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tThe utilization of parallel 
omputers depends on how jobs are pa
kedtogether: if the jobs are not pa
ked tightly, resour
es are lost due to frag-mentation. The problem is that the goal of high utilization may 
on�i
twith goals of fairness or even progress for all jobs. The 
ommon solutionis to use ba
k�lling, whi
h 
ombines a reservation for the �rst job in theinterest of progress with pa
king of later jobs to �ll in holes and in
reaseutilization. However, ba
k�lling 
onsiders the queued jobs one at a time,and thus might miss better pa
king opportunities. We propose the useof dynami
 programming to �nd the best pa
king possible given the 
ur-rent 
omposition of the queue. Simulation results show that this indeedimproves utilization, and thereby redu
es the average response time andaverage slowdown of all jobs.1 Introdu
tionA parallel job is 
omposed of a number of 
on
urrently exe
uting pro
esses,whi
h 
olle
tively perform a 
ertain 
omputation. A rigid parallel job has a�xed number of pro
esses (referred to as the job's size) whi
h does not 
hangeduring exe
ution [2℄. To exe
ute su
h a parallel job, the job's pro
esses aremapped to a set of pro
essors using a one-to-one mapping. In a non-preemptiveregime, these pro
essors are then dedi
ated to running this job until su
h timethat it terminates [3℄. The set of pro
essors dedi
ated to a 
ertain job is 
alled apartition of the ma
hine. To in
rease utilization, parallel ma
hines are typi
allypartitioned into several non-overlapping partitions, allo
ated to di�erent jobsrunning 
on
urrently, a te
hnique 
alled spa
e sli
ing [1℄.To prote
t the ma
hine resour
es and allow su

essful exe
ution of jobs,users are not allowed to dire
tly a

ess the ma
hine. Instead, they submit their1



jobs to the ma
hine's s
heduler � a software 
omponent that is responsiblefor monitoring and managing the ma
hine resour
es. The s
heduler typi
allymaintains a queue of waiting jobs. The jobs in the queue are 
onsidered forallo
ation whenever the state of the ma
hine 
hanges. Two su
h 
hanges arethe submittal of a new job (whi
h 
hanges the queue), and the termination ofa running job (whi
h frees an allo
ated partition) [8℄. Upon su
h events, thes
heduler examines the waiting queue and the ma
hine resour
es and de
ideswhi
h jobs (if any) will be started at this time.Allo
ating pro
essors to jobs 
an be seen as pa
king jobs into the availablespa
e of free pro
essors: ea
h job takes a partition, and we try to leave asfew idle pro
essors as possible. The goal is therefore to maximize the ma
hineutilization. The la
k of knowledge regarding future jobs leads 
urrent on-lines
hedulers to use simple heuristi
s to maximize utilization at ea
h s
hedulingstep. The di�erent heuristi
s used by various algorithms are des
ribed in Se
tion2. These heuristi
s do not guarantee to minimize the ma
hine's idle 
apa
ity.We propose a new s
heduling heuristi
 seeking to maximize utilization atea
h s
heduling step. Unlike 
urrent s
hedulers that 
onsider the queued jobsone at a time, our s
heduler bases its s
heduling de
isions on the whole 
ontentsof the queue. Thus we named it LOS � an a
ronym for �Lookahead OptimizingS
heduler�. LOS starts by examining only the �rst waiting job. If it �ts withinthe ma
hine's free 
apa
ity it is immediately started. Otherwise, a reservation ismade for this job so as to prevent the risk of starvation. The rest of the waitingqueue is pro
essed using an e�
ient, newly developed dynami
-programmingbased s
heduling algorithm that 
hooses the set of jobs whi
h will maximize thema
hine utilization and will not violate the reservation for the �rst waiting job.The algorithm also respe
ts the arrival order of the jobs, if possible. When twoor more sets of jobs a
hieve the same maximal utilization, it 
hooses the set
loser to the head of the queue.Se
tion 3 provides a detailed des
ription of the algorithm, followed by ashort dis
ussion of its 
omplexity, and suggests optional performan
e optimiza-tions. Se
tion 4 des
ribes the simulation environment used in the evaluation andpresents the experimental results from the simulations in whi
h LOS was testedusing tra
e �les from real systems. Se
tion 5 
on
ludes on the e�e
tiveness andappli
ability of our proposed s
heduling heuristi
.2 Related WorkWe will fo
us on the narrow �eld of on-line s
heduling algorithms of non-preemptive rigid jobs on distributed memory parallel ma
hines, and espe
iallyon heuristi
s that attempt to improve utilization.The base 
ase often used for 
omparison is the First Come First Serve(FCFS) algorithm [5℄. In this algorithm all jobs are started in the same or-der in whi
h they arrive in the queue. If the ma
hine's free 
apa
ity does notallow the �rst job to start, FCFS will not attempt to start any su

eeding job.It is a fair s
heduling poli
y, whi
h guarantees freedom of starvation sin
e a job2




annot be delayed by other jobs submitted at a later time. It is also easily im-plemented. Its drawba
k is the resulting poor utilization of the ma
hine. Whenthe next job to be s
heduled is larger than the ma
hine free 
apa
ity, it holdsba
k smaller su

