
Gang Scheduling Extensions for I/O Intensive Workloads

Yanyong Zhang†, Antony Yang†, Anand Sivasubramaniam‡, Jose Moreira§

† Department of Electrical& Computer Engg. ‡ Department of Computer Science& Engg.
Rutgers, The State University of New Jersey The Pennsylvania State University

Piscataway NJ 08854 University Park PA 16802
{yyzhang,pheroth}@ece.rutgers.edu { anand}@cse.psu.edu

§ IBM T. J. Watson Research Center
P. O. Box 218

Yorktown Heights NY 10598-0218
{jmoreira}@us.ibm.com

Abstract

Scientific applications are becoming more I/O demand-
ing than ever. For such applications, the system with
dedicated I/O nodes does not provide enough scalabil-
ity. Rather, a serverless approach is a viable alternative.
However, with the serverless approach, a job’s execution
time is decided by whether it is co-located with the file
blocks it needs. Gang scheduling (GS), which is used in
supercomputing centers to schedule parallel jobs, is com-
pletely not aware of the application’s spatial preferences.

In this paper, we show that gang scheduling delivers
poor performance towards workloads with high I/O in-
tensities (I/O ratio higher than 50%). We propose an
I/O-aware extension of gang scheduling, IOGS, which
co-locates jobs with their files. While IOGS performs
better for high I/O intensity workloads, its performance
for workloads with lower I/O intensities is rather poor be-
cause of high system fragmentation. Further, we propose
an adaptive strategy, adaptive-IOGS, which attempts to
combine the advantages of both gang scheduling and GS,
and we show that adaptive-IOGS is better than the other
two schemes in many scenarios. Finally, we combine
process migration techniques with adaptive-IOGS, and
propose Migration-IOGS, which is shown to be the best
among the four for a wide spectrum of workloads.

1 Introduction

Scheduling strategies can have a significant impact on
the performance characteristics of a large parallel sys-
tem [5]. Early strategies used a space-sharing approach,

wherein jobs can concurrently run on different nodes of
the system, but each node is exclusively assigned to a
job, until the job completes (no pre-emption is consid-
ered). The wait and response times for jobs with an ex-
clusively space-sharing strategy can be relatively high.
Gang scheduling (or coscheduling) is a technique to im-
prove the performance by adding a time-sharing dimen-
sion to space sharing [15]. This technique virtualizes the
physical machine by slicing the time axis into multiple
virtual machines. Tasks of a parallel job are coscheduled
to run in the same time-slices. The number of virtual
machines created (equal to the number of time slices), is
called the multiprogramming level (MPL) of the system.
This approach opens more opportunities for the execu-
tion of parallel jobs, and is thus quite effective in reduc-
ing the wait time, at the expense of increasing the ap-
parent job execution time. Gang scheduling can increase
the system utilization as well. A considerable body of
previous work has been done in investigating different
variations of gang scheduling [19, 18, 20, 17]. Gang-
scheduling is now often used in supercomputing centers.
For example, it has been used in the prototype GangLL
job scheduling system developed by IBM Research for
the ASCI Blue-Pacific machine at LLNL (a large scale
parallel system spanning thousands of nodes [13]).

On the application’s end, over the past decade, the in-
put data sizes that parallel applications are facing have
increased dramatically, at a much faster pace than the
performance improvement of the I/O system [12]. Super-
computing centers usually deploy dedicated I/O nodes to
store the data and manage the data access. Data is striped
across high-performance disk arrays that are attached to

the I/O nodes. The I/O bandwidth provided in such sys-
tems is limited by the number of I/O channels and the
number of disks, which are normally smaller than the
number of available computing units. This is not enough
to serve the emerging scientific applications that are more
complex than ever, and are more I/O demanding than
ever. Fortunately, several research groups have proposed
a serverless approach to address this problem [1, 2]. In a
serverless file system, each node in the system serves as
both compute node and I/O node. All the data files are
distributed across the disks of the nodes in the system.
With this approach, we have as many I/O nodes as the
compute nodes. It is much easier to scale than the ded-
icated solution. The only assumption this approach has
is reasonably fast interconnect between the nodes, which
should not be a concern because of the rapid progress in
technology.

While the serverless approach shows a lot of promise,
realizing the promise is not a trivial task. It raises new
challenges to the design of a job scheduler. Files are par-
titioned across a set of nodes in the system, and, on the
same set of nodes, jobs are running as well. Suppose task
t needs to access blockb of file f . The associated access
cost can vary considerably depending on the location of
b. If b is hosted on the same node wheret is running,
thent only needs to go to the local disk to fetch the data.
Otherwise,t needs to pay extra network cost to fetch the
data from a remote disk. The disk accesses now become
asymmetric. In order to avoid this extra network cost, a
scheduler must co-locate tasks of parallel jobs with the
file blocks they need. This will be even more urgent for
I/O intensive jobs.

Although gang scheduling, which is used in many su-
percomputing centers, is effective for traditional work-
loads, most of its implementations are completely un-
aware of applications’ spatial preferences. Instead, they
focus on maximizing system usage by accommodating
jobs as quickly as possible, and by assigning more CPU
time to the running jobs. However, it is not yet clear
which of the two factors - I/O awareness, or system uti-
lization - is more important to the performance, at what
scenarios, by how much? And, can we do even better by
adaptively balancing between the two? This paper sets
out to answer all the above questions by conducting nu-
merous simulation based experiments on a wide range of
workloads. This paper proposes several new scheduling
heuristics, which try to schedule jobs to their preferred
nodes. This paper also extensively evaluates their perfor-

mances.

