
SLURM: Simple Linux Utility for Resoure Management�Morris A. Jette Andy B. Yoo Mark GrondonaLawrene Livermore National LaboratoryLivermore, CA 94551fjette1 j yoo2 j mgrondonag�llnl.govAbstratA new luster resoure management system alled Simple Linux Utility ResoureManagement (SLURM) is desribed in this paper. SLURM, initially developed forlarge Linux lusters at the Lawrene Livermore National Laboratory (LLNL), is a simpleluster manager that an sale to thousands of proessors. SLURM is designed to beexible and fault-tolerant and an be ported to other lusters of di�erent size andarhiteture with minimal e�ort. We are ertain that SLURM will bene�t both usersand system arhitets by providing them with a simple, robust, and highly salableparallel job exeution environment for their luster system.1 IntrodutionLinux lusters, often onstruted by using ommodity o�-the-shelf (COTS) omponnets,have beome inreasingly populuar as a omputing platform for parallel omputation inreent years, mainly due to their ability to deliver a high perfomane-ost ratio. Researhershave built and used small to medium size lusters for various appliations [3, 16℄. Theontinuous derease in the prie of the COTS parts in onjuntion with the good salabilityof the luster arhiteture has now made it feasible to eonomially build large-sale lusterswith thousands of proessors [18, 19℄.An essential omponent that is needed to harness suh a omputer is a resoure manage-ment system. A resoure management system (or resoure manager) performs suh ruial�This doument was prepared as an aount of work sponsored by an ageny of the United States Gov-ernment. Neither the United States Government nor the University of California nor any of their employees,makes any warranty, express or implied, or assumes any legal liability or responsibility for the auray,ompleteness, or usefulness of any information, apparatus, produt, or proess dislosed, or represents thatits use would not infringe privately owned rights. Referene herein to any spei� ommerial produt,proess, or servie by trade name, trademark, manufaturer, or otherwise, does not neessarily onstitute orimply its endorsement, reommendation, or favoring by the United States Government or the University ofCalifornia. The views and opinions of authors expressed herein do not neessarily state or reet those of theUnited States Government or the University of California, and shall not be used for advertising or produtendorsement purposes. This work was performed under the auspies of the U. S. Department of Energy bythe University of California, Lawrene Livermore National Laboratory under Contrat No. W-7405-Eng-48.Doument UCRL-JC-147996.



tasks as sheduling user jobs, monitoring mahine and job status, launhing user applia-tions, and managing mahine on�guration, An ideal resoure manager should be simple,eÆient, salable, fault-tolerant, and portable.Unfortunately there are no open-soure resoure management systems urrently availablewhih satisfy these requirements. A survey [12℄ has revealed that many existing resouremanagers have poor salability and fault-tolerane rendering them unsuitable for large lus-ters having thousands of proessors [14, 11℄. While some proprietary luster managersare suitable for large lusters, they are typially designed for partiular omputer systemsand/or interonnets [21, 14, 11℄. Proprietary systems an also be expensive and unavail-able in soure-ode form. Furthermore, proprietary luster management funtionality isusually provided as a part of a spei� job sheduling system pakage. This mandates theuse of the given sheduler just to manage a luster, even though the sheduler does notneessarily meet the need of organization that hosts the luster. Clear separation of theluster management funtionality from sheduling poliy is desired.This observation led us to set out to design a simple, highly salable, and portableresoure management system. The result of this e�ort is Simple Linux Utility ResoureManagement (SLURM1). SLURM was developed with the following design goals:� Simpliity: SLURM is simple enough to allow motivated end-users to understand itssoure ode and add funtionality. The authors will avoid the temptation to addfeatures unless they are of general appeal.� Open Soure: SLURM is available to everyone and will remain free. Its soure odeis distributed under the GNU General Publi Liense [9℄.� Portability: SLURM is written in the C language, with a GNU autoonf on�gura-tion engine. While initially written for Linux, other UNIX-like operating systemsshould be easy porting targets. SLURM also supports a general purpose plugin meh-anism, whih permits a variety of di�erent infrastrutures to be easily supported. TheSLURM on�guration �le spei�es whih set of plugin modules should be used.� Interonnet independene: SLURM supports UDP/IP based ommuniation as wellas the Quadris Elan3 and Myrinet interonnets. Adding support for other interon-nets is straightforward and utilizes the plugin mehanism desribed above.� Salability: SLURM is designed for salability to lusters of thousands of nodes. Jobsmay speify their resoure requirements in a variety of ways inluding requirementsoptions and ranges, potentially permitting faster initiation than otherwise possible.� Robustness: SLURM an handle a variety of failure modes without terminating work-loads, inluding rashes of the node running the SLURM ontroller. User jobs maybe on�gured to ontinue exeution despite the failure of one or more nodes on whihthey are exeuting. Nodes alloated to a job are available for reuse as soon as thejob(s) alloated to that node terminate. If some nodes fail to omplete job termina-tion in a timely fashion due to hardware of software problems, only the sheduling ofthose tardy nodes will be a�eted.1A tip of the hat to Matt Groening and reators of Futurama, where Slurm is the most popular arbonatedbeverage in the universe.



