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Abstract

Although job scheduling has been much studied, the is-
sue of providing deadline guarantees in this context has not
been addressed. In this paper, we propose a new scheme,
termed asQoPSto provide Quality of Service (QoS) in the
response time given to the end user in the form of guaran-
tees in the completion time to submitted independent paral-
lel jobs. To the best of our knowledge, this scheme is the first
one to implement admission control and guarantee dead-
lines for admitted parallel jobs.

Keywords: QoS, Job Scheduling, Real time Deadlines,
Parallel Job Scheduling

1 Introduction

A lot of research has focused on the problem of scheduling
dynamically-arriving independent parallel jobs on a given
set of resources. The metrics evaluated include system
metrics such as the system utilization, throughput [5, 2],
etc. and users metrics such as turnaround time, wait
time [9, 14, 3, 6, 13, 8], etc. There has also been some recent
work in the direction of providing differentiated service to
different classes of jobs using statically or dynamically cal-
culated priorities [16, 1] assigned to the jobs.
However, there has been no work addressing the provision

of Quality of Service (QoS) in Parallel Job Scheduling. In
the current job schedulers, the charge for a run is based on
the resources used, but is unrelated to the responsiveness of
the system. Thus, a 16-processor job that ran for one hour
would be charged for 16 CPU-hours irrespective of whether
the turn-around time were one hour or one day. Further, on
most systems, even if a user is willing to pay more to get
a quicker turn-around on an urgent job, there is no mecha-
nism to facilitate that. Some systems, e.g. NERSC [1] offer�This research is supported in part by NSF grants #CCR-0204429 and
#EIA-9986052

different queues which have different costs and priorities: in
addition to the normal priority queue, a high priority queue
with double the usual charge, and a low priority queue with
half the usual charge. Jobs in the high priority queue get
priority over the normal queue, until some threshold on the
number of serviced jobs is exceeded. Such a system offers
the users some choice, but does not provide any guarantee
on the response time. It would be desirable to implement a
charging model for a job with two components: one based
on the actual resource usage, and another based on the re-
sponsiveness sought. Thus if two users with very similar
jobs submit them at the same time, where one is urgent and
the other is not, the urgent job could be provided quicker re-
sponse time than the non-urgent job, but would be charged
more.
We view the overall issue of providing QoS for job

scheduling in terms of two related aspects, which however
can be decoupled:� Cost Model for Jobs: The quicker the sought response

time, the larger should be the charge. The charge will
generally be a function of many factors, including the
resources used and the load on the system.� Job Scheduling with Response-time Guarantees: If
jobs are charged differently depending on the response
time demanded by the user, the system must provide
guarantees of completion time. Although deadline-
based scheduling has been a topic of much research
in the real-time research community, it has not been
much addressed in the context of job scheduling.

In this paper, we address the latter issue (Job Scheduling
with Response-time Guarantees) by providing Quality of
Service (QoS) in the response time given to the end-user in
the form of guarantees in the completion time to the submit-
ted independent parallel applications. We do not explicitly
consider the cost model for jobs; the way deadlines are as-
sociated with jobs in our simulation studies is explained in
the subsequent sections.
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At this time, the following open questions arise:� How practical is a solution to this problem?� What are the trade-offs involved in such a scheme com-
pared to a non-deadline based scheme?� How does the imposition of deadlines by a few jobs
affect the average response time of jobs that do not
impose any deadlines?� Meeting deadlines for some jobs might result in star-
vation of other non-deadline jobs. Does making the
scheme starvation free by providing artificial deadlines
to the non-deadline jobs affect the true deadline jobs?

We study the feasibility of such an idea by providing a
framework, termed asQoPS(Standing forQoS forParallel
Job Scheduling), for providing QoS with job schedulers;
we compare the trade-offs associated with it with respect
to the existing non-deadline based schemes. We compare it
to adaptations of two existing algorithms - theSlack-Based
(SB) algorithm[16] and theReal-time (RT) algorithm[15],
previously proposed in different contexts. The SB algo-
rithm [16] was proposed as an approach to improve the uti-
lization achieved by a back-filling job scheduler. On the
other hand, the RT algorithm [15] was proposed in order to
schedule non-periodic real-time jobs with hard deadlines,
and was evaluated in a static scheduling scenario. As ex-
plained later, we adapted these two schemes to schedule
jobs in a dynamic job scheduling context with deadlines.
The remaining part of the paper is organized as follows. In

Section 2, we provide some background on deadline based
job scheduling and how schemes implemented in the other
domains can be modified to be incorporated in this domain.
In Section 3, we discuss the design and implementation of
a new scheduling scheme that allows deadline specification
for jobs. The simulation approach to evaluate the schemes
is discussed in Section 4. In Section 5, we present results of
our simulation studies comparing the various schemes. In
Section 6, we conclude the paper and present some possible
future work.