In this paper, we have made the following contribu-
tions:

• We propose a new variation of gang scheduling, I/O
aware gang scheduling (IOGS), which is aware of
the jobs’ spatial preferences, and always schedules
jobs to their desired nodes.

• We quantitatively compare IOGS and gang schedul-
ing (GS) under workloads with different I/O intensi-
ties. We find that GS is better than IOGS for work-
loads with low to medium I/O intensities, while
IOGS is much better than gang scheduling for I/O
intensive workloads.

• We propose a hybrid scheme, adaptive I/O aware
gang scheduling (Adaptive-IOGS), which tries to
combine the benefits of both schemes. We show that
this adaptive scheme performs the best in many sit-
uations.

• Further, we propose another scheme, migration
adaptive I/O aware gang scheduling (Migrate-
IOGS), which combines migration technique with
Adaptive-IOGS. Migration technique can move
more jobs to their desired nodes, thus leading to bet-
ter performance.

• Finally, we have shown that Migrate-IOGS delivers
the best performance among the four across a wide
range of workloads.

The rest of the paper is organized as follows: Section
2 describes the system and workload models used in this
study. Section 3 presents all the proposed scheduling
heuristics, and report their performance results. Section5
presents our conclusions and possible direction for future
work.

2 System and Workload Model

Large scale parallel applications are demanding large
data inputs during their executions. Optimizing their I/O
performance is becoming a critical issue. In this study,
we set out to investigate the impact of application I/O
intensity on the design of a job scheduler.

2

2.1 I/O Model

In the serverless file system [1, 2], each node serves as
both compute node and I/O node. The data files in the
system are partitioned according to some heuristics, and
distributed on the disks of a subset of the nodes (clients
that participate the file system). We usetlocal

IO andtremote
IO

to denote the local and remote I/O costs respectively. In
this paper,I/O costsare the costs associated with those
I/O requests that are not satisfied in the file cache, and
have to fetch data from disk.

disk
F.1/2 F.2/2

J J1 2CPU

node 1 node 2 node 3 node 4

High Speed Interconnect

and I/O node
both compute node

Figure 1: the I/O model example

Figure 1 illustrates such a system with 4 nodes, which
are connected by high-speed interconnect. FileF has
two partitions,F.1/2 andF.2/2, hosted by nodes 3 and
4 respectively. Parallel jobJ (with tasksJ1 andJ2) is
running on nodes 2 and 3, and needs data fromF dur-
ing its execution. In this example, if the data needed by
J2 belongs to partitionF.1/2, thenJ2 spends much less
time in I/O because all its requests can be satisfied by
local disks, whileJ1 has to fetch the data from remote
disks.

2.2 File Partition Model

1

F.2/2
F.1/2

node 4node 3

3

High Speed Interconnect

1715 181614
12108
642

13
1197
5

2J1J

Figure 2: File partition Example

File partition plays an important role in deciding a
task’s I/O portion. Even though a task is running on a
node that hosts one partition of its file, it does not mean

that the task can enjoy lower local I/O costs because the
data it needs may not belong to this partition. In the ex-
ample shown in Figure 2,F has 18 blocks in total, and
all the odd-numbered blocks belong toF.1/2, while the
even-numbered blocks belong toF.2/2. TaskJ1 is co-
located with all the odd-numbered blocks ofF . Unfortu-
nately,J1 needs the first 10 blocks of fileF , which are
evenly distributed between F.1/2 and F.2/2. Thus, half of
its I/O requests have to go to remote disks. This exam-
ple shows that even if a job scheduler manages to assign
tasks to the nodes where their files are hosted, their I/O
requests may not be fully served by local disks. This
observation suggests that we need to coordinate the file
partitioning and applications’ data access pattern to bet-
ter appreciate the results of good job schedulers.

As suggested by Corbett and Feitelson in [3], it is pos-
sible for the applications to pass their access patterns to
the underlying file system, so that the system can parti-
tion the files accordingly, leading to a one-to-one map-
ping between the tasks and partitions. Thus, as long as
the task is assigned to the appropriate node (hosting the
corresponding partition), all its I/O accesses are local. In
this study, we used the above approach. Although the
hardware configurations in [3] and in this study are dif-
ferent, we believe that we can implement the same idea
on our platform. Again, please note that our schemes can
work with other partitioning heuristics as well. In that
case, we need to compose the job access pattern model
and quantify the ratio of the local I/Os out of the total
number of I/Os made by each task.

As statistics in [14] show, file sharing across applica-
tions is rare, which makes the partitioning easier because
we do not need to consider the cases where different ap-
plications have different access patterns if they share the
same file. Further, the number of files accessed by each
job does not affect the effectiveness of our scheduling
schemes, because we can just simply partition every file
a job accesses according to the corresponding access pat-
tern.

2.3 Workload Model

We conduct a simulation based study of our scheduling
strategies using synthetic workloads.

Before we present the workload model, we first dis-
cuss our parallel job model. As in [21], we assume that a
job has a number of tasks, each task performing compu-
tation and I/O, and synchronizing with each other. The
tasks of a job are co-scheduled in the time-slice so that

3

the synchronization between them incurs very low cost.
Further, we employ a simple model assuming I/O ac-
cesses are evenly distributed throughout the execution.

