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Abstract

Jobs that run on parallel systems that use gang
scheduling for multiprogramming may interact with
each other in various ways. These interactions are
affected by system parameters such as the level of
multiprogramming and the scheduling time quan-
tum. A careful evaluation is therefore required in
order to find parameter values that lead to optimal
performance. We perform a detailed performance
evaluation of three factors affecting scheduling sys-
tems running dynamic workloads: multiprogram-
ming level, time quantum, and the use of backfilling
for queue management — and how they depend on
offered load. Our evaluation is based on synthetic
MPI applications running on a real cluster that ac-
tually implements the various scheduling schemes.
Our results demonstrate the importance of both com-
ponents of the gang-scheduling plus backfilling com-
bination: gang scheduling reduces response time and
slowdown, and backfilling allows doing so with a
limited multiprogramming level. This is further im-
proved by using flexible coscheduling rather than
strict gang scheduling, as this reduces the constraints
and allows for a denser packing.

Keywords: Cluster computing, dynamic work-
loads, job scheduling, gang scheduling, parallel ar-
chitectures, heterogeneous clusters, STORM, flexi-
ble coscheduling�This work was supported by the U.S. Department of En-
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1 Introduction

Multiprogramming on parallel machines may be
done using two orthogonal mechanisms: time slic-
ing and space slicing [4]. With time slicing, each
processor runs processes belonging to many differ-
ent jobs concurrently, and switches between them.
With space slicing, the processors are partitioned
into groups that serve different jobs. Gang schedul-
ing (GS) is a technique that combines the two ap-
proaches: all processors are time-sliced in a coordi-
nated manner, and in each time slot they are parti-
tioned among multiple jobs.

Early evaluations of gang scheduling showed it to
be a very promising approach [6, 11]. Gang schedul-
ing provided performance that was similar to that of
dynamic partitioning, but without requiring jobs to
be programmed in special ways that tolerate realloca-
tions of resources at runtime. The good performance
was attributed to the use of preemption, which allows
the system to recover from unfortunate scheduling
decisions, including those that are a natural conse-
quence of not knowing the future.

More recent research has revisited the compari-
son of gang scheduling with other schemes, and has
led to new observations. One is that gang schedul-
ing may be limited due to memory constraints, and
therefore its performance is actually lower than what
was predicted by evaluations that assumed that mem-
ory was not a limiting factor. The reason that mem-
ory is a problem is the desire to avoid paging, as
it may cause some processes within parallel jobs to
become much slower than other processes, conse-
quently slowing down the whole application. The
typical solution is to allow only a limited number of
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jobs into the system, effectively reducing the level of
multiprogramming [2, 22]. This hurts performance
metrics such as the average response time because
jobs may have to wait a long time to run.

Another observation is that alternative scheduling
schemes, such as backfilling [12], may provide sim-
ilar performance. Backfilling is an optimization that
improves the performance of pure space slicing by
using small jobs from the end of the queue to fill
in holes in the schedule. To do so, it requires users
to provide estimates of job runtimes. Thus it oper-
ates in a more favorable setting than gang scheduling,
that assumes no such information. Moreover, mov-
ing short jobs forward achieves an effect similar to
the theoretical “shortest job first” algorithm, which
is known to be optimal in terms of average response
time.

Our goal is to improve our understanding of
these issues, by performing an up-to-date evalua-
tion of gang scheduling and a comparison with other
schemes. To do so, we must also find good values
for its main parameters, namely the multiprogram-
ming level (MPL) and the length of the time slicing
quantum. As these parameters are intimately related
to the dynamics of the workload, the evaluation is
done using a dynamic workload model.

To achieve this goal, we have implemented sev-
eral scheduling algorithms on top of STORM, a scal-
able, high-performance, and flexible resource man-
agement system [10]. STORM allows the incorpora-
tion of many job scheduling algorithms with relative
ease, and monitors their performance while running
actual MPI application on a real cluster.

