
SLURM: Simple Linux Utility for Resour
e Management�Morris A. Jette Andy B. Yoo Mark GrondonaLawren
e Livermore National LaboratoryLivermore, CA 94551fjette1 j yoo2 j mgrondonag�llnl.govAbstra
tA new 
luster resour
e management system 
alled Simple Linux Utility Resour
eManagement (SLURM) is des
ribed in this paper. SLURM, initially developed forlarge Linux 
lusters at the Lawren
e Livermore National Laboratory (LLNL), is a simple
luster manager that 
an s
ale to thousands of pro
essors. SLURM is designed to be
exible and fault-tolerant and 
an be ported to other 
lusters of di�erent size andar
hite
ture with minimal e�ort. We are 
ertain that SLURM will bene�t both usersand system ar
hite
ts by providing them with a simple, robust, and highly s
alableparallel job exe
ution environment for their 
luster system.1 Introdu
tionLinux 
lusters, often 
onstru
ted by using 
ommodity o�-the-shelf (COTS) 
omponnets,have be
ome in
reasingly populuar as a 
omputing platform for parallel 
omputation inre
ent years, mainly due to their ability to deliver a high perfoman
e-
ost ratio. Resear
hershave built and used small to medium size 
lusters for various appli
ations [3, 16℄. The
ontinuous de
rease in the pri
e of the COTS parts in 
onjun
tion with the good s
alabilityof the 
luster ar
hite
ture has now made it feasible to e
onomi
ally build large-s
ale 
lusterswith thousands of pro
essors [18, 19℄.An essential 
omponent that is needed to harness su
h a 
omputer is a resour
e manage-ment system. A resour
e management system (or resour
e manager) performs su
h 
ru
ial�This do
ument was prepared as an a

ount of work sponsored by an agen
y of the United States Gov-ernment. Neither the United States Government nor the University of California nor any of their employees,makes any warranty, express or implied, or assumes any legal liability or responsibility for the a

ura
y,
ompleteness, or usefulness of any information, apparatus, produ
t, or pro
ess dis
losed, or represents thatits use would not infringe privately owned rights. Referen
e herein to any spe
i�
 
ommer
ial produ
t,pro
ess, or servi
e by trade name, trademark, manufa
turer, or otherwise, does not ne
essarily 
onstitute orimply its endorsement, re
ommendation, or favoring by the United States Government or the University ofCalifornia. The views and opinions of authors expressed herein do not ne
essarily state or re
e
t those of theUnited States Government or the University of California, and shall not be used for advertising or produ
tendorsement purposes. This work was performed under the auspi
es of the U. S. Department of Energy bythe University of California, Lawren
e Livermore National Laboratory under Contra
t No. W-7405-Eng-48.Do
ument UCRL-JC-147996.



tasks as s
heduling user jobs, monitoring ma
hine and job status, laun
hing user appli
a-tions, and managing ma
hine 
on�guration, An ideal resour
e manager should be simple,eÆ
ient, s
alable, fault-tolerant, and portable.Unfortunately there are no open-sour
e resour
e management systems 
urrently availablewhi
h satisfy these requirements. A survey [12℄ has revealed that many existing resour
emanagers have poor s
alability and fault-toleran
e rendering them unsuitable for large 
lus-ters having thousands of pro
essors [14, 11℄. While some proprietary 
luster managersare suitable for large 
lusters, they are typi
ally designed for parti
ular 
omputer systemsand/or inter
onne
ts [21, 14, 11℄. Proprietary systems 
an also be expensive and unavail-able in sour
e-
ode form. Furthermore, proprietary 
luster management fun
tionality isusually provided as a part of a spe
i�
 job s
heduling system pa
kage. This mandates theuse of the given s
heduler just to manage a 
luster, even though the s
heduler does notne
essarily meet the need of organization that hosts the 
luster. Clear separation of the
luster management fun
tionality from s
heduling poli
y is desired.This observation led us to set out to design a simple, highly s
alable, and portableresour
e management system. The result of this e�ort is Simple Linux Utility Resour
eManagement (SLURM1). SLURM was developed with the following design goals:� Simpli
ity: SLURM is simple enough to allow motivated end-users to understand itssour
e 
ode and add fun
tionality. The authors will avoid the temptation to addfeatures unless they are of general appeal.� Open Sour
e: SLURM is available to everyone and will remain free. Its sour
e 
odeis distributed under the GNU General Publi
 Li
ense [9℄.� Portability: SLURM is written in the C language, with a GNU auto
onf 
on�gura-tion engine. While initially written for Linux, other UNIX-like operating systemsshould be easy porting targets. SLURM also supports a general purpose plugin me
h-anism, whi
h permits a variety of di�erent infrastru
tures to be easily supported. TheSLURM 
on�guration �le spe
i�es whi
h set of plugin modules should be used.� Inter
onne
t independen
e: SLURM supports UDP/IP based 
ommuni
ation as wellas the Quadri
s Elan3 and Myrinet inter
onne
ts. Adding support for other inter
on-ne
ts is straightforward and utilizes the plugin me
hanism des
ribed above.� S
alability: SLURM is designed for s
alability to 
lusters of thousands of nodes. Jobsmay spe
ify their resour
e requirements in a variety of ways in
luding requirementsoptions and ranges, potentially permitting faster initiation than otherwise possible.� Robustness: SLURM 
an handle a variety of failure modes without terminating work-loads, in
luding 
rashes of the node running the SLURM 
ontroller. User jobs maybe 
on�gured to 
ontinue exe
ution despite the failure of one or more nodes on whi
hthey are exe
uting. Nodes allo
ated to a job are available for reuse as soon as thejob(s) allo
ated to that node terminate. If some nodes fail to 
omplete job termina-tion in a timely fashion due to hardware of software problems, only the s
heduling ofthose tardy nodes will be a�e
ted.1A tip of the hat to Matt Groening and 
reators of Futurama, where Slurm is the most popular 
arbonatedbeverage in the universe.