We define the following parameters for each job:

1. tai : arrival time of jobi.

2. tCi : CPU time of jobi (the total time spent on CPU
if i runs alone).

3. ni: number of tasks of jobi.

4. dI
i : the I/O requests interarrival time of jobi (the

gap between two I/O requests).

5. nB
i : number of disk blocks per request of jobi.

6. tsi : start time of jobi.

7. tfi : finish time of jobi.

Among all these parameters,tai (job arrival time) and
ni (job size) are generated from stochastic models that
fit actual workloads at the ASCI Blue-Pacific system in
Lawrence Livermore National Laboratory (a 320-node
RS/6000 SP) [11].

From the above parameters and our system model, we
can derive the following:

1. rIO
i =

nB

i
×tlocal

IO

nB

i
×tlocal

IO
+dI

i

: I/O intensity of jobi .

2. nI
i = ⌈

tC
i

dI

i

⌉ × nB
i : number of disk blocks accessed

by job i.

3. tei = tCi +
∑j<nI

i

j=0 (li,j ∗tloca
IO +(1−li,j)∗tremote

IO): i’s
execution time on a dedicated setting, whereli,j is
1 when thejth I/O of job i is local, and 0 otherwise.
Next we need to elaborate on deciding the value of
li,j, i.e., how to decide if an I/O is a local or remote.
In our job model, we do not differentiate tasks of
the same job. We assume they are identical. Thus,
even though only one task of a job is not running
on the file node , and the other tasks are all on the
file nodes, the job, as a whole, is considered to have
remote I/O accesses because the tasks from the same
parallel job need to synchronize with each other and
progress at the same pace.

4. tri = tfi − tsi : response time for jobi.

5. twi = tsi − tai : wait time for jobi.

6. si =
max(tr

i
,T)

max(te
i

′,T)
: the slowdown for jobi, whereT

is the time-slice for gang-scheduling. To reduce the
statistical impact of very short jobs, it is common
practice [7, 8] to adopt a minimum execution time.
We adopt a minimum of one time slice. That is the
reason for themax(., T) terms in the definition of
slowdown. Another thing to notice is that we can-
not calculate slowdown usingtei to compare differ-
ent scheduling schemes because different schemes
result in differenttei . Instead, we use a normalized

job execution timetei
′ = tCi +

∑j<nI

i

j=0 tlocal
IO whose

value is invariant from scheme to scheme.

Each synthetic workload contains 10000 parallel jobs
whose parameters are described above. The characteris-
tics of a workload can be described by two factors: load
and I/O intensity. The load is decided by the job interar-
rival time (λ−1) and average job execution time(te). By
fitting the actual workloads at the ASCI Blue-Pacific sys-
tem in Lawrence Livermore National Laboratory (a 320-
node RS/6000 SP) [11], we have 9 different values for
λ−1 and te, resulting in 81 workloads. The I/O inten-
sity of a workload is decided by the average I/O intensity
of its jobs. For each workload, we choose its I/O inten-
sity (rIO) from the following seven values 0.1, 0.15, 0.2,
0.25, 0.33, 0.4, 0.5. Thus, we have81 × 7 = 567 work-
loads in total.

3 Scheduling Strategies

3.1 Gang-Scheduling

Gang scheduling [4, 6, 9, 10, 16] is a timed-shared paral-
lel job scheduling technique. This technique virtualizes
the physical machine by slicing the time axis into multi-
ple virtual machines. Tasks of a parallel job are cosched-
uled to run in the same time-slices (same as virtual ma-
chines). The number of virtual machines is called the
multiprogramming level (MPL) of the system. This mul-
tiprogramming level in general depends on how many
jobs can be executed concurrently, but is typically limited
by system resources. This approach opens more opportu-
nities for the execution of parallel jobs, and is thus quite
effective in reducing the wait time. Gang-scheduling
has been used in the prototype GangLL job scheduling
system developed by IBM Research for the ASCI Blue-
Pacific machine at LLNL (a large scale parallel system
spanning thousands of nodes [13]).

4

As an example, gang-scheduling an 8-processor sys-
tem with a multiprogramming level of four is shown in 3.
The figure shows the Ousterhout matrix that defines the
tasks executing on each processor and each time-slice.
Jj

i represents thej-th task of jobJi. The matrix is cyclic
in that time-slice 3 is followed by time-slice 0. One cycle
through all the rows of the matrix defines ascheduling cy-
cle. Each row of the matrix defines an 8-processor virtual
machine, which runs at1/4th of the speed of the physical
machine. We use these four virtual machines to run two
8-way parallel jobs (J1 andJ2) and several smaller jobs
(J3, J4, J5, J6). All tasks of a parallel job are always
coscheduled to run concurrently. This approach gives
each job the impression that it is still running on a ded-
icated, albeit slower, machine. This type of scheduling
is commonly calledgang-scheduling[4]. Note that some
jobs can appear in multiple rows (such as jobsJ4 andJ5).

P0 P1 P2 P3 P4 P5 P6 P7

time-slice 0 J0
1 J1

1 J2
1 J3

1 J4
1 J5

1 J6
1 J7

1

time-slice 1 J0
2 J1

2 J2
2 J3

2 J4
2 J5

2 J6
2 J7

2

time-slice 2 J0
3 J1

3 J2
3 J3

3 J0
4 J1

4 J0
5 J1

5

time-slice 3 J0
6 J1

6 J2
6 J3

6 J0
4 J1

4 J0
5 J1

5

Figure 3: The scheduling matrix defines spatial and time
allocation.