The focus of this paper is dynamic workloads,
with arrivals and execution times of jobs that are
representative of real-world scenarios. Evaluations
using dynamic workloads are extremely important,
as they expose the ability of the scheduler to stream
jobs through the system, and the limits on the achiev-
able utilization. This is essentially a feedback effect,
where a good scheduler packs the input load better
than other schedulers, causing jobs to flow through
the system faster, which in turn decreases the mo-
mentary system load and makes it easier to handle
additional incoming jobs. This paper is thus an ex-
tension of work reported in [9], where we focused on
simple, static workloads, and evaluated the proper-

ties of scheduling schemes under various controlled
job mixes.

The rest of this paper is organized as follows. The
next section details the methodology and environ-
ment we use for our experiments. Section 3 studies
the effect of different MPLs, and how this depends
on the use of backfilling. In Section 4, we establish
the range of usable time quanta for dynamic work-
loads in STORM, in two different cluster architec-
tures. Once these parameters are understood, Sec-
tion 5 proceeds to compare the different scheduling
schemes under varying system load. Finally, we of-
fer concluding remarks and directions for future use
in Section 6.

2 Background and Methodology

This section describes important issues and choices
for our evaluation methodology. Many of the choices
we made are similar to those of Zhang et al. in [22],
which also conducted similar evaluations. The main
differences in methodology between their work and
ours, is the workload model being used and the eval-
uation environment (simulation vs. emulation, re-
spectively).

2.1 Scheduling Algorithms

For this study, we have chosen to compare the fol-
lowing scheduling schemes:� First-Come-First-Serve scheduling (FCFS)� Vanilla gang scheduling (GS)� Flexible variants of coscheduling: spin-block

(SB), and flexible coscheduling (FCS)� Backfilling as in EASY� Combinations of EASY with other schemes

Gang scheduling (also known as explicit
coscheduling) was first proposed by Ousterhout
in [16] as a time-sharing scheduling method that
uses global synchronization to switch the running
jobs at regular intervals (time slices). Like with
batch scheduling, GS gives each job the illusion of
a dedicated machine, while maintaining relatively
short response times for short jobs. On the other



hand, GS requires global coordination of processes,
which is not often implemented scalably.

Two-phase spin-blocking is a scheduling mecha-
nism in which processes busy-wait when they reach
a synchronization point, but if synchronization is not
achieved, they block. The scheduling scheme is to
use this in conjunction with the normal, priority-
based local scheduling of Unix systems. This re-
sults in a coscheduling algorithm similar to implicit
coscheduling [1]. Unlike GS, it uses only implicit in-
formation to synchronize communicating processes
(gangs), without an explicit synchronization mecha-
nism. SB was found to be very efficient and simple
to implement, excelling mostly for loosely-coupled
jobs.

Flexible coscheduling (FCS) is a hybrid scheme
that uses a global synchronization mechanism com-
bined with local information collection [9]. In
a nutshell, FCS monitors communication behavior
of applications to classify them into one of three
classes: (1) fine-grained communicating processes
that require coscheduling, (2) loosely-coupled or
non-communicating processes that do not require
coscheduled running, and (3), frustrated processes,
that require coscheduling, but are not able to commu-
nicate effectively due to load-imbalance problems.
FCS then uses this information to schedule each pro-
cess based on its class.

All these algorithms make use of a queue for jobs
that arrive and cannot be immediately allocated to
processors. The allocation of jobs from the queue
can be handled with many heuristics, such as first-
come-first-serve, shortest-job-first, backfilling, and
several others. We chose to implement and use
EASY backfilling [12], where jobs are allowed to
move forward in the queue if they do not delay the
first queued job.

Zhang et al. studied these issues in [22] and found
that combining backfilling with gang-scheduling can
reduce the average job slowdown when the MPL
is bounded (our experiments described in Section 3
agree with these results). They also point out that
for coscheduling algorithms such as GS, there is no
exact way of predicting when jobs will terminate (or
start), because the effective multiprogramming level
varies with load. To estimate these times, we use the
method they recommend, which is to multiply the

original run time estimate by the maximum MPL.

