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Abstract

The utilization of parallel computers depends on how jobs are packed
together: if the jobs are not packed tightly, resources are lost due to frag-
mentation. The problem is that the goal of high utilization may conflict
with goals of fairness or even progress for all jobs. The common solution
is to use backfilling, which combines a reservation for the first job in the
interest of progress with packing of later jobs to fill in holes and increase
utilization. However, backfilling considers the queued jobs one at a time,
and thus might miss better packing opportunities. We propose the use
of dynamic programming to find the best packing possible given the cur-
rent composition of the queue. Simulation results show that this indeed
improves utilization, and thereby reduces the average response time and
average slowdown of all jobs.

1 Introduction

A parallel job is composed of a number of concurrently executing processes,
which collectively perform a certain computation. A rigid parallel job has a
fixed number of processes (referred to as the job’s size) which does not change
during execution [2]. To execute such a parallel job, the job’s processes are
mapped to a set of processors using a one-to-one mapping. In a non-preemptive
regime, these processors are then dedicated to running this job until such time
that it terminates [3]. The set of processors dedicated to a certain job is called a
partition of the machine. To increase utilization, parallel machines are typically
partitioned into several non-overlapping partitions, allocated to different jobs
running concurrently, a technique called space slicing [1].

To protect the machine resources and allow successful execution of jobs,
users are not allowed to directly access the machine. Instead, they submit their



jobs to the machine’s scheduler — a software component that is responsible
for monitoring and managing the machine resources. The scheduler typically
maintains a queue of waiting jobs. The jobs in the queue are considered for
allocation whenever the state of the machine changes. Two such changes are
the submittal of a new job (which changes the queue), and the termination of
a running job (which frees an allocated partition) [8]. Upon such events, the
scheduler examines the waiting queue and the machine resources and decides
which jobs (if any) will be started at this time.

Allocating processors to jobs can be seen as packing jobs into the available
space of free processors: each job takes a partition, and we try to leave as
few idle processors as possible. The goal is therefore to maximize the machine
utilization. The lack of knowledge regarding future jobs leads current on-line
schedulers to use simple heuristics to maximize utilization at each scheduling
step. The different heuristics used by various algorithms are described in Section
2. These heuristics do not guarantee to minimize the machine’s idle capacity.

We propose a new scheduling heuristic seeking to maximize utilization at
each scheduling step. Unlike current schedulers that consider the queued jobs
one at a time, our scheduler bases its scheduling decisions on the whole contents
of the queue. Thus we named it LOS — an acronym for “Lookahead Optimizing
Scheduler”. LOS starts by examining only the first waiting job. If it fits within
the machine’s free capacity it is immediately started. Otherwise, a reservation is
made for this job so as to prevent the risk of starvation. The rest of the waiting
queue is processed using an efficient, newly developed dynamic-programming
based scheduling algorithm that chooses the set of jobs which will maximize the
machine utilization and will not violate the reservation for the first waiting job.
The algorithm also respects the arrival order of the jobs, if possible. When two
or more sets of jobs achieve the same maximal utilization, it chooses the set
closer to the head of the queue.

Section 3 provides a detailed description of the algorithm, followed by a
short discussion of its complexity, and suggests optional performance optimiza-
tions. Section 4 describes the simulation environment used in the evaluation and
presents the experimental results from the simulations in which LOS was tested
using trace files from real systems. Section 5 concludes on the effectiveness and
applicability of our proposed scheduling heuristic.

2 Related Work

We will focus on the narrow field of on-line scheduling algorithms of non-
preemptive rigid jobs on distributed memory parallel machines, and especially
on heuristics that attempt to improve utilization.

The base case often used for comparison is the First Come First Serve
(FCFS) algorithm [5]. In this algorithm all jobs are started in the same or-
der in which they arrive in the queue. If the machine’s free capacity does not
allow the first job to start, FCFS will not attempt to start any succeeding job.
It is a fair scheduling policy, which guarantees freedom of starvation since a job



cannot be delayed by other jobs submitted at a later time. It is also easily im-
plemented. Its drawback is the resulting poor utilization of the machine. When
the next job to be scheduled is larger than the machine free capacity, it holds
back smaller succeeding jobs, which could utilize the machine.

In order to improve various performance metrics it is possible to consider the
jobs in some other order. The Shortest Processing Time First (SPT) algorithm
uses estimations of the jobs’ runtimes to make scheduling decisions. It sorts the
waiting jobs by increasing estimated runtime and executes the jobs with the
shortest runtime first [5]. This algorithm is inspired by the "shortest job first"
heuristic [11], which seeks to minimize the average response time. The rationale
behind this heuristics is that if a short job is executed after a long one, both
will have a long response time, but if the short job gets to be executed first, it
will have a short response time, thus the average response time is reduced.