Every job arrival or departure constitutes aschedul-
ing eventin the system. For each scheduling event, a
new scheduling matrix is computed for the system. Even
though we analyze various scheduling strategies in this
paper, they all follow an overall organization for comput-
ing that matrix, which can be divided into the following
steps:

1. CleanMatrix: The first phase of a scheduler re-
moves every instance of a job in the Ousterhout ma-
trix that is not at its assigned home row. Removing
duplicates across rows effectively opens the oppor-
tunity of selecting other waiting jobs for execution.

2. CompactMatrix: This phase moves jobs from less
populated rows to more populated rows. It further
increases the availability of free slots within a single
row to maximize the chances of scheduling a large
job.

3. Schedule: This phase attempts to schedule new
jobs. We traverse the queue of waiting jobs as dic-

tated by the given priority policy until no further
jobs can be fitted into the scheduling matrix.

4. FillMatrix: This phase tries to fill existing holes
in the matrix by replicating jobs from their home
rows into a set of replicated rows. This operation is
essentially the opposite ofCleanMatrix.

In the rest of this paper, we describe each scheduling
strategy based on their implementations of these schedul-
ing steps.

3.2 Plain Gang Scheduling (GS)

The simulation model is based on the implementation of
the GangLL scheduler [13] on the Blue Pacific machine
at Lawrence Livermore National Labs. For GS, we im-
plement the four scheduling steps of Section 3.1 as fol-
lows:

1. CleanMatrix: The implementation of CleanMatrix
is best illustrated with the following algorithm:

for i = first row to last row
for all jobs in row i

if row i is not home of job, remove it

It eliminates all occurrences of a job in the schedul-
ing matrix other than the one in its home row. A
job is assigned a home row when it is first sched-
uled into the system, and its home row may change
when the matrix is re-calculated.

2. CompactMatrix: We implement the CompactMa-
trix step in GS according to the following algorithm:

do{
for i = least to most populated row

for j = most to least populated row
for all jobs in row i

if they can be moved to row j
move and break

}while matrix changes

We traverse the scheduling matrix from the least
populated row to the most populated row. We at-
tempt to find new homes for the jobs in each row.
The goal is to pack as many jobs in as few rows as
possible.

3. Schedule: The Schedule phase for GS traverses the
waiting queue in FCFS order. For each job, it looks
for the row with the least number of free slots in
the scheduling matrix that has enough free columns
to hold the job. This corresponds to a best fit algo-
rithm. This algorithm opens more opportunities for

5

the larger jobs to be accommodated into the matrix.
The row to which the job is assigned becomes its
home row. Within that row, we look for the columns
that are free across multiple rows, increasing the
likelihood of this job being replicated to other rows,
which helps with the matrix utilization. We stop
when the next job in the queue cannot be scheduled
right away.

4. FillMatrix: We use the following algorithm in exe-
cuting the FillMatrix phase.

do {
for each job in starting time order
for all rows in matrix,

if job can be replicated in same columns
do it and break

} while matrix changes

3.3 IO-Aware Gang Scheduling (IOGS)

GS tries to reduce job wait times by accommodating
them as soon as possible, and to keep the matrix effi-
ciently utilized. This goal is attempted by its alloca-
tion heuristics, including searching for the target row
with BestFit algorithm, and then searching for the target
columns for the possibility of future replication. These
optimizations would translate into performance improve-
ment if the jobs do not have any co-location preferences.
Nonetheless, this is not true for the motivating applica-
tions in this study. The job execution times are signifi-
cantly affected by their locations. Suppose jobi needs
file f during its execution, and partitions off reside on
nodesni1, ni2 , ..., nini

. These nodes are calledfile nodes
of i. i’s execution time will be shortened if it is allocated
to its file nodes. If an allocation scheme is not aware of
this, and thus causes longer execution times, it may hurt
the overall performance. To address this issue, we pro-
pose a new scheme, called I/O aware gang scheduling
(IOGS). IOGS schedules every job to its file nodes, with
the cost of longer wait times in the queue.

At every scheduling event, IOGS also re-calculates the
matrix using the following four steps:

1. CleanMatrix: Same as in GS.

2. CompactMatrix: Same as in GS.

3. Schedule: The Schedule phase for IOGS traverses
the waiting queue in FCFS order. For each job, it
looks for the row with the least number of free slots
where the job’s file nodes are available. Similar to
the Schedule phase for GS, this also corresponds to

a best fit algorithm. However, here, the criteria of
”fit” is having all file nodes available (to the inter-
ests of applications), instead of having enough free
columns as in GS (to the interests of matrix usage).
Within that row, we choose the file nodes to sched-
ule the job. Please note that the number of file nodes
equals the corresponding job size (Section 2.2). We
stop when the next job in the queue cannot find a
row that has its files nodes available.

4. FillMatrix: Same as in GS.

3.4 Comparing IOGS and GS

3.4.1 Experimental Setup

It is always a challenging issue to design a good sched-
uler because numerous parameters are involved, and
these parameters can have an infinite design space. In
sections 3.4.2-3.6, without loss of generality, we run the
experiments using the following values for the parame-
ters unless explicitly stated otherwise.

• tlocal
IO = 0.03 second,tremote

IO = 0.09 second.

