservations do not
provide a completion time better than at the site
where the job is ready to start. We implemented
a version of the completion - based conservative
backfilling scheme where only jobs at slower

sites were cancelled when a job was started at a
site. This improved performance, but not to a
significant extent.

6. Efficacy Based Scheduling

The previous data has shown that the
raw utilization is not a good indicator for how
well a scheduling strategy performs in a
heterogeneous environment. The turnaround
time tracks more closely with the effective
utilization. Therefore, a scheme which directly
takes into account the efficacy of jobs would be
desirable. A strategy which increases the
efficacy of the jobs would lead to a higher
effective utilization, which we expect will lower
the average turn around time.

To include efficacy in our strategies we
propose using efficacy as the priority order for
the jobs in the queue. Changing the order of the
reserved jobs will change the backfilling order.
In this case jobs with higher efficacies will
attempt to backfill before jobs with lower
efficacies, and thus will have more backfilling
opportunities. In the case of identical efficacies

Figure 9: Utilization of efficacy based scheduling

Raw utilization is slightly decreased when using an efficacy priority queue. Even though the
turnaround time has improved.

CTC Trace

58%
60%
62%
64%
66%
68%
70%
72%
74%
76%
78%
80%
82%
84%
86%

1.0 1.2 1.4 1.6 1.8 2.0

Runtime Expansion Factor

U
ti

liz
at

io
n

FCFS Priority
Efficacy Priority

SDSC Trace

74%

76%

78%

80%

82%

84%

86%

88%

90%

92%

1.0 1.2 1.4 1.6 1.8 2.0

Runtime Expansion Factor

U
ti

liz
at

io
n

FCFS Priority
Efficacy Priority

Figure 10: Effective utilization of efficacy based scheduling

Using an efficacy priority queue increases effective utilization, in spite of the decrease in raw
utilization. This explains the improvement in turnaround time.

CTC Trace

48%

50%

52%

54%

56%

58%

60%

62%

64%

66%

68%

1.0 1.2 1.4 1.6 1.8 2.0

Runtime Expansion Factor

E
ff

ec
ti

ve
 U

ti
liz

at
io

n

FCFS Priority

Efficacy Priority

SDSC Trace

58%

60%

62%

64%

66%

68%

70%

72%

74%

1.0 1.2 1.4 1.6 1.8 2.0

Runtime Expansion Factor

E
ff

ec
ti

ve
 U

ti
liz

at
io

n

FCFS Priority
Efficacy Priority

the secondary priority will be FCFS. This
priority scheme will guarantee a starvation free
system using any of the given strategies.
Furthermore, in a conservative backfilling
scheduler, a priority queue based on efficacy
will result in bounded delays for all jobs. This
is due to each job being guaranteed to have an
efficacy of 1.0 on at least one site. The job is
guaranteed to make progress at this site, leading
to a starvation free system. This has resulted in
a minimal (<5%) increase in worst case
turnaround time, when compared to an FCFS
priority.

 By changing the priority order to
efficacy, a job will have a greater chance to run
on its faster machines (because it will have a
higher priority on these machines than the jobs
with a lower efficacy). This can be expected to
increase the average efficacy of the system.
This higher average efficacy (as shown by the
effective utilization) is expected to lead to a
lower turn around time for strategies which use
an efficacy priority policy. Figure 10 shows that
using an efficacy based priority policy indeed
leads to a higher effective utilization. This is in
spite of a FCFS priority queue having better raw
utilization (Figure 9). The higher effective
utilization provides the basis for the improved
turn around time seen in Figure 8.

7. Restricted Multi-Site Reservations

So far the strategies implemented in this
paper have concentrated on either making one
reservation on a single site or reservations at all
sites (where the total number of reservations is
equal to the total number of sites). We have
seen that making multiple reservations shows a
substantial improvement in the average
turnaround time. However, it is of interest to
make fewer reservations, if possible. This is
due to the overhead involved in maintaining a
larger number of reservations (network latency
bound). When a job is ready to start at a site, it
must contact all other sites and determine

whether it should start, based on the current
strategy. When a job has determined it should
start (by contacting all other sites where a
reservation is held and receiving a reply), it
must inform all other sites that the job is
starting. This process may happen multiple
times for each job (a maximum of once for each
site which attempts to start the job). Therefore,
a minimum of 3*(K-1) messages must be
transferred for each job to start. Further, the job
must be transferred to each site where a
reservation is made (network bandwidth bound).