eeding jobs, whi
h 
ould utilize the ma
hine.In order to improve various performan
e metri
s it is possible to 
onsider thejobs in some other order. The Shortest Pro
essing Time First (SPT) algorithmuses estimations of the jobs' runtimes to make s
heduling de
isions. It sorts thewaiting jobs by in
reasing estimated runtime and exe
utes the jobs with theshortest runtime �rst [5℄. This algorithm is inspired by the "shortest job �rst"heuristi
 [11℄, whi
h seeks to minimize the average response time. The rationalebehind this heuristi
s is that if a short job is exe
uted after a long one, bothwill have a long response time, but if the short job gets to be exe
uted �rst, itwill have a short response time, thus the average response time is redu
ed.The opposite algorithm, Largest Pro
essing Time First (LPT), exe
utes thejobs with the longest pro
essing time �rst [15, 16℄. This poli
y aims at mini-mizing the makespan, but the average response time is in
reased be
ause manysmall jobs are delayed signi�
antly.Other s
heduling heuristi
s base their de
isions on job size rather than on es-timated runtime. The Smallest Job First (SJF) algorithm [17℄ sorts the waitingjobs by in
reasing size and exe
utes the smallest jobs �rst. Inspired by SPT, thisalgorithm turned out to perform poorly be
ause there is not mu
h 
orrelationbetween the job size and it's runtime. Small jobs do not ne
essarily terminatequi
kly [18, 19℄, whi
h results in a fragmented ma
hine and thus a redu
tion inperforman
e.The alternative Largest Job First (LJF) is motivated by results in bin-pa
king that indi
ate that a simple �rst-�t algorithm a
hieves better pa
kingif the pa
ked items are sorted in de
reasing size [20, 21℄. In terms of s
hedul-ing it means that s
heduling larger jobs �rst may be expe
ted to 
ause lessfragmentation and therefore higher utilization than FCFS.Finally, the Smallest Cumulative Demand First [17, 22, 23℄ algorithm usesboth the expe
ted exe
ution time and job size to make s
heduling de
isions. Itsorts the jobs in an in
reasing order a

ording to the produ
t of the jobs sizeand the expe
ted exe
ution time, so small short jobs get the highest priority.It turned out that this poli
y does not perform mu
h better than the originalsmallest job �rst [17℄.The problem with all the above s
hemes is that they may su�er from star-vation, and may also waste pro
essing power if the �rst job 
annot run. Thisproblem is solved by ba
k�lling algorithms, whi
h allow small jobs from the ba
kof the queue to exe
ute before larger jobs that arrived earlier, thus utilizing theidle pro
essors, while the latter are waiting for enough pro
essors to be freed[3℄. Ba
k�lling is known to greatly in
rease user satisfa
tion sin
e small jobstend to get through faster, while bypassing large ones.Note that in order to implement ba
k�lling, the jobs' runtimes must beknown in advan
e. Two te
hniques, one to estimate the runtime through re-peated exe
utions of the job [12℄ and the se
ond to get this information through
ompile-time analysis [13, 14℄ have been proposed. Real implementations, how-3



ever, require the users to provide an estimate of their jobs runtime, whi
h inpra
ti
e is often spe
i�ed as a runtime upper-bound. Surprisingly, it turns outthat ina

urate estimates generally lead to better performan
e than a

urateones [10℄.Ba
k�lling was �rst implemented on a produ
tion system in the "EASY"s
heduler developed by Lifka et al. [24, 25℄, and later integrated with IBM'sLoadLeveler. This version is based on aggressive ba
k�lling, in whi
h any job
an be ba
k�lled provided it does not delay the �rst job in the queue. In fa
t,one of the important parameters of ba
k�lling algorithms is the number of jobsthat enjoy reservations. In EASY, only the �rst job gets a reservation. In 
on-servative ba
k�lling, all skipped jobs get reservations [10℄. The Maui s
hedulerhas a parameter that allows the system administrator to set the number of reser-vations [9℄. Srinivasan et al. [26℄ have suggested a 
ompromise strategy 
alledsele
tive ba
k�lling, wherein jobs do not get a reservation until their expe
tedslowdown ex
eeds some threshold. If the threshold is 
hosen judi
iously, onlythe most needy jobs get a reservation.Additional variants of ba
k�lling allow the s
heduler more �exibility. Talbyand Feitelson presented sla
k based ba
k�lling, an enhan
ed ba
k�ll s
hedulerthat supports priorities [6℄. These priorities are used to assign ea
h waitingjob a sla
k, whi
h determines how long it may have to wait before running:important jobs will have little sla
k in 
omparison with others. Ba
k�lling isallowed only if the ba
k�lled job does not delay any other job by more than thatjob's sla
k. Ward et al. have suggested the use of a relaxed ba
k�ll strategy,whi
h is similar, ex
ept that the sla
k is a 
onstant fa
tor and does not dependon priority [27℄.Lawson and Smirni presented a multiple-queue ba
k�lling approa
h in whi
hea
h job is assigned to a queue a