• workload. As mentioned in Section 2.3, we have
9 × 9 × 7 workloads corresponding to 9 different
values ofλ−1, 9 values ofte, and 7 values ofrIO.
Due to space limit, we only show results for 27
workloads by having only oneλ−1 and threerIO.
Since the goal of this study is to investigate the im-
pact of workload I/O intensity, we organize these 27
workloads into three classes according to their I/O
intensity: high I/O intensity (rIO = 0.5), medium
I/O intensity (rIO = 0.33) and low I/O intensity
(rIO = 0.1). Within each class, we have nine work-
loads with increasing load (increasingte). For all 27
workloads, we haveλ−1 = 583 seconds.

• system parameters. Time quantum (T) is 200 sec-
onds. Maximum multiprogramming level (MPL) is
5.

3.4.2 Results

Looking at the heuristics of the two schemes, we know
that GS tries to maximize the matrix usage, while IOGS
provides local I/O accesses. Before we report our re-
sults, let us first take a closer look at what happens to
a job so that we can understand the pros and cons for
both schemes better for the motivating workloads.

6

Once a job starts executing, how soon it could finish is
determined by its execution time (job duration on a dedi-
cated setting) as well as how much CPU time it receives.
A job’s execution consists of two components: compu-
tation and I/O (Section 2.3), and the latter is affected by
whether the data can be accessed locally or not. IOGS
yields short execution times by scheduling jobs to their
files nodes. On the other hand, GS allocation scheme
opens more opportunities for the jobs to be replicated to
multiple rows, thus receiving more CPU time. Moreover,
in IOGS, a job is scheduled into the matrix only if all
its file nodes are free during at least one time quantum,
leading to longer job wait time in the queue.

Intuitively, the relative importance of these two factors
should be related to the I/O intensity of the workload.

The results of the two scheduling strategies for the
three classes of workloads are shown in Figures 4(a-f).

For high I/O intensity workloadrIO=0.5 (Figures
4(a),(d)), IOGS is clearly better than GS for all nine dif-
ferent loads for both performance metrics (slow down
and wait times). With respect to slowdown, IOGS is al-
ways 100% better. Under most of the loads (i.e.,te′ ≥

2000 seconds), the improvement is over 200%. With re-
spect to wait time, the improvement of IOGS over GS
is not as obvious as under low loads because the wait
time is low for both schemes, and we observe significant
improvement under very high loads (i.e.,te′ ≥ 2600 sec-
onds). When the workload is I/O intensive (more than
50% of I/O ratio), the drawbacks of longer execution
times due to remote I/O accesses far outweigh the ben-
efits of more CPU time.

For the other two classes of workloads (rIO=0.33,0.1),
we observe the opposite trend. GS is always better. The
reason is, for medium to low I/O intensity workloads, be-
cause of the less importance of I/O, the benefits of shorter
execution times are overshadowed by the drawbacks of
less CPU resources received.

From this set of experiments, we learn that neither
IOGS nor GS is the best for all the workloads. For I/O
intensive workloads, IOGS is better, while GS is a much
better choice for low to medium I/O workloads.

3.5 Adaptive I/O Aware Gang Scheduling
(Adaptive-IOGS)

From the previous section, we learn that IOGS deliv-
ers better performance for I/O intensive workloads that
motivated this work, as it yields much shorter execution
times by scheduling jobs to their file nodes. However,

the downside of doing so is that it causes fragmentation
in the scheduling matrix. Figure 5 illustrates this prob-

row 2

row 1

node 4node 3node 2node 1

G.2/2G.1/2

F.2/2F.1/2

BB

AA row 1

row 2

node 4node 3node 2node 1

G.1/2 G.2/2

F.2/2F.1/2

BBAA

BBAA

(a) IOGS (b) GS

Figure 5: An example: jobA needs fileF , and jobB
needs fileG. F is distributed on nodes 1 and 2, andG on
2 and 3.

lem. In this example, node 2 hosts partitions of both files
(F andG), which means both jobs will be assigned to
node 2. As a result,A andB will be allocated to differ-
ent rows (Figure 5(a)), and neither can be replicated to
the second row because they share a common node. The
matrix utilization in this case is only 50%. Moreover, this
allocation heuristic leaves two small holes in both rows.
If job C, with 3 tasks, arrives, it has to be kept waiting.
On the other hand, GS can utilize the matrix 100%, as
shown in Figure 5(b). Further, IOGS makes a job wait if
it cannot find a row where all its file nodes are free, even
though there are rows that have enough free slots to hold
the job, which makes it more difficult to accommodate
a job, thus leading to another type of matrix fragmenta-
tion: a job cannot start execution even though there are
free slots because of strict allocation heuristics. To make
matters even worse, because this job is the first in the
waiting queue, all the jobs that arrive later than it have to
wait as well, until its file nodes are freed after the jobs
that occupy them finish.

Next, we propose a new strategy that alleviates the
fragmentation caused by IOGS, while keeping its benefit
for I/O intensive workloads. We call it Adaptive-IOGS.
Adaptive-IOGS tries to first allocate a job as IOGS does.
If no row has all the files nodes free, then we allocate
this job as GS does, looking for rows/columns so that the
matrix usage is maximized, instead of making it wait. If
IOGS and GS are the two extremes, then this approach
stands in the middle, using an adaptive allocation heuris-
tic.