� Se
ure: SLURM employs 
rypto te
hnology to authenti
ate users to servi
es and ser-vi
es to ea
h other with a variety of options available through the plugin me
hanism.SLURM does not assume that its networks are physi
ally se
ure, but does assumethat the entire 
luster is within a single administrative domain with a 
ommon userbase a
ross the entire 
luster.� System administrator friendly: SLURM is 
on�gured using a simple 
on�guration �leand minimizes distributed state. Its 
on�guration may be 
hanged at any time withoutimpa
ting running jobs. Heterogeneous nodes within a 
luster may be easily managed.SLURM interfa
es are usable by s
ripts and its behavior is highly deterministi
.The main 
ontribution of our work is that we have provided a readily available tool thatanybody 
an use to eÆ
iently manage 
lusters of di�erent size and ar
hite
ture. SLURMis highly s
alable2. The SLURM 
an be easily ported to any 
luster system with minimale�ort with its plugin 
apability and 
an be used with any meta-bat
h s
heduler or a Gridresour
e broker [7℄ with its well-de�ned interfa
es.The rest of the paper is organized as follows. Se
tion 2 des
ribes the ar
hite
ture ofSLURM in detail. Se
tion 3 dis
usses the servi
es provided by SLURM followed by perfor-man
e study of SLURM in Se
tion 4. Brief survey of existing 
luster management systemsis presented in Se
tion 5. Con
luding remarks and future development plan of SLURM isgiven in Se
tion 6.2 SLURM Ar
hite
tureAs a 
luster resour
e manager, SLURM has three key fun
tions. First, it allo
ates ex
lusiveand/or non-ex
lusive a

ess to resour
es to users for some duration of time so they 
anperform work. Se
ond, it provides a framework for starting, exe
uting, and monitoringwork on the set of allo
ated nodes. Finally, it arbitrates 
on
i
ting requests for resour
esby managing a queue of pending work. Users and system administrators intera
t withSLURM using simple 
ommands.Figure 1 depi
ts the key 
omponents of SLURM. As shown in Figure 1, SLURM 
onsistsof a slurmd daemon running on ea
h 
ompute node, a 
entral slurm
tld daemon runningon a management node (with optional fail-over twin), and �ve 
ommand line utilities, whi
h
an run anywhere in the 
luster.The entities managed by these SLURM daemons in
lude nodes, the 
ompute resour
ein SLURM and partitions, whi
h group nodes into logi
al disjoint sets. The entities alsoin
lude jobs, or allo
ations of resour
es assigned to a user for a spe
i�ed amount of time,and job steps, whi
h are sets of tasks within a job. Ea
h job is allo
ated nodes within asingle partition. On
e a job is assigned a set of nodes, the user is able to initiate parallelwork in the form of job steps in any 
on�guration within the allo
ation. For instan
e asingle job step may be started whi
h utilizes all nodes allo
ated to the job, or several jobsteps may independently use a portion of the allo
ation.2It was observed that it took less than �ve se
onds for SLURM to laun
h a 1900-task job over 950 nodeson re
ently installed 
luster at Lawren
e Livermore National Laboratory.