� Seure: SLURM employs rypto tehnology to authentiate users to servies and ser-vies to eah other with a variety of options available through the plugin mehanism.SLURM does not assume that its networks are physially seure, but does assumethat the entire luster is within a single administrative domain with a ommon userbase aross the entire luster.� System administrator friendly: SLURM is on�gured using a simple on�guration �leand minimizes distributed state. Its on�guration may be hanged at any time withoutimpating running jobs. Heterogeneous nodes within a luster may be easily managed.SLURM interfaes are usable by sripts and its behavior is highly deterministi.The main ontribution of our work is that we have provided a readily available tool thatanybody an use to eÆiently manage lusters of di�erent size and arhiteture. SLURMis highly salable2. The SLURM an be easily ported to any luster system with minimale�ort with its plugin apability and an be used with any meta-bath sheduler or a Gridresoure broker [7℄ with its well-de�ned interfaes.The rest of the paper is organized as follows. Setion 2 desribes the arhiteture ofSLURM in detail. Setion 3 disusses the servies provided by SLURM followed by perfor-mane study of SLURM in Setion 4. Brief survey of existing luster management systemsis presented in Setion 5. Conluding remarks and future development plan of SLURM isgiven in Setion 6.2 SLURM ArhitetureAs a luster resoure manager, SLURM has three key funtions. First, it alloates exlusiveand/or non-exlusive aess to resoures to users for some duration of time so they anperform work. Seond, it provides a framework for starting, exeuting, and monitoringwork on the set of alloated nodes. Finally, it arbitrates oniting requests for resouresby managing a queue of pending work. Users and system administrators interat withSLURM using simple ommands.Figure 1 depits the key omponents of SLURM. As shown in Figure 1, SLURM onsistsof a slurmd daemon running on eah ompute node, a entral slurmtld daemon runningon a management node (with optional fail-over twin), and �ve ommand line utilities, whihan run anywhere in the luster.The entities managed by these SLURM daemons inlude nodes, the ompute resourein SLURM and partitions, whih group nodes into logial disjoint sets. The entities alsoinlude jobs, or alloations of resoures assigned to a user for a spei�ed amount of time,and job steps, whih are sets of tasks within a job. Eah job is alloated nodes within asingle partition. One a job is assigned a set of nodes, the user is able to initiate parallelwork in the form of job steps in any on�guration within the alloation. For instane asingle job step may be started whih utilizes all nodes alloated to the job, or several jobsteps may independently use a portion of the alloation.2It was observed that it took less than �ve seonds for SLURM to launh a 1900-task job over 950 nodeson reently installed luster at Lawrene Livermore National Laboratory.