2 Background and Related Work

Most earlier schemes proposed for scheduling independent
parallel jobs dealt with either maximizing system metrics
such as the system utilization, throughput, etc., or minimiz-
ing user metrics such as the turnaround time, wait time,
slowdown, etc., or both. Some other schemes have also
looked at prioritizing the jobs based on a number of stat-
ically or dynamically determined weights. In this section,
we review some of the related previous work and propose
modifications to these to suit the problem we are trying to
solve.

2.1 Review of Related Work

In this subsection we present some previous work done
in the context of scheduling parallel independent jobs. In
the next subsection, we show how these schemes can be
modified to allow users to specify hard realtime deadlines
for their jobs.

2.1.1 Slack-Based (SB) Algorithm

The Slack-Based (SB) Algorithm, proposed by Feitelson
et. al, is a backfilling algorithm used to improve the sys-
tem throughput and the user response times. The main idea
of the algorithm is to allow a slack or laxity for each job.
The scheduler gives each waiting job a pre-calculated slack,
which determines how long it may have to wait before run-
ning: ‘important’ and ‘heavy’ jobs will have little slack in
comparison with others. When other jobs arrive, this job is
allowed to be pushed behind in schedule time as long as it’s
execution is within the initially calculated laxity.
The calculation of the initial slack involves cost functions

taking into consideration certain priorities associated with
the job. This scheme supports both user selected and ad-
ministrative priorities, and guarantees a bounded wait time
for all jobs.
Though this algorithm has been proposed for improving

the system utilization and the user response times, it can be
easily modified to support hard real time deadlines by fixing
the slack appropriately. We propose this modified algorithm
in Section 2.2.1.

2.1.2 Real Time (RT) Algorithm

It has been shown that for dynamic systems with more than
one processor, a polynomial-time optimal scheduling algo-
rithm does not exist [11, 10, 12]. The Real Time (RT) Algo-
rithm, proposed by Ramamritham et. al, is an approach to
schedule uni-processor tasks with hard real time deadlines
on multi-processor systems. The algorithm tries to meet
the specified deadlines for the jobs by using heuristic func-
tions. The tasks are characterized by worst case computa-
tion times, deadlines and resource requirements. Starting
with an empty partial schedule, each step in the search ex-
tends the current partial schedule with one of the tasks yet
to be scheduled. The heuristic functions used in the algo-
rithm actively direct the search for a feasible schedule i.e.,
they help choose the task that extends the current partial
schedule. Earliest Deadline First and Least Laxity First are
examples of such heuristic functions.
In order to accomodate this algorithm into the domain

of scheduling dynamically arriving parallel jobs, we have
made two modifications to the algorithm. The first one is to
allow parallel jobs to be submitted to the algorithm and the
other is to allow dynamically arriving jobs. The details of
the modified algorithm are provided in Section 2.2.2.
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2.2 Modifications of Existing Schemes

In this section we propose modifications to the Slack-
Based and Real-Time algorithms to support hard real time
deadlines for the parallel jobs.

2.2.1 Modified Slack Based (MSB) Algorithm

Figure 1 shows the pseudo code for the modified slack based
algorithm.