This network overhead could be
substantially reduced by limiting the number of
reservations. When fewer reservations are used
per job, each site does not have to contact as
many other sites before starting a job, and there
is a lower chance that a job will be denied at
start (there will be fewer sites to deny the job).
These factors can substantially reduce the
communication overhead needed.

Figure 11 shows the turnaround time
results when each job is submitted to K sites,
with K varied from 1 to 4. The graphs show
that the greatest degree of improvement is when
the number of sites is increased from one to two.
There is less of a benefit as the number of sites
is further increased. Therefore, when network
latencies are high, jobs can be submitted to a
smaller number of sites and the multi-
reservation scheduler can still realize a
substantial fraction of the benefits achievable
with a scheduler that schedules each job at all
sites. In order to avoid starvation (when using
efficacy as the priority) the efficacy is relative to
the sites where the job was scheduled.
Therefore, each job will still be guaranteed to
have an efficacy of one at least on one of the
sites. Hence the jobs are still guaranteed to be
free from starvation.

In our previous graphs and data, we use
the instantaneous load metric (either maintained

Figure 11: Performance with restricted multi-site reservation, no communication costs

As the number of scheduling sites are increased, the turnaround time monotonically decreases

CTC Trace

10000

30000

50000

70000

90000

110000

130000

150000

1.0 1.2 1.4 1.6 1.8 2.0

Runtime Expansion Factor

A
ve

ra
g

e
T

u
rn

ar
o

u
n

d
 T

im
e 1 Site

2 Sites
3 Sites
4 Sites

SDSC Trace

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

1.0 1.2 1.4 1.6 1.8 2.0

Runtime Expansion Factor

A
ve

ra
g

e
T

u
rn

 A
ro

u
n

d
 T

im
e 1 Site

2 Sites
3 Sites
4 Sites

Figure 12: Effect of site selection criteria, no communication costs

Using the completion time of the reservations, as opposed to an instantaneous load, improves the
turnaround time.

CTC Trace

10000

20000

30000

40000

50000

60000

70000

80000

90000

1.0 1.2 1.4 1.6 1.8 2.0

Runtime Expansion Factor

A
ve

ra
g

e
T

u
rn

ar
o

u
n

d
 T

im
e 2 Sites, Load Based

4 Sites, Load Based

2 Sites, Completetion Based

4 Sites, Completetion Based

SDSC Trace

0

50000

100000

150000

200000

250000

300000

1.0 1.2 1.4 1.6 1.8 2.0

Runtime Expansion Factor

A
ve

ra
g

e
T

u
rn

 A
ro

u
n

d
 T

im
e

2 Sites, Load based

4 Sites, Load based

2 Sites, Completion
based
4 Sites, Completion
based

at the metascheduler or by periodically polling
the remote sites) to choose which K sites to
schedule each job. We next consider a more
accurate approach to selecting the sites. Instead
of using the instantaneous load, we query each
site to determine the earliest completion time,
based on its current schedule. This further takes
into account the efficacy of the job at each
location and there is a higher probability that the
job will run on a site where its efficacy is
maximum. Figure 12 shows that changing the
mechanism for site selection can have
significant impact on the turn around time.
There is of course no change when the job is
submitted to the maximum number of sites,
because all sites are being chosen, regardless of
the site selection mechanism.