ording to its expe
ted exe
ution time andea
h queue is assigned to a disjoint partition of the parallel system on whi
hjobs from the queue 
an be exe
uted [7℄. Their simulation results indi
ate aperforman
e gain 
ompared to a single-queue ba
k�lling, resulting from the fa
tthat the multiple-queue poli
y redu
es the likehood that short jobs get delayedin the queue behind long jobs.3 The LOS S
heduling AlgorithmThe LOS s
heduling algorithm examines all the jobs in the queue in order tomaximize the 
urrent system utilization. Instead of s
anning the queue in someorder, and starting any job that is small enough not to violate prior reserva-tions, LOS tries to �nd a 
ombination of jobs that together maximize utilization.This is done using dynami
 programming. Se
tion 3.2 presents the basi
 algo-rithm, and shows how to �nd a set of jobs that together maximize utilization.Se
tion 3.3 then extends this by showing how to sele
t jobs that also respe
ta reservation for the �rst queued job. Se
tion 3.4 des
ribes the fa
tors thate�e
t the algorithm time and spa
e 
omplexity, and Se
tion 3.5 �nalizes thealgorithm des
ription with two suggested optimizations aimed at improving its4



performan
e.Before starting the des
ription of the algorithm itself, Se
tion 3.1 formal-izes the state of the system and introdu
es the basi
 terms and notations usedlater. To provide an intuitive feel of the algorithms, ea
h subse
tion is followedby an on-going s
heduling example on an imaginary ma
hine of size N = 10:Paragraphs des
ribing the example are headed by |.3.1 Formalizing the System StateAt time t our ma
hine of size N runs a set of jobs R = frj1; rj2; :::; rjrg, ea
hwith two attributes: their size, and estimated remaining exe
ution time, rem.For 
onvenien
e, R is sorted by in
reasing rem values. The ma
hine's free
apa
ity is n = N �Pri=1 rji:size.The queue 
ontains a set of waiting jobsWQ = fwj1; wj2; ::; wjqg, whi
h alsohave two attributes: a size requirement and a user estimated runtime, time.The task of the s
heduling algorithm is to sele
t a subset S � WQ of jobs,referred to as the produ
ed s
hedule, whi
h maximizes the ma
hine utilization.The produ
ed s
hedule is saf e if it does not impose a risk of starvation.| As illustrated in Figure 1, at t = 25, our ma
hine runs a single job rj1with size = 5 and expe
ted remaining exe
ution time rem = 3. The ma
hine'sfree 
apa
ity is n = 5. The table at the right des
ribes the size and estimatedruntime of the �ve waiting jobs in the waiting queue, WQ.
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wj size time1 7 42 2 23 1 64 2 45 3 5
Figure 1: System state and queue at t = 253.2 The Basi
 Algorithm3.2.1 Freedom of StarvationThe algorithm begins by trying to start the �rst waiting job.5



If wj1:size � n , it is removed from the waiting queue, added to the runningjobs list and starts exe
uting.Otherwise, the algorithm 
al
ulates the shadow time at whi
h wj1 
an beginits exe
ution [24℄. It does so by traversing the list of running jobs while a

umu-lating their sizes until rea
hing a job rjs at whi
h wj1:size � n+Psi=1 rji:size.The shadow time is then de�ned to be shadow = t+ rjs:rem. By ensuring thatall jobs in S terminate before that time, S is guaranteed to be a safe s
hedule,as it will not impose any delay on the �rst waiting job, thus ensuring a freedomfrom starvation.To dismiss us of the 
on
ern of handling spe
ial 
ases, we set shadow to 1if wj1 
an be started at t. In this 
ase every produ
ed s
hedule is safe, as the�rst waiting job is assured to start without delay.| The 7 pro
essors requirement of wj1 prevents it from starting at t = 25.It will be able to start at t = 28 after rj1 terminates, thus shadow is set to 28as illustrated in �gure 2.
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TimeFigure 2: Computing the shadow time3.2.2 A Two Dimensional Data Stru
tureAfter handling the �rst job, we need to �nd the set of subsequent jobs thatwill maximize utilization. To do so, the waiting queue, WQ, is pro
essed usinga dynami
-programming algorithm. Intermediate results are stored in a twodimensional matrix denoted M of size (jWQj+ 1)� (n+1), and are later usedfor making su

essive de
isions.Ea
h 
ell mi;j 
ontains a single integer value util, and two boolean tra
emarkers, sele
ted and bypassed.util holds the maximal a
hievable utilization at t, if the ma
hine's free 
a-pa
ity is j and only waiting jobs f1::igare available for s
heduling.6