2.2 Evaluation using Emulation

In this paper we study the properties of several
scheduling algorithms in various complex scenarios,
involving relatively long dynamic workloads. Since
the number of parameters that can affect the perfor-
mance of such systems is quite large, We have de-
cided to use an actual implementation of a schedul-
ing system on a real cluster. By using and measur-
ing a real system, we are able to take into account
not only those factors we believe we understand, but
also unknown factors, such as complex interactions
between the applications, the scheduler, and the op-
erating system.

We do make however two simplifying assump-
tions, where we believe we need not or cannot en-
capsulate all the nuances of the real world:� We use a synthetic workload model instead of

a real workload trace. The synthetic workload
model is believed to be representative of several
real workload traces [13], and allows us more
flexibility than real traces, since we can use it
for any given machine size, workload length, or
offered load.� We do not run real applications, which would
have forced us to study their scalability and
communication properties (a sizable and wor-
thy research subject in its own merit). Instead,
we use a simple parallel synthetic application,
where we can control its most important prop-
erties with a high degree of precision.� We reduce all times from the model by a con-
stant factor in order to complete the runs faster.

The first two issues are detailed in Sections 2.3 and
2.4 below.

2.3 Workload

The results of performance evaluation studies may
depend not only on the system design but also on the
workload that it is processing [5]. It is therefore very
important to use representative workloads that have



the same characteristics as workloads that the system
may encounter in production use.

One important aspect of real workloads is that they
are dynamic: jobs arrive at unpredictable times, and
run for (largely) unpredictable times. The set of ac-
tive jobs therefore changes with time. Moreover,
the number of active jobs also changes with time:
at times the system may be empty, while at others
many jobs are waiting to receive service. The over-
all performance results are an average of the results
obtained by the different jobs, which were actually
obtained under different load conditions.

These results also reflect various interactions
among the jobs. Such interactions include explicit
ones, as jobs compete for resources, and implicit
ones, as jobs cause fragmentation that affects subse-
quent jobs. The degree to which such interactions oc-
cur depends on the dynamics of the workload: which
jobs come after each other, how long they overlap,
etc. It is therefore practically impossible to evaluate
the effect of such interactions with static workloads
in which a given set of jobs are executed at the same
time.

The two common ways to evaluate a system under
a dynamic workload are to either use a trace from
a real system, or to use a dynamic workload model.
While traces have the benefit of reflecting the real
workload on a specific production system, they also
risk not being representative of the workload on other
systems. We therefore use a workload model pro-
posed by Lublin [13], which is based on invariants
found in traces from three different sites, and which
has been shown to be representative of other sites as
well [20]. This also has the advantage that it can be
tailored for different environments, e.g. systems with
different numbers of processors.

While the workload model generates jobs with dif-
ferent arrival times, sizes, and runtimes, it does not
generate user estimates of runtimes. Such estimates
are needed for EASY backfilling. Instead of using
the real runtime as an estimate, we used loose esti-
mates that are up to 5 times longer. This is based
on results from [15], which show that overestima-
tion commonly occurs in practice and is beneficial
for overall system performance.

Using a workload model, one can generate a work-
load of any desired size. However, large workloads
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Figure 1: Model of 1000 arrivals in terms of jobs
and requested CPU time. TheX axis is emulated
time, which is the model time divided by 100. Data
is grouped into bins of 25 sec.

will take a long time to run. We therefore make do
with a medium-sized workload of 1000 jobs, that ar-
rive over a period of about 8 days. The job arrivals
are bursty, as shown in Fig. 1, matching observations
from real workloads. Fig. 2 shows the distribution
of job sizes. As is often seen in real workload traces,
most jobs sizes tend to be small (with the median
here at just under 4 PEs), and biased toward powers
of two.

To enable multiple measurements under different
conditions, we shrink time by a factor of 100. This
means that both runtimes and inter-arrival times are
divided by a factor of 100, and the 8 days can be
emulated in about 2 hours. Using the raw workload
data, this leads to a very high load of about 98% of
the system capacity. To check other load conditions
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we divide the execution times by another factor, to
reduce the jobs’ run time and thus reduce the load.