The opposite algorithm, Largest Processing Time First (LPT), executes the
jobs with the longest processing time first [15, 16]. This policy aims at mini-
mizing the makespan, but the average response time is increased because many
small jobs are delayed significantly.

Other scheduling heuristics base their decisions on job size rather than on es-
timated runtime. The Smallest Job First (SJF) algorithm [17] sorts the waiting
jobs by increasing size and executes the smallest jobs first. Inspired by SPT, this
algorithm turned out to perform poorly because there is not much correlation
between the job size and it’s runtime. Small jobs do not necessarily terminate
quickly [18, 19], which results in a fragmented machine and thus a reduction in
performance.

The alternative Largest Job First (LJF) is motivated by results in bin-
packing that indicate that a simple first-fit algorithm achieves better packing
if the packed items are sorted in decreasing size [20, 21]. In terms of schedul-
ing it means that scheduling larger jobs first may be expected to cause less
fragmentation and therefore higher utilization than FCFS.

Finally, the Smallest Cumulative Demand First [17, 22, 23] algorithm uses
both the expected execution time and job size to make scheduling decisions. It
sorts the jobs in an increasing order according to the product of the jobs size
and the expected execution time, so small short jobs get the highest priority.
It turned out that this policy does not perform much better than the original
smallest job first [17].

The problem with all the above schemes is that they may suffer from star-
vation, and may also waste processing power if the first job cannot run. This
problem is solved by backfilling algorithms, which allow small jobs from the back
of the queue to execute before larger jobs that arrived earlier, thus utilizing the
idle processors, while the latter are waiting for enough processors to be freed
[3]. Backfilling is known to greatly increase user satisfaction since small jobs
tend to get through faster, while bypassing large ones.

Note that in order to implement backfilling, the jobs’ runtimes must be
known in advance. Two techniques, one to estimate the runtime through re-
peated executions of the job [12] and the second to get this information through
compile-time analysis [13, 14] have been proposed. Real implementations, how-



ever, require the users to provide an estimate of their jobs runtime, which in
practice is often specified as a runtime upper-bound. Surprisingly, it turns out
that inaccurate estimates generally lead to better performance than accurate
ones [10].

Backfilling was first implemented on a production system in the "EASY"
scheduler developed by Lifka et al. [24, 25], and later integrated with IBM’s
LoadLeveler. This version is based on aggressive backfilling, in which any job
can be backfilled provided it does not delay the first job in the queue. In fact,
one of the important parameters of backfilling algorithms is the number of jobs
that enjoy reservations. In EASY, only the first job gets a reservation. In con-
servative backfilling, all skipped jobs get reservations [10]. The Maui scheduler
has a parameter that allows the system administrator to set the number of reser-
vations [9]. Srinivasan et al. [26] have suggested a compromise strategy called
selective backfilling, wherein jobs do not get a reservation until their expected
slowdown exceeds some threshold. If the threshold is chosen judiciously, only
the most needy jobs get a reservation.

Additional variants of backfilling allow the scheduler more flexibility. Talby
and Feitelson presented slack based backfilling, an enhanced backfill scheduler
that supports priorities [6]. These priorities are used to assign each waiting
job a slack, which determines how long it may have to wait before running:
important jobs will have little slack in comparison with others. Backfilling is
allowed only if the backfilled job does not delay any other job by more than that
job’s slack. Ward et al. have suggested the use of a relaxed backfill strategy,
which is similar, except that the slack is a constant factor and does not depend
on priority [27].

Lawson and Smirni presented a multiple-queue backfilling approach in which
each job is assigned to a queue according to its expected execution time and
each queue is assigned to a disjoint partition of the parallel system on which
jobs from the queue can be executed [7]. Their simulation results indicate a
performance gain compared to a single-queue backfilling, resulting from the fact
that the multiple-queue policy reduces the likehood that short jobs get delayed
in the queue behind long jobs.

3 The LOS Scheduling Algorithm

The LOS scheduling algorithm examines all the jobs in the queue in order to
maximize the current system utilization. Instead of scanning the queue in some
order, and starting any job that is small enough not to violate prior reserva-
tions, LOS tries to find a combination of jobs that together maximize utilization.
This is done using dynamic programming. Section 3.2 presents the basic algo-
rithm, and shows how to find a set of jobs that together maximize utilization.
Section 3.3 then extends this by showing how to select jobs that also respect
a reservation for the first queued job. Section 3.4 describes the factors that
effect the algorithm time and space complexity, and Section 3.5 finalizes the
algorithm description with two suggested optimizations aimed at improving its



performance.