A. set cheapPrice to MAX_NUMBER
B. set cheapSchedule to existing schedule
C. for each time slot ts in the profile starting from

current time

Ascending Scheduled Time (AST) order

a. Remove all the jobs from slot ts to the end
b. insert job J at slot ts
c. schedule each removed job one by one in 

d. Calculate the price of this new schedule
using the cost function.

e. if (price < cheapPrice) then
i. set cheapPrice = price
ii. set cheapSchedule = new Schedule
iii. Update the slack of all jobs

end if
end for

D. if (price != MAX_NUMBER ) then

Job is accepted
else

Job is rejected
end if

Start Time into an existing profile of size N:
Checking the admissibility of job J with Latest

Figure 1. The MSB Algorithm: Pseudo Code

Compared to the original SB algorithm, MSB differs in the
way the slack is determined for a given job. The original
SB algorithm uses weighted user and political priorities to
determine the slack. However, in the current scenario, we
change this by setting the slack to be as: Slack = Deadline -
(Arrival Time + Run Time).
The rest of the algorithm follows the approach taken by

the SB algorithm. The jobs currently present are arranged
in an order decided by a heuristic function (such as Earli-
est Deadline First, or Least Laxity First). Once this order
is fixed, the new job is inserted in each possible position in
this arrangement. Thus, if there areN jobs existing in the
schedule, when the new job arrives,N+1 schedules are pos-
sible. A pre-decided cost function is used to evaluate the
cost of each of theseN+1 schedules and the one with the

least cost is accepted. We can easily see that MSB is an
O(N)algorithm considering the evaluation of the cost func-
tion to be a constant cost. In practice, evaluating the cost
function of the schedule depends on the number of jobs in
the schedule and thus is a function ofN. However, for the
sake of comparison between the various algorithms and for
ease of understanding, we approximate the evaluation of the
cost function to be a constant value. It is to be noted that this
approximation does not change the relative difference in the
time complexity.

2.2.2 Modified Real Time (MRT) Algorithm

Figure 2 shows the pseudo code for the modified real time
algorithm.

A. Remove all jobs from existing profile and add them 
            into a Temporary List (TL).
B. Add the new job J into Temporary List(TL)
C. Sort temporary list according to the Heuristic function
D. Create an empty schedule without any job
E. for each job Ji from Temporary List
          a. Find whether job Ji is strongly feasible in 
                      the current partial schedule
          b. if Ji is strongly feasible then
                    i. Add job Ji into partial schedule
                    ii. Remove job Ji from the temporary list
                            and continue from step E
           else
                   i. Backtrack to the previous partial schedule

                           1. Job is rejected
2. Keep the old schedule and break

Checking the admissibility of job J with deadline into
    an existing profile of size N:

                    else
                            continue step E with new partial schedule

                   end if
            end if
   end for   

F. if (all jobs are placed in the schedule)

end if

a. Job J is accepted

b. Update the current schedule

ii. if (no of backtracks > backtrack max) then

Figure 2. The MRT Algorithm: Pseudo Code

The RT algorithm assumes that the calculation of the
heuristic function for scheduling a job into a given partial
schedule takes constant time. However, this assumption
only holds true for sequential (single processor) jobs (which
was the focus of the algorithm). However, the scenario we
are looking at in this paper relates to parallel jobs, where
holes are possible in the partial schedule. In this scenario,
such an assumption would not hold true.
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The Modified RT algorithm (MRT algorithm) uses the
same technique as the RT algorithm but increases the time
complexity to accomodate the parallel job scenario. When
a new job arrives, all the jobs that have not yet started (in-
cluding the newly arrived job) are sorted using some heuris-
tic function (this function could be Earliest Deadline First,
Least Laxity First, etc). Each of these jobs is inserted into
the schedule in the sorted order. A partial schedule at any
point during this algorithm is said to be feasible if every
job in it meets its deadline. A partial schedule is said to be
strongly feasible if the following two conditions are met:� The partial schedule is Feasible� The partial schedule would remain feasible when ex-

tended by any one of the unscheduled jobs

When the algorithm reaches a point where the partial
schedule obtained is not feasible, it backtracks to a previous
strongly feasible partial schedule and tries to take a differ-
ent path. A certain number of backtracks are allowed, after
which the scheduler rejects the job.