Figure 1: SLURM ArhitetureFigure 2 exposes the subsystems that are implemented within the slurmd and slurmtlddaemons. These subsystems are explained in more detail below.2.1 SLURM Loal Daemon (Slurmd)The slurmd is a multi-threaded daemon running on eah ompute node. It reads theommon SLURM on�guration �le and reovers any previously saved state information,noti�es the ontroller that it is ative, waits for work, exeutes the work, returns status, andwaits for more work. Sine it initiates jobs for other users, it must run with root privilege.The only job information it has at any given time pertains to its urrently exeuting jobs.The slurmd performs �ve major tasks.� Mahine and Job Status Servies: Respond to ontroller requests for mahine and jobstate information, and send asynhronous reports of some state hanges (e.g. slurmdstartup) to the ontroller.� Remote Exeution: Start, monitor, and lean up after a set of proesses (typially be-longing to a parallel job) as ditated by the slurmtld daemon or an srun or sanelommand. Starting a proess may inlude exeuting a prolog program, setting proesslimits, setting real and e�etive user id, establishing environment variables, settingworking diretory, alloating interonnet resoures, setting ore �le paths, initializingthe Stream Copy Servie, and managing proess groups. Terminating a proess mayinlude terminating all members of a proess group and exeuting an epilog program.



Partition ManagerNode Manager

slurmctld
srunUser:

slurmd

Machine 
Status

Job
Control

Remote
Execution

Globus and/or
Metascheduler

(optional)

Stream Copy

Job Manager

Job 
StatusFigure 2: SLURM Arhiteture - Subsystems� Stream Copy Servie: Allow handling of stderr, stdout, and stdin of remote tasks. Jobinput may be redireted from a �le or �les, a srun proess, or /dev/null. Job outputmay be saved into loal �les or sent bak to the srun ommand. Regardless of theloation of stdout or stderr, all job output is loally bu�ered to avoid bloking loaltasks.� Job Control: Allow asynhronous interation with the Remote Exeution environ-ment by propagating signals or expliit job termination requests to any set of loallymanaged proesses.2.2 SLURM Central Daemon (Slurmtld)Most SLURM state information is maintained by the ontroller, slurmtld. The slurmtldis multi-threaded with independent read and write loks for the various data strutures toenhane salability. When slurmtld starts, it reads the SLURM on�guration �le. Itan also read additional state information from a hekpoint �le generated by a previousexeution of slurmtld. Full ontroller state information is written to disk periodially withinremental hanges written to disk immediately for fault-tolerane. The slurmtld runsin either master or standby mode, depending on the state of its fail-over twin, if any. Theslurmtld need not exeute with root privilege. The slurmtld onsists of three majoromponents:� Node Manager: Monitors the state of eah node in the luster. It polls slurmd'sfor status periodially and reeives state hange noti�ations from slurmd daemonsasynhronously. It ensures that nodes have the presribed on�guration before beingonsidered available for use.



� Partition Manager: Groups nodes into non-overlapping sets alled partitions. Eahpartition an have assoiated with it various job limits and aess ontrols. The par-tition manager also alloates nodes to jobs based upon node and partition states andon�gurations. Requests to initiate jobs ome from the Job Manager. The sontrolmay be used to administratively alter node and partition on�gurations.� Job Manager: Aepts user job requests and plaes pending jobs in a priority orderedqueue. The Job Manager is awakened on a periodi basis and whenever there is ahange in state that might permit a job to begin running, suh as job ompletion, jobsubmission, partition-up transition, node-up transition, et. The Job Manager thenmakes a pass through the priority-ordered job queue. The highest priority jobs foreah partition are alloated resoures as possible. As soon as an alloation failureours for any partition, no lower-priority jobs for that partition are onsidered forinitiation. After ompleting the sheduling yle, the Job Manager's sheduling threadsleeps. One a job has been alloated resoures, the Job Manager transfers neessarystate information to those nodes, permitting it to ommene exeution. When theJob Manager detets that all nodes assoiated with a job have ompleted their work,it initiates lean-up and performs another sheduling yle as desribed above.3 SLURM Operation and Servies3.1 Command Line UtilitiesThe ommand line utilities are the user interfae to SLURM funtionality. They o�er usersaess to remote exeution and job ontrol. They also permit administrators to dynamiallyhange the system on�guration. These ommands all use SLURM APIs whih are diretlyavailable for more sophistiated appliations.� sanel: Canel a running or a pending job or job step, subjet to authentiationand authorization. This ommand an also be used to send an arbitrary signal to allproesses on all nodes assoiated with a job or job step.� sontrol: Perform privileged administrative ommands suh as draining a node orpartition in preparation for maintenane. Many sontrol funtions an only beexeuted by privileged users.� sinfo: Display a summary of partition and node information. A assortment of �lter-ing and output format options are available.� squeue: Display the queue of running and waiting jobs and/or job steps. A wideassortment of �ltering, sorting, and output format options are available.� srun: Alloate resoures, submit jobs to the SLURM queue, and initiate parallel tasks(job steps). Every set of exeuting parallel tasks has an assoiated srunwhih initiatedit and, if the srun persists, managing it. Jobs may be submitted for bath exeution,in whih ase srun terminates after job submission. Jobs may also be submitted forinterative exeution, where srun keeps running to shepherd the running job. In this



