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tasks as sheduling user jobs, monitoring mahine and job status, launhing user applia-tions, and managing mahine on�guration, An ideal resoure manager should be simple,eÆient, salable, fault-tolerant, and portable.Unfortunately there are no open-soure resoure management systems urrently availablewhih satisfy these requirements. A survey [12℄ has revealed that many existing resouremanagers have poor salability and fault-tolerane rendering them unsuitable for large lus-ters having thousands of proessors [14, 11℄. While some proprietary luster managersare suitable for large lusters, they are typially designed for partiular omputer systemsand/or interonnets [21, 14, 11℄. Proprietary systems an also be expensive and unavail-able in soure-ode form. Furthermore, proprietary luster management funtionality isusually provided as a part of a spei� job sheduling system pakage. This mandates theuse of the given sheduler just to manage a luster, even though the sheduler does notneessarily meet the need of organization that hosts the luster. Clear separation of theluster management funtionality from sheduling poliy is desired.This observation led us to set out to design a simple, highly salable, and portableresoure management system. The result of this e�ort is Simple Linux Utility ResoureManagement (SLURM1). SLURM was developed with the following design goals:� Simpliity: SLURM is simple enough to allow motivated end-users to understand itssoure ode and add funtionality. The authors will avoid the temptation to addfeatures unless they are of general appeal.� Open Soure: SLURM is available to everyone and will remain free. Its soure odeis distributed under the GNU General Publi Liense [9℄.� Portability: SLURM is written in the C language, with a GNU autoonf on�gura-tion engine. While initially written for Linux, other UNIX-like operating systemsshould be easy porting targets. SLURM also supports a general purpose plugin meh-anism, whih permits a variety of di�erent infrastrutures to be easily supported. TheSLURM on�guration �le spei�es whih set of plugin modules should be used.� Interonnet independene: SLURM supports UDP/IP based ommuniation as wellas the Quadris Elan3 and Myrinet interonnets. Adding support for other interon-nets is straightforward and utilizes the plugin mehanism desribed above.� Salability: SLURM is designed for salability to lusters of thousands of nodes. Jobsmay speify their resoure requirements in a variety of ways inluding requirementsoptions and ranges, potentially permitting faster initiation than otherwise possible.� Robustness: SLURM an handle a variety of failure modes without terminating work-loads, inluding rashes of the node running the SLURM ontroller. User jobs maybe on�gured to ontinue exeution despite the failure of one or more nodes on whihthey are exeuting. Nodes alloated to a job are available for reuse as soon as thejob(s) alloated to that node terminate. If some nodes fail to omplete job termina-tion in a timely fashion due to hardware of software problems, only the sheduling ofthose tardy nodes will be a�eted.1A tip of the hat to Matt Groening and reators of Futurama, where Slurm is the most popular arbonatedbeverage in the universe.