A formal description of its four scheduling steps is as
follows:

1. CleanMatrix: Same as in IOGS and GS.

2. CompactMatrix: Same as in IOGS and GS.

3. Schedule: The Schedule phase for Adaptive-IOGS

7

1800 2000 2200 2400 2600 2800 3000
0

10

20

30

40

50

60

70

80

90

100

Average Job Execution Time (x second)

A
ve

ra
ge

 J
ob

 S
lo

w
do

w
n

GS
IOGS

2200 2400 2600 2800 3000 3200 3400 3600 3800
0

10

20

30

40

50

60

70

80

90

100

Average Job Execution Time (x second)

A
ve

ra
ge

 J
ob

 S
lo

w
do

w
n

GS
IOGS

3000 3500 4000 4500 5000
0

10

20

30

40

50

60

70

80

90

100

Average Job Execution Time (x second)

A
ve

ra
ge

 J
ob

 S
lo

w
do

w
n

GS
IOGS

(a) rIO = 0.5 (b) rIO = 0.33 (c) rIO = 0.1

1800 2000 2200 2400 2600 2800 3000
0

10

20

30

40

50

60

70

80

90

100

Average Job Execution Time (x second)

A
ve

ra
ge

 J
ob

 W
ai

t T
im

e
(x

10
00

 s
ec

on
ds

)

GS
IOGS

2200 2400 2600 2800 3000 3200 3400 3600 3800
0

10

20

30

40

50

60

70

80

90

100

Average Job Execution Time (x second)

A
ve

ra
ge

 J
ob

 W
ai

t T
im

e
(x

10
00

 s
ec

on
ds

)

GS
IOGS

3000 3500 4000 4500 5000
0

10

20

30

40

50

60

70

80

90

100

Average Job Execution Time (x second)

A
ve

ra
ge

 J
ob

 W
ai

t T
im

e
(x

10
00

 s
ec

on
ds

)

GS
IOGS

(d) rIO = 0.5 (e) rIO = 0.33 (f) rIO = 0.1

Figure 4: Comparison of GS and IOGS.

traverses the waiting queue in FCFS order. For each
job, it first looks for the row with the least number
of free slots where the job’s file nodes are available.
If such a row is found, then we schedule the job to
its file nodes within that row. Otherwise, we go back
to GS: we look for the row with the least number of
free slots that has enough free slots to hold the job.
Within that row, we look for the columns/nodes that
are empty across the most number of rows to open
opportunities of replicating the job to other rows.

4. FillMatrix: Adaptive-IOGS puts every running job
into one of the two queues: local job (jobs that are
assigned to their file nodes) or remote job (jobs that
are not assigned to their file nodes). The FillMatrix
phase for Adaptive-IOGS examines local jobs first
to see whether they can be replicated to other rows.
After no local job can be replicated, it examines all
the remote jobs. Within each queue, the jobs are
examined in the FCFS order.

We conduct experiments to compare Adaptive-IOGS
with both IOGS and GS, using the same configurations
described in Section 3.4.1. We compare these three
strategies under workloads with three different I/O inten-
sities. The results are shown in Figures 6(a-f).

We observe that Adaptive-IOGS is the best among the

all for (i) medium I/O workloads (for all nine differ-
ent loads), and (ii) I/O intensive workloads for low to
medium loads (i.e.,te′ ≤ 2500 seconds). Further, it is
very close to the best under low I/O intensity workloads.

For I/O intensive workloads withrIO ≥ 0.5, under
low to medium loads, Adaptive-IOGS enjoys both ben-
efits of local I/O accesses and high matrix utilization.
For instance, under loadte′ = 1800 seconds, Adaptive-
IOGS manages to assign 9101 local jobs out of 10000,
while GS only has 20 local jobs. (IOGS has 10000 local
jobs out of 10000.) Please note that local I/O accesses
are the key for I/O intensive workloads, and we find that
Adaptive-IOGS can do almost as well as IOGS, with the
additional benefit of less fragmentation. On the other
hand, when the loads become high, very few jobs can
be assigned to their files nodes when they are first sched-
uled. Adaptive-IOGS thus approaches GS, and its per-
formance starts to degrade dramatically. Quantitatively,
for the highest loadte′ = 3000 seconds, Adaptive-IOGS
only has 831 local jobs, which is comparable to GS with
5 local jobs.

For medium I/O workloadsrIO=0.33, the key is effi-
cient matrix usage, which is achieved by Adaptive-IOGS
by scheduling the jobs of which the files nodes are not
free to the rows/columns that minimize matrix fragmen-
tation. In addition, Adaptive-IOGS can reduce the execu-

8

1800 2000 2200 2400 2600 2800 3000
0

10

20

30

40

50

60

70

80

90

100

Average Job Execution Time (x second)

A
ve

ra
ge

 J
ob

 S
lo

w
do

w
n

GS
IOGS
Adaptive−IOGS

2200 2400 2600 2800 3000 3200 3400 3600 3800
0

10

20

30

40

50

60

70

80

90

100

Average Job Execution Time (x second)

A
ve

ra
ge

 J
ob

 S
lo

w
do

w
n

GS
IOGS
Adaptive−IOGS

3000 3500 4000 4500 5000
0

10

20

30

40

50

60

70

80

90

100

Average Job Execution Time (x second)