Figure 1: SLURM Ar
hite
tureFigure 2 exposes the subsystems that are implemented within the slurmd and slurm
tlddaemons. These subsystems are explained in more detail below.2.1 SLURM Lo
al Daemon (Slurmd)The slurmd is a multi-threaded daemon running on ea
h 
ompute node. It reads the
ommon SLURM 
on�guration �le and re
overs any previously saved state information,noti�es the 
ontroller that it is a
tive, waits for work, exe
utes the work, returns status, andwaits for more work. Sin
e it initiates jobs for other users, it must run with root privilege.The only job information it has at any given time pertains to its 
urrently exe
uting jobs.The slurmd performs �ve major tasks.� Ma
hine and Job Status Servi
es: Respond to 
ontroller requests for ma
hine and jobstate information, and send asyn
hronous reports of some state 
hanges (e.g. slurmdstartup) to the 
ontroller.� Remote Exe
ution: Start, monitor, and 
lean up after a set of pro
esses (typi
ally be-longing to a parallel job) as di
tated by the slurm
tld daemon or an srun or s
an
el
ommand. Starting a pro
ess may in
lude exe
uting a prolog program, setting pro
esslimits, setting real and e�e
tive user id, establishing environment variables, settingworking dire
tory, allo
ating inter
onne
t resour
es, setting 
ore �le paths, initializingthe Stream Copy Servi
e, and managing pro
ess groups. Terminating a pro
ess mayin
lude terminating all members of a pro
ess group and exe
uting an epilog program.



Partition ManagerNode Manager

slurmctld
srunUser:

slurmd

Machine 
Status

Job
Control

Remote
Execution

Globus and/or
Metascheduler

(optional)

Stream Copy

Job Manager

Job 
StatusFigure 2: SLURM Ar
hite
ture - Subsystems� Stream Copy Servi
e: Allow handling of stderr, stdout, and stdin of remote tasks. Jobinput may be redire
ted from a �le or �les, a srun pro
ess, or /dev/null. Job outputmay be saved into lo
al �les or sent ba
k to the srun 
ommand. Regardless of thelo
ation of stdout or stderr, all job output is lo
ally bu�ered to avoid blo
king lo
altasks.� Job Control: Allow asyn
hronous intera
tion with the Remote Exe
ution environ-ment by propagating signals or expli
it job termination requests to any set of lo
allymanaged pro
esses.2.2 SLURM Central Daemon (Slurm
tld)Most SLURM state information is maintained by the 
ontroller, slurm
tld. The slurm
tldis multi-threaded with independent read and write lo
ks for the various data stru
tures toenhan
e s
alability. When slurm
tld starts, it reads the SLURM 
on�guration �le. It
an also read additional state information from a 
he
kpoint �le generated by a previousexe
ution of slurm
tld. Full 
ontroller state information is written to disk periodi
ally within
remental 
hanges written to disk immediately for fault-toleran
e. The slurm
tld runsin either master or standby mode, depending on the state of its fail-over twin, if any. Theslurm
tld need not exe
ute with root privilege. The slurm
tld 
onsists of three major
omponents:� Node Manager: Monitors the state of ea
h node in the 
luster. It polls slurmd'sfor status periodi
ally and re
eives state 
hange noti�
ations from slurmd daemonsasyn
hronously. It ensures that nodes have the pres
ribed 
on�guration before being
onsidered available for use.



� Partition Manager: Groups nodes into non-overlapping sets 
alled partitions. Ea
hpartition 
an have asso
iated with it various job limits and a

ess 
ontrols. The par-tition manager also allo
ates nodes to jobs based upon node and partition states and
on�gurations. Requests to initiate jobs 
ome from the Job Manager. The s
ontrolmay be used to administratively alter node and partition 
on�gurations.� Job Manager: A

epts user job requests and pla
es pending jobs in a priority orderedqueue. The Job Manager is awakened on a periodi
 basis and whenever there is a
hange in state that might permit a job to begin running, su
h as job 
ompletion, jobsubmission, partition-up transition, node-up transition, et
. The Job Manager thenmakes a pass through the priority-ordered job queue. The highest priority jobs forea
h partition are allo
ated resour
es as possible. As soon as an allo
ation failureo

urs for any partition, no lower-priority jobs for that partition are 
onsidered forinitiation. After 
ompleting the s
heduling 
y
le, the Job Manager's s
heduling threadsleeps. On
e a job has been allo
ated resour
es, the Job Manager transfers ne
essarystate information to those nodes, permitting it to 
ommen
e exe
ution. When theJob Manager dete
ts that all nodes asso
iated with a job have 
ompleted their work,it initiates 
lean-up and performs another s
heduling 
y
le as des
ribed above.3 SLURM Operation and Servi
es3.1 Command Line UtilitiesThe 
ommand line utilities are the user interfa
e to SLURM fun
tionality. They o�er usersa