� Seure: SLURM employs rypto tehnology to authentiate users to servies and ser-vies to eah other with a variety of options available through the plugin mehanism.SLURM does not assume that its networks are physially seure, but does assumethat the entire luster is within a single administrative domain with a ommon userbase aross the entire luster.� System administrator friendly: SLURM is on�gured using a simple on�guration �leand minimizes distributed state. Its on�guration may be hanged at any time withoutimpating running jobs. Heterogeneous nodes within a luster may be easily managed.SLURM interfaes are usable by sripts and its behavior is highly deterministi.The main ontribution of our work is that we have provided a readily available tool thatanybody an use to eÆiently manage lusters of di�erent size and arhiteture. SLURMis highly salable2. The SLURM an be easily ported to any luster system with minimale�ort with its plugin apability and an be used with any meta-bath sheduler or a Gridresoure broker [7℄ with its well-de�ned interfaes.The rest of the paper is organized as follows. Setion 2 desribes the arhiteture ofSLURM in detail. Setion 3 disusses the servies provided by SLURM followed by perfor-mane study of SLURM in Setion 4. Brief survey of existing luster management systemsis presented in Setion 5. Conluding remarks and future development plan of SLURM isgiven in Setion 6.2 SLURM ArhitetureAs a luster resoure manager, SLURM has three key funtions. First, it alloates exlusiveand/or non-exlusive aess to resoures to users for some duration of time so they anperform work. Seond, it provides a framework for starting, exeuting, and monitoringwork on the set of alloated nodes. Finally, it arbitrates oniting requests for resouresby managing a queue of pending work. Users and system administrators interat withSLURM using simple ommands.Figure 1 depits the key omponents of SLURM. As shown in Figure 1, SLURM onsistsof a slurmd daemon running on eah ompute node, a entral slurmtld daemon runningon a management node (with optional fail-over twin), and �ve ommand line utilities, whihan run anywhere in the luster.The entities managed by these SLURM daemons inlude nodes, the ompute resourein SLURM and partitions, whih group nodes into logial disjoint sets. The entities alsoinlude jobs, or alloations of resoures assigned to a user for a spei�ed amount of time,and job steps, whih are sets of tasks within a job. Eah job is alloated nodes within asingle partition. One a job is assigned a set of nodes, the user is able to initiate parallelwork in the form of job steps in any on�guration within the alloation. For instane asingle job step may be started whih utilizes all nodes alloated to the job, or several jobsteps may independently use a portion of the alloation.2It was observed that it took less than �ve seonds for SLURM to launh a 1900-task job over 950 nodeson reently installed luster at Lawrene Livermore National Laboratory.



Figure 1: SLURM ArhitetureFigure 2 exposes the subsystems that are implemented within the slurmd and slurmtlddaemons. These subsystems are explained in more detail below.2.1 SLURM Loal Daemon (Slurmd)The slurmd is a multi-threaded daemon running on eah ompute node. It reads theommon SLURM on�guration �le and reovers any previously saved state information,noti�es the ontroller that it is ative, waits for work, exeutes the work, returns status, andwaits for more work. Sine it initiates jobs for other users, it must run with root privilege.The only job information it has at any given time pertains to its urrently exeuting jobs.The slurmd performs �ve major tasks.� Mahine and Job Status Servies: Respond to ontroller requests for mahine and jobstate information, and send asynhronous reports of some state hanges (e.g. slurmdstartup) to the ontroller.� Remote Exeution: Start, monitor, and lean up after a set of proesses (typially be-longing to a parallel job) as ditated by the slurmtld daemon or an srun or sanelommand. Starting a proess may inlude exeuting a prolog program, setting proesslimits, setting real and e�etive user id, establishing environment variables, settingworking diretory, alloating interonnet resoures, setting ore �le paths, initializingthe Stream Copy Servie, and managing proess groups. Terminating a proess mayinlude terminating all members of a proess group and exeuting an epilog program.