2.4 Test Application

A large part of High Performance Computing (HPC)
software can be modeled using the bulk-synchronous
parallel (BSP) model. In this model a computation
involves a number ofsupersteps, each having sev-
eral parallel computational threads that synchronize
at the end of the superstep [21, 7]. We chose to use
a synthetic test application based on this model, to
enable easy control over important parameters, such
as execution time, computation granularity and pat-
tern, and so forth. Our synthetic application consists
of a loop that computes for some time, and then ex-
changes information with its nearest neighbors in a
ring pattern. The amount of time it spends com-
puting in each loop (the computation granularity) is
chosen randomly with equal probability from one of
three values: fine-grained (5 ms), medium-grained
(50 ms), and coarse-grained (500 ms).

2.5 Experimental Environment

The hardware used for the experimental evaluation
was the ’Crescendo’ cluster at LANL/CCS-3. This
cluster consists of 32 compute nodes (Dell 1550),
one management node (Dell 2550), and a 128-port
Quadrics switch [17] (using only 32 of the 128
ports). Each compute node has two 1 GHz Pentium-

III processors, 1 GB of ECC RAM, two independent
66 MHz/64-bit PCI buses, a Quadrics QM-400 Elan3
NIC

[17, 18, 19] for the data network, and a 100
Mbit Ethernet network adapter for the management
network. All the nodes run Red Hat Linux 7.3
with Quadrics kernel modifications and user-level li-
braries. We further modified the kernel by chang-
ing the default HZ value from 100 to 1024. This
has a negligible effect on operating system overhead,
but makes the Linux scheduler re-evaluate process
scheduling every� 1 ms. As a result scheduling al-
gorithms (in particular SB) become more responsive
[3].

We perform our evaluations by implementing the
desired scheduling algorithms in the framework of
the STORM resource manager [10]. The key inno-
vation behind STORM is a software architecture that
enables resource management to exploit low-level
network features. As a consequence of this design,
STORM can enact scheduling decisions, such as a
global context switch or a heartbeat, in a few hun-
dreds of microseconds across thousands of nodes.
In this environment, it is relatively easy to imple-
ment working versions of various job scheduling and
queuing schemes, using either global coordination,
local information, or both.

STORM produces log files of each run, contain-
ing detailed information on each job (e.g. its arrival,
start, and completion times, as well as algorithm-
specific information). We then use a set of scripts
to analyze these log files and calculate various met-
rics. In this paper, we mostly use average response
time (defined as the difference between the comple-
tion and arrival times) and average bounded slow-
down. The bounded slowdown of a job is defined in
[8], and we modified it to make it suitable for time-
sharing multiprogramming environments by using:BoundedSlowdown = maxn Tw+TrmaxfTd;�g ; 1o
Where:� Tw is the time the job spends in the queue.� Tr is the time the job spends running.� Td is the time the job spends running in dedi-

cated (batch) mode.



� � is the "short-job" bound parameter. We use a
value of 10 seconds of real time (0.1 sec emu-
lated).

In some cases, we also divide the jobs into two
halves: “short” jobs, defined as the 500 jobs with
the shortest execution time, and “long” jobs — the
complementing group. For this classification, we al-
ways use the execution time as measured with FCFS
(batch) scheduling, so that the job groups remain the
same even when job execution times change with dif-
ferent schedulers.

3 Effect of Multiprogramming level

3.1 Experiment Description

The premise behind placing a limit on the MPL is
that scheduling algorithms should not dispatch an
unbounded number of jobs concurrently. One obvi-
ous reason for this is to avoid exhausting the physi-
cal memory of nodes. We define the MPL to be the
maximum allowable over-subscription of processors.
Naturally, the MPL for the FCFS scheme is always
one, whereas for coscheduling algorithms it is higher
than 1. We study this property in this section.