A
ve

ra
ge

 J
ob

 S
lo

w
do

w
n

GS
IOGS
Adaptive−IOGS

(a) rIO = 0.5 (b) rIO = 0.33 (c) rIO = 0.1

1800 2000 2200 2400 2600 2800 3000
0

10

20

30

40

50

60

70

80

90

100

Average Job Execution Time (x second)

A
ve

ra
ge

 J
ob

 W
ai

t T
im

e
(x

10
00

 s
ec

on
ds

)

GS
IOGS
Adaptive−IOGS

2200 2400 2600 2800 3000 3200 3400 3600 3800
0

10

20

30

40

50

60

70

80

90

100

Average Job Execution Time (x second)

A
ve

ra
ge

 J
ob

 W
ai

t T
im

e
(x

10
00

 s
ec

on
ds

)

GS
IOGS
Adaptive−IOGS

3000 3500 4000 4500 5000
0

10

20

30

40

50

60

70

80

90

100

Average Job Execution Time (x second)

A
ve

ra
ge

 J
ob

 W
ai

t T
im

e
(x

10
00

 s
ec

on
ds

)

GS
IOGS
Adaptive−IOGS

(d) rIO = 0.5 (e) rIO = 0.33 (f) rIO = 0.1

Figure 6: Comparison of GS, IOGS and Adaptive-IOGS.

tion times of the jobs that are assigned to the local nodes.
As a result, it has the best performance throughout the
entire load range for medium I/O workloads.

For workloads with low I/O intensityrIO=0.1, I/O cost
is a small fraction of job execution time. Co-locating jobs
with their files is thus not important, and it will even hurt
the performance because of the high system fragmenta-
tion. This explains why IOGS performs poorly. On the
other hand, Adaptive-IOGS adopts GS Schedule heuris-
tics often enough that it is very close to GS. Figures 6(c),
(f) also show that Adaptive-IOGS is closer to GS under
high loads because it is more unlikely to schedule a job
to its file nodes at the first time when the load is high.

Looking at all three workloads, Adaptive-IOGS is ei-
ther the best, or very close to the best, except under high
loads for I/O intensive workloads.

3.6 Migration Adaptive I/O Aware Gang
Schedule (Migrate-IOGS)

From the earlier results, we conclude that the challenge
here ishow to achieve local I/O requests and low matrix
fragmentation at the same time.These two goals seem
contradicting with each other. IOGS and GS works on
one of the two goals respectively. Adaptive-IOGS tries
to balance the two factors by adaptively change the goal

based on the context. Although Adaptive-IOGS outper-
forms both GS and IOGS in most of the scenarios, it is
not as good as IOGS under high loads for I/O intensive
workloads. However, high loads of I/O intensive work-
loads are the most interesting scenarios to this study. We
need to further investigate on how to improve its perfor-
mance.

Adaptive-IOGS is approaching GS under high loads.
In these scenarios, the matrix is already full, so few jobs
can find their file nodes available when they are first
scheduled. Thus, most of the jobs are scheduled into the
system using GS Schedule heuristic. These jobs stay on
the remote nodes once they are allocated there, paying
higher remote I/O costs throughout the execution, even
though their file nodes might have been freed immedi-
ately after they are scheduled.

row 2

row 1

node 4node 3node 2node 1

DD

CC

F.1/2 F.2/2

B

AA

Figure 7: An example illustrating Adaptive-IOGS: jobD
needs fileF , which is distributed on nodes 1 and 2.

9

In the example shown by Figure 7, WhenD was first
scheduled, its file nodes (nodes 1 and 2) were occupied
by jobsA in row 1 andB in row 2, so it was allocated
to row 2, on nodes 1 and 3. After a short period of time,
job A finishes execution and leaves the system,D’s file
nodes are now free in row 1, butD still stays on nodes 1
and 3, and pays remote I/O costs, which can also be con-
sidered as one type of fragmentation. In order to address
this type of fragmentation, we propose to use migration
technique. In the above example, if we can migrate job
D from row 2 to row 1, to its file nodes,D’s remaining
execution time will be significantly shortened.

The next scheduling strategy we propose uses migra-
tion technique to enhance Adaptive-IOGS, and we call
the new scheme Migration Adaptive I/O Aware Gang
Scheduling (Migrate-IOGS). Every time when a job
leaves the system, we will examine each remote job to
see if its file nodes are freed by then. If so, we move the
job to its file nodes. We put this migration phase after we
clean the matrix, and before we compact the scheduling
matrix.

The formal description of the scheme is as follows:

1. CleanMatrix: Same as in Adaptive-IOGS, IOGS
and GS.

2. MigrateMatrix: MigrateMatrix is a new phase
added to Migrate-IOGS, where remote jobs can be
migrated to their file nodes if those nodes are freed
due to this new scheduling event.

As explained in [18, 20], there is a cost associated
with migration. In systems like IBM RS/6000 SP,
migration involves a checkpoint/restart operation.
Let C denote the total migration cost, including
checkpointing and restarting a process. After a task
is migrated to another node, it can resume its exe-
cution only afterC. Further, even though only one
task of a job is migrated, we make the other tasks
also wait forC to model the synchronization be-
tween the tasks. Although all tasks can perform a
checkpoint in parallel, resulting in aC that is in-
dependent of job size, there is a limit to the capac-
ity and bandwidth that the file system can accept.
Therefore we introduce a parameterQ that controls
the maximum number of tasks that can be migrated
in any time-slice.