3 The QoPS Scheduler

In this section we present the QoPS Scheduler to deal with
parallel job scheduling in hard real time deadline-based sys-
tems. As mentioned earlier, it has been shown that for dy-
namic systems with more that one processor, a polynomial-
time optimal scheduling algorithm does not exist. The
QoPS scheduling algorithm uses a heuristic approach to try
to find feasible schedules for the jobs.
The scheduler ideally considers a system where each job

arrives with a corresponding completion time deadline re-
quirement. When each job arrives, it attempts to find a fea-
sible schedule for the newly arrived job. A schedule is said
to be feasible if it does not violate the deadline constraint
for any job in the schedule, including the newly arrived job.
However, it does allow a flexibility of reordering the jobs in
any order as long as the resultant schedule remains feasible.
Figure 3 presents the pseudo code for the QoPS scheduling
algorithm.
The main difference between the MSB and the QoPS algo-

rithm is the flexibility the QoPS algorithm offers in reorder-
ing the jobs that have already been scheduled (but not yet
started).
For example, suppose jobs J1, J2, ..., JN are the jobs

which are currently in the schedule but not yet started. The
MSB algorithm specifies an order for the jobs as calculated
by some heuristic function (the heuristic function could be
least laxity first, earliest deadline first, etc). This ordering
of jobs specifies the order in which the jobs have to be con-
sidered for scheduling. For the rest of the algorithm, this
ordering is fixed. When a new job JN+1 arrives, the MSB
algorithm tries to fit this new job in the given schedule with-
out any change to the initial ordering of the jobs.

On the other hand, the QoPS scheduler allows flexibility in
the order in which jobs are considered for scheduling. The
amount of flexibility offered is determined by the K-factor
denoted in the pseudo code illustrated by Figure 3.

A. For each time slot ts in position ( 0, N/2, 3N/4, 7N/8 ... ) 

Checking the admissibility of job J into an existing profile
of size N:

starting from Current Time
1. Remove all waiting jobs from position ts to the end

of profile and place them into a Temporary List (TL)

2. Sort the temporary list using the Heuristic function

3. Set Violation Count = 0

4. For each job Jc in the temporary List (TL)

i. Add Job Jc into the schedule

ii. if (there is a deadline violation for job Jc at slot T) then

a. Violation Count = Violation Count + 1

b. if (Violation Count > K−Factor) break

c. Remove all jobs from the schedule from position
mid(ts + T) to position T and add them 
into temporary list again

d. Sort the temporary list using the Heuristic function

e. Add the failed job Jc into the top of temporary list
to make sure it will be scheduled at mid(ts + T)

end if
end for

5. if (Violation Count > K−Factor) then
i. Job is rejected
ii. break

end if
end for

B. if (violation count < K−Factor) then

end if

Job is accepted

Figure 3. The QoPS Scheduler: Pseudo Code

When a new job arrives, it is givenlog2(N) points in time
where its insertion into the schedule is attempted, corre-
sponding to the reserved start-times of jobsf0, N/2, 3N/4,
... g respectively, whereN is the number of jobs currently
in the schedule. The interpretation of these options is as
follows: For option 1 (coresponding to job 0), we start by
removing all the jobs from the schedule and placing them
in a temporary ordering (TL). We then sort TL according to
some heuristic function (again, the heuristic function could
be least laxity first, earliest deadline first, etc). Finally, we
try to place the jobs in the order specified by the temporary
ordering TL. For option 2, we do not start with an empty
schedule. Instead, we only remove the latter N/2 jobs in
the original schedule, chosen in scheduled start time order,
place them in the temporary list TL, and sort this temporary
list (based on the heuristic function). We then create a reser-
vation for the newly arrived job, and finally generate reser-
vations for the remaining N/2 jobs in the order specified by
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TL. Thus, there would belog N options of placement.
For each option given to the newly arrived job, the algo-

rithm tries to schedule the jobs based on this temporary or-
dering. If a job misses its deadline, this job is considered as
a critical job and is pushed to the head of the list (thus alter-
ing the temporary schedule). This altering of the temporary
schedule is allowed at most ’K’ times; after this the sched-
uler decides that the new job cannot be scheduled while
maintaining the deadline for all of the already accepted jobs
and rejects it. This results in a time complexity ofO(K log
N) for the QoPS scheduling algorithm.

4 Evaluation Approach

In this section we present the approach we took to evaluate
our scheme with the other schemes and the non-deadline
based EASY scheme.