ase, srun negotiates onnetions with remote slurmd's for job initiation and to getstdout and stderr, forward stdin, and respond to signals from the user. The srun mayalso be instruted to alloate a set of resoures and spawn a shell with aess to thoseresoures. srun has a total of 13 parameters to ontrol where and when the job isinitiated.3.2 PluginsIn order to make the use of di�erent infrastrutures possible, SLURM uses a general pur-pose plugin mehanism. A SLURM plugin is a dynamially linked ode objet whih isloaded expliitly at run time by the SLURM libraries. A plugin provides a ustomized im-plemenation of a well-de�ned API onneted to tasks suh as authentiation, interonnetfabri, task sheduling. A ommon set of funtions is de�ned for use by all of the di�erentinfrastrutures of a partiular variety. For example, the authentiation plugin must de�nefuntions suh as: slurm auth ativate to reate a redential, slurm auth verify to ver-ify a redential to approve or deny authentiation, slurm auth get uid to get the user IDassoiated with a spei� redential, et. It also must de�ne the data struture used, aplugin type, a plugin version number. The available plugins are de�ned in the on�guration�le.3.3 Communiations LayerSLURM presently uses Berkeley sokets for ommuniations. However, we antiipate usingthe plugin mehanism to easily permit use of other ommuniations layers. At LLNL we areusing an Ethernet for SLURM ommuniations and the Quadris Elan swith exlusively foruser appliations. The SLURM on�guration �le permits the identi�ation of eah node'shostname as well as its name to be used for ommuniations.While SLURM is able to manage 1000 nodes without diÆulty using sokets and Eth-ernet, we are reviewing other ommuniation mehanisms whih may o�er improved sal-ability. One possible alternative is STORM[8℄. STORM uses the luster interonnet andNetwork Interfae Cards to provide high-speed ommuniations inluding a broadast a-pability. STORM only supports the Quadris Elan interonnnet at present, but does o�erthe promise of improved performane and salability.3.4 SeuritySLURM has a simple seurity model: Any user of the luster may submit parallel jobsto exeute and anel his own jobs. Any user may view SLURM on�guration and stateinformation. Only privileged users may modify the SLURM on�guration, anel any jobs,or perform other restrited ativities. Privileged users in SLURM inlude the users rootand SlurmUser (as de�ned in the SLURM on�guration �le). If permission to modifySLURM on�guration is required by others, set-uid programs may be used to grant spei�permissions to spei� users.We presently support three authentiation mehanisms via plugins: authd[10℄, mungedand none. A plugin an easily be developed for Kerberos or authentiation mehanismsas desired. The munged implementation is desribed below. A munged daemon running



