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Abstract 1 Introduction

Multiprogramming on parallel machines may be
Jobs that run on parallel systems that use ga prog g P y

. . : : 13She using two orthogonal mechanisms: time slic-
scheduling for multiprogramming may interact witk

. ) ; . ing and space slicing [4]. With time slicing, each
each other in various ways. These interactions arg P g [4] o

affected by system parameters such as the Ievelpcr)(fCessor runs processes belonging to many differ-

ent jobs concurrently, and switches between them.

multiprogramming and_the_schedullng tlme' qUaith space slicing, the processors are partitioned
tum. A careful evaluation is therefore required in

: __Into groups that serve different jobs. Gang schedul-
order to find parameter values that lead to optlmlﬁf (GS) is a technique that combines the two ap-

performance. We perform a detailed performanc ) . . . .
roaches: all processors are time-sliced in a coordi-

evaluation .Of three fagtors affecting schedullng SB}r%élted manner, and in each time slot they are parti-
tems running dynamic workloads: multlprogramt-ioned among multiple jobs

ming level, time quantum, and the use of backfilling Earl luati ¢ heduli howed it t
for queue management — and how they depend on arly evaluations of gang scheduiing snowed it to

ﬁ)g a very promising approach [6, 11]. Gang schedul-
MPI applications running on a real cluster that add pro_wded p_erf(_)rmance that was S|m_|l'ar tg that of
dynamic partitioning, but without requiring jobs to

tually implements the various scheduling schem%ée/. roarammed in special wavs that tolerate realloca
Our results demonstrate the importance of both coy: Prod N specialway k

ponents of the gang-scheduling plus backfilling corllons of resources at runtime. The good performance

bination: gang scheduling reduces response time Was attributed to the use of preemption, which allows

slowdown. and backiilling allows doing so with Zlqe system to recover from unfortunate scheduling

limited multiprogramming level. This is further im_demsmns, including those that are a natural conse-

proved by using flexible coscheduling rather thafy cCe of not knowing the future.

strict gang scheduling, as this reduces the constraint}10re recent resegrch has revisited the compari-
and allows for a denser packing. son of gang scheduling with other schemes, and has

. . led to new observations. One is that gang schedul-
Keywords: Cluster computing, dynamic work-ing may be limited due to memory constraints, and
loads, job scheduling, gang scheduling, parallel gferefore its performance is actually lower than what
chitectures, heterogeneous clusters, STORM, fleyjas predicted by evaluations that assumed that mem-
ble coscheduling ory was not a limiting factor. The reason that mem-
ory is a problem is the desire to avoid paging, as
. it may cause some processes within parallel jobs to
“This work was supported by the U.S. Department of '\E/\?iecome much slower than other processes, conse-
ergy through Los Alamos National Laboratory contract W- ; T
7405-ENG-36, and by the Israel Science Foundation (grant fb/€ntly slowing down the whole application. The
219/99). typical solution is to allow only a limited number of




jobs into the system, effectively reducing the level dies of scheduling schemes under various controlled
multiprogramming [2, 22]. This hurts performanc@b mixes.
metrics such as the average response time becauskhe rest of this paper is organized as follows. The
jobs may have to wait a long time to run. next section details the methodology and environ-
Another observation is that alternative schedulingent we use for our experiments. Section 3 studies
schemes, such as backfilling [12], may provide sirthe effect of different MPLs, and how this depends
ilar performance. Backfilling is an optimization tha@n the use of backfilling. In Section 4, we establish
improves the performance of pure space slicing Bye range of usable time quanta for dynamic work-
using small jobs from the end of the queue to filbads in STORM, in two different cluster architec-
in holes in the schedule. To do so, it requires usdiges. Once these parameters are understood, Sec-
to provide estimates of job runtimes. Thus it opetion 5 proceeds to compare the different scheduling
ates in a more favorable setting than gang scheduligghemes under varying system load. Finally, we of-
that assumes no such information. Moreover, mdef concluding remarks and directions for future use
ing short jobs forward achieves an effect similar 1 Section 6.
the theoretical “shortest job first” algorithm, which

is known to be optimal in terms of average respon
o ¥ Background and Methodology

Our goal is to improve our understanding Ofyis section describes important issues and choices
these issues, by pgrformlng an up-t_o-date_ evalygz o r evaluation methodology. Many of the choices
tion of gang scheduling and a comparison with othg, 4 4e are similar to those of Zhang et al. in [22],
schemes. To do so, we must also find good valugich also conducted similar evaluations. The main
for its main parameters, namely the multiprograngiterences in methodology between their work and

ming level (MPL) and the length of the time slicing, ¢ s the workload model being used and the eval-
quantum. As these parameters are intimately relajedion environment (simulation vs. emulation, re-
to the dynamics of the workload, the evaluation Eﬁaectively)

done using a dynamic workload model.