4.1 Trace Generation

Job scheduling strategies are usually evaluated using real
workload traces, such as those available at the Parallel
Workload Archive [4]. However real job traces from su-
percomputer centers have no deadline information.
A possible approach to evaluating the QoPS scheduling

strategy might be based on the methodology that was used
in [15] to evaluate their real-time scheduling scheme. There
randomized synthetic job sets was created in such a way
that a job set could be packed into a fully filled schedule,
say from time=0 to time=T, with no holes at all in the entire
schedule. Each job was then given an arrival time of zero,
and a completion deadline of (1+r)*T. The value of ‘r’ rep-
resented a degree of difficulty in meeting the deadlines. A
larger value of ‘r’ made the deadlines more lax. The initial
synthetic packed schedule is clearly a valid schedule for all
non-negative values of ‘r’. The real-time scheduling algo-
rithm was evaluated for different values of ‘r’, over a large
number of such synthesized task sets. The primary metric
was the fraction of cases that a valid schedule for all tasks
was found by the scheduling algorithm. It was found that
as ‘r’ was increased, a valid schedule was found for a larger
fraction of experiments, asymptotically tending to 100% as
‘r’ increased.
We first attempted to extend this approach to the dynamic

context. We used a synthetic packed schedule of jobs, but
unlike the static context evaluated in [15], we set each job’s
arrival time to be its scheduled start time in the synthetic
packed schedule, and set its deadline beyond its start-time
by (1+r) times its runtime. When we evaluated different
scheduling algorithms, we found that when ‘r’ was zero, all
schemes had a 100% success rate, while the success rate
dropped as ‘r’ was increased! This was initially puzzling,
but the reason was quickly apparent - with r=0, as each job
arrives, the only possible valid placement of the new job
corresponds to that in the synthetic packed schedule, and

any deadline-based scheduling algorithm exactly tracks the
optimal schedule. When ‘r’ is increased, other choices are
feasible, and the schedules begin diverging from the optimal
schedule, and the failure rate increases. Thus, this approach
to generating the test workload is attractive in that it has a
known valid schedule that meets the deadlines of all jobs;
but it leads to the unnatural trend of decreasing scheduling
success rate as the deadlines of jobs are made more relaxed.
Due to the above problem with the evaluation methodol-

ogy used in [15], we pursue a different trace-driven ap-
proach to evaluation. We use a trace from Feitelson’s
archive (a 5000-job subset of the CTC trace) and first use
EASY back-fill to generate a valid schedule for the jobs.
Deadlines are then assigned to all jobs, based on their com-
pletion time on the schedule generated by EASY back-fill.
A deadline stringency factor determines how much tight the
deadline is to be set, compared to the EASY back-fill sched-
ule. With a stringency factor of 0, the deadlines are set to
be the completion times of the jobs with the EASY back-fill
schedule. With a stringency factor of ‘s’, the deadline of
each job is set ahead of its arrival time by max(runtime, (1-
s)*EASY-Schedule-Response-time). The metric used is the
number of jobs successfully scheduled. As ‘s’ is increased,
the deadlines become more stringent. So we would expect
the number of successfully scheduled jobs to decrease.

4.2 Evaluation Content

With the first set of simulation experiments, the three
schemes (MRT, MSB and QoPS) are compared under differ-
ent offered load. The load is varied by introducing a number
of duplicate jobs with randomly generated arrival times. A
load factor “l” is varied from 1.0 to 1.6. With l=1.0, only
the original jobs in the CTC trace subset are used. With
l=1.2, 20% of the original jobs are picked, and duplicates
are introduced into the trace at random points in time. The
modified trace is first scheduled using EASY back-fill, and
then the deadlines for jobs are set as described above, based
on the stringency factor.
After evaluating the schemes under the scenario described

above, we have carried out another set of experiments under
a model where only a fraction of the jobs have deadlines as-
sociated with them. This might be a more realistic practical
scenario at supercomputer centers - while some of the jobs
may be urgent and impose deadlines, there would likely also
be other jobs that are non-urgent, with the users not requir-
ing any deadlines. In order to evaluate the MSB, MRT, and
QoPS schemes under this scenario of mixed jobs, some with
user-imposed deadlines and others without, we artificially
create very lax deadlines for the non-deadline jobs. While
the three schemes could be run with an “infinite” deadline
for the non-deadline jobs, we do not do that in order to avoid
starvation of any jobs. The artificial deadline of each non-
deadline job was set to max(24 hours, R*runtime), where
‘R’ is a “relaxation” factor. Thus, short non-deadline jobs
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were given an artificial deadline of one day, while long jobs
were given a deadline of R*runtime. We present results for
experiments with values of 2, 5, and 10 for ‘R’.