as user root on eah node on�rms the identity of the user making the request using thegetpeername funtion and generates a redential. The redential ontains a user ID, groupID, time-stamp, lifetime, some pseudo-random information, and any user supplied informa-tion. The munged uses a private key to generate a Message Authentiation Code (MAC)for the redential. The munged then uses a publi key to symmetrially enrypt the reden-tial inluding the MAC. SLURM daemons and programs transmit this enrypted redentialwith ommuniations. The SLURM daemon reeiving the message sends the redential tomunged on that node. The munged derypts the redential using its private key, validatesit and returns the user ID and group ID of the user originating the redential. The mungedprevents replay of a redential on any single node by reording redentials that have alreadybeen authentiated. In SLURM's ase, the user supplied information inludes node iden-ti�ation information to prevent a redential from being used on nodes it is not destinedfor.When resoures are alloated to a user by the ontroller, a job step redential is generatedby ombining the user ID, job ID, step ID, the list of resoures alloated (nodes), and theredential lifetime. This job step redential is enrypted with a slurmtld private key. Thisredential is returned to the requesting agent (srun) along with the alloation response, andmust be forwarded to the remote slurmd's upon job step initiation. slurmd derypts thisredential with the slurmtld's publi key to verify that the user may aess resoures onthe loal node. slurmd also uses this job step redential to authentiate standard input,output, and error ommuniation streams.3.5 Job InitiationThere are three modes in whih jobs may be run by users under SLURM. The �rst and mostsimple is interative mode, in whih stdout and stderr are displayed on the user's terminalin real time, and stdin and signals may be forwarded from the terminal transparently tothe remote tasks. The seond is bath mode, in whih the job is queued until the requestfor resoures an be satis�ed, at whih time the job is run by SLURM as the submittinguser. In alloate mode, a job is alloated to the requesting user, under whih the user maymanually run job steps via a sript or in a sub-shell spawned by srun.Figure 3 gives a high-level depition of the onnetions that our between SLURMomponents during a general interative job startup. The srun requests a resoure alloationand job step initiation from the slurmtld, whih responds with the job ID, list of alloatednodes, job redential. if the request is granted. The srun then initializes listen ports foreah task and sends a message to the slurmd's on the alloated nodes requesting that theremote proesses be initiated. The slurmd's begin exeution of the tasks and onnet bakto srun for stdout and stderr. This proess and the other initiation modes are desribed inmore detail below.3.5.1 Interative mode initiationInterative job initiation is illustrated in Figure 4. The proess begins with a user invokingsrun in interative mode. In Figure 4, the user has requested an interative run of theexeutable \md" in the default partition.



srun

slurmctld

slurmdslurmdslurmd

ephemeral port ‘‘known’’ port

1.

2.

3.

4.

Figure 3: Job initiation onnetions overview. 1. The srun onnets to slurmtld requestingresoures. 2. slurmtld issues a response, with list of nodes and job redential. 3. The srun opensa listen port for every task in the job step, then sends a run job step request to slurmd. 4. slurmd'sinitiate job step and onnet bak to srun for stdout/err.After proessing ommand line options, srun sends a message to slurmtld requestinga resoure alloation and a job step initiation. This message simultaneously requests analloation (or job) and a job step. The srun waits for a reply from slurmtld, whih maynot ome instantly if the user has requested that srun blok until resoures are available.When resoures are available for the user's job, slurmtld replies with a job step redential,list of nodes that were alloated, pus per node, and so on. The srun then sends a messageeah slurmd on the alloated nodes requesting that a job step be initiated. The slurmd'sverify that the job is valid using the forwarded job step redential and then respond tosrun.Eah slurmd invokes a job thread to handle the request, whih in turn invokes a taskthread for eah requested task. The task thread onnets bak to a port opened by srunfor stdout and stderr. The host and port for this onnetion is ontained in the run requestmessage sent to this mahine by srun. One stdout and stderr have suessfully beenonneted, the task thread takes the neessary steps to initiate the user's exeutable onthe node, initializing environment, urrent working diretory, and interonnet resoures ifneeded.One the user proess exits, the task thread reords the exit status and sends a task exitmessage bak to srun. When all loal proesses terminate, the job thread exits. The srunproess either waits for all tasks to exit, or attempt to lean up the remaining proessessome time after the �rst task exits. Regardless, one all tasks are �nished, srun sends amessage to the slurmtld releasing the alloated nodes, then exits with an appropriate exitstatus.When the slurmtld reeives noti�ation that srun no longer needs the alloated nodes,