To achieve this goal, we have implemented sey- . .
eral scheduling algorithms on top of STORM, a sca#—'1 Scheduling Algorithms

able, high—performance, and flexible resource marpr this study, we have chosen to compare the fol-
agement system [10]. STORM allows the incorporgwing scheduling schemes:

tion of many job scheduling algorithms with relative

ease, and monitors their performance while runninge First-Come-First-Serve scheduling (FCFS)

actual MPI application on a real cluster. e Vanilla gang scheduling (GS)
The focus of this paper is dynamic workloads,
with arrivals and execution times of jobs that are
representative of real-world scenarios. Evaluations
using dynamic workloads are extremely important, ® Backfilling as in EASY
as they expose the ability of the scheduler to streamy, combinations of EASY with other schemes
jobs through the system, and the limits on the achiev-
able utilization. This is essentially a feedback effect, Gang scheduling (also known as explicit
where a good scheduler packs the input load bettesscheduling) was first proposed by Ousterhout
than other schedulers, causing jobs to flow through [16] as a time-sharing scheduling method that
the system faster, which in turn decreases the muses global synchronization to switch the running
mentary system load and makes it easier to hanfties at regular intervals (time slices). Like with
additional incoming jobs. This paper is thus an ekatch scheduling, GS gives each job the illusion of
tension of work reported in [9], where we focused am dedicated machine, while maintaining relatively
simple, static workloads, and evaluated the propshort response times for short jobs. On the other

e Flexible variants of coscheduling: spin-block
(SB), and flexible coscheduling (FCS)



hand, GS requires global coordination of processesiginal run time estimate by the maximum MPL.
which is not often implemented scalably.

.TW(.)-pha.se spin-blocking is a spheduling mechg->  Evaluation usi ng Emulation
nism in which processes busy-wait when they reach
a synchronization point, but if synchronization is ndn this paper we study the properties of several
achieved, they block. The scheduling scheme isgcheduling algorithms in various complex scenarios,
use this in conjunction with the normal, priorityinvolving relatively long dynamic workloads. Since
based local scheduling of Unix systems. This réhe number of parameters that can affect the perfor-
sults in a coscheduling algorithm similar to implicimance of such systems is quite large, We have de-
coscheduling [1]. Unlike GS, it uses only implicit incided to use an actual implementation of a schedul-
formation to synchronize communicating processi®) system on a real cluster. By using and measur-
(gangs), without an explicit synchronization mechéng a real system, we are able to take into account
nism. SB was found to be very efficient and simpleot only those factors we believe we understand, but
to implement, excelling mostly for loosely-couple@lso unknown factors, such as complex interactions
jobs. between the applications, the scheduler, and the op-

Flexible coscheduling (FCS) is a hybrid schenf¥ating system.
that uses a global synchronization mechanism comWe do make however two simplifying assump-
bined with local information collection [9]. Intions, where we believe we need not or cannot en-
a nutshell, FCS monitors communication behaviéapsulate all the nuances of the real world:
of applications to classify them into one of three
classes: (1) fine-grained communicating processes
that require coscheduling, (2) loosely-coupled or
non-communicating processes that do not require
coscheduled running, and (3), frustrated processes,
that require coscheduling, but are not able to commu-
nicate effectively due to load-imbalance problems.
FCS then uses this information to schedule each pro-
cess based on its class.