ess to remote exe
ution and job 
ontrol. They also permit administrators to dynami
ally
hange the system 
on�guration. These 
ommands all use SLURM APIs whi
h are dire
tlyavailable for more sophisti
ated appli
ations.� s
an
el: Can
el a running or a pending job or job step, subje
t to authenti
ationand authorization. This 
ommand 
an also be used to send an arbitrary signal to allpro
esses on all nodes asso
iated with a job or job step.� s
ontrol: Perform privileged administrative 
ommands su
h as draining a node orpartition in preparation for maintenan
e. Many s
ontrol fun
tions 
an only beexe
uted by privileged users.� sinfo: Display a summary of partition and node information. A assortment of �lter-ing and output format options are available.� squeue: Display the queue of running and waiting jobs and/or job steps. A wideassortment of �ltering, sorting, and output format options are available.� srun: Allo
ate resour
es, submit jobs to the SLURM queue, and initiate parallel tasks(job steps). Every set of exe
uting parallel tasks has an asso
iated srunwhi
h initiatedit and, if the srun persists, managing it. Jobs may be submitted for bat
h exe
ution,in whi
h 
ase srun terminates after job submission. Jobs may also be submitted forintera
tive exe
ution, where srun keeps running to shepherd the running job. In this




ase, srun negotiates 
onne
tions with remote slurmd's for job initiation and to getstdout and stderr, forward stdin, and respond to signals from the user. The srun mayalso be instru
ted to allo
ate a set of resour
es and spawn a shell with a

ess to thoseresour
es. srun has a total of 13 parameters to 
ontrol where and when the job isinitiated.3.2 PluginsIn order to make the use of di�erent infrastru
tures possible, SLURM uses a general pur-pose plugin me
hanism. A SLURM plugin is a dynami
ally linked 
ode obje
t whi
h isloaded expli
itly at run time by the SLURM libraries. A plugin provides a 
ustomized im-plemenation of a well-de�ned API 
onne
ted to tasks su
h as authenti
ation, inter
onne
tfabri
, task s
heduling. A 
ommon set of fun
tions is de�ned for use by all of the di�erentinfrastru
tures of a parti
ular variety. For example, the authenti
ation plugin must de�nefun
tions su
h as: slurm auth a
tivate to 
reate a 
redential, slurm auth verify to ver-ify a 
redential to approve or deny authenti
ation, slurm auth get uid to get the user IDasso
iated with a spe
i�
 
redential, et
. It also must de�ne the data stru
ture used, aplugin type, a plugin version number. The available plugins are de�ned in the 
on�guration�le.3.3 Communi
ations LayerSLURM presently uses Berkeley so
kets for 
ommuni
ations. However, we anti
ipate usingthe plugin me
hanism to easily permit use of other 
ommuni
ations layers. At LLNL we areusing an Ethernet for SLURM 
ommuni
ations and the Quadri
s Elan swit
h ex
lusively foruser appli
ations. The SLURM 
on�guration �le permits the identi�
ation of ea
h node'shostname as well as its name to be used for 
ommuni
ations.While SLURM is able to manage 1000 nodes without diÆ
ulty using so
kets and Eth-ernet, we are reviewing other 
ommuni
ation me
hanisms whi
h may o�er improved s
al-ability. One possible alternative is STORM[8℄. STORM uses the 
luster inter
onne
t andNetwork Interfa
e Cards to provide high-speed 
ommuni
ations in
luding a broad
ast 
a-pability. STORM only supports the Quadri
s Elan inter
onnne
t at present, but does o�erthe promise of improved performan
e and s
alability.3.4 Se
uritySLURM has a simple se
urity model: Any user of the 
luster may submit parallel jobsto exe
ute and 
an
el his own jobs. Any user may view SLURM 
on�guration and stateinformation. Only privileged users may modify the SLURM 
on�guration, 
an
el any jobs,or perform other restri
ted a
tivities. Privileged users in SLURM in
lude the users rootand SlurmUser (as de�ned in the SLURM 
on�guration �le). If permission to modifySLURM 
on�guration is required by others, set-uid programs may be used to grant spe
i�
permissions to spe
i�
 users.We presently support three authenti
ation me
hanisms via plugins: authd[10℄, mungedand none. A plugin 
an easily be developed for Kerberos or authenti
ation me
hanismsas desired. The munged implementation is des
ribed below. A munged daemon running