User
slurmctld slurmd

register job step

register job step reply

run job step req

run job step reply job_mgr
session_mgr

connect(stdout/err)

task exit msg

release allocation
run epilog req

run epilog reply

srun

status req (periodic)

status reply

exit 
status

cmd

srun cmd

prolog

epilogFigure 4: Interative job initiation. srun simultaneously alloates nodes and a job step fromslurmtld then sends a run request to all slurmd's in job. Dashed arrows indiate a periodirequest that may or may not our during the lifetime of the job.it issues a request for the epilog to be run on eah of the slurmd's in the alloation. Asslurmd's report that the epilog ran suessfully, the nodes are returned to the partition.3.5.2 Bath mode initiationFigure 5 illustrates the initiation of a bath job in SLURM. One a bath job is submitted,srun sends a bath job request to slurmtld that ontains the input/output loation for thejob, urrent working diretory, environment, requested number of nodes. The slurmtldqueues the request in its priority ordered queue.One the resoures are available and the job has a high enough priority, slurmtldalloates the resoures to the job and ontats the �rst node of the alloation requestingthat the user job be started. In this ase, the job may either be another invoation of srunor a job sript whih may have multiple invoations of srun within it. The slurmd on theremote node responds to the run request, initiating the job thread, task thread, and usersript. An srun exeuted from within the sript detets that it has aess to an alloationand initiates a job step on some or all of the nodes within the job.One the job step is omplete, the srun in the job sript noti�es the slurmtld andterminates. The job sript ontinues exeuting and may initiate further job steps. Onethe job sript ompletes, the task thread running the job sript ollets the exit status andsends a task exit message to the slurmtld. The slurmtld notes that the job is ompleteand requests that the job epilog be run on all nodes that were alloated. As the slurmd'srespond with suessful ompletion of the epilog, the nodes are returned to the partition.



srun slurmctld slurmd slurmd

batch req

batch reply

run req
job_mgr

session_mgr

srun

run reply

job step req

job step reply

cmd

release step reply

release step

task exit msg

run epilog req

run epilog reply

script

User

submit
exit status

job
queued

srun batch

prolog

epilogFigure 5: Queued job initiation. slurmtld initiates the user's job as a bath sript on one node.Bath sript ontains an srun all whih initiates parallel tasks after instantiating job step withontroller. The shaded region is a ompressed representation and is illustrated in more detail in theinterative diagram (Figure 4).3.5.3 Alloate mode initiationIn alloate mode, the user wishes to alloate a job and interatively run job steps under thatalloation. The proess of initiation in this mode is illustrated in Figure 6. The invokedsrun sends an alloate request to slurmtld, whih, if resoures are available, respondswith a list of nodes alloated, job id, et. The srun proess spawns a shell on the user'sterminal with aess to the alloation, then waits for the shell to exit at whih time the jobis onsidered omplete.An srun initiated within the alloate sub-shell reognizes that it is running under analloation and therefore already within a job. Provided with no other arguments, srunstarted in this manner initiates a job step on all nodes within the urrent job. However,the user may selet a subset of these nodes impliitly.An srun exeuted from the sub-shell reads the environment and user options, then notifythe ontroller that it is starting a job step under the urrent job. The slurmtld registersthe job step and responds with a job redential. The srun then initiates the job step usingthe same general method as desribed in the setion on interative job initiation.When the user exits the alloate sub-shell, the original srun reeives exit status, noti�esslurmtld that the job is omplete, and exits. The ontroller runs the epilog on eah ofthe alloated nodes, returning nodes to the partition as they omplete the epilog.



User
slurmctld slurmd

allocate req

allocate reply

run job step req

job step reply

job_mgr
session_mgr

connect(stdout/err)