5 Experimental Results

As discussed in the previous section, the deadline-based
scheduling schemes are evaluated through simulation using
traces derived from the CTC trace archived at the Parallel
Workloads Archive [4]. Deadlines are associated with each
job in the trace as described earlier. Different offered loads
were simulated by addition of a controlled number of dupli-
cate jobs. The introduction of duplicate jobs is done incre-
mentally, i.e. the workload for a load of 1.6 would include
all the jobs in the trace for load 1.4, with the same arrival
times for the common jobs. For a given load, different ex-
periments are carried out for different values of the strin-
gency factor ‘S’, with jobs having more stringent deadlines
for a higher stringency factor.

5.1 All Jobs with Deadlines

We first present results for the scenario where all the sub-
mitted jobs have deadlines associated with them, deter-
mined as described in the previous section. The metrics
measured are the total number of unadmitted jobs and the
total number of lost processor-seconds from the unadmitted
jobs.
Figure 4 shows the number of unadmitted jobs and lost

processor-seconds for the MRT, MSB and QoPS schedules,
for a stringency factor of 0.2, as the load factor is varied
from 1.0 to 1.6. It can be seen that the QoPS scheme per-
forms better, especially at high load factors.
In the case of QoPS, as the load is increased from 1.4 to

1.6, the total number of unaccepted jobs actually decreases,
even though the total number of jobs in the trace increases
from 7000 to 8000. The reason for this counter-intuitive re-
sult is as follows. As the load increases, the average wait
time for jobs under EASY backfill increases nonlinearly as
we approach system saturation. Since the deadline associ-
ated with a job is based on its schedule with EASY backfill,
the same job will have a higher response time and hence
looser deadline in a higher-load trace than in a trace with
lower load. So it is possible for more jobs to be admit-
ted with a higher-load trace than with a lower-load trace, if
there is sufficient increase in the deadline. A similar and
more pronounced downward trend with increasing load is
observed for the unadmitted processor-seconds. This is due
to the greater relative increase in response time of “heavier”
jobs (i.e. those with higher processor-seconds) than lighter
jobs. As the load increases, more heavy jobs are admitted
and more light jobs are unable to be admitted.
The same overall trend also holds for a higher stringency

factor (0.5), as seen in Figure 5. However, the performance
of QoPS is closer to the other two schemes. In general, we

find that as the stringency factor increases, the performance
of the different strategies tends to converge. This suggests
that the additional flexibility that QoPS tries to exploit in
rearranging schedules is most beneficial when the jobs have
sufficient laxity with respect to their deadlines.
We next look at the achieved utilization of the system, as

the load is varied. As a reference, we compare the utiliza-
tion for the deadline-based scheduling schemes with non-
deadline job scheduling (EASY back-filling) using the same
trace. Since a fraction of submitted jobs are unable to be
admitted in the deadline-based schedule, clearly we can ex-
pect the achieved system utilization to be worse than the
non-deadline case. Figure 6 shows the system utilization
achieved for stringency factors of 0.2 and 0.5. There is a
loss of utilization of about 10% for QoPS when compared to
EASY, when the stringency factor is 0.2. With a stringency
factor of 0.5, fewer jobs are admitted, and the utilization
achieved with the deadlin-based scheduling schemes drops
by 5-10%. Among the deadline-based schemes, QoPS
and MSB perform comparably, with MRT achieving 3-5%
lower utilization at high load (load factor of 1.6).
Figure 7 shows the variation of the admittance capabilities

of the three schemes for the SDSC (San Diego Super Com-
puter Center) trace. It can be noted that the general trend of
the relative performances of the schemes does not change
significantly. Similarly, figure 8 shows the variation of the
admittance capabilities of the three schemes using job ex-
pansion instead of job duplication as the means to increase
the load. Again, it can be seen that the trend remains un-
changed. These results show that the scheme is robust with
respect to the workload characteristics of the trace and the
load increasing mechanism. In the rest of the paper, we
present only the results for the CTC trace using job duplica-
tion as the load increasing mechanism. For further results,
we refer the reader to [7].