From Figure 12 it can be observed that
when using completion time as the site selection
criterion, submitting to fewer sites can be almost
as effective as submitting to all sites. However,
this more accurate approach does not come free.
There is an additional initial overhead that must
be incurred to determine a job’s K best
completion times, which is not incurred when
using the instantaneous load. The load of each
site can be maintained incrementally by the
metascheduler, or the metascheduler can
periodically update the load of each site;
therefore there are no per-job communication
costs incurred in selecting the K least loaded
sites. In contrast, to determine the K best
completion times , each site must be queried for
its expected completion time. For N sites, the
querying will require 2*N messages, N
messages from the metascheduler (to contact
each site with the job specifications) and a
response from each site. When using
completion time to determine the K sites, there
are an additional 2*N messages needed to
determine the minimum completion times.
Therefore, a minimum of 3*(K-1) messages per
job are required when using the instantaneous
load and a minimum of 2*N+3*(K-1) messages
when using completion time. Thus, for a

substantially large N, if the scheduler can
generate similar results with a smaller K the
dependence on the network can be reduced,
even if the K sites are chosen via the best
completion time.

Next we assess the impact of
communication overhead for data transfer when
running a job at a remote site. We assumed a
data transfer rate of 10Mbps. Each job was
assigned a random size (for executable plus
data) between 500MB and 3GB. The data
transfer overhead was modeled by simply
increasing the length of a job if it is run
remotely (local jobs do not involve any data
transfer). Figure 13 shows the average
turnaround time including the extra overheard.
The turnaround times have increased due to the
additional overhead, but relative trends remain
the same. Figure 14 shows the number of
control messages which were actually needed to
maintain the schedule. There is a substantial
increase in the number of messages when the
value of K is increased.

8. Related Work

Recent advances in creating the
infrastructure for grid computing (e.g. Globus
[13], Legion[18], Condor-G[14] and UNICORE
[24]) facilitate the deployment of
metaschedulers that schedule jobs onto multiple
heterogeneous sites. However there has been
little work on developing and evaluating job
scheduling schemes for a heterogeneous
environment.

Research into scheduling for the grid
environment can be broadly classified into two
categories: a) projects where the focus is on
approaches to optimize the performance of a
single job in a grid environment, and b) projects
that focus on performance optimization across a
collection of independent jobs. Much of the
work on scheduling at GRAIL (Grid Research
And Innovation Laboratory at UCSD) and the

Figure 14: Efficacy based queue and a contention-less network model

Decreasing the number of scheduling sites significantly reduces the number of control messages
needed to maintain the schedule.

SDSC Trace

0
50000

100000
150000
200000
250000
300000
350000
400000
450000

1 1.2 1.4 1.6 1.8 2

Runtime Expansion Factor

N
u

m
b

er
 o

f
M

es
sa

g
es

1 Site 2 Sites
3 Sites 4 Sites

CTC Trace

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000

1 1.2 1.4 1.6 1.8 2
Runtime Expansion Factor

N
u

m
b

er
 O

f
M

es
sa

eg
s

1 Site 2 Sites
3 Sites 4 Sites

Figure 13: Efficacy based queue and a contention-less network model

Adding data transfer time uniformly increase turnaround time, but does not affect the trends

CTC Trace

1.0E+04
3.0E+04
5.0E+04
7.0E+04
9.0E+04
1.1E+05
1.3E+05
1.5E+05
1.7E+05
1.9E+05
2.1E+05

1 1.2 1.4 1.6 1.8 2

Runtime Expansion Factor

A
ve

ra
g

e
T

u
rn

ar
o

u
n

d

T
im

e

1 Site
2 Sites
3 Sites
4 Sites

SDSC Trace

1.0E+04

1.1E+05

2.1E+05

3.1E+05

4.1E+05

5.1E+05

6.1E+05

7.1E+05

8.1E+05

9.1E+05

1 1.2 1.4 1.6 1.8 2

Runtime Expansion Factor

A
ve

ra
g

e
T

u
rn

ar
o

u
n

d

T
im

e

1 Site
2 Sites
3 Sites
4 Sites

GrADS (Grid Applications Development
Software project headed by Rice U.) project
belongs in the former category [1][2][4]
[6][7][27][33]. In contrast, the scheduling
strategy proposed in this paper falls in the latter.