as user root on ea
h node 
on�rms the identity of the user making the request using thegetpeername fun
tion and generates a 
redential. The 
redential 
ontains a user ID, groupID, time-stamp, lifetime, some pseudo-random information, and any user supplied informa-tion. The munged uses a private key to generate a Message Authenti
ation Code (MAC)for the 
redential. The munged then uses a publi
 key to symmetri
ally en
rypt the 
reden-tial in
luding the MAC. SLURM daemons and programs transmit this en
rypted 
redentialwith 
ommuni
ations. The SLURM daemon re
eiving the message sends the 
redential tomunged on that node. The munged de
rypts the 
redential using its private key, validatesit and returns the user ID and group ID of the user originating the 
redential. The mungedprevents replay of a 
redential on any single node by re
ording 
redentials that have alreadybeen authenti
ated. In SLURM's 
ase, the user supplied information in
ludes node iden-ti�
ation information to prevent a 
redential from being used on nodes it is not destinedfor.When resour
es are allo
ated to a user by the 
ontroller, a job step 
redential is generatedby 
ombining the user ID, job ID, step ID, the list of resour
es allo
ated (nodes), and the
redential lifetime. This job step 
redential is en
rypted with a slurm
tld private key. This
redential is returned to the requesting agent (srun) along with the allo
ation response, andmust be forwarded to the remote slurmd's upon job step initiation. slurmd de
rypts this
redential with the slurm
tld's publi
 key to verify that the user may a

ess resour
es onthe lo
al node. slurmd also uses this job step 
redential to authenti
ate standard input,output, and error 
ommuni
ation streams.3.5 Job InitiationThere are three modes in whi
h jobs may be run by users under SLURM. The �rst and mostsimple is intera
tive mode, in whi
h stdout and stderr are displayed on the user's terminalin real time, and stdin and signals may be forwarded from the terminal transparently tothe remote tasks. The se
ond is bat
h mode, in whi
h the job is queued until the requestfor resour
es 
an be satis�ed, at whi
h time the job is run by SLURM as the submittinguser. In allo
ate mode, a job is allo
ated to the requesting user, under whi
h the user maymanually run job steps via a s
ript or in a sub-shell spawned by srun.Figure 3 gives a high-level depi
tion of the 
onne
tions that o

ur between SLURM
omponents during a general intera
tive job startup. The srun requests a resour
e allo
ationand job step initiation from the slurm
tld, whi
h responds with the job ID, list of allo
atednodes, job 
redential. if the request is granted. The srun then initializes listen ports forea
h task and sends a message to the slurmd's on the allo
ated nodes requesting that theremote pro
esses be initiated. The slurmd's begin exe
ution of the tasks and 
onne
t ba
kto srun for stdout and stderr. This pro
ess and the other initiation modes are des
ribed inmore detail below.3.5.1 Intera
tive mode initiationIntera
tive job initiation is illustrated in Figure 4. The pro
ess begins with a user invokingsrun in intera
tive mode. In Figure 4, the user has requested an intera
tive run of theexe
utable \
md" in the default partition.



srun

slurmctld

slurmdslurmdslurmd

ephemeral port ‘‘known’’ port

1.

2.

3.

4.

Figure 3: Job initiation 
onne
tions overview. 1. The srun 
onne
ts to slurm
tld requestingresour
es. 2. slurm
tld issues a response, with list of nodes and job 
redential. 3. The srun opensa listen port for every task in the job step, then sends a run job step request to slurmd. 4. slurmd'sinitiate job step and 
onne
t ba
k to srun for stdout/err.After pro
essing 
ommand line options, srun sends a message to slurm
tld requestinga resour
e allo
ation and a job step initiation. This message simultaneously requests anallo
ation (or job) and a job step. The srun waits for a reply from slurm
tld, whi
h maynot 
ome instantly if the user has requested that srun blo
k until resour
es are available.When resour
es are available for the user's job, slurm
tld replies with a job step 
redential,list of nodes that were allo
ated, 
pus per node, and so on. The srun then sends a messageea
h slurmd on the allo
ated nodes requesting that a job step be initiated. The slurmd'sverify that the job is valid using the forwarded job step 
redential and then respond tosrun.Ea
h slurmd invokes a job thread to handle the request, whi
h in turn invokes a taskthread for ea
h requested task. The task thread 
onne
ts ba
k to a port opened by srunfor stdout and stderr. The host and port for this 
onne
tion is 
ontained in the run requestmessage sent to this ma
hine by srun. On
e stdout and stderr have su

essfully been
onne
ted, the task thread takes the ne
essary steps to initiate the user's exe
utable onthe node, initializing environment, 
urrent working dire
tory, and inter
onne
t resour
es ifneeded.On
e the user pro
ess exits, the task thread re
ords the exit status and sends a task exitmessage ba
k to srun. When all lo
al pro
esses terminate, the job thread exits. The srunpro
ess either waits for all tasks to exit, or attempt to 
lean up the remaining pro
essessome time after the �rst task exits. Regardless, on
e all tasks are �nished, srun sends amessage to the slurm
tld releasing the allo
ated nodes, then exits with an appropriate exitstatus.When the slurm
tld re
eives noti�
ation that srun no longer needs the allo
ated nodes,