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� Partition Manager: Groups nodes into non-overlapping sets alled partitions. Eahpartition an have assoiated with it various job limits and aess ontrols. The par-tition manager also alloates nodes to jobs based upon node and partition states andon�gurations. Requests to initiate jobs ome from the Job Manager. The sontrolmay be used to administratively alter node and partition on�gurations.� Job Manager: Aepts user job requests and plaes pending jobs in a priority orderedqueue. The Job Manager is awakened on a periodi basis and whenever there is ahange in state that might permit a job to begin running, suh as job ompletion, jobsubmission, partition-up transition, node-up transition, et. The Job Manager thenmakes a pass through the priority-ordered job queue. The highest priority jobs foreah partition are alloated resoures as possible. As soon as an alloation failureours for any partition, no lower-priority jobs for that partition are onsidered forinitiation. After ompleting the sheduling yle, the Job Manager's sheduling threadsleeps. One a job has been alloated resoures, the Job Manager transfers neessarystate information to those nodes, permitting it to ommene exeution. When theJob Manager detets that all nodes assoiated with a job have ompleted their work,it initiates lean-up and performs another sheduling yle as desribed above.3 SLURM Operation and Servies3.1 Command Line UtilitiesThe ommand line utilities are the user interfae to SLURM funtionality. They o�er usersaess to remote exeution and job ontrol. They also permit administrators to dynamiallyhange the system on�guration. These ommands all use SLURM APIs whih are diretlyavailable for more sophistiated appliations.� sanel: Canel a running or a pending job or job step, subjet to authentiationand authorization. This ommand an also be used to send an arbitrary signal to allproesses on all nodes assoiated with a job or job step.� sontrol: Perform privileged administrative ommands suh as draining a node orpartition in preparation for maintenane. Many sontrol funtions an only beexeuted by privileged users.� sinfo: Display a summary of partition and node information. A assortment of �lter-ing and output format options are available.� squeue: Display the queue of running and waiting jobs and/or job steps. A wideassortment of �ltering, sorting, and output format options are available.� srun: Alloate resoures, submit jobs to the SLURM queue, and initiate parallel tasks(job steps). Every set of exeuting parallel tasks has an assoiated srunwhih initiatedit and, if the srun persists, managing it. Jobs may be submitted for bath exeution,in whih ase srun terminates after job submission. Jobs may also be submitted forinterative exeution, where srun keeps running to shepherd the running job. In this



ase, srun negotiates onnetions with remote slurmd's for job initiation and to getstdout and stderr, forward stdin, and respond to signals from the user. The srun mayalso be instruted to alloate a set of resoures and spawn a shell with aess to thoseresoures. srun has a total of 13 parameters to ontrol where and when the job isinitiated.3.2 PluginsIn order to make the use of di�erent infrastrutures possible, SLURM uses a general pur-pose plugin mehanism. A SLURM plugin is a dynamially linked ode objet whih isloaded expliitly at run time by the SLURM libraries. A plugin provides a ustomized im-plemenation of a well-de�ned API onneted to tasks suh as authentiation, interonnetfabri, task sheduling. A ommon set of funtions is de�ned for use by all of the di�erentinfrastrutures of a partiular variety. For example, the authentiation plugin must de�nefuntions suh as: slurm auth ativate to reate a redential, slurm auth verify to ver-ify a redential to approve or deny authentiation, slurm auth get uid to get the user IDassoiated with a spei� redential, et. It also must de�ne the data struture used, aplugin type, a plugin version number. The available plugins are de�ned in the on�guration�le.3.3 Communiations LayerSLURM presently uses Berkeley sokets for ommuniations. However, we antiipate usingthe plugin mehanism to easily permit use of other ommuniations layers. At LLNL we areusing an Ethernet for SLURM ommuniations and the Quadris Elan swith exlusively foruser appliations. The SLURM on�guration �le permits the identi�ation of eah node'shostname as well as its name to be used for ommuniations.While SLURM is able to manage 1000 nodes without diÆulty using sokets and Eth-ernet, we are reviewing other ommuniation mehanisms whih may o�er improved sal-ability. One possible alternative is STORM[8℄. STORM uses the luster interonnet andNetwork Interfae Cards to provide high-speed ommuniations inluding a broadast a-pability. STORM only supports the Quadris Elan interonnnet at present, but does o�erthe promise of improved performane and salability.3.4 SeuritySLURM has a simple seurity model: Any user of the luster may submit parallel jobsto exeute and anel his own jobs. Any user may view SLURM on�guration and stateinformation. Only privileged users may modify the SLURM on�guration, anel any jobs,or perform other restrited ativities. Privileged users in SLURM inlude the users rootand SlurmUser (as de�ned in the SLURM on�guration �le). If permission to modifySLURM on�guration is required by others, set-uid programs may be used to grant spei�permissions to spei� users.We presently support three authentiation mehanisms via plugins: authd[10℄, mungedand none. A plugin an easily be developed for Kerberos or authentiation mehanismsas desired. The munged implementation is desribed below. A munged daemon running