Before starting the description of the algorithm itself, Section 3.1 formal-
izes the state of the system and introduces the basic terms and notations used
later. To provide an intuitive feel of the algorithms, each subsection is followed
by an on-going scheduling example on an imaginary machine of size N = 10.
Paragraphs describing the example are headed by é&.

3.1 Formalizing the System State

At time ¢t our machine of size N runs a set of jobs R = {rji,7ja,...,7j, }, each
with two attributes: their size, and estimated remaining execution time, rem.
For convenience, R is sorted by increasing rem values. The machine’s free
capacity is n = N — Y1, rj;.size.

The queue contains a set of waiting jobs WQ = {wj1, wja, .., wj, }, which also
have two attributes: a size requirement and a user estimated runtime, time.
The task of the scheduling algorithm is to select a subset S C WQ of jobs,
referred to as the produced schedule, which maximizes the machine utilization.
The produced schedule is safe if it does not impose a risk of starvation.

& As illustrated in Figure 1, at t = 25, our machine runs a single job rj;
with size = 5 and expected remaining execution time rem = 3. The machine’s
free capacity is n = 5. The table at the right describes the size and estimated
runtime of the five waiting jobs in the waiting queue, WQ.

w i
il wj || size | time
= 1 7 4
4 2 2 2
. 3 1 6
4 4 2 4
I ) 3 5}
t=25 =28
< rem=3—>

Figure 1: System state and queue at ¢t = 25

3.2 The Basic Algorithm
3.2.1 Freedom of Starvation

The algorithm begins by trying to start the first waiting job.



If wjy.size < n , it is removed from the waiting queue, added to the running
jobs list and starts executing.

Otherwise, the algorithm calculates the shadow time at which wj; can begin
its execution [24]. It does so by traversing the list of running jobs while accumu-
lating their sizes until reaching a job rj, at which wj;.size <n+ Y ;_ rj;.size.
The shadow time is then defined to be shadow =t + rjs.rem. By ensuring that
all jobs in S terminate before that time, S is guaranteed to be a safe schedule,
as it will not impose any delay on the first waiting job, thus ensuring a freedom
from starvation.

To dismiss us of the concern of handling special cases, we set shadow to co
if wj; can be started at t. In this case every produced schedule is safe, as the
first waiting job is assured to start without delay.

& The 7 processors requirement of wj; prevents it from starting at ¢ = 25.
It will be able to start at t = 28 after rj; terminates, thus shadow is set to 28
as illustrated in figure 2.

N=10

B g
b Time —m——>

Figure 2: Computing the shadow time

3.2.2 A Two Dimensional Data Structure

After handling the first job, we need to find the set of subsequent jobs that
will maximize utilization. To do so, the waiting queue, W@, is processed using
a dynamic-programming algorithm. Intermediate results are stored in a two
dimensional matrix denoted M of size ({[WQ|+ 1) x (n + 1), and are later used
for making successive decisions.

Each cell m; ; contains a single integer value util, and two boolean trace
markers, selected and bypassed.

util holds the maximal achievable utilization at ¢, if the machine’s free ca-
pacity is j and only waiting jobs {1..i}are available for scheduling.



The selected marker is set to indicate that wj; was chosen for execution
(wj; € S). The bypassed marker indicates the opposite. When the algorithm
finishes calculating M, the trace markers are used to trace the jobs which con-
struct S. It is possible that both markers will be set simultaneously in a given
cell, which means that there is more than one way to construct S. It is impor-
tant to note that either way, jobs in the produced schedule will always achieve
the same overall maximal utilization.

For convenience, the ¢ = 0 row and j = 0 column are initialized with zero
values. Such padding eliminates the need of handling special cases.

& In the example, M is a 6 x 6 matrix. The selected and bypassed markers,
if set, are noted by \_and 1 respectively. Table 1 describes M’s initial values.

Li (size), j = |
0 (¢)

7)
2)
)

)

)

1
2
3

U | W DN =

OO OO || &
ASHASH RSH RSHRESH Ren] | N
RSN RS RSHRSH RS Fen] [N
ASHASH RSH RSHRSH Ren] | &}

Table 1: M’s initial values

3.2.3 Filling M

M is filled from left to right, top to bottom, as indicated in Algorithm 1. The
values of each cell are calculated using values from previously calculated cells.
The idea is that if adding another processor (bringing the total to j) allows the
currently considered job ¢ to be started, we need to check whether including wj;
in the produced schedule increases the utilization. If not, or if the size of job 4
is larger than j, the utilization is simply what it was without this job, that is
mi_u.util.