5.2 Mixed Job Scenario

We next consider the case when only a subset of submitted
jobs have user-specified deadlines. As discussed in Section
4, non-deadline jobs are associated with an artificial dead-
line that provides considerable slack, but prevents starva-
tion. We evaluate the following combinations through sim-
ulation: a) 80% non-deadline jobs and 20% deadline jobs,
and b) 20% non-deadline jobs and 80% deadline jobs. For
each combination, we consider stringency factors of 0.20
and 0.50.
Figure 9 shows the variation of the admittance of deadline

jobs with offered load for the schemes, when 80% of the
jobs are deadline jobs, and stringency factor is 0.2. It can
be seen that the QoPS scheme provides consistently supe-
rior performance compared to the MSB and MRT schemes,
especially at high load. As with the case when all jobs were
deadline jobs, when the stringency factor is increased, the
performance of the different schemes tend to get more sim-
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Stringency Factor = 0.5
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Figure 7. Admittance capacity for less stringent (Stringen cy Factor = 0.2) deadlines (SDSC trace with
job duplication): (a) Unadmitted jobs, (b) Unadmitted Proc essor Seconds
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Figure 8. Admittance capacity for less stringent (Stringen cy Factor = 0.2) deadlines (CTC trace with
job expansion): (a) Unadmitted jobs, (b) Unadmitted Proces sor Seconds
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Figure 9. Admittance capacity with a mix of deadline and non- deadline jobs (Percentage of Deadline
Jobs = 80%) for less stringent (Stringency Factor = 0.2) dead lines (CTC trace with job duplication):
(a) Unadmitted jobs, (b) Unadmitted Processor Seconds
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Jobs = 80%) for more stringent (Stringency Factor = 0.5) dead lines (CTC trace with job duplication):
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Figure 11. Admittance capacity with a mix of deadline and non -deadline jobs (Percentage of Deadline
Jobs = 20%) for less stringent (Stringency Factor = 0.2) dead lines (CTC trace with job duplication):
(a) Unadmitted jobs, (b) Unadmitted Processor Seconds
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ilar, as shown in Figure 10.
Figures 11 and 12 present data for cases with 20% of jobs

having user-specified deadlines, and stringency factors of
0.2 and 0.5 respectively. Compared to the cases with 80%
of jobs being deadline-jobs, the QoPS scheme significantly
outpeforms the MSB and MRT schemes, even when the
stringency factor is high (0.5). This again suggests that
in scenarios where many jobs have significant flexibility
(here the non-deadline jobs comprise 80% of jobs and they
have significant flexibility in scheduling), the QoPS scheme
makes effective use of the available flexibility.
Figure 13 shows the variation of the average response time

and average slowdown of non-deadline jobs with load, for
the case with 80% of jobs being deadline jobs and a strin-
gency factor of 0.2. In addition to the data for the three
deadline-based scheduling schemes, data for EASY back-
fill is also shown. The average response time and slowdown
can be seen to be lower for QoPS, MRT and MSB, when
compared to EASY. This is because the delivered load for
EASY is equal to the offered load (the X-axis), whereas the
delivered load for the deadline-based scheduling schemes
is lower than offered load. In other words, with EASY,
all the jobs are admitted, whereas with the other deadline
based schemes, not all deadline jobs are admitted. This also
explains the reason why the performance of QoPS appears
inferior to MSB and MRT - as seen from Figure 9, the re-
jected load from the deadline jobs is much higher for MRT
than QoPS.
When the data for the case of 20% deadline jobs is con-

sidered (Figure 14), it can be seen that the performance of
QoPS has improved relative to MSB; the turnaround time is
comparable or better except for a load of 1.6, and the aver-
age slowdown is lower at all loads. These user metrics are
better for QoPS than MSB/MRT despite accepting a higher
load (Figure 11). Data for stringency factor of 0.5 is omitted
for space reasons and may be found in [7].
The achieved utilization for the different schemes as a