as user root on eah node on�rms the identity of the user making the request using thegetpeername funtion and generates a redential. The redential ontains a user ID, groupID, time-stamp, lifetime, some pseudo-random information, and any user supplied informa-tion. The munged uses a private key to generate a Message Authentiation Code (MAC)for the redential. The munged then uses a publi key to symmetrially enrypt the reden-tial inluding the MAC. SLURM daemons and programs transmit this enrypted redentialwith ommuniations. The SLURM daemon reeiving the message sends the redential tomunged on that node. The munged derypts the redential using its private key, validatesit and returns the user ID and group ID of the user originating the redential. The mungedprevents replay of a redential on any single node by reording redentials that have alreadybeen authentiated. In SLURM's ase, the user supplied information inludes node iden-ti�ation information to prevent a redential from being used on nodes it is not destinedfor.When resoures are alloated to a user by the ontroller, a job step redential is generatedby ombining the user ID, job ID, step ID, the list of resoures alloated (nodes), and theredential lifetime. This job step redential is enrypted with a slurmtld private key. Thisredential is returned to the requesting agent (srun) along with the alloation response, andmust be forwarded to the remote slurmd's upon job step initiation. slurmd derypts thisredential with the slurmtld's publi key to verify that the user may aess resoures onthe loal node. slurmd also uses this job step redential to authentiate standard input,output, and error ommuniation streams.3.5 Job InitiationThere are three modes in whih jobs may be run by users under SLURM. The �rst and mostsimple is interative mode, in whih stdout and stderr are displayed on the user's terminalin real time, and stdin and signals may be forwarded from the terminal transparently tothe remote tasks. The seond is bath mode, in whih the job is queued until the requestfor resoures an be satis�ed, at whih time the job is run by SLURM as the submittinguser. In alloate mode, a job is alloated to the requesting user, under whih the user maymanually run job steps via a sript or in a sub-shell spawned by srun.Figure 3 gives a high-level depition of the onnetions that our between SLURMomponents during a general interative job startup. The srun requests a resoure alloationand job step initiation from the slurmtld, whih responds with the job ID, list of alloatednodes, job redential. if the request is granted. The srun then initializes listen ports foreah task and sends a message to the slurmd's on the alloated nodes requesting that theremote proesses be initiated. The slurmd's begin exeution of the tasks and onnet bakto srun for stdout and stderr. This proess and the other initiation modes are desribed inmore detail below.3.5.1 Interative mode initiationInterative job initiation is illustrated in Figure 4. The proess begins with a user invokingsrun in interative mode. In Figure 4, the user has requested an interative run of theexeutable \md" in the default partition.
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4.1 Quadris RMSQuadris RMS[22℄ (Resoure Management System) is for Unix systems having QuadrisElan interonnets. RMS funtionality and performane is exellent. Its major limitation isthe requirement for a Quadris interonnet. The proprietary ode and ost may also posediÆulties under some irumstanes.Maui ShedulerMaui Sheduler [17℄ is an advaned reservation HPC bath sheduler for use with SP,O2K, and UNIX/Linux lusters. It is widely used to extend the funtionality of PBS andLoadLeveler, whih Maui requires to perform the parallel job initiation and management.Distributed Prodution Control System (DPCS)The Distributed Prodution Control System (DPCS) [6℄ is a sheduler developed at LawreneLivermore National Laboratory (LLNL). The DPCS provides basi data olletion and re-porting mehanisms for prjet-level, near real-time aounting and resoure alloation toustomers with established limits per ustomers' organization budgets, In addition, theDPCS evenly distributes workload aross available omputers and supports dynami reon-�guration and graeful degradation of servie to prevent overuse of a omputer where notauthorized.DPCS supports only a limited number of omputer systems: IBM RS/6000 and SP,Linux, Sun Solaris, and Compaq Alpha. Like the Maui Sheduler, DPCS requires an under-lying infrastruture for parallel job initiation and management (LoadLeveler, NQS, RMSor SLURM).LoadLevelerLoadLeveler [11, 14℄ is a proprietary bath system and parallel job manager by IBM.LoadLeveler supports few non-IBM systems. Very primitive sheduling software exists andother software is required for reasonable performane, suh as Maui Sheduler or DPCS.The LoadLeveler has a simple and very exible queue and job lass struture available op-erating in "matrix" fashion. The biggest problem of the LoadLeveler is its poor salability.It typially requires 20 minutes to exeute even a trivial 500-node, 8000-task on the IBMSP omputers at LLNL.Load Sharing Faility (LSF)LSF [15℄ is a proprietary bath system and parallel job manager by Platform Computing.Widely deployed on a wide variety of omputer arhitetures, it has sophistiated shedul-ing software inluding fair-share, bak�ll, onsumable resoures, an job preemption andvery exible queue struture. It also provides good status information on nodes and LSFdaemons. While LSF is quite powerful, it is not open-soure and an be ostly on largerlusters.