The sele
ted marker is set to indi
ate that wji was 
hosen for exe
ution(wji 2 S). The bypassed marker indi
ates the opposite. When the algorithm�nishes 
al
ulating M , the tra
e markers are used to tra
e the jobs whi
h 
on-stru
t S. It is possible that both markers will be set simultaneously in a given
ell, whi
h means that there is more than one way to 
onstru
t S. It is impor-tant to note that either way, jobs in the produ
ed s
hedule will always a
hievethe same overall maximal utilization.For 
onvenien
e, the i = 0 row and j = 0 
olumn are initialized with zerovalues. Su
h padding eliminates the need of handling spe
ial 
ases.| In the example, M is a 6� 6 matrix. The sele
ted and bypassed markers,if set, are noted by - and " respe
tively. Table 1 des
ribes M 's initial values.# i (size) ; j ! 0 1 2 3 4 50 (�) 0 0 0 0 0 01 (7) 0 � � � � �2 (2) 0 � � � � �3 (1) 0 � � � � �4 (2) 0 � � � � �5 (3) 0 � � � � �Table 1: M 's initial values3.2.3 Filling MM is �lled from left to right, top to bottom, as indi
ated in Algorithm 1. Thevalues of ea
h 
ell are 
al
ulated using values from previously 
al
ulated 
ells.The idea is that if adding another pro
essor (bringing the total to j) allows the
urrently 
onsidered job i to be started, we need to 
he
k whether in
luding wjiin the produ
ed s
hedule in
reases the utilization. If not, or if the size of job iis larger than j, the utilization is simply what it was without this job, that ismi�1;j :util.As mentioned in Se
tion 3.2.1, a safe s
hedule is guaranteed if all jobs inS terminate before the shadow time. The third line of Algorithm 1 ensuresthat every job wji that will not terminate by the shadow time is immediatelybypassed, that is, ex
luded from S. This is done to simplify the presentationof the algorithm. In Se
tion 3.3 we relax this restri
tion and present the fullalgorithm.The 
omputation stops when rea
hing 
ell mjwqj;n at whi
h time M is �lledwith values.| The resulting M is shown in Table 2. As 
an be seen, the sele
ted �agis set only for wj2, as it is the only job whi
h 
an be started safely withoutimposing any delay on wj1. Sin
e all other jobs are bypassed, the maximal7



Algorithm 1 Constru
ting M� Note : To slightly ease the reading, mi;j :util, mi;j :sele
ted, andmi;j :bypassed are represented by util, sele
ted and bypassed respe
tively.for i = 1 to jWQjfor j = 1 to nif wji:size > j or t+ wji:time > shadowutil mi�1;j :utilsele
ted Falsebypassed Trueelse util0  mi�1;j�wji:size:util+ wji:sizeif util0 � mi�1;j :utilutil util0sele
ted Truebypassed Falseif util0 = mi�1;j :utilbypassed Trueelse util mi�1;j :utilsele
ted Falsebypassed Truea
hievable utilization of the j = 5 free pro
essors when 
onsidering all i = 5jobs is m5;5:util = 2.# i (size) ; j ! 0 1 2 3 4 50 (�) 0 0 0 0 0 01 (7) 0 0 " 0" 0" 0" 0"2 (2) 0 0 " 2 - 2 - 2 - 2 -3 (1) 0 0 " 2" 2" 2" 2"4 (2) 0 0 " 2" 2" 2" 2"5 (3) 0 0 " 2" 2" 2" 2"Table 2: Resulting M3.2.4 Constru
ting SStarting at the last 
omputed 
ell mjwqj;n, S is 
onstru
ted by following thetra
e markers as des
ribed in Algorithm 2.It was already noted in Se
tion 3.2.2 that it is possible that in an arbitrary
ell mx;y both markers are set simultaneously, whi
h means that there is more8