User
slurmctld slurmd

register job step

register job step reply

run job step req

run job step reply job_mgr
session_mgr

connect(stdout/err)

task exit msg

release allocation
run epilog req

run epilog reply

srun

status req (periodic)

status reply

exit 
status

cmd

srun cmd

prolog

epilogFigure 4: Intera
tive job initiation. srun simultaneously allo
ates nodes and a job step fromslurm
tld then sends a run request to all slurmd's in job. Dashed arrows indi
ate a periodi
request that may or may not o

ur during the lifetime of the job.it issues a request for the epilog to be run on ea
h of the slurmd's in the allo
ation. Asslurmd's report that the epilog ran su

essfully, the nodes are returned to the partition.3.5.2 Bat
h mode initiationFigure 5 illustrates the initiation of a bat
h job in SLURM. On
e a bat
h job is submitted,srun sends a bat
h job request to slurm
tld that 
ontains the input/output lo
ation for thejob, 
urrent working dire
tory, environment, requested number of nodes. The slurm
tldqueues the request in its priority ordered queue.On
e the resour
es are available and the job has a high enough priority, slurm
tldallo
ates the resour
es to the job and 
onta
ts the �rst node of the allo
ation requestingthat the user job be started. In this 
ase, the job may either be another invo
ation of srunor a job s
ript whi
h may have multiple invo
ations of srun within it. The slurmd on theremote node responds to the run request, initiating the job thread, task thread, and users
ript. An srun exe
uted from within the s
ript dete
ts that it has a

ess to an allo
ationand initiates a job step on some or all of the nodes within the job.On
e the job step is 
omplete, the srun in the job s
ript noti�es the slurm
tld andterminates. The job s
ript 
ontinues exe
uting and may initiate further job steps. On
ethe job s
ript 
ompletes, the task thread running the job s
ript 
olle
ts the exit status andsends a task exit message to the slurm
tld. The slurm
tld notes that the job is 
ompleteand requests that the job epilog be run on all nodes that were allo
ated. As the slurmd'srespond with su

essful 
ompletion of the epilog, the nodes are returned to the partition.



srun slurmctld slurmd slurmd

batch req

batch reply

run req
job_mgr

session_mgr

srun

run reply

job step req

job step reply

cmd

release step reply

release step

task exit msg

run epilog req

run epilog reply

script

User

submit
exit status

job
queued

srun batch

prolog

epilogFigure 5: Queued job initiation. slurm
tld initiates the user's job as a bat
h s
ript on one node.Bat
h s
ript 
ontains an srun 
all whi
h initiates parallel tasks after instantiating job step with
ontroller. The shaded region is a 
ompressed representation and is illustrated in more detail in theintera
tive diagram (Figure 4).3.5.3 Allo
ate mode initiationIn allo
ate mode, the user wishes to allo
ate a job and intera
tively run job steps under thatallo
ation. The pro
ess of initiation in this mode is illustrated in Figure 6. The invokedsrun sends an allo
ate request to slurm
tld, whi
h, if resour
es are available, respondswith a list of nodes allo
ated, job id, et
. The srun pro
ess spawns a shell on the user'sterminal with a

ess to the allo
ation, then waits for the shell to exit at whi
h time the jobis 
onsidered 
omplete.An srun initiated within the allo
ate sub-shell re
ognizes that it is running under anallo
ation and therefore already within a job. Provided with no other arguments, srunstarted in this manner initiates a job step on all nodes within the 
urrent job. However,the user may sele
t a subset of these nodes impli
itly.An srun exe
uted from the sub-shell reads the environment and user options, then notifythe 
ontroller that it is starting a job step under the 
urrent job. The slurm
tld registersthe job step and responds with a job 
redential. The srun then initiates the job step usingthe same general method as des
ribed in the se
tion on intera
tive job initiation.When the user exits the allo
ate sub-shell, the original srun re
eives exit status, noti�esslurm
tld that the job is 
omplete, and exits. The 
ontroller runs the epilog on ea
h ofthe allo
ated nodes, returning nodes to the partition as they 
omplete the epilog.



User
slurmctld slurmd

allocate req

allocate reply

run job step req

job step reply

job_mgr
session_mgr

connect(stdout/err)

task exit msg

srun

exit 
status

cmd

srun allocate

srun
job step req

sh

run job step reply

release allocation
run epilog req

run epilog reply

release job step

job/job step status

prolog

epilogFigure 6: Job initiation in allo
ate mode. Resour
es are allo
ated and srun spawns a shell witha

ess to the resour
es. When user runs an srun from within the shell, the a job step is initiatedunder the allo
ation.4 Related WorkPortable Bat
h System (PBS)The Portable Bat
h System (PBS) [20℄ is a 
exible bat
h queuing and workload manage-ment system originally developed by Veridian Systems for NASA. It operates on networked,multi-platform UNIX environments, in
luding heterogeneous 
lusters of workstations, su-per
omputers, and massively parallel systems. PBS was developed as a repla
ement forNQS (Network Queuing System) by many of the same people.PBS supports sophisti
ated s
heduling logi
 (via the Maui S
heduler). PBS spawn'sdaemons on ea
h ma
hine to shepherd the job's tasks. It provides an interfa
e for admin-istrators to easily interfa
e their own s
heduling modules. PBS 
an support long delaysin �le staging with retry. Host authenti
ation is provided by 
he
king port numbers (lowports numbers are only a