All these algorithms make use of a queue for jobs.
that arrive and cannot be immediately allocated to
processors. The allocation of jobs from the queue
can be handled with many heuristics, such as first-
come-first-serve, shortest-job-first, backfilling, and
several others. We chose to implement and use
EASY backfilling [12], where jobs are allowed to

move forward in the queue if they do not delay the ¢ \we reduce all times from the model by a con-

first queued job. stant factor in order to complete the runs faster.
Zhang et al. studied these issues in [22] and found

that combining backfilling with gang-scheduling camhe first two issues are detailed in Sections 2.3 and

reduce the average job slowdown when the MRL.4 below.

is bounded (our experiments described in Section 3

agree with thgse resu!ts). They also point out.tl*@_tS Workload

for coscheduling algorithms such as GS, there is no

exact way of predicting when jobs will terminate (ofhe results of performance evaluation studies may

start), because the effective multiprogramming levdépend not only on the system design but also on the

varies with load. To estimate these times, we use twerkload that it is processing [5]. It is therefore very

method they recommend, which is to multiply th@mportant to use representative workloads that have

We use a synthetic workload model instead of
a real workload trace. The synthetic workload
model is believed to be representative of several
real workload traces [13], and allows us more
flexibility than real traces, since we can use it
for any given machine size, workload length, or
offered load.

We do not run real applications, which would
have forced us to study their scalability and
communication properties (a sizable and wor-
thy research subject in its own merit). Instead,
we use a simple parallel synthetic application,
where we can control its most important prop-
erties with a high degree of precision.



the same characteristics as workloads that the systenes
may encounter in production use.

One important aspect of real workloads is that they 20
are dynamic: jobs arrive at unpredictable times, ang
run for (largely) unpredictable times. The set of ac§ 15
tive jobs therefore changes with time. Moreoveré | ]
the number of active jobs also changes with time§ 10
at times the system may be empty, while at others M \A ” f JI
many jobs are waiting to receive service. The over- 5 ] i1 !
all performance results are an average of the results M n \ r \A MR
obtained by the different jobs, which were actually  © = = = 000 4000 5000 6000 7000 8000
obtained under different load conditions. Time (sec)

These results also reflect various interactions 16000
among the jobs. Such interactions include explicit ;500
ones, as jobs compete for resources, and implicit 12000
ones, as jobs cause fragmentation that affects subge-
quent jobs. The degree to which such interactions og- 100
cur depends on the dynamics of the workload: whicﬁ 8000
jobs come after each other, how long they overlag 00
etc. It is therefore practically impossible to evaluate
the effect of such interactions with static workloads
in which a given set of jobs are executed at the same ﬂ fk ﬁﬁ A l‘ |
time. ° 0 1000 2000 A3000 4000 5000 6000 M7000 8000

The two common ways to evaluate a system under Time (sec)

a dynamic workload are to either use a trace from

a real system, or to use a dynamic workload mod&igure 1: Model of 1000 arrivals in terms of jobs
While traces have the benefit of reflecting the reand requested CPU time. The axis is emulated
workload on a specific production system, they aléne, which is the model time divided by 100. Data
risk not being representative of the workload on othisrgrouped into bins of 25 sec.

systems. We therefore use a workload model pro-

posed by Lublin [13], which is based on invariants

found in traces from three different sites, and whiohill take a long time to run. We therefore make do
has been shown to be representative of other sitegvith a medium-sized workload of 1000 jobs, that ar-
well [20]. This also has the advantage that it can bge over a period of about 8 days. The job arrivals
tailored for different environments, e.g. systems wittre bursty, as shown in Fig. 1, matching observations
different numbers of processors. from real workloads. Fig. 2 shows the distribution

While the workload model generates jobs with diff job sizes. As is often seen in real workload traces,
ferent arrival times, sizes, and runtimes, it does n®©st jobs sizes tend to be small (with the median
generate user estimates of runtimes. Such estimatg&e at just under 4 PEs), and biased toward powers
are needed for EASY backfilling. Instead of usingf two.
the real runtime as an estimate, we used loose estiTo enable multiple measurements under different
mates that are up to 5 times longer. This is base@nditions, we shrink time by a factor of 100. This
on results from [15], which show that overestimaneans that both runtimes and inter-arrival times are
tion commonly occurs in practice and is beneficigivided by a factor of 100, and the 8 days can be
for overall system performance. emulated in about 2 hours. Using the raw workload

Using a workload model, one can generate a wordtata, this leads to a very high load of about 98% of
load of any desired size. However, large workloadise system capacity. To check other load conditions

4000 |
)

2000 [JL - |
\




1000 Il processors, 1 GB of ECC RAM, two independent

500 /| 66MHz/64-bit PCl buses, a Quadrics QM-400 Elan3
[ NIC

. 800 / [17, 18, 19] for the data network, and a 100
.§ 700 Mbit Ethernet network adapter for the management
> 600 network. All the nodes run Red Hat Linux 7.3
E 0 / with Quadrics kernel modifications and user-level li-
= 400 / braries. We further modified the kernel by chang-
/ ing the default HZ value from 100 to 1024. This

300 has a negligible effect on operating system overhead,

200 : ” " 20 - but makes the Linux scheduler re-evaluate process

scheduling everyg 1 ms. As a result scheduling al-

gorithms (in particular SB) become more responsive
[3].