We set out to test the effect of the MPL on gang-
scheduling, with two goals in mind: (1) obtain a bet-
ter understanding on how a limited multiprogram-
ming level affects serving of dynamic workloads,
and (2) find a good choice of an MPL value for the
other sets of experiments. In practice, the question of
how the MPL affects scheduling is sometimes moot,
since often applications require a sizable amount of
physical memory. In this case, multiprogramming
several applications on a node will generally lead to
paging and/or swapping, having a detrimental effect
on performance that is significantly more influen-
tial than any possible scheduling advantage. While
some applications are not as demanding, or can be
“stretched” to use a smaller memory footprint, we
do accept the existence of a memory wall. Moreira
et al. showed in [14] that an MPL level of 5 provides
in practice similar performance to that of an infinite
MPL, so we put the bound on the maximum value
the MPL can reach at 6.

To study the effect of the MPL, we use GS and a
workload file consisting of 1000 jobs with an average
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offered load of� 74%. GS was chosen due its rel-
ative popularity (being the most basic coscheduling
method), and its simplicity. The74% load value was
chosen so that it would stress the system enough to
bring out the difference between different MPL val-
ues, without saturating it1. We ran the test with all
MPL values from 1 to 6, and analyzed the resulting
log files.
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3.2 Results and Discussion

Figure 3 shows the effect of the MPL on response
time. The average response time decreases some-
what when changing from batch scheduling (MPL 1)
to coscheduling (MPL 2 or more), and then stays at
about the same level. This improvement corresponds
to an enhanced ability of the scheduler to keep less
jobs waiting in the queue. Having more available
slots, the scheduler can dispatch more jobs from the
queue, which is particularly significant for short jobs:
These can start running soon after their arrival time,
complete relatively quickly, and clear the system. To
confirm this claim, let us observe that the average re-
sponse time for the shorter 500 jobs indeed decreases
for higher MPLs, while that of the longer 500 jobs in-
creases at a similar rate. Furthermore, the median re-
sponse time (which is dominated by the shorter jobs),
decreases monotonically.

This effect becomes more pronounced when look-
ing at the bounded slowdown (Fig. 4). We can
clearly see that the average slowdown shows a con-
sistent and significant decrease as the MPL increases.
This is especially pronounced for the first 500 jobs,
that show a marked improvement in slowdown, es-
pecially when moving from MPL 1 to MPL 2.

Still, the improvement of these metrics as the MPL

1repeating this experiment with an average offered load of� 78%, gave similar results. Above that, GS becomes saturated
for this workload
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Figure 6: Bounded slowdown with different MPLs
(no backfilling).

increases might seem relatively insignificant com-
pared to our expectations and previous results. To
better understand why this might be the case, we re-
peated these measurements, but with backfilling dis-
abled. Figures 5 and 6 show the results of these ex-
periments. Here we can observe a sharp improve-
ment in both metrics when moving from batch to
gang scheduling, and a steady improvement after
that. The magnitude of the improvement is markedly
larger than that of the previous set. This might be
explained by the fact that when backfilling is used,
we implicitly include some knowledge of the fu-
ture, since we have estimates for job run times. In
contrast, gang-scheduling assumes no such knowl-
edge and packs jobs solely by size. Our results in-
dicate that some knowledge of the future (job esti-
mates) and consequentially, their use in scheduling
decisions as employed by backfilling, renders the ad-
vantages of a higher MPL less pronounced. These
results also agree with the simulated evaluations in
[22].

Having the best overall performance, we use an
MPL of 6 in the other sets of experiments, combined
with backfilling.
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4 Effect of Time Quantum

4.1 Experiment Description

Another important factor that can have an effect on
a scheduling system’s performance and responsive-
ness is the time quantum. Scheduling schemes that
employ time sharing in the form of distinct time
slots, have to make a choice of the duration of each
time slot, the time quantum. A short time slice gener-
ally increases the system’s responsiveness, since jobs
do not have to wait for long periods before being in-
serted into the system, which benefits mostly short
and interactive jobs. On the other hand, a very small
time quantum can significantly tax the system’s re-
sources due to the overhead incurred by frequent
context-switches. In [10] it was shown that STORM
can effectively handle very small time quanta, in the
order of magnitude of a few milliseconds, for simple
static workloads. This is not necessarily the case in
our experimental setup, that includes a complex dy-
namic workload, and a relatively high MPL value, in-
creasing the load on the system (more pending com-
munication buffers, cache pressure, etc.).