than one possible s
hedule. In su
h 
ase, the algorithm will follow the bypassedmarker.In term of s
heduling wjx =2 S simply means that wjx is not started at t,but this de
ision has a deeper meaning in terms of queue poli
y. Sin
e thequeue is traversed by Algorithm 2 from tail to head, skipping wjx means thatother jobs, 
loser to the head of the queue will be started instead, and the samemaximal utilization will still be a
hieved. By sele
ting jobs 
loser to the headof the queue our produ
ed s
hedule is not only more 
ommitted to the queueFCFS poli
y, but also re
eives a better s
ore from the evaluation metri
s su
has average response time, slowdown et
.Algorithm 2 Constru
ting SS  fgi jWQjj  nwhile i > 0 and j > 0if mi;j :bypassed = Truei i� 1else S  S [ fwjigj  j � wji:sizei i� 1| The resulting S 
ontains a single job wj2, and its s
heduling at t is illus-trated in Figure 3. Note that wj1 is not part of S: It is only drawn to illustratethat wj2 does not e�e
t its expe
ted start time, indi
ating that our produ
eds
hedule is safe.
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3.3 The Full Algorithm3.3.1 Maximizing UtilizationOne way to 
reate a safe s
hedule is to require all jobs in S to terminate be-fore the shadow time, so as not to interfere with that job's reservation. Thisrestri
tion 
an be relaxed in order to a
hieve a better s
hedule S0, still safe butwith a mu
h improved utilization. This is possible due to the extra pro
essorsleft at the shadow time after wj1 is started. Waiting jobs whi
h are expe
tedto terminate after the shadow time 
an use these extra pro
essors, referred toas the shadow free 
apa
ity, and run side by side together with wj1, withoute�e
ting its start time. As long as the total size of jobs in S0 that are stillrunning at the shadow time does not ex
eed the shadow free 
apa
ity, wj1willnot be delayed, and S0 will be a safe s
hedule.If the �rst waiting job, wj1, 
an only start after rjs has terminated, thanthe shadow free 
apa
ity, denoted by extra; is 
al
ulated as follows :extra = n+ sXi=1 rji:size� wj1:sizeTo use the extra pro
essors, the jobs whi
h are expe
ted to terminate beforethe shadow time are distinguished from those that are expe
ted to still run atthat time, and are therefore 
andidates for using the extra pro
essors. Ea
hwaiting job wji 2 WQ will now be represented by two values: its original sizeand its shadow size � its size at the shadow time. Jobs expe
ted to terminatebefore the shadow time have a shadow size of 0. The shadow size is denotedssize, and is 
al
ulated using the following rule:wji:ssize = � 0 t+ wji:time � shadowwji:size otherwiseIf wj1 
an start at t, the shadow time is set to 1. As a result, the shadowsize ssize, of all waiting jobs is set to 0, whi
h means that any 
omputationwhi
h involves extra pro
essors is unne
essary. In this 
ase setting extra to 0improves the algorithm performan
e.All these 
al
ulation are done in a pre-pro
essing phase, before running thedynami
 programming algorithm.| wj1whi
h 
an begin exe
ution at t = 28 leaves 3 extra pro
essors. shadowand extra are set to 28 and 3 respe
tively, as illustrated in Figure 4. In thequeue shown on the right, we use the notation sizessize to represent the twosize values. wj2 is the only job expe
ted to terminate before the shadow time,thus its shadow size is 0.3.3.2 A Three Dimensional Data Stru
tureTo manage the use of the extra pro
essors, we need a three dimensional matrixdenoted M 0 of size (jWQj+ 1)� (n+ 1)� (extra + 1).10
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Figure 4: Computing shadow and extra, and the pro
essed job queueEa
h 
ell m0i;j;k now 
ontains two integer values, util and sutil, and the twotra
e markers.util holds the maximal a
hievable utilization at t, if the ma
hine's free 
apa
-ity is j, the shadow free 
apa
ity is k, and only waiting jobs f1::ig are availablefor s
heduling.sutil hold the minimal number of extra pro
essors required to a
hieve theutil value mentioned above.The sele
ted and bypassedmarkers are used in the same manner as des
ribedin se
tion 3.2.2.As mentioned in se
tion 3.2.2, the i = 0 rows and j = 0 
olumns are initial-ized with zero values, this time for all k planes.| M 0 is a 6� 6� 4 matrix. util and sutil are noted utilsutil. The notationof the sele
ted and bypassed markers is not 
hanged and remains - and "respe
tively.Table 3 des
ribes the initial k = 0 plane. Planes 1::3 are initially similar.# i (sizessize) ; j ! 0 1 2 3 4 50 (��) 00 00 00 00 00 001 (77) 00 �� �� �� �� ��2 (20) 00 �� �� �� �� ��3 (11) 00 �� �� �� �� ��4 (22) 00 �� �� �� �� ��5 (33) 00 �� �� �� �� ��Table 3: Initial k = 0 plane11



3.3.3 Filling M 0The values in every m0i;j;k 
ell are 
al
ulated in an iterative matter using valuesfrom previously 
al
ulated 
ells as des
ribed in Algorithm 3. The 
al
ulation isexa
tly the same as in Algorithm 1, ex
ept for an addition of a slightly more
ompli
ated 
ondition that 
he
ks that enough pro
essors are available bothnow and at the shadow time.The 
omputation stops when rea
hing 
ell m0jwqj;n;extra.Algorithm 3 Constru
ting M 0� Note : To slightly ease the reading, m0i;j;k:util, m0i;j;k:sutil,m0i;j;k :sele
ted, and m0i;j;k:bypassed are represented by util, sutil,sele
ted, and bypassed respe
tively.for k = 0 to extrafor i = 1 to jWQjfor j = 1 to nif wji:size > j or wji:ssize > kutil m0i�1;j;k:utilsutil m0i�1;j;k:sutilsele
ted Falsebypassed Trueelse util0  m0i�1;j�wji:size;k�wji:ssize:util+ wji:sizesutil0  m0i�1;j�wji:size;k�wji:ssize:sutil+ wji:ssizeif util0 > m0i�1;j;k:util or(util0 = m0i�1;j;k:util and sutil0 � m0i�1;j;k:sutil)util util0sutil sutil0sele
ted Truebypassed Falseif util0 = mi�1;j;k:util and sutil0 = mi�1;j;k:sutilm0i;j;k:bypassed Trueelse util m0i�1;j;k:utilsutil m0i�1;j;k:sutilsele
ted Falsebypassed True| When the shadow free 
apa
ity is k = 0; only wj2 who's ssize = 0 
anbe s
heduled. As a result, the maximal a
hievable utilization of the j = 5 freepro
essors, when 
onsidering all i = 5 jobs is m05;5;0:util =2, as 
an be seen inTable 4. This is of 
ourse the same utilization value (and the same s
hedule)a
hieved in Se
tion 3.2.3, as the k = 0 
ase is identi
al to 
onsidering only jobsthat terminate before the shadow time.When the shadow free 
apa
ity is k = 1, wj3 who's ssize = 1 is also available12