Figure 2: Cumulative distribution of job sizes. We perform our evaluations by implementing the
desired scheduling algorithms in the framework of
we divide the execution times by another factor, EQ?_ STtC)) 'EM erSTO Cl;ch'(\eA T“a”a%‘fr [10]. T:.f k;ay Intr|]10:[
reduce the jobs’ run time and thus reduce the load&1on benin 'S a soltware archrtecture tha
enables resource management to exploit low-level
o network features. As a consequence of this design,
24 Test Application STORM can enact scheduling decisions, such as a

C%I[obal context switch or a heartbeat, in a few hun-

Job size (PEs)

A large part of High Performance Computing (HP
gep '9 puting ( eds of microseconds across thousands of nodes.

software can be modeled using the bqu-synchronoI Sth' ) Lt lativel o impl
parallel (BSP) model. In this model a computatiorli1 IS environment, 1L 1S relatively easy 1o imple-

involves a number ofupersteps, each having SeV_ment working versions of various job scheduling and

eral parallel computational threads that synchroni geuing schemes, using either global coordination,

at the end of the superstep [21, 7]. We chose to ggal information, or both.

a synthetic test application based on this model, _toSTOR'VI produces log files of each run, contain-

enable easy control over important parameters, st detailed information on each job (e.g. its arrival,

as execution time, computation granularity and pa§[t_art, and completion times, as well as algorithm-

tern, and so forth. Our synthetic application consis%gec'f'c information). We then use a set of scripts

of a loop that computes for some time, and then et)?_analyze these log files and calculate various met-

changes information with its nearest neighbors in" &S In this paper, we mostly use average response

fing pattern. The amount of time it spends conlime (defined as the difference between the comple-

puting in each loop (the computation granularity) Lon an_lqhargval tcilm(;es)l an(;i aver?gg tk))o.un(;jef(.j SIdO\.N'
chosen randomly with equal probability from one own. The bounded slowdown ot a Job IS detined in

three values: fine-grained (5 ms), medium-grain ?{] a_md wel modified it FO make_ it suitablebfor ti_me.-
(50 ms), and coarse-grained (500 ms). sharing multiprogramming environments by using:

T+ T }

Bounded Slowdown = max {maX{Td T

2.5 Experimental Environment

. \Where:
The hardware used for the experimental evaluation

was the 'Crescendo’ cluster at LANL/CCS-3. This 4 7, is the time the job spends in the queue.
cluster consists of 32 compute nodes (Dell 1550),
one management node (Dell 2550), and a 128-port®
Quadrics switch [17] (using only 32 of the 128 e Ty is the time the job spends running in dedi-
ports). Each compute node has two 1 GHz Pentium- cated (batch) mode.

T, is the time the job spends running.



e 7 is the "short-job" bound parameter. We use a 250
value of 10 seconds of real time (0.1 sec emu-
lated). 200 |

1st half mean ——

Overall mean x|
Overall median a

In some cases, we also divide the jobs into wé [ ———
halves: “short’ jobs, defined as the 500 jobs wittg | T
the shortest execution time, and “long” jobs — thes
complementing group. For this classification, we aI%
ways use the execution time as measured with FCFS

.............................

100 r

(batch) scheduling, so that the job groups remain the o0 °
same even when job execution times change with dif- ‘ ‘ ‘ o
ferent schedulers. 1 2 3 4 5 6