function of load is shown in Figure 15, for a stringency
factor of 0.2. It can be seen that the achieved utilization
with QoPS is roughly comparable with MSB and better than
MRT, but worse than EASY. Compared to the case when all
jobs had user-specified deadlines (Figure 6), the loss of uti-
lization compared to EASY is much less - about 8% when
80% of the jobs are deadline jobs, and 2-3% when 20% of
the jobs are deadline jobs.
As discussed above, a direct comparison of turnaround

time and slowdown as a function of offered load is com-
plicated by the fact that different scheduling schemes ac-
cept different numbers of jobs. A better way of comparing
the schemes directly is by plotting average response time
or slowdown against achieved utilization on the X-axis (in-
stead of offered load). This is shown in Figure 16, for the
case of 20% deadline jobs and stringencyfactor of 0.2 (the
data for other cases may be found in [7]). It can be seen that
QoPS is consistently superior to MSB and MRT. Further,

QoPS has better performance than EASY too, especially for
the slowdown metric. Thus, despite the constraints of the
deadline-jobs, QoPS is able to achieve better slowdown and
response time for the non-deadline jobs when compared to
EASY, i.e. instead of adversely affecting the non-deadline
jobs, for the same delivered load, QoPS provides better
performance for them, when compared to standard EASY
back-fill.

5.3 Variation of Relaxation Factor

The last set of results we present deal with the effects of
varying the “relaxation factor”, R. Figure 17 shows the vari-
ation of the average response time and the average slow-
down experienced by the non-deadline jobs for different re-
laxation factor values with 80% deadline jobs and a strin-
gency factor of 0.2. For the non-deadline jobs, as the re-
laxation factor increases, the artificial deadline given tothe
short jobs does not change and stays at one day. However,
an increase in the relaxation factor increases the slack given
to the longer jobs, enabling the shorter jobs to use up this
additional slack. So, it can be expected that the shorter jobs
would benefit with increasing value of ‘R’, while the longer
jobs would suffer. Following the same, the average response
time of the schedule, which is weighed by the longer jobs
increases with increasing ‘R’. On the other hand, the av-
erage slowdown of the schedule, which is weighed by the
shorter jobs decreases with increasing ‘R’. Data for 20%
deadline jobs and for a stringency factor of 0.5 can be found
at [7].

6 Conclusions and Future Work

Scheduling dynamically-arriving independent parallel
jobs on a given set of resources is a long studied problem;
solutions ranging from evaluation of system and user met-
rics such as utilization, throughput, turnaround time, etc.
to soft time-guarantees for the response time of jobs using
priority based scheduling. However, a solution to the prob-
lem of providing Quality of Service (QoS) for Parallel Job
Scheduling has been long overdue. In this paper, we pro-
posed a new scheme termed as theQoPS Scheduling Algo-
rithm to provide QoS in the response time given to the end
user in the form of guarantees in the completion time to the
submitted independent parallel jobs.
The current scheme does not explicitly deal with cost-

metrics for charging the jobs depending on the deadlines
and resource usage. Also, when a job arrives, it has a num-
ber of options for placement in the schedule. The current
scheme looks at each of these options in a FCFS order and
does not do any kind of evaluation to see if one option is bet-
ter (for the system and user metrics, such as utilization for
example) than the others. We plan to extend this to define
cost functions for both charging the jobs and for evaluating
the different options and using the best available option.
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Figure 12. Admittance capacity with a mix of deadline and non -deadline jobs (Percentage of Deadline
Jobs = 20%) for more stringent (Stringency Factor = 0.5) dead lines (CTC trace with job duplication):
(a) Unadmitted jobs, (b) Unadmitted Processor Seconds
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Figure 13. Performance of Non-deadline jobs with Percentag e of Deadline Jobs = 80%; Stringency
Factor = 0.2; CTC trace with job duplication (a) Variation of response time with Load, (b) Variation of
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Figure 15. Utilization comparison for a mix of deadline and n on-deadline jobs (Stringency Factor
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The other issue we plan to pursue in the future is the study
of the effects of inaccuracy of user estimates. The simu-
lation studies reported in this paper assumed accurate user
estimates of runtime, so that this additional factor did not
complicate matters. We plan to extend our simulation stud-
ies to understand the impact of inaccurate user estimates on
the performance of the QoPS scheme.
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