task exit msg

srun

exit 
status

cmd

srun allocate

srun
job step req

sh

run job step reply

release allocation
run epilog req

run epilog reply

release job step

job/job step status

prolog

epilogFigure 6: Job initiation in alloate mode. Resoures are alloated and srun spawns a shell withaess to the resoures. When user runs an srun from within the shell, the a job step is initiatedunder the alloation.4 Related WorkPortable Bath System (PBS)The Portable Bath System (PBS) [20℄ is a exible bath queuing and workload manage-ment system originally developed by Veridian Systems for NASA. It operates on networked,multi-platform UNIX environments, inluding heterogeneous lusters of workstations, su-peromputers, and massively parallel systems. PBS was developed as a replaement forNQS (Network Queuing System) by many of the same people.PBS supports sophistiated sheduling logi (via the Maui Sheduler). PBS spawn'sdaemons on eah mahine to shepherd the job's tasks. It provides an interfae for admin-istrators to easily interfae their own sheduling modules. PBS an support long delaysin �le staging with retry. Host authentiation is provided by heking port numbers (lowports numbers are only aessible to user root). Credential servie is used for user authen-tiation. It has the job prolog and epilog feature. PBS Supports high priority queue forsmaller \interative" jobs. Signal to daemons auses urrent log �le to be losed, renamedwith time-stamp, and a new log �le reated.Although the PBS is portable and has a broad user base, it has signi�ant drawbaks.PBS is single threaded and hene exhibits poor performane on large lusters. This ispartiularly problemati when a ompute node in the system fails: PBS tries to ontatdown node while other ativities must wait. PBS also has a weak mehanism for startingand leaning up parallel jobs.



4.1 Quadris RMSQuadris RMS[22℄ (Resoure Management System) is for Unix systems having QuadrisElan interonnets. RMS funtionality and performane is exellent. Its major limitation isthe requirement for a Quadris interonnet. The proprietary ode and ost may also posediÆulties under some irumstanes.Maui ShedulerMaui Sheduler [17℄ is an advaned reservation HPC bath sheduler for use with SP,O2K, and UNIX/Linux lusters. It is widely used to extend the funtionality of PBS andLoadLeveler, whih Maui requires to perform the parallel job initiation and management.Distributed Prodution Control System (DPCS)The Distributed Prodution Control System (DPCS) [6℄ is a sheduler developed at LawreneLivermore National Laboratory (LLNL). The DPCS provides basi data olletion and re-porting mehanisms for prjet-level, near real-time aounting and resoure alloation toustomers with established limits per ustomers' organization budgets, In addition, theDPCS evenly distributes workload aross available omputers and supports dynami reon-�guration and graeful degradation of servie to prevent overuse of a omputer where notauthorized.DPCS supports only a limited number of omputer systems: IBM RS/6000 and SP,Linux, Sun Solaris, and Compaq Alpha. Like the Maui Sheduler, DPCS requires an under-lying infrastruture for parallel job initiation and management (LoadLeveler, NQS, RMSor SLURM).LoadLevelerLoadLeveler [11, 14℄ is a proprietary bath system and parallel job manager by IBM.LoadLeveler supports few non-IBM systems. Very primitive sheduling software exists andother software is required for reasonable performane, suh as Maui Sheduler or DPCS.The LoadLeveler has a simple and very exible queue and job lass struture available op-erating in "matrix" fashion. The biggest problem of the LoadLeveler is its poor salability.It typially requires 20 minutes to exeute even a trivial 500-node, 8000-task on the IBMSP omputers at LLNL.Load Sharing Faility (LSF)LSF [15℄ is a proprietary bath system and parallel job manager by Platform Computing.Widely deployed on a wide variety of omputer arhitetures, it has sophistiated shedul-ing software inluding fair-share, bak�ll, onsumable resoures, an job preemption andvery exible queue struture. It also provides good status information on nodes and LSFdaemons. While LSF is quite powerful, it is not open-soure and an be ostly on largerlusters.



CondorCondor [5, 13, 1℄ is a bath system and parallel job manager developed by the Universityof Wisonsin. Condor was the basis for IBM's LoadLeveler and both share very similarunderlying infrastruture. Condor has a very sophistiated hekpoint/restart servie thatdoes not rely upon kernel hanges, but a variety of library hanges (whih prevent it frombeing ompletely general). The Condor hekpoint/restart servie has been integrated intoLSF, Codine, and DPCS. Condor is designed to operate aross a heterogeneous environment,mostly to harness the ompute resoures of workstations and PCs. It has an interesting"advertising" servie. Servers advertise their available resoures and onsumers advertisetheir requirements for a broker to perform mathes. The hekpoint mehanism is used toreloate work on demand (when the "owner" of a desktop mahine wants to resume work).Beowulf Distributed Proess Spae (BPROC)The Beowulf Distributed Proess Spae (BPROC) is set of kernel modi�ations, utilitiesand libraries whih allow a user to start proesses on other mahines in a Beowulf-styleluster [2℄. Remote proesses started with this mehanism appear in the proess table ofthe front end mahine in a luster. This allows remote proess management using the normalUNIX proess ontrol failities. Signals are transparently forwarded to remote proesses andexit status is reeived using the usual wait() mehanisms. This tight oupling of a luster'snodes is onvenient, but high salability an be diÆult to ahieve.5 Performane Study