MPL

3 Effect of Multiprogramming level
Figure 3: Response time with different MPLs.
3.1 Experiment Description

The premise behind placing a limit on the MPL is
that scheduling algorithms should not dispatch an
unbounded number of jobs concurrently. One obvi-
ous reason for this is to avoid exhausting the physi- 1000
cal memory of nodes. We define the MPL to be the
maximum allowable over-subscription of processors. 800 | Overalimedan o
Naturally, the MPL for the FCFS scheme is always
one, whereas for coscheduling algorithms it is highez?
than 1. We study this property in this section. E ao0 |
We set out to test the effect of the MPL on gang2 S
scheduling, with two goals in mind: (1) obtain a bet8 200 | R
ter understanding on how a limited multiprogram-
ming level affects serving of dynamic workloads, 0 s 8 5 %
and (2) find a good choice of an MPL value for the h
other sets of experiments. In practice, the question of MPL
how the MPL affects scheduling is sometimes moot,
since often applications require a sizable amount of
physical memory. In this case, multiprogrammindrigure 4: Bounded slowdown with different MPLs.
several applications on a node will generally lead to
paging and/or swapping, having a detrimental effect
on performance that is significantly more influen-
tial than any possible scheduling advantage. While
some applications are not as demanding, or can be
“stretched” to use a smaller memory footprint, weffered load of~ 74%. GS was chosen due its rel-
do accept the existence of a memory wall. Moreiggive popularity (being the most basic coscheduling
et al. showed in [14] that an MPL level of 5 providemethod), and its simplicity. The4% load value was
in practice similar performance to that of an infinitehosen so that it would stress the system enough to
MPL, so we put the bound on the maximum valugring out the difference between different MPL val-
the MPL can reach at 6. ues, without saturatinglit We ran the test with all
To study the effect of the MPL, we use GS andMPL values from 1 to 6, and analyzed the resulting
workload file consisting of 1000 jobs with an averadeg files.
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Figure 5. Response time with different MPLs (n&igure 6: Bounded slowdown with different MPLs
backfilling). (no backfilling).

3.2 Resultsand Discussion

Figure 3 shows the effect of the MPL on response
time. The average response time decreases some-

what when changing from batch scheduling (MPL 3} reases might seem relatively insignificant com-

to coscheduling (MPL 2 or more), and then stays gl o4 1o our expectations and previous results. To
about the same level. This improvement corresponjdgyar understand why this might be the case, we re-
to an enhanced ability of the scheduler to keep 16$s1ed these measurements, but with backfilling dis-
jobs waiting in the queue. Having more availablgyieq Figures 5 and 6 show the results of these ex-
slots, the scheduler can dispatch more jobs from ﬂﬁ'@riments. Here we can observe a sharp improve-
queue, which is particularly significant for short jobst,ant in both metrics when moving from batch to
These can start running soon after their arrival tim ang scheduling, and a steady improvement after
complete relatively quickly, and clear the system. 13, The magnitude of the improvement is markedly
confirm this claim, let us observe that the average f§qer than that of the previous set. This might be
sponse time for the shorter 500 jobs indeed decreaggs|ained by the fact that when backfilling is used,
for higher MPLs, while that of the longer 500 jobs ing, implicitly include some knowledge of the fu-
creases at a similar rate. Furthermore, the median{és since we have estimates for job run times. In
sponse time (which is dominated by the shorter jobgh a5t gang-scheduling assumes no such knowl-
decreases monotonically. edge and packs jobs solely by size. Our results in-
~ This effect becomes more pronounced when l00fieate that some knowledge of the future (job esti-
ing at the bounded slowdown (Fig. 4). We camates) and consequentially, their use in scheduling
clearly see that the average slowdown shows a CeRgisions as employed by backfilling, renders the ad-
sistent and significant decrease as the MPL increasgftages of a higher MPL less pronounced. These

This is especially pronounced for the first 500 jobsgyits also agree with the simulated evaluations in
that show a marked improvement in slowdown, epo).

pecially when moving from MPL 1 to MPL 2.
Still, the improvement of these metrics as the MPL

1repeating this experiment with an average offered load of Havmg the best overall performance’ we use an

~ 78%, gave similar results. Above that, GS becomes saturaf¥”L of 6 in the other sets of experiments, combined
for this workload with backfilling.
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Figure 7: Distributions of response times for differentdiquanta (logscale). Each bar depicts the 5%, 25%,
50%, 75%, and 95% percentiles.