As mentioned in Section 3.2.1, a safe schedule is guaranteed if all jobs in
S terminate before the shadow time. The third line of Algorithm 1 ensures
that every job wj; that will not terminate by the shadow time is immediately
bypassed, that is, excluded from S. This is done to simplify the presentation
of the algorithm. In Section 3.3 we relax this restriction and present the full
algorithm.

The computation stops when reaching cell m|,q| , at which time M is filled
with values.

& The resulting M is shown in Table 2. As can be seen, the selected flag
is set only for wjs, as it is the only job which can be started safely without
imposing any delay on wj;. Since all other jobs are bypassed, the maximal



Algorithm 1 Constructing M

e Note : To slightly ease the reading, mg;;.util, m; ;.selected, and
m; j.bypassed are represented by util, selected and bypassed respectively.

for i =1 to |IWQ)|
forj=1ton
if wj;.size > j or t + wy;.time > shadow
util < m;_q j.util
selected + False
bypassed < True
else
util' <= mi—1 j_wj; size-util + wj;.size
if wtil’ > m;_q j.util
util < util’'
selected + T'rue
bypassed < False
if util' = m¢_17j.util
bypassed < True
else
util < m;_q j.util
selected <+ False
bypassed < True

achievable utilization of the 5 = 5 free processors when considering all ¢ = 5
jobs is ms 5.util = 2.

li(size),j—> O] 1| 2 | 3 | 4 | 5 |
0 (¢) 0] 0 0 0 0 0
1(7) oot or [ o [ of | ot
2 (2) Olot 2R 2R (2R 2R
3 (1) olot | 21 | 21 | 21 | 2t
4 (2) olot| 21 | 21 | 2t | 2t
5 (3) olot | 21 | 21 | 21 | 2t

Table 2: Resulting M

3.2.4 Constructing S

Starting at the last computed cell m|q n, S is constructed by following the
trace markers as described in Algorithm 2.

It was already noted in Section 3.2.2 that it is possible that in an arbitrary
cell my , both markers are set simultaneously, which means that there is more



than one possible schedule. In such case, the algorithm will follow the bypassed
marker.

In term of scheduling wj, ¢ S simply means that wj, is not started at ¢,
but this decision has a deeper meaning in terms of queue policy. Since the
queue is traversed by Algorithm 2 from tail to head, skipping wj, means that
other jobs, closer to the head of the queue will be started instead, and the same
maximal utilization will still be achieved. By selecting jobs closer to the head
of the queue our produced schedule is not only more committed to the queue
FCEFS policy, but also receives a better score from the evaluation metrics such
as average response time, slowdown etc.

Algorithm 2 Constructing S
S {}
i« Q)|
jén
while s > 0 and j > 0
if m; ;.bypassed = T'rue

i—i—1

else
S(—SU{wji}
J ¢ J —wj;.size
i—i—1

& The resulting S contains a single job wjs, and its scheduling at ¢ is illus-
trated in Figure 3. Note that wyj; is not part of S. It is only drawn to illustrate
that wj2 does not effect its expected start time, indicating that our produced
schedule is safe.

ﬁ

10

t=25 St;a%?
BN | P

Figure 3: Scheduling wj, at t = 25



3.3 The Full Algorithm
3.3.1 Maximizing Utilization

One way to create a safe schedule is to require all jobs in S to terminate be-
fore the shadow time, so as not to interfere with that job’s reservation. This
restriction can be relaxed in order to achieve a better schedule S’, still safe but
with a much improved utilization. This is possible due to the extra processors
left at the shadow time after wj; is started. Waiting jobs which are expected
to terminate after the shadow time can use these extra processors, referred to
as the shadow free capacity, and run side by side together with wj;, without
effecting its start time. As long as the total size of jobs in S’ that are still
running at the shadow time does not exceed the shadow free capacity, wj; will
not be delayed, and S’ will be a safe schedule.

If the first waiting job, wj;, can only start after rjs has terminated, than
the shadow free capacity, denoted by extra, is calculated as follows :

S
extra =n + E rj;.size — wji.size
i=1

To use the extra processors, the jobs which are expected to terminate before
the shadow time are distinguished from those that are expected to still run at
that time, and are therefore candidates for using the extra processors. Each
waiting job wj; € W@ will now be represented by two values: its original size
and its shadow size — its size at the shadow time. Jobs expected to terminate
before the shadow time have a shadow size of 0. The shadow size is denoted
ssize, and is calculated using the following rule:

. 0 t + wj;.time < shadow
wj;.ssize = . .
wj;.size otherwise

If wj; can start at ¢, the shadow time is set to co. As a result, the shadow
size ssize, of all waiting jobs is set to 0, which means that any computation
which involves extra processors is unnecessary. In this case setting extra to 0
improves the algorithm performance.