0.1

1

10

1 2 4 8 16 32 64 128 256 512 950

S
ec

on
ds

Nodes

SLURM
RMS

LoadLeveler

Figure 7: Time to exeute /bin/hostname with various node ounts



We were able to perform some SLURM tests on a 1000 node luster at LLNL. Somedevelopment was still underway at that time and tuning had not been performed. Theresults for exeuting simple 'hostname' program on two tasks per node and various nodeounts is show in Figure 7. We found SLURM performane to be omparable to the QuadrisResoure Management System (RMS) [21℄ for all job sizes and about 80 times faster thanIBM LoadLeveler [14, 11℄ at tested job sizes.6 Conlusion and Future PlansWe have presented in this paper an overview of SLURM, a simple, highly salable, robust,and portable luster resoure management system. The ontribution of this work is thatwe have provided a immediately-available and open-soure tool that virtually anybody anuse to eÆiently manage lusters of di�erent sizes and arhiteture.Looking ahead, we antiipate adding support for additional operating systems. We an-tiipate adding a job preempt/resume apability, whih will provide an external shedulerthe infrastruture required to perform gang sheduling, and a hekpoint/restart apability.We also plan to use the SLURM for IBM's Blue Gene/L platform [4℄ by inorporating aapability to manage jobs on a three-dimensional torus mahine into the SLURM.AknowledgmentsAdditional programmers responsible for the development of SLURM inlude: Chris Dunlap,Joey Ekstrom, Jim Garlik, Kevin Tew and Jay Windley.



Referenes[1℄ J. Basney, M. Livny, and T. Tannenbaum. High Throughput Computing with Condor.HPCU news, 1(2), June 1997.[2℄ Beowulf Distributed Proess Spae. http://bpro.soureforge.net.[3℄ Beowulf Projet. http://www.beowulf.org.[4℄ Blue Gene/L. http://mg-rr.llnl.gov/asi/platforms/bluegenel.[5℄ Condor. http://www.s.wis.edu/ondor.[6℄ Distributed Prodution Control System. http://www.llnl.gov/i/l/dps overview.html.[7℄ I. Foster and C. Kesselman. The GRID: Blueprint for a New Computing Onfrastruture.Morgan Kaufmann Publishers, In., 1999.[8℄ E. Frahtenberg, F. Petrini, et al. Storm: Lightning-fast resoure management. InProeedings of SuperComputing, 2002.[9℄ GNU General Publi Liense. http://www.gnu.org/lienses/gpl.html.[10℄ A. home page. http://www.theether.org/authd/.[11℄ IBM Corporation. LoadLeveler's User Guide, Release 2.1.[12℄ M. Jette, C. Dunlap, J. Garlik, and M. Grondona. Survey of Bath/ResoureManagement-Related System Software. Tehnial Report N/A, Lawrene LivermoreNational Laboratory, 2002.[13℄ M. Litzknow, M. Livny, and M. Mutka. Condor - a hunter for idle workstations. InPro. International Conferene on Distributed Computing Systems, June 1988.[14℄ Load Leveler. http://www-1.ibm.om/servers/eservers/pseries/library/sp books/loadleveler.html.[15℄ Load Sharing Faility. http://www.platform.om.[16℄ Loki { Commodity Parallel Proessing. http://loki-www.lanl.org.[17℄ Maui Sheduler. mauisheduler.soureforge.net.[18℄ Multiprogrammati Capability Cluster. http://www.llnl.gov/linux/mr.[19℄ Parallel Capaity Resoure. http://www.llnl.gov/linux/pr.[20℄ Portable Bath System. http://www.openpbs.org.[21℄ Quadirs Resoure Management System. http://www.quadris.om/website/pdf/rms.pdf.[22℄ Q. R. M. System. http://www.quadris.om/./biblio