# i (sizessize) ; j ! 0 1 2 3 4 50 (��) 00 00 00 00 00 001 (77) 00 00 " 00" 00" 00" 00"2 (20) 00 00 " 20 - 20 - 20 - 20 -3 (11) 00 00 " 20" 20" 20" 20"4 (22) 00 00 " 20" 20" 20" 20"5 (33) 00 00 " 20" 20" 20" 20"Table 4: k = 0 plane# i (sizessize) ; j ! 0 1 2 3 4 50 (��) 00 00 00 00 00 001 (77) 00 00 " 00" 00" 00" 00"2 (20) 00 00 " 20 - 20 - 20 - 20 -3 (11) 00 11 - 20" 31- 31- 31-4 (22) 00 11 " 20" 31" 31" 31"5 (33) 00 11 " 20" 31" 31" 31"Table 5: k = 1 planefor s
heduling. As 
an be seen in Table 5, starting atm03;3;1 the maximal a
hiev-able utilization is in
reased to 3, at the pri
e of using a single extra pro
essor.The two sele
ted jobs are wj2 and wj3.As the shadow free 
apa
ity in
reases to k = 2, wj4 who's shadow size is 2,joins wj2 and wj3 as a valid s
heduling option. Its e�e
t is illustrated in Table6 starting at m04;4;2, as the maximal a
hievable utilization has in
reased to 4 �the sum of wj2 and wj4 sizes. This 
omes at a pri
e of using a minimum of 2extra pro
essors, 
orresponding to wj4's shadow size.It is interesting to examine the m04;2;2 
ell, as it introdu
es an interestingheuristi
 de
ision. When the ma
hine's free 
apa
ity is j = 2 and only jobsf1::4g are 
onsidered for s
heduling, the maximal a
hievable utilization 
an bea

omplished by either s
heduling wj2 or wj4, both with a size of 2, yet wj4 willuse 2 extra pro
essors while wj2 will use none. The algorithm 
hooses to bypasswj4 and sele
ts wj2 as it leaves more extra pro
essors to be used by other jobs.Finally the full k = 3 shadow free 
apa
ity is 
onsidered. wj5, who's shadowsize is 3 
an now join wj1::wj4 as a valid s
heduling option.As 
an be seen in Table 7, the maximal a
hievable utilization at t = 25, whenthe ma
hine's free 
apa
ity is n = j = 5, the shadow free 
apa
ity is extra = k =3 and all �ve waiting jobs are available for s
heduling is m05;5;3:util = 5. Theminimal number of extra pro
essors required to a
hieve this utilization value is13



# i (sizessize) ; j ! 0 1 2 3 4 50 (��) 00 00 00 00 00 001 (77) 00 00 " 00" 00" 00" 00"2 (20) 00 00 " 20 - 20 - 20 - 20 -3 (11) 00 11 - 20" 31- 31- 31-4 (22) 00 11 " 20"? 31" 42- 42-5 (33) 00 11 " 20" 31" 42" 42"Table 6: k = 2 plane# i (sizessize) ; j ! 0 1 2 3 4 50 (��) 00 00 00 00 00 001 (77) 00 00 " 00" 00" 00" 00"2 (20) 00 00 " 20 - 20 - 20 - 20 -3 (11) 00 11 - 20" 31- 31- 31-4 (22) 00 11 " 20" 31" 42- 53-5 (33) 00 11 " 20" 31" 42" 53-"Table 7: k = 3 planem05;5;3:sutil = 3.3.3.4 Constru
ting S0Algorithm 4 des
ribes the 
onstru
tion of S0. It starts at the last 
omputed
ell m0jwqj;n;extra, follows the tra
e markers, and stops when rea
hing the 0boundaries of any plane.As explained in se
tion 3.2.4, when both tra
e markers are set simultane-ously, the algorithm follows the bypassed marker, a de
ision whi
h re
eives abetter s
ore from the evaluation metri
s.| Both tra
e markers in m05;5;3, are set, whi
h means there is more thanone way to 
onstru
t S0. In our example there are two possible s
hedules, bothutilize all 5 free pro
essors, resulting in a fully utilized ma
hine. ChoosingS0 = fwj2; wj3;wj4g is illustrated in Figure 5. Choosing S0 = fwj2; wj5g isillustrated in Figure 6.Both s
hedules fully utilize the ma
hine and ensure that wj1 will start with-out a delay, thus both are safe s
hedules, yet the �rst s
hedule (illustrated inFigure 5) 
ontains jobs 
loser to the head of the queue, thus it is more 
om-mitted to the queue FCFS poli
y. Based on the explanation in se
tion 3.2.4,
hoosing S0 = fwj2; wj3;wj4g is expe
ted to gain better results when evaluationmetri
s are 
onsidered. 14



Algorithm 4 Constru
ting S0S0  fgi jWQjj  nk  extrawhile i > 0 and j > 0if m0i;j;k:bypassed = Truei i� 1else S0  S0 [ fwjigj  j � wji:sizek  k � wji:ssizei i� 1
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wj4

N
=

10

t=25 t=28
(shadow)

TimeFigure 5: S
heduling wj2; wj3 and wj4 at t = 253.4 A Note On ComplexityThe most time and spa
e demanding task is the 
onstru
tion of M 0. It dependson jWQj � the length of the waiting queue, n � the ma
hine's free 
apa
ityat t, and extra � the shadow free 
apa
ity.jWQj depends on the system load. On heavy loaded systems the averagewaiting queue length 
an rea
h tens of jobs with peaks rea
hing sometimeshundreds.Both n and extra fall in the range of 0 to N . Their values depend on the sizeand time distribution of the waiting and running jobs. A termination of a smalljob 
auses nothing but a small in
rease to the system's free 
apa
ity, thus n isin
reased by a small amount. On the other hand, when a large job terminates,it leaves mu
h free spa
e and n will 
onsequently be large. extra is a fun
tion of15
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N
=