Application level scheduling techniques
[1][4][16] have been developed to efficiently
deploy resource intensive applications that
require more resources than available at a single
site and parameter sweep applications over the
grid. There have been some studies on
decoupling the scheduler core and application
specific components [7] and introducing a
Metascheduler [33] to balance the interests of
different applications. But none of the above
works address the problem of developing
effective scheduling strategies for a
heterogeneous environment. [9] proposes an
economic model for scheduling in the
heterogeneous grid environments where the
objective is to minimize the cost function
associated with each job - an aspect somewhat
orthogonal to that addressed in this paper. [36]
proposes a load sharing facility with emphasis
on distributing the jobs among the various
machines, based on the workload on the
machines.

Studies that have focused on developing
job scheduling algorithms for the grid
computing environment include
[15][17][19][28][31]. Most of these studies do
not address the issue of heterogeneity. In [21] a
few centralized schemes for sequential jobs
were evaluated. In [15], the performance of a
centralized metascheduler was studied under
different levels of information exchange
between the meta scheduler and the local
resource management systems where the
individual MPP’s are heterogeneous in that the
number of processors at different sites differs,
but processors at all sites are equally powerful.
In [8], the impact of scheduling jobs across
multiple homogenous MPP’s was studied,
where jobs can be run on a collection of
homogenous nodes from independent MPP’s,

where each MPP may have a different number
of nodes. The impact of advance reservations
for meta-jobs on the overall system performance
was studied in [28]. In [19][31], some
centralized and decentralized scheduling
algorithms were evaluated for metacomputing,
but only the homogeneous context is
considered.

9. Current Status and Future Work

The simulation results show that the
proposed scheduling strategy is promising. We
plan next to implement the strategy in the
Silver/Maui scheduler and evaluate it on the
Cluster Ohio distributed system. The Ohio
Supercomputer Center recently initiated the
Cluster Ohio project [38] to encourage increased
academic usage of cluster computing and to
leverage software advances in distributed
computing. OSC acquires and puts into
production a large new cluster approximately
every two years, following the budget cycle.
OSC distributes the older machine in chunks to
academic laboratories at universities around the
state, with the proviso that the machines
continue to be controlled centrally and available
for general use by the OSC community. Each
remote cluster is designed to be fully stand-
alone, with its own file system and scheduling
daemons. To allow non-trivial access by remote
users, currently PBS and Maui/Silver are used
with one queue for each remote cluster and
require that users explicitly choose the remote
destination. Remote users can access any cluster
for a PBS job by using the Silver metascheduler.
Globus is used to handle the mechanics of
authentication among the many distributed
clusters. We plan to deploy and evaluate the
heterogeneous scheduling approach on the
Cluster Ohio systems.

Acknowledgements

We thank the Ohio Supercomputer Center for
access to their resources. We also thank the
anonymous referees for their suggestions.

References

[1] D. Bailey, T. Harris, W. Saphir, R.
Wijngaart, A. Woo, and M. Yarrow, “The
NAS Parallel Benchmarks 2.0,” Report
NAS-95-020, December, 1995 Numerical
Aerodynamic Simulation Facility, NASA
Ames Research Center
http://www.nas.nasa.gov/NAS/NPB/Specs
/npb2_report.ps

[2] Tracy D. Braun, Howard Jay Siegel, Noah
Beck, Ladislau Bölöni, Muthucumaru
Maheswaran, Albert I. Reuther, James P.
Robertson, Mitchell D. Theys, Bin Yao,
Debra A. Hensgen, Richard F. Freund, “A
Comparison of Eleven Static Heuristics
for Mapping a Class of Independent Tasks
onto Heterogeneous Distributed
Computing Systems”, Journal of Parallel
and Distributed Computing, Volume 61,
2001, pages 810-837

[3] H. Casanova, T. Bartol, J. Stiles, F.
Berman, “Distributing MCell Simulations
on the Grid,” The International Journal of
High Performance Computing and
Supercomputing Applications, Volume 15,
Number 3, Fall 2001.

[4] H. Casanova, G. Obertelli, F. Berman, and
R. Wolski, “The AppLeS Parameter
Sweep Template: User-Level Middleware
for the Grid,” In Proceedings of
Supercomputing’00, Nov. 2000.