All these calculation are done in a pre-processing phase, before running the
dynamic programming algorithm.

& wj; which can begin execution at t = 28 leaves 3 extra processors. shadow
and extra are set to 28 and 3 respectively, as illustrated in Figure 4. In the
queue shown on the right, we use the notation sizegs;.e to represent the two
size values. wj, is the only job expected to terminate before the shadow time,
thus its shadow size is 0.

3.3.2 A Three Dimensional Data Structure

To manage the use of the extra processors, we need a three dimensional matrix
denoted M’ of size (|WQ| + 1) x (n + 1) x (extra + 1).

10
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Figure 4: Computing shadow and extra, and the processed job queue

Each cell m/; ;  now contains two integer values, util and sutil, and the two
trace markers.

util holds the maximal achievable utilization at ¢, if the machine’s free capac-
ity is j, the shadow free capacity is k, and only waiting jobs {1..i} are available
for scheduling.

sutil hold the minimal number of extra processors required to achieve the
util value mentioned above.

The selected and bypassed markers are used in the same manner as described
in section 3.2.2.

As mentioned in section 3.2.2, the ¢ = 0 rows and j = 0 columns are initial-
ized with zero values, this time for all k£ planes.

& M'is a6 x 6 x 4 matrix. util and sutil are noted util,,;;. The notation
of the selected and bypassed markers is not changed and remains N and 1
respectively.

Table 3 describes the initial £ = 0 plane. Planes 1..3 are initially similar.

Li(sizegsize),j— || 0| 1 | 2| 3| 4] 5|
) 00 00 00 00 00 00
77) Oo | 96 | 96 | 96 | 9o | Do
29) Oo | $6 | Po | Po | D6 | Do
L)
)
)

Oo | @6 | @6 | Po | P | Po
0o | $6 | G0 | Po | Ps | Do
Oo | @6 | @6 | Po | P | Po

Table 3: Initial £ = 0 plane
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3.3.3 Filling M’

The values in every m/; j 1, cell are calculated in an iterative matter using values
from previously calculated cells as described in Algorithm 3. The calculation is
exactly the same as in Algorithm 1, except for an addition of a slightly more
complicated condition that checks that enough processors are available both
now and at the shadow time.

The computation stops when reaching cell m/|yq),n,catra-

Algorithm 3 Constructing M’

e Note : To slightly ease the reading, m';jx.util, m/;;.sutil,
m'; jx.selected, and m';;p.bypassed are represented by wutil, sutil,
selected, and bypassed respectively.

for k =0 to extra
for i =1 to |IWQ)|
forj=1ton
if wy;.stze > j or wy;.ssize > k
util < m'i_l,jk.util
sutil <= m';_1 j i .sutil
selected + False
bypassed < True
else
util' mli—Lj—wji.size,k—wji.ssize-Util + wji.size
SULIL' <= TN 1 i i size k—wjissize-SULIL + wjj.ssizeE
if wtil’ > m';_q jx.util or
(util' = m';_q j.util and sutil' <m';_q ;. sutil)
util < util’
sutil < sutil’
selected < True
bypassed < False
if wutil' = m;_q j.util and sutil' = m;_1 j p.sutil
m'; j i.bypassed < True
else
util < m'i_l,jk.util
sutil <= m';_1 j i .sutil
selected + False
bypassed < True

& When the shadow free capacity is & = 0, only wjs who’s ssize = 0 can
be scheduled. As a result, the maximal achievable utilization of the j = 5 free
processors, when considering all ¢ = 5 jobs is m/5 5 g.util =2, as can be seen in
Table 4. This is of course the same utilization value (and the same schedule)
achieved in Section 3.2.3, as the k = 0 case is identical to considering only jobs
that terminate before the shadow time.

When the shadow free capacity is k = 1, wjs who’s ssize = 1 is also available

12



Vi (sizessize) j=Jo] 1] 2 | 3 | 4 | 5 |
) 00 00 00 00 00 00

( ) 0o | Oo 7| Oot 0o OoT 007

(20) 0o |00 T |20\ 20\ | 20\ | 20\

(1) 0o | Oo 7| 201 207 207 207

(22)

(33)

Oo | Oo 7| 201 | 207 | 20T | 20t
Op | O T | 20t 207 207 207

Table 4: k = 0 plane

Li (sizessize j=Jo| 1 | 2 | 3 | 4 | 5 |
o) %1 0o | 0o | 0o | 0 | 0o
1(77) Og | Op T | Oo? 0ot 0o? Oo?
20) O | OoT |20 N | 20N |20\ | 20\
1) Oo | 11 N0 | 201 | 3N | 30N | 34N

)

)

2, O | It | 207 311 317 317
33 Oo | 111 | 207 311 317 317

U | W N
AAAAAA

Table 5: k =1 plane

for scheduling. As can be seen in Table 5, starting at m's 3 1 the maximal achiev-
able utilization is increased to 3, at the price of using a single extra processor.
The two selected jobs are wj, and wjs.