10

t=28t=25
(shadow)

TimeFigure 6: S
heduling wj2 and wj5 at t = 25.the size of the �rst waiting job, and the size and time distribution of the runningjobs. If wj1 is small but it 
an start only after a large job terminates, extra will
onsequently be large. On the other hand, if the size of the terminating job issmall and wj1's size is relatively large, fewer extra pro
essors will be available.3.5 OptimizationsIt was mentioned in Se
tion 3.4 that on heavily loaded systems the averagewaiting queue length 
an rea
h tens of jobs, a fa
t that has a negative e�e
t onthe performan
e of the s
heduler, sin
e the 
onstru
tion of M 0 dire
tly dependson jWQj. Two enhan
ements 
an be applied in the pre-pro
essing phase. Bothresult in a shorter waiting queue jWQ0j < jWQj and thus improve the s
hedulerperforman
e.The �rst enhan
ement is to ex
lude jobs larger than the ma
hine's 
urrentfree 
apa
ity. If wji:size > n it is 
lear that it will not be started in the 
urrents
heduling step, so it 
an be safely ex
luded from the waiting queue withoutany e�e
t on the algorithm results.The se
ond enhan
ement is to limit the number of jobs examined by thealgorithm by in
luding only the the �rst C waiting jobs in WQ0 where C isa prede�ned 
onstant. We 
all this approa
h limited lookahed sin
e we limitthe number of jobs the algorithm is allowed to examine. It is often possible toprodu
e a s
hedule whi
h maximizes the ma
hine's utilization by looking onlyat the �rst C jobs, thus by limiting the lookahead, the same result are a
hieved,but with mu
h less 
omputation e�ort. Obviously this is not always the 
ase,and su
h a restri
tion might produ
e a s
hedule whi
h is not optimal. The e�e
tof limiting the lookahead on the performan
e of LOS is examined in Se
tion 4.3.| Looking at our initial waiting queue des
ribed in the table in Figure 4,16



it is 
lear that wj1 
annot start at t sin
e its size ex
eeds the ma
hine's 5free pro
essors. Therefore it 
an be safely ex
luded from the pro
essed waitingqueue without e�e
ting the produ
ed s
hedule. The resulting waiting queueWQ0 holds only four jobs as shown in Table 8.wj sizessize2 203 114 225 33Table 8: Optimized Waiting Queue WQ0We 
ould also limit the lookahead to C = 3 jobs, ex
luding wj5 from WQ0.In this 
ase the produ
ed s
hedule will 
ontain jobs wj2, wj3 and wj4, and notonly that it maximizes the utilization of the ma
hine, but it is also identi
alto the s
hedule shown in Figure 5. By limiting the lookahead we improved theperforman
e of the algorithm and a
hieved the same results.4 Experimental Results4.1 The Simulation EnvironmentWe implemented all aspe
ts of the algorithm in
luding the mentioned optimiza-tions in a job s
heduler we named LOS, and integrated LOS into the frameworkof an event-driven job s
heduling simulator. We used logs of the Cornell TheoryCenter (CTC) SP2, the San Diego Super
omputer Center (SDSC) SP2, and theSwedish Royal Institute of Te
hnology (KTH) SP2 super
omputing 
enters asa basis [28℄, and generated logs of varying loads ranging from 0:5 to 0:95, bymultiplying the arrival time of ea
h job by 
onstant fa
tors. For example, if theo�ered load in the CTC log is 0:60, then by multiplying ea
h job's arrival timeby 0:60 a new log is generated with a load of 1:0. To generate a load of 0:9, ea
hjob's arrival time is multiplied by a 
onstant of 0:600:90 . We 
laim that in 
ontrastto other log modi�
ation methods whi
h modify the jobs' sizes or runtimes,our generated logs and the original ones maintain resembling 
hara
teristi
s.The logs were used as an input for the simulator, whi
h generates arrival andtermination events a

ording to the jobs 
hara
teristi
s of a spe
i�
 log.On ea
h arrival or termination event, the simulator invokes LOS whi
h ex-amines the waiting queue, and based on the 
urrent system state it de
ideswhi
h jobs to start. For ea
h started job, the simulator updates the system free
apa
ity and enqueues a temination event 
orresponding to the job terminationtime. For ea
h terminated job, the simulator re
ords its response time, boundedslowdown (applying a threshold of � = 10 se
onds), and wait time.17