[5] S-H. Chiang and M. K. Vernon,
“Production job scheduling for parallel
shared memory systems,” Proc. Intl.
Parallel and Distributed Processing
Symposium, San Francisco, CA, Apr.
2001.

[6] G. Cooperman, H. Casanova, J. Hayes, T.
Witzel, “Using TOP-C and AMPIC to Port
Large Parallel Applications to the
Computational Grid,” Proc. CCGrid 02,
May 2002.

[7] H. Dail, H. Casanova, F. Berman, “A
Decoupled Scheduling Approach for the
GrADS Environment,” Proceedings of
Supercomputing’02, November 2002.

[8] C. Ernemann, V.Hamscher, U.
Schwiegelshohn, R. Yahyapour, A. Streit,
“On Advantages of Grid Computing for
Parallel Job Scheduling”

[9] C. Ernemann, V. Hamscher and R.
Yahyapour, “Economic Scheduling in
Grid Computing,” Proceedings of the 8th
Workshop on Job Scheduling Strategies
for Parallel Processing (JSSPP '02), in
conjunction with the High Performance
Distributed Computing Symposium
(HPDC '02), July, 2002.

[10] D. Feitelson, Parallel Workloads Archive,
URL:
http://www.cs.huji.ac.il/labs/parallel/workl
oad/

[11] D. Feitelson and M. Jette, “ Improved
Utilization and Responsiveness with Gang
Scheduling,” 3rd Workshop on Job
Scheduling Strategies for Parallel
Processing, LNCS 1291 pp. 238-261,
1997.

[12] D. Feitelson, L. Rudolph, U.
Schweigelshohn, K. Sevcik, and P. Wong.
“Theory and Practice in Parallel Job
Scheduling,” 3rd Workshop on Job
Scheduling Strategies for Parallel
Processing, Springer-Verlag Lecture
Notes in Computer Science, Vol. 1291, pp.
1-34, April 1997.

[13] I. Foster and C. Kesselman, “Globus: A
Metacomputing Infrastructure Toolkit,”
Intl. J. Supercomputer Applications, Vol.
11, No. 2, pp. 115-128, 1997,

[14] J. Frey, T. Tannenbaum, M. Livny, I.
Foster and S.Tuecke, “Condor-G: A
Computation Management Agent for
Multi-Institutional Grids,” Proc. Intl.
Symp. On High Performance Distributed
Computing (HPDC 10), 2001.

[15] J. Gehring and T. Preiss, “Scheduling a
Metacomputer with Uncooperative Sub-
schedulers,” In Proc. JSSPP ’99, pages
179–201, 1999

[16] J. Gehring and A. Reinefeld, “MARS - A
Framework for Minimizing the Job
Execution Time in a Metacomputing
Environment,” Future Generation
Computer Systems, FGCS-12, 1. (1996),
Elsevier, pp. 87-90

[17] J. Gehring and A. Streit, “Robust
Resource Management for
Metacomputers,” In Proc. HPDC ’00,
pages 105–111, 2000.

[18] A. S. Grimshaw, W. A. Wulf and the
Legion team, “The Legion Vision of a
Worldwide Computer,” Communications
of the ACM, Vol. 4, No. 1, pp. 39-45, Jan.
1997.

[19] V. Hamscher, U. Schwiegelshohn, A.
Streit, and R. Yahyapour, “Evaluation of
Job-Scheduling Strategies for Grid
Computing,” In Proc. Grid ’00, pages
191–202, 2000.

[20] P. Holenarsipur, V. Yarmolenko, J. Duato,
D. K. Panda and P. Sadayappan,
“Characterization and Enhancement of
Static Mapping Heuristics for
Heterogeneous Systems,” Proc. Intl. Conf.
On High-Performance Computing,
December 2000.

[21] H. A. James, K. A. Hawick, and P. D.
Coddington, “Scheduling Independent
Tasks on Metacomputing Systems,” In
Proc. Conf. on Parallel and Distributed
Systems, 1999.