As the shadow free capacity increases to k = 2, wj, who’s shadow size is 2,
joins wjs and wjs as a valid scheduling option. Its effect is illustrated in Table
6 starting at m'y4 4,2, as the maximal achievable utilization has increased to 4 —
the sum of wj, and wjs sizes. This comes at a price of using a minimum of 2
extra processors, corresponding to wjs’s shadow size.

It is interesting to examine the m's 25 cell, as it introduces an interesting
heuristic decision. When the machine’s free capacity is j = 2 and only jobs
{1..4} are considered for scheduling, the maximal achievable utilization can be
accomplished by either scheduling wjs or wj4, both with a size of 2, yet wj, will
use 2 extra processors while wj, will use none. The algorithm chooses to bypass
wjs and selects wj» as it leaves more extra processors to be used by other jobs.

Finally the full k¥ = 3 shadow free capacity is considered. wjs, who’s shadow
size is 3 can now join wj;..wjs as a valid scheduling option.

As can be seen in Table 7, the maximal achievable utilization at t = 25, when
the machine’s free capacity is n = j = 5, the shadow free capacity is extra = k =
3 and all five waiting jobs are available for scheduling is m's 5 3.util = 5. The
minimal number of extra processors required to achieve this utilization value is

13



Li(sizegsize), j—= | O] 1 | 2 | 3 | 4 | 5 |

0 (05) O] 0o | 0o | 0o | 0o | 0o
1 (77) 0o | 0ot | Oo? 0ot Oo? Oo?
2 (20) Oo | 0o [ 20\ ] 20N | 20N |20\
3 (1) 0o | 11NN 207 | 3N | 3N | 31N
4 (2,) Oo | Li T | 20T% | 31T | &N\ | &N\
5 (33) Oo | it | 207 | 3t | 47 | 4F
Table 6: k£ = 2 plane

Vi (sizessize), j= O] 1 | 2 | 3 | 4 | 5 |
0 () 0o 0o 0o 0o 0o 0o
1 (77) Oo | Oot | 00T | 0ot | OoT 0ot
2 (29) Oo | Oo 1 [ 20|20\ |20\ | 20\
3 (1y) Oo | 11 N0 | 207 | 30N | 30N | 3N
4 (22) Oo | I1 T | 20t 31t | 4N | 53N
5 (33) 0o | 11 7 | 2ot 317 4ot | 5N\1T

Table 7: k = 3 plane

m’575,3.sutil =3.

3.3.4 Constructing S’

Algorithm 4 describes the construction of S’. It starts at the last computed
cell m/|yq|,n,catra, fOllows the trace markers, and stops when reaching the 0
boundaries of any plane.

As explained in section 3.2.4, when both trace markers are set simultane-
ously, the algorithm follows the bypassed marker, a decision which receives a
better score from the evaluation metrics.

& Both trace markers in m'5 5 3, are set, which means there is more than
one way to construct S’. In our example there are two possible schedules, both
utilize all 5 free processors, resulting in a fully utilized machine. Choosing
S" = {wja,wjs,wjs} is illustrated in Figure 5. Choosing S’ = {wjs, wjs} is
illustrated in Figure 6.

Both schedules fully utilize the machine and ensure that wj; will start with-
out a delay, thus both are safe schedules, yet the first schedule (illustrated in
Figure 5) contains jobs closer to the head of the queue, thus it is more com-
mitted to the queue FCFS policy. Based on the explanation in section 3.2.4,
choosing S’ = {wja, wjs, wjs} is expected to gain better results when evaluation
metrics are considered.

14



Algorithm 4 Constructing S’
S"{}
i WQ)
jén
k < extra
while s > 0 and j > 0

if m; ; 1.-bypassed = True
1¢1—1

else
S'— S"UA{wyj;}
J < J —wj;.size
k < k —wj;.ss1ze
11 —1

ﬁ

FH——— N=10

t=25 stt?a%:?
%( ) Time ———

Figure 5: Scheduling wjs,wjs and wjs at t = 25

3.4 A Note On Complexity

The most time and space demanding task is the construction of M’. It depends
on |IW@Q| — the length of the waiting queue, n — the machine’s free capacity
at t, and extra — the shadow free capacity.

|[WQ)| depends on the system load. On heavy loaded systems the average
waiting queue length can reach tens of jobs with peaks reaching sometimes
hundreds.