4 Effect of Time Quantum ms. Since the overhead caused by short time slices
is largely affected by the specific architecture, we
4.1 Experiment Description were also interested in repeating these experiments

on a different architecture. To that end, we also ran

Another important factor that can have an effect @he same experiment on the 'Accelerando’ cluster at
a scheduling system’s performance and responsiv&NL/CCS-3, where each node contains two 1 GHz
ness is the time quantum. Scheduling schemes thahium-Il CPUs, 1 GB of RAM, a PCI-X bus, and
employ time sharing in the form of distinct timex QsNET network similar to the one we use on the
slots, have to make a choice of the duration of eagtyescendo’ cluster.
time slot, the time quantum. A short time slice gener-
ally increases the _systems responsiveness, S|.nce_12.l§s Experimental Results
do not have to wait for long periods before being in-
serted into the system, which benefits mostly Sh(Fﬁg_ 7 shows the distribution of response times
and interactive jobs. On the other hand, a very sm@lith different time quanta, for the two cluster ar-
time quantum can significantly tax the system’s rehitectures. Each bar shows the median response
sources due to the overhead incurred by frequeinte (central horizontal divider), the 25% and 75%
context-switches. In [10] it was shown that STORMercentiles (top and bottom edges of box), and the
can effectively handle very small time quanta, in tr&%s and 95% percentiles (whiskers extending up and
order of magnitude of a few milliseconds, for simplgown). The 5% rank is defined by short jobs, and
static workloads. This is not necessarily the caseribnotonically decreases with shorter time quanta,
our experimental setup, that includes a complex dyhich confirms our expectations. The 95% rank rep-
namic workload, and a relatively high MPL value, inresents all but the longest jobs, and does not change
creasing the load on the system (more pending comuch over the quanta range, except for the 50 ms
munication buffers, cache pressure, etc.). quantum on Crescendo, where response times for

For this set of experiments, we use again the womkost jobs increase slightly, probably due to the over-
load file with 1000 jobs and an average offered lodead associated with frequent context switching. The
of = 74%. We ran the scheduler with different timalifferent effect of the quantum on the 5% and 95%
guantum values, ranging from 2 seconds down to Efhks suggests that short jobs are much more sensi-
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Figure 8: Distribution of slowdown for different time quanflogscale). Each bar depicts the 5%, 25%,
50%, 75%, and 95% percentiles.

tive to changes in the time quantum than the restaforithms. In this section, we try to answer the fol-
the jobs. lowing questions:

The median reaches a minimum value at a time
guantum of=~ 100 ms and~ 50 ms on Crescendo
and Accelerando respectively. Running with shorter
time quantum on Crescendo yields unreliable results® How do different scheduling algorithms handle
with degraded performance. short or long jobs?

Flg 8 shows the distribution of slowdown for o How does the dynamic workload affect the
the same time quanta values. The interpretation of scheduler's performance?
this figure isreversed, since the 5% mark represents
mostly very long jobs (that have a low wait time to When using finite workloads, one must be care-
run time ratio, and thus a low slowdown value). Ofl to identify when the offered load is actually high
the other end, the 95% mark shows the high sensitR0ugh to saturate the system. Using an infinite
ity of the slowdown metric to changes in the wait angorkload, the jobs queues would keep on growing on
run times of short jobs. Slowdown also seems to ha¥&aturated system, and so will the average response
a minimal median value at 100 ms on Crescendoﬁme and slowdown. But when running a finite work-
and 50 ms (or even 10 ms) on Accelerando. Basé@d, the queues would only grow until the workload
on these results, and since we run all our other dx£exhausted, and then the queues would slowly clear
periments on Crescendo, we decided to use a tiﬁ‘i@(:e there are no more ]Ob arrivals. The metrics we

quantum of 100 ms for the other measurements. Measure for such a workload are therefore meaning-
less, and we should ignore them for loads that exceed

each scheduler’s saturation point.
5 Effect of Load To identify the saturation points, we used graphs
like the one shown in Fig. 9. This figure shows jobs
in the system over time, i.e. those jobs that arrived
and are not yet finished. It is easy to see that the
We now reach the last part of this study, where vgystem handles loads of 78% and 83% quite well.
investigate the effect of load on different schedulingowever, the burst of activity in the second half of

e How well do different algorithms handle in-
creasing load?