CondorCondor [5, 13, 1℄ is a bath system and parallel job manager developed by the Universityof Wisonsin. Condor was the basis for IBM's LoadLeveler and both share very similarunderlying infrastruture. Condor has a very sophistiated hekpoint/restart servie thatdoes not rely upon kernel hanges, but a variety of library hanges (whih prevent it frombeing ompletely general). The Condor hekpoint/restart servie has been integrated intoLSF, Codine, and DPCS. Condor is designed to operate aross a heterogeneous environment,mostly to harness the ompute resoures of workstations and PCs. It has an interesting"advertising" servie. Servers advertise their available resoures and onsumers advertisetheir requirements for a broker to perform mathes. The hekpoint mehanism is used toreloate work on demand (when the "owner" of a desktop mahine wants to resume work).Beowulf Distributed Proess Spae (BPROC)The Beowulf Distributed Proess Spae (BPROC) is set of kernel modi�ations, utilitiesand libraries whih allow a user to start proesses on other mahines in a Beowulf-styleluster [2℄. Remote proesses started with this mehanism appear in the proess table ofthe front end mahine in a luster. This allows remote proess management using the normalUNIX proess ontrol failities. Signals are transparently forwarded to remote proesses andexit status is reeived using the usual wait() mehanisms. This tight oupling of a luster'snodes is onvenient, but high salability an be diÆult to ahieve.5 Performane Study
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Figure 7: Time to exeute /bin/hostname with various node ounts



We were able to perform some SLURM tests on a 1000 node luster at LLNL. Somedevelopment was still underway at that time and tuning had not been performed. Theresults for exeuting simple 'hostname' program on two tasks per node and various nodeounts is show in Figure 7. We found SLURM performane to be omparable to the QuadrisResoure Management System (RMS) [21℄ for all job sizes and about 80 times faster thanIBM LoadLeveler [14, 11℄ at tested job sizes.6 Conlusion and Future PlansWe have presented in this paper an overview of SLURM, a simple, highly salable, robust,and portable luster resoure management system. The ontribution of this work is thatwe have provided a immediately-available and open-soure tool that virtually anybody anuse to eÆiently manage lusters of di�erent sizes and arhiteture.Looking ahead, we antiipate adding support for additional operating systems. We an-tiipate adding a job preempt/resume apability, whih will provide an external shedulerthe infrastruture required to perform gang sheduling, and a hekpoint/restart apability.We also plan to use the SLURM for IBM's Blue Gene/L platform [4℄ by inorporating aapability to manage jobs on a three-dimensional torus mahine into the SLURM.AknowledgmentsAdditional programmers responsible for the development of SLURM inlude: Chris Dunlap,Joey Ekstrom, Jim Garlik, Kevin Tew and Jay Windley.
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