Both n and eztra fall in the range of 0 to V. Their values depend on the size
and time distribution of the waiting and running jobs. A termination of a small
job causes nothing but a small increase to the system’s free capacity, thus n is
increased by a small amount. On the other hand, when a large job terminates,
it leaves much free space and n will consequently be large. extra is a function of
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Figure 6: Scheduling wj» and wjs at t = 25.

the size of the first waiting job, and the size and time distribution of the running
jobs. If wy; is small but it can start only after a large job terminates, extra will
consequently be large. On the other hand, if the size of the terminating job is
small and wj;’s size is relatively large, fewer extra processors will be available.

3.5 Optimizations

It was mentioned in Section 3.4 that on heavily loaded systems the average
waiting queue length can reach tens of jobs, a fact that has a negative effect on
the performance of the scheduler, since the construction of M’ directly depends
on |W@|. Two enhancements can be applied in the pre-processing phase. Both
result in a shorter waiting queue |[IWQ'| < |IW Q| and thus improve the scheduler
performance.

The first enhancement is to exclude jobs larger than the machine’s current
free capacity. If wj;.stze > n it is clear that it will not be started in the current
scheduling step, so it can be safely excluded from the waiting queue without
any effect on the algorithm results.

The second enhancement is to limit the number of jobs examined by the
algorithm by including only the the first C' waiting jobs in WQ' where C is
a predefined constant. We call this approach limited lookahed since we limit
the number of jobs the algorithm is allowed to examine. It is often possible to
produce a schedule which maximizes the machine’s utilization by looking only
at the first C' jobs, thus by limiting the lookahead, the same result are achieved,
but with much less computation effort. Obviously this is not always the case,
and such a restriction might produce a schedule which is not optimal. The effect
of limiting the lookahead on the performance of LOS is examined in Section 4.3.

& Looking at our initial waiting queue described in the table in Figure 4,
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it is clear that wj; cannot start at ¢ since its size exceeds the machine’s 5
free processors. Therefore it can be safely excluded from the processed waiting
queue without effecting the produced schedule. The resulting waiting queue
W Q' holds only four jobs as shown in Table 8.

wj || 51Z€ssize

2 20
3 L
1 2,
5 35

Table 8: Optimized Waiting Queue W Q'

We could also limit the lookahead to C' = 3 jobs, excluding wjs from WQ'.
In this case the produced schedule will contain jobs wj,, wjs and wjs, and not
only that it maximizes the utilization of the machine, but it is also identical
to the schedule shown in Figure 5. By limiting the lookahead we improved the
performance of the algorithm and achieved the same results.

4 Experimental Results

4.1 The Simulation Environment

We implemented all aspects of the algorithm including the mentioned optimiza-
tions in a job scheduler we named LOS, and integrated LOS into the framework
of an event-driven job scheduling simulator. We used logs of the Cornell Theory
Center (CTC) SP2, the San Diego Supercomputer Center (SDSC) SP2, and the
Swedish Royal Institute of Technology (KTH) SP2 supercomputing centers as
a basis [28], and generated logs of varying loads ranging from 0.5 to 0.95, by
multiplying the arrival time of each job by constant factors. For example, if the
offered load in the CTC log is 0.60, then by multiplying each job’s arrival time
by 0.60 a new log is generated with a load of 1.0. To generate a load of 0.9, each
job’s arrival time is multiplied by a constant of %. We claim that in contrast
to other log modification methods which modify the jobs’ sizes or runtimes,
our generated logs and the original ones maintain resembling characteristics.
The logs were used as an input for the simulator, which generates arrival and
termination events according to the jobs characteristics of a specific log.

On each arrival or termination event, the simulator invokes LOS which ex-
amines the waiting queue, and based on the current system state it decides
which jobs to start. For each started job, the simulator updates the system free
capacity and enqueues a temination event corresponding to the job termination
time. For each terminated job, the simulator records its response time, bounded
slowdown (applying a threshold of 7 = 10 seconds), and wait time.
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4.2 Improvement over EASY

We used the framework mentioned above to run simulations of the EASY sched-
uler [24, 25], and compared its results to those of LOS which was limited to a
maximal lookahead of 50 jobs. By comparing the achieved utilization vs. the
offered load of each simulation, we saw that for the CTC and SDSC workloads
a discrepancy occurs at loads higher than 0.9, whereas for the KTH workload
it occurs only at loads higher than 0.95. As such discrepancies indicate that
the simulated system is actually saturated, we limit the = axis to the indicated
ranges when reporting our results.