essible to user root). Credential servi
e is used for user authen-ti
ation. It has the job prolog and epilog feature. PBS Supports high priority queue forsmaller \intera
tive" jobs. Signal to daemons 
auses 
urrent log �le to be 
losed, renamedwith time-stamp, and a new log �le 
reated.Although the PBS is portable and has a broad user base, it has signi�
ant drawba
ks.PBS is single threaded and hen
e exhibits poor performan
e on large 
lusters. This isparti
ularly problemati
 when a 
ompute node in the system fails: PBS tries to 
onta
tdown node while other a
tivities must wait. PBS also has a weak me
hanism for startingand 
leaning up parallel jobs.



4.1 Quadri
s RMSQuadri
s RMS[22℄ (Resour
e Management System) is for Unix systems having Quadri
sElan inter
onne
ts. RMS fun
tionality and performan
e is ex
ellent. Its major limitation isthe requirement for a Quadri
s inter
onne
t. The proprietary 
ode and 
ost may also posediÆ
ulties under some 
ir
umstan
es.Maui S
hedulerMaui S
heduler [17℄ is an advan
ed reservation HPC bat
h s
heduler for use with SP,O2K, and UNIX/Linux 
lusters. It is widely used to extend the fun
tionality of PBS andLoadLeveler, whi
h Maui requires to perform the parallel job initiation and management.Distributed Produ
tion Control System (DPCS)The Distributed Produ
tion Control System (DPCS) [6℄ is a s
heduler developed at Lawren
eLivermore National Laboratory (LLNL). The DPCS provides basi
 data 
olle
tion and re-porting me
hanisms for prje
t-level, near real-time a

ounting and resour
e allo
ation to
ustomers with established limits per 
ustomers' organization budgets, In addition, theDPCS evenly distributes workload a
ross available 
omputers and supports dynami
 re
on-�guration and gra
eful degradation of servi
e to prevent overuse of a 
omputer where notauthorized.DPCS supports only a limited number of 
omputer systems: IBM RS/6000 and SP,Linux, Sun Solaris, and Compaq Alpha. Like the Maui S
heduler, DPCS requires an under-lying infrastru
ture for parallel job initiation and management (LoadLeveler, NQS, RMSor SLURM).LoadLevelerLoadLeveler [11, 14℄ is a proprietary bat
h system and parallel job manager by IBM.LoadLeveler supports few non-IBM systems. Very primitive s
heduling software exists andother software is required for reasonable performan
e, su
h as Maui S
heduler or DPCS.The LoadLeveler has a simple and very 
exible queue and job 
lass stru
ture available op-erating in "matrix" fashion. The biggest problem of the LoadLeveler is its poor s
alability.It typi
ally requires 20 minutes to exe
ute even a trivial 500-node, 8000-task on the IBMSP 
omputers at LLNL.Load Sharing Fa
ility (LSF)LSF [15℄ is a proprietary bat
h system and parallel job manager by Platform Computing.Widely deployed on a wide variety of 
omputer ar
hite
tures, it has sophisti
ated s
hedul-ing software in
luding fair-share, ba
k�ll, 
onsumable resour
es, an job preemption andvery 
exible queue stru
ture. It also provides good status information on nodes and LSFdaemons. While LSF is quite powerful, it is not open-sour
e and 
an be 
ostly on larger
lusters.



CondorCondor [5, 13, 1℄ is a bat
h system and parallel job manager developed by the Universityof Wis
onsin. Condor was the basis for IBM's LoadLeveler and both share very similarunderlying infrastru
ture. Condor has a very sophisti
ated 
he
kpoint/restart servi
e thatdoes not rely upon kernel 
hanges, but a variety of library 
hanges (whi
h prevent it frombeing 
ompletely general). The Condor 
he
kpoint/restart servi
e has been integrated intoLSF, Codine, and DPCS. Condor is designed to operate a
ross a heterogeneous environment,mostly to harness the 
ompute resour
es of workstations and PCs. It has an interesting"advertising" servi
e. Servers advertise their available resour
es and 
onsumers advertisetheir requirements for a broker to perform mat
hes. The 
he
kpoint me
hanism is used torelo
ate work on demand (when the "owner" of a desktop ma
hine wants to resume work).Beowulf Distributed Pro
ess Spa
e (BPROC)The Beowulf Distributed Pro
ess Spa
e (BPROC) is set of kernel modi�
ations, utilitiesand libraries whi
h allow a user to start pro
esses on other ma
hines in a Beowulf-style
luster [2℄. Remote pro
esses started with this me
hanism appear in the pro
ess table ofthe front end ma
hine in a 
luster. This allows remote pro
ess management using the normalUNIX pro
ess 
ontrol fa
ilities. Signals are transparently forwarded to remote pro
esses andexit status is re
eived using the usual wait() me
hanisms. This tight 
oupling of a 
luster'snodes is 
onvenient, but high s
alability 
an be diÆ
ult to a
hieve.5 Performan
e Study