For this set of experiments, we use again the work-
load file with 1000 jobs and an average offered load
of � 74%. We ran the scheduler with different time
quantum values, ranging from 2 seconds down to 50

ms. Since the overhead caused by short time slices
is largely affected by the specific architecture, we
were also interested in repeating these experiments
on a different architecture. To that end, we also ran
the same experiment on the ’Accelerando’ cluster at
LANL/CCS-3, where each node contains two 1 GHz
Itanium-II CPUs, 1 GB of RAM, a PCI-X bus, and
a QsNET network similar to the one we use on the
‘Crescendo’ cluster.

4.2 Experimental Results

Fig. 7 shows the distribution of response times
with different time quanta, for the two cluster ar-
chitectures. Each bar shows the median response
time (central horizontal divider), the 25% and 75%
percentiles (top and bottom edges of box), and the
5% and 95% percentiles (whiskers extending up and
down). The 5% rank is defined by short jobs, and
monotonically decreases with shorter time quanta,
which confirms our expectations. The 95% rank rep-
resents all but the longest jobs, and does not change
much over the quanta range, except for the 50 ms
quantum on Crescendo, where response times for
most jobs increase slightly, probably due to the over-
head associated with frequent context switching. The
different effect of the quantum on the 5% and 95%
ranks suggests that short jobs are much more sensi-
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tive to changes in the time quantum than the rest of
the jobs.

The median reaches a minimum value at a time
quantum of� 100 ms and� 50 ms on Crescendo
and Accelerando respectively. Running with shorter
time quantum on Crescendo yields unreliable results,
with degraded performance.

Fig. 8 shows the distribution of slowdown for
the same time quanta values. The interpretation of
this figure isreversed, since the 5% mark represents
mostly very long jobs (that have a low wait time to
run time ratio, and thus a low slowdown value). On
the other end, the 95% mark shows the high sensitiv-
ity of the slowdown metric to changes in the wait and
run times of short jobs. Slowdown also seems to have
a minimal median value at� 100 ms on Crescendo,
and 50 ms (or even 10 ms) on Accelerando. Based
on these results, and since we run all our other ex-
periments on Crescendo, we decided to use a time
quantum of 100 ms for the other measurements.

5 Effect of Load

5.1 Experiment Description

We now reach the last part of this study, where we
investigate the effect of load on different scheduling

algorithms. In this section, we try to answer the fol-
lowing questions:� How well do different algorithms handle in-

creasing load?� How do different scheduling algorithms handle
short or long jobs?� How does the dynamic workload affect the
scheduler’s performance?

When using finite workloads, one must be care-
ful to identify when the offered load is actually high
enough to saturate the system. Using an infinite
workload, the jobs queues would keep on growing on
a saturated system, and so will the average response
time and slowdown. But when running a finite work-
load, the queues would only grow until the workload
is exhausted, and then the queues would slowly clear
since there are no more job arrivals. The metrics we
measure for such a workload are therefore meaning-
less, and we should ignore them for loads that exceed
each scheduler’s saturation point.

To identify the saturation points, we used graphs
like the one shown in Fig. 9. This figure shows jobs
in the system over time, i.e. those jobs that arrived
and are not yet finished. It is easy to see that the
system handles loads of 78% and 83% quite well.
However, the burst of activity in the second half of
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the workload seems to cause problems when the load
is increased to 88% or 93% of capacity. In particu-
lar, it seems that the system does not manage to clear
enough jobs before the last arrival burst at about 7300
seconds. This indicates that the load is beyond the
saturation point. Using this method, we identified
and discarded those loads that saturate each schedul-
ing scheme.