4.2 Improvement over EASYWe used the framework mentioned above to run simulations of the EASY s
hed-uler [24, 25℄, and 
ompared its results to those of LOS whi
h was limited to amaximal lookahead of 50 jobs. By 
omparing the a
hieved utilization vs. theo�ered load of ea
h simulation, we saw that for the CTC and SDSC workloadsa dis
repan
y o

urs at loads higher than 0.9, whereas for the KTH workloadit o

urs only at loads higher than 0.95. As su
h dis
repan
ies indi
ate thatthe simulated system is a
tually saturated, we limit the x axis to the indi
atedranges when reporting our results.As the results of s
hedulers pro
essing the same jobs may be similar, we needto 
ompute 
on�den
e intervals to assess the signi�
an
e of observed di�eren
es.Rather than doing so dire
tly, we �rst apply the �
ommon random numbers�varian
e redu
tion te
hnique [29℄. For ea
h job in the workload �le, we tabu-late the di�eren
e between its response time under EASY and under LOS. Wethen 
ompute 
on�den
e intervals on these di�eren
es using the bat
h meansapproa
h. By 
omparing the di�eren
e between the s
hedulers on a job-by-jobbasis, the varian
e of the results is greatly redu
ed, and so are the 
on�den
eintervals.
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(
) KTH LogFigure 7: Mean job di�erential response time vs LoadThe results for response time are shown in Figure 7, and for bounded slow-down in Figure 8. The results for wait time are the same as those for responsetime, be
ause we are looking at di�eren
es. In all the plots, the mean job dif-ferential response time (or bounded slowdown) is positive a
ross the entire loadrange for all three logs, indi
ating that LOS outperforms Easy with respe
t tothese metri
s. This observation is reinfor
ed by that fa
t that all lower bound-aries of the 90% 
on�den
e interval measured at key load values, remain abovethe load axis, indi
ating the a

ura
y of our results.
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) KTH LogFigure 8: Mean job di�erential bounded slowdown (� = 10) vs Load4.3 Limiting the LookaheadSe
tion 3.5 proposed an enhan
ement 
alled limited lookahead aimed at im-proving the performan
e of the algorithm. We explored the e�e
t of limitingthe lookahead on the s
heduler performan
e by performing six LOS simulationswith a limited lookahead of 10, 25, 35, 50, 100 and 250 jobs respe
tively. Figure9 present the e�e
t of the limited lookahead on the mean job response time.Figure 10 presents its e�e
t on the mean job bounded slowdown. Again, thee�e
t on wait time is the same as that on response time.The notation LOS.X is used to represent LOS's result 
urve, where X isthe maximal number of waiting jobs that LOS was allowed to examine on ea
hs
heduling step (i.e. its lookahead limitation). We also plotted Easy's result
urve to allow a 
omparison. We observe that for the CTC log in Figure 9(a) andthe KTH log in Figure 9(
), when LOS is limited to examine only 10 jobs at ea
hs
heduling step, its resulting mean job response time is relatively poor, espe
iallyat high loads, 
ompared to the result a
hieved when the lookahead restri
tion isrelaxed. The same observation also applies to the mean job bounded slowdownfor these two logs, as shown in �gure 10(a,
). As most 
learly illustrated in�gures 9(a) and 10(a), the result 
urves of LOS and Easy interse
t several timesalong the load axis, indi
ating that the two s
hedulers a
hieve the same resultswith neither one 
onsistently outperforming the other as the load in
reases . Thereason for the poor performan
e is the low probability that a s
hedule whi
hmaximizes the ma
hine utilization a
tually exists within the �rst 10 waitingjobs, thus although LOS produ
es the best s
hedule it 
an, it is rarely the 
asethat this s
hedule indeed maximizes the ma
hine utilization. However, for theSDSC log in Figures 9(b) and 10(b), LOS manages to provide good performan
eeven with a limited lookahead of 10 jobs.As the lookahead limitation is relaxed, LOS performan
e improves but theimprovement is not linear with the lookahead fa
tor, and in fa
t the resulting
urves for both metri
s are relatively similar for lookaheads in the range of 25�250 jobs. Thus we 
an safely use a bound of 50 on the lookahead, thus bounding19
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(
) KTH LogFigure 9: Limited lookahead a�e
t on mean job response timethe 
omplexity of the algorithm.The explanation is that at most of the s
heduling steps, espe
ially under lowloads , the length of the waiting queue is kept small, so lookahead of hundreds ofjobs has no e�e
t in pra
ti
e. As the load in
reases and the ma
hine advan
estoward its saturation point, the average number of waiting jobs in
reases, asshown in Figure 11, and the e�e
t of 
hanging the lookahead is more 
learlyseen. Interestingly, with LOS the average queue length is a
tually shorter,be
ause it is more e�
ient in pa
king jobs, thus allowing them to terminatefaster.
20
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) KTH LogFigure 10: Limited lookahead a�e
t on mean job bounded slowdown (� = 10)5 Con
lusionsBa
k�lling algorithms have several parameters. In the past, two parametershave been studied: the number of jobs that re
eive reservations, and the orderin whi
h the queue is traversed when looking for jobs to ba
k�ll. We introdu
ea third parameter: the amount of lookahead into the queue. We show that byusing a lookahead window of about 50 jobs it is possible to derive mu
h betterpa
king of jobs under high loads, and that this improves both average responsetime and average bounded slowdown metri
s.A future study should explore how the pa
king e�e
ts se
ondary metri
ssu
h as the queue length behavior. In Se
tion 3.4 we stated that on a heavilyloaded system the waiting queue length 
an rea
h tens of jobs, so a s
heduler
apable of maintaining a smaller queue a
ross large portion of the s
heduling21
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(
) KTH logFigure 11: Average queue length vs Loadsteps, in
reases the users' satisfa
tion with the system. Alternative algorithmsfor 
onstru
ting S0 when several optional s
hedules are possible might also beexamined. In Se
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hoosing the s
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e presents an interesting 
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