[22] J.P. Jones and B. Nitzberg, “Scheduling
for Parallel Supercomputing: A Historical
Perspective of Achievable Utilization,” 5th
Workshop on Job Scheduling Strategies
for Parallel Processing, 1999

[23] A.W. Mu'alem and D. G. Feitelson,
Utilization, Predictability, Workloads, and

User Runtime Estimates in Scheduling the
IBM SP2 with Backfilling

[24] M. Romberg, “The UNICORE
Architecture: Seamless Access to
Distributed Resources,” In Proc. HPDC
’99, pages 287–293, 1999.

[25] W. Saphir, A. Woo and M. Yarrow, “The
NAS Parallel Benchmarks 2.1 Results,”
Report NAS-96-010, August 1996
http://www.nas.nasa.gov/NAS/NPB/Repor
ts/NAS-96-010.ps

[26] J. Skovira, W. Chan, H. Zhou and D.
Lifka, “The EASY-Loadleveller API
Project,” Proc. 2nd Workshop on Job
Scheduling Strategies for Parallel
Processing, Honolulu, Apr. 1996, pp. 41-
47. Lecture Notes in Comp. Sci. Vol.
1162, Springer-Verlag.

[27] S. Smallen, H. Casanova, F. Berman,
“Applying Scheduling and Tuning to On-
line Parallel Tomography,” Proc.
Supercomputing’01, Nov. 2001.

[28] Q. Snell, M. Clement, D. Jackson, and C.
Gregory, “The Performance Impact of
Advance Reservation Meta-Scheduling,”
D. G. Feitelson and L. Rudolph (Eds.),
Workshop on Job Scheduling Strategies
for Parallel Processing. Springer-Verlag,
Lecture Notes in Computer Science vol.
1911, 2000.

[29] S. Srinivasan, R. Kettimuthu, V.
Subramani and P. Sadayappan,
“Characterization of Backfilling Strategies
for Job Scheduling,” Proc. of 2002 Intl.
Workshops on Parallel Processing (held
in conjunction with the 2002 Intl. Conf. on
Parallel Processing, ICPP 2002), Aug.
2002.

[30] S. Srinivasan, R. Kettimuthu, V.
Subramani and P. Sadayappan, “Selective
Reservation Strategies for Backfill Job
Scheduling,” Proc. of 8th Workshop on
Job Scheduling Strategies for Parallel
Processing, July 2002.

[31] V. Subramani, R. Kettimuthu, S.
Srinivasan and P. Sadayappan,
“Distributed Job Scheduling on
Computational Grids using Multiple
Simultaneous Requests,” Proc. of 11-th
IEEE Symposium on High Performance
Distributed Computing (HPDC 2002),
July 2002.

[32] D. Talby and D. G. Feitelson, “Supporting
priorities and improving utilization of the
IBM SP2 scheduler using slack-based
backfilling,” In 13th Intl. Parallel
Processing Symp., pp. 513-517, Apr 1999

[33] S. S. Vadhiyar and J. J. Dongarra, “A
Metascheduler for the Grid,” Proc. of 11-
th IEEE Symposium on High Performance
Distributed Computing (HPDC 2002),
July 2002.

[34] J. Weissman and A. Grimshaw, “A
Framework for Partitioning Parallel
Computations in Heterogeneous
Environments,” Concurrency: Practice
and Experience, Vol. 7, No. 5, August
1995.

[35] V. Yarmolenko, J. Duato, D. K. Panda and
P. Sadayappan, “Characterization and
Enhancement of Dynamic Mapping
Heuristics for Heterogeneous Systems,”
ICPP 2000 Workshop on Network-Based
Computing, August 2000.

[36] S. Zhou, X. Zheng, J. Wang, and P.
Delisle, “Utopia: A load sharing facility
for large heterogeneous distributed
computer systems,” Software - Practice
and Experience (SPE), December 1993

[37] http://www.nas.nasa.gov/NAS/NPB/NPB2
Results/971117/all.html

[38] http://oscinfo.osc.edu/clusterohio

[39] Workshops on Job Scheduling Strategies
for Parallel Processing,
www.cs.huji.ac.il/~feit/parsched/