The results for this workload indicate that FCFS
seems to saturate at about 78% load, GS and SB at
about 83%, and FCS at 88%.

5.2 Results and Discussion

Figures 10(a) and 10(b) show the average response
time and slowdown respectively, for different offered
loads and scheduling algorithms. The near-linear
growth in response times with load is due to our
method of varying load, by multiplying run times of
jobs by a load factor. Both metrics suggest that FCS
seems to perform consistently better than the other
algorithms, and FCFS (batch) seems to perform con-
sistently worse than the others. Also, FCFS saturates
at a lower load than the other algorithms, while FCS
supports a load of up to 88% in our tests.

To understand the source of this differences, let us
look at the median response time and slowdown (Fig-
ures 10(c) and 10(d) respectively). A low median
response time suggests good handling of short jobs,

since most of the jobs can be considered relatively
short. On the other hand, a low median slowdown
indicates preferrential handling of long jobs, since
the lowest-slowdown jobs are mostly long jobs, that
are affected less by wait time than short jobs2. FCFS
shows a high average slowdown and a low median
slowdown. This indicates that while long jobs enjoy
lower waiting times (driving the median slowdown
lower), short jobs suffer enough to significantly raise
the average response time and slowdown.

To verify these biases, we look at the CDF of
response times for the shorter 500 jobs and longer
500 jobs separately, as defined in Section 3.2 (Figs.
11 and 12). The higher distribution of short jobs
with FCS attests to the scheduler’s ability to “push”
more jobs toward the shorter response times. Sim-
ilarly, FCFS’s preferential treatment of long jobs is
reflected in Fig. 12.

We believe the reason for FCS’s good performance
is its ability to adapt to various scenarios that occur
during the execution of the dynamic workload [9]. In
particular, FCS always co-schedules a job in its first
few seconds of running (unlike SB), and then classi-
fies it according to its communication requirements
(unlike GS). If a job is long, and does not synchro-
nize frequently or effectively, FCS will allow other
jobs to compete with it for machine resources. Thus,
FCS shows a bias toward short jobs, allowing them
to clear the system early. Since short jobs dominate
the workload, this bias actually reduces the overall
system load and allows long jobs to complete earlier
than with GS or SB. The opposite can be said of the
FCFS scheme, which shows a bias toward long jobs,
since they do not have to compete with other jobs.

6 Conclusions and Future Work

In this paper we studied the effect of dynamic work-
loads on several job scheduling algorithms, using a
detailed experimental evaluation. Our results con-
firm some of the previous results obtained with dif-
ferent workloads and in simulated environments. In
particular, we identified several scheduling param-
eters that affect metrics such as response time and
slowdown, and quantified their contribution:

2This reversal of meaning is also seen in Figures 7 and 8.
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Figure 10: Response time and bounded slowdown as a function of offered load� Multiprogramming (coscheduling): coschedul-
ing allows shorter waiting times, in particular
for short jobs.� The multiprogramming level: increasing it en-
ables better packing and handling of queued
jobs.� Backfilling: Using an EASY backfilling strat-
egy to handle queued jobs improves jobs pack-
ing over time, and shortens their wait time.
This it true both for batch scheduling, and for
coscheduling schemes.� The scheduling algorithm itself. We found that
FCS is consistently better than the other algo-
rithms for the measured metrics. On the other

hand, batch scheduling is consistently worse
than the other algorithms.

The bottom line is that using preemption (e.g.
gang scheduling) in conjunction with backfilling
leads to significant performance improvements, and
at the same time the use of backfilling allows the
use of a very limited multiprogramming level. To
further improve this combination, FCS should be
used instead of strict GS. The increased flexibility of
FCS allows better utilization and faster flow of jobs
through the system, leading to lower response time
and slowdown results. To further improve these met-
rics, we intend to experiment with additional mech-
anisms such as explicit prioritization of small and/or
short jobs as part of the queue management.
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Figure 11: CDF of response times at offered load
74% — 500 shortest jobs.
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Figure 12: CDF of response times at offered load
74% — 500 longest jobs.
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