0.1

1

10

1 2 4 8 16 32 64 128 256 512 950

S
ec

on
ds

Nodes

SLURM
RMS

LoadLeveler

Figure 7: Time to exe
ute /bin/hostname with various node 
ounts



We were able to perform some SLURM tests on a 1000 node 
luster at LLNL. Somedevelopment was still underway at that time and tuning had not been performed. Theresults for exe
uting simple 'hostname' program on two tasks per node and various node
ounts is show in Figure 7. We found SLURM performan
e to be 
omparable to the Quadri
sResour
e Management System (RMS) [21℄ for all job sizes and about 80 times faster thanIBM LoadLeveler [14, 11℄ at tested job sizes.6 Con
lusion and Future PlansWe have presented in this paper an overview of SLURM, a simple, highly s
alable, robust,and portable 
luster resour
e management system. The 
ontribution of this work is thatwe have provided a immediately-available and open-sour
e tool that virtually anybody 
anuse to eÆ
iently manage 
lusters of di�erent sizes and ar
hite
ture.Looking ahead, we anti
ipate adding support for additional operating systems. We an-ti
ipate adding a job preempt/resume 
apability, whi
h will provide an external s
hedulerthe infrastru
ture required to perform gang s
heduling, and a 
he
kpoint/restart 
apability.We also plan to use the SLURM for IBM's Blue Gene/L platform [4℄ by in
orporating a
apability to manage jobs on a three-dimensional torus ma
hine into the SLURM.A
knowledgmentsAdditional programmers responsible for the development of SLURM in
lude: Chris Dunlap,Joey Ekstrom, Jim Garli
k, Kevin Tew and Jay Windley.



Referen
es[1℄ J. Basney, M. Livny, and T. Tannenbaum. High Throughput Computing with Condor.HPCU news, 1(2), June 1997.[2℄ Beowulf Distributed Pro
ess Spa
e. http://bpro
.sour
eforge.net.[3℄ Beowulf Proje
t. http://www.beowulf.org.[4℄ Blue Gene/L. http://
mg-rr.llnl.gov/as
i/platforms/bluegenel.[5℄ Condor. http://www.
s.wis
.edu/
ondor.[6℄ Distributed Produ
tion Control System. http://www.llnl.gov/i

/l
/dp
s overview.html.[7℄ I. Foster and C. Kesselman. The GRID: Blueprint for a New Computing Onfrastru
ture.Morgan Kaufmann Publishers, In
., 1999.[8℄ E. Fra
htenberg, F. Petrini, et al. Storm: Lightning-fast resour
e management. InPro
eedings of SuperComputing, 2002.[9℄ GNU General Publi
 Li
ense. http://www.gnu.org/li
enses/gpl.html.[10℄ A. home page. http://www.theether.org/authd/.[11℄ IBM Corporation. LoadLeveler's User Guide, Release 2.1.[12℄ M. Jette, C. Dunlap, J. Garli
k, and M. Grondona. Survey of Bat
h/Resour
eManagement-Related System Software. Te
hni
al Report N/A, Lawren
e LivermoreNational Laboratory, 2002.[13℄ M. Litzknow, M. Livny, and M. Mutka. Condor - a hunter for idle workstations. InPro
. International Conferen
e on Distributed Computing Systems, June 1988.[14℄ Load Leveler. http://www-1.ibm.
om/servers/eservers/pseries/library/sp books/loadleveler.html.[15℄ Load Sharing Fa
ility. http://www.platform.
om.[16℄ Loki { Commodity Parallel Pro
essing. http://loki-www.lanl.org.[17℄ Maui S
heduler. mauis
heduler.sour
eforge.net.[18℄ Multiprogrammati
 Capability Cluster. http://www.llnl.gov/linux/m
r.[19℄ Parallel Capa
ity Resour
e. http://www.llnl.gov/linux/p
r.[20℄ Portable Bat
h System. http://www.openpbs.org.[21℄ Quadir
s Resour
e Management System. http://www.quadri
s.
om/website/pdf/rms.pdf.[22℄ Q. R. M. System. http://www.quadri
s.
om/./biblio