As the results of schedulers processing the same jobs may be similar, we need
to compute confidence intervals to assess the significance of observed differences.
Rather than doing so directly, we first apply the “common random numbers”
variance reduction technique [29]. For each job in the workload file, we tabu-
late the difference between its response time under EASY and under LOS. We
then compute confidence intervals on these differences using the batch means
approach. By comparing the difference between the schedulers on a job-by-job
basis, the variance of the results is greatly reduced, and so are the confidence
intervals.
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Figure 7: Mean job differential response time vs Load

The results for response time are shown in Figure 7, and for bounded slow-
down in Figure 8. The results for wait time are the same as those for response
time, because we are looking at differences. In all the plots, the mean job dif-
ferential response time (or bounded slowdown) is positive across the entire load
range for all three logs, indicating that LOS outperforms Easy with respect to
these metrics. This observation is reinforced by that fact that all lower bound-
aries of the 90% confidence interval measured at key load values, remain above
the load axis, indicating the accuracy of our results.
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Figure 8: Mean job differential bounded slowdown (7 = 10) vs Load

4.3 Limiting the Lookahead

Section 3.5 proposed an enhancement called limited lookahead aimed at im-
proving the performance of the algorithm. We explored the effect of limiting
the lookahead on the scheduler performance by performing six LOS simulations
with a limited lookahead of 10, 25, 35, 50, 100 and 250 jobs respectively. Figure
9 present the effect of the limited lookahead on the mean job response time.
Figure 10 presents its effect on the mean job bounded slowdown. Again, the
effect on wait time is the same as that on response time.

The notation LOS.X is used to represent LOS’s result curve, where X is
the maximal number of waiting jobs that LOS was allowed to examine on each
scheduling step (i.e. its lookahead limitation). We also plotted Easy’s result
curve to allow a comparison. We observe that for the CTC log in Figure 9(a) and
the KTH log in Figure 9(c), when LOS is limited to examine only 10 jobs at each
scheduling step, its resulting mean job response time is relatively poor, especially
at high loads, compared to the result achieved when the lookahead restriction is
relaxed. The same observation also applies to the mean job bounded slowdown
for these two logs, as shown in figure 10(a,c). As most clearly illustrated in
figures 9(a) and 10(a), the result curves of LOS and Easy intersect several times
along the load axis, indicating that the two schedulers achieve the same results
with neither one consistently outperforming the other as the load increases . The
reason for the poor performance is the low probability that a schedule which
maximizes the machine utilization actually exists within the first 10 waiting
jobs, thus although LOS produces the best schedule it can, it is rarely the case
that this schedule indeed maximizes the machine utilization. However, for the
SDSC log in Figures 9(b) and 10(b), LOS manages to provide good performance
even with a limited lookahead of 10 jobs.

As the lookahead limitation is relaxed, LOS performance improves but the
improvement is not linear with the lookahead factor, and in fact the resulting
curves for both metrics are relatively similar for lookaheads in the range of 25—
250 jobs. Thus we can safely use a bound of 50 on the lookahead, thus bounding
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Figure 9: Limited lookahead affect on mean job response time

the complexity of the algorithm.

The explanation is that at most of the scheduling steps, especially under low
loads , the length of the waiting queue is kept small, so lookahead of hundreds of
jobs has no effect in practice. As the load increases and the machine advances
toward its saturation point, the average number of waiting jobs increases, as
shown in Figure 11, and the effect of changing the lookahead is more clearly
seen. Interestingly, with LOS the average queue length is actually shorter,
because it is more efficient in packing jobs, thus allowing them to terminate

faster.
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5 Conclusions

Backfilling algorithms have several parameters. In the past, two parameters
have been studied: the number of jobs that receive reservations, and the order
in which the queue is traversed when looking for jobs to backfill. We introduce
a third parameter: the amount of lookahead into the queue. We show that by
using a lookahead window of about 50 jobs it is possible to derive much better
packing of jobs under high loads, and that this improves both average response
time and average bounded slowdown metrics.

A future study should explore how the packing effects secondary metrics
such as the queue length behavior. In Section 3.4 we stated that on a heavily
loaded system the waiting queue length can reach tens of jobs, so a scheduler
capable of maintaining a smaller queue across large portion of the scheduling
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steps, increases the users’ satisfaction with the system. Alternative algorithms
for constructing S’ when several optional schedules are possible might also be
examined. In Section 3.2.4 we stated that by following the bypassed marker
we expect a better score from the evaluation metrics, but other heuristics such
as choosing the schedule with the minimal overall expected termination time
are also worthy of evaluation. Finally, extending our algorithm to perform
reservations for more than a single job and exploring the effect of such a heuristic
on performance presents an interesting challenge.
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