5.1 Experiment Description



200 since most of the jobs can be considered relatively

180 | 5% | short. On the other hand, a low median slowdown
S 160 | 0% 1 indicates preferrential handling of long jobs, since
% 140 | 1 the lowest-slowdown jobs are mostly long jobs, that
fg’ 120 | are affected less by wait time than short @fbSCFS
5 100 | shows a high average slowdown and a low median
E 80 slowdown. This indicates that while long jobs enjoy
S 60| lower waiting times (driving the median slowdown
S w0 ;g\ lower), short jobs suffer enough to significantly raise

20 t f vJ&”f\\ A \g’\gl Wm"ﬂ : j\ 1 the average response time and slowdown.

i P T To verify these biases, we look at the CDF of

O L L L =
0 1000 2000 3000 4000 5000 6000 7000 8000 900010000
Time (sec)

response times for the shorter 500 jobs and longer
500 jobs separately, as defined in Section 3.2 (Figs.
11 and 12). The higher distribution of short jobs
Figure 9: Number of running and queued jobs agth FCS attests to the scheduler’s ability to “push”
a function of time for offered loads of 78%—-93%more jobs toward the shorter response times. Sim-
when using gang scheduling. ilarly, FCFS’s preferential treatment of long jobs is
reflected in Fig. 12.

the workload seems to cause problems when the Ioaéfve believe the reason for FCS's good performance

is increased to 88% or 93% of capacity. In particﬂﬁ its ability to adapt to various scenarios that occur

lar, it seems that the system does not manage to cfdging the execution of the dynamic workload [9]. In

enough jobs before the last arrival burst at about 7366rticular, FCS always co-schedules a job in its first

seconds. This indicates that the load is beyond G/ seconds of running (uniike SB), and then classi-

saturation point. Using this method, we identifie s it according to its communication requirements
like GS). If a job is long, and does not synchro-

and discarded those loads that saturate each sche _q s ;
ing scheme. nize frequently or effectively, FCS will allow other

The results for this workload indicate that FCFI§)bS to compete with it for machine resources. Thus,

seems to saturate at about 78% load, GS and SEF shows a bias toward short jobs, allowing them
about 83% and ECS at 88% to clear the system early. Since short jobs dominate

the workload, this bias actually reduces the overall
. . system load and allows long jobs to complete earlier
5.2 Resultsand Discussion than with GS or SB. The opposite can be said of the

Figures 10(a) and 10(b) show the average respoﬁ,&-zFS scheme, which shows a bias t<_)ward Ior_lg jobs,
time and slowdown respectively, for different offeredinCe they do not have to compete with other jobs.
loads and scheduling algorithms. The near-linear
growth in response times with load is due to o
method of varying load, by multiplying run times o

jobs by a load factor. B‘?th metrics suggest that I:(Fr$this paper we studied the effect of dynamic work-
seems to perform consistently better than the othgL g o several job scheduling algorithms, using a
a_Igorlthms, and FCFS (batch) seems to perform CYktailed experimental evaluation. Our results con-
sistently worse than the others. AIS_O’ FCFS s_aturaﬂ#h some of the previous results obtained with dif-
at a lower load than the other algorithms, while FCfts,rent workloads and in simulated environments. In

supports a load of up to 88% in our tests. particular, we identified several scheduling param-

To understand the source of this differences, Iet Us, s that affect metrics such as response time and
look at the median response time and slowdown (Fisgbwdown, and quantified their contribution:

ures 10(c) and 10(d) respectively). A low median
response time suggests good handling of short jobs?This reversal of meaning is also seen in Figures 7 and 8.

Conclusions and Future Work
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Figure 10: Response time and bounded slowdown as a fundtioifeced load

e Multiprogramming (coscheduling): coschedul-
ing allows shorter waiting times, in particular
for short jobs.

hand, batch scheduling is consistently worse
than the other algorithms.

The bottom line is that using preemption (e.qg.

The multiprogramming level: increasing it engang scheduling) in conjunction with backfilling
ables better packing and handling of queudelds to significant performance improvements, and
jobs. at the same time the use of backfilling allows the

—— . - use of a very limited multiprogramming level. To
eBaCl:;'”r']r;?]‘ dIgSIzguznd E&irmbigfggngbsstra;'cfll({rther improve this combination, FCS should be
ingy over timeqand stiortensptheir vflait t?m Used instead of strict GS. The increased flexibility of
90 ' . SECS allows better utilization and faster flow of jobs
This it true both for batch scheduling, and for . .
coscheduling schemes through the system, leading to lower response time
9 ’ and slowdown results. To further improve these met-

The scheduling algorithm itself. We found thatics, we intend to experiment with additional mech-
FCS is consistently better than the other alganisms such as explicit prioritization of small and/or

rithms for the measured metrics. On the othehort jobs as part of the queue management.
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74% — 500 shortest jobs.
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