In this phase, for each remote job, Migrate-IOGS
looks for the row that has all its file nodes avail-
able. If such a row is found, then Migrate-IOGS

moves the job there so that its remaining execution
will be significantly shortened. The job needs to pay
the migration overhead only once (at the beginning
of the next time quantum), and the value ofC is
negligible compared to the savings on the job’s ex-
ecution time, so we do not expect to observe any
negative impact of migration. On the other hand, if
there are more than one such rows (in which the file
nodes are free), we have two options: (1) randomly
choose one row, or (2) we can choose the row with
the least number of free slots so that we can accom-
modate larger waiting jobs. In our study, we simply
chose the first option due to the time limit. We will
conduct further investigations for the final version.

We implement the MigrateMatrix step in Migrate-
IOGS according to the following algorithm:

do{
for each running job that is remote

for all rows in matrix,
if the job can become local in that row

move it and break
}while matrix changes

3. CompactMatrix: Same as in Adaptive-IOGS,
IOGS and GS.

4. Schedule: Same as in Adaptive-IOGS.

5. FillMatrix: Same as in Adaptive-IOGS.

Migrate-IOGS is intended to shorten the job execu-
tion times and reduce matrix fragmentation at the same
time. However, two factors may limit its effectiveness
in achieving this goal: the migration cost (C), and the
maximum number of tasks that can be migrated in any
time-slice (Q). We conduct experiments to study the im-
pact of these two factors, and the results are shown in
Figures 8(a-f). Within each class (we have three classes),
we choose the highest load (the one with the highest ex-
ecution time).

Keeping the time quantum length as 200 seconds, we
vary the migration cost from 0, 10, 20, and 30 seconds,
whereC = 0 represents the ideal situation where migra-
tion is free. For all three workloads, we observe that the
impact of migration cost is negligible. The reason is that
each job being migrated needs to pay the overhead only
once (at the beginning of the next time quantum), and
this overhead is negligible compared to the savings on
the job’s execution time. We adoptC = 20 seconds in the
following experiments.

10

0 50 100 150 200 250 300 350
10

20

30

40

50

60

70

80

90

100

110

Maximum number of migrated tasks

A
ve

ra
ge

 J
ob

 S
lo

w
do

w
n

MIOGS/0
MIOGS/10
MIOGS/20
MIOGS/30

0 50 100 150 200 250 300 350
54

56

58

60

62

64

66

68

Maximum number of migrated tasks

A
ve

ra
ge

 J
ob

 S
lo

w
do

w
n

MIOGS/0
MIOGS/10
MIOGS/20
MIOGS/30

0 50 100 150 200 250 300 350
37

37.5

38

38.5

39

39.5

40

40.5

Maximum number of migrated tasks

A
ve

ra
ge

 J
ob

 S
lo

w
do

w
n

MIOGS/0
MIOGS/10
MIOGS/20
MIOGS/30

(a) rIO = 0.5 (b) rIO = 0.33 (c) rIO = 0.1

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

Maximum number of migrated tasks

A
ve

ra
ge

 J
ob

 W
ai

t T
im

e
(x

10
00

 s
ec

on
ds

)

MIOGS/0
MIOGS/10
MIOGS/20
MIOGS/30

0 50 100 150 200 250 300 350
180

185

190

195

200

205

210

215

220

225

Maximum number of migrated tasks

A
ve

ra
ge

 J
ob

 W
ai

t T
im

e
(x

10
00

 s
ec

on
ds

)

MIOGS/0
MIOGS/10
MIOGS/20
MIOGS/30

0 50 100 150 200 250 300 350
166

168

170

172

174

176

178

180

182

184

186

Maximum number of migrated tasks

A
ve

ra
ge

 J
ob

 W
ai

t T
im

e
(x

10
00

 s
ec

on
ds

)

MIOGS/0
MIOGS/10
MIOGS/20
MIOGS/30

(d) rIO = 0.5 (e) rIO = 0.33 (f) rIO = 0.1

Figure 8: The impact of migration cost and maximum number of migrated tasks. For all three workloads, we have
te = 3102 seconds.

With respect to the limit of migrated tasksQ , we vary
Q = 0, 16, 32, 64, 128, 256, and 320, whereQ = 0

means it goes back to Adaptive-IOGS, andQ = 320

means there is no limit because we only have 320 nodes
in the system. We find that the value ofQ has a big im-
pact on the performance. For I/O intensive workloads,
Q=320 improves the performance at least 90% compared
to Q=0. However, most of the benefits is accomplished
at Q=64, which is a reasonably small number compared
to the total number of nodes in the system. We observe
similar trends in medium I/O workloads. For low I/O
workloads, migrating more than 64 tasks makes the per-
formance worse. In summary, if we migrate 64 tasks, we
can achieve most of the benefits that migration technique
can have. At the same time, migrating upto 64 nodes dur-
ing any time-slice will not saturate the limit of the system
capacity. As a result, we adoptQ = 64 in the following
experiments.

From these results, we conclude that Migrate-IOGS is
a practical approach.

3.7 Comparing Migrate-IOGS,
Adaptive-IOGS, IOGS, and GS

Finally, we can compare all four schemes under the same
configurations. As in Sections 3.4.2 and 3.5, we use three
workloads:rIO=0.5,rIO=0.33, andrIO=0.1. In the ex-
periments, we choose migration cost as 10% of the time
quantum (10% × 200 = 20 seconds), and we assume no

more than 64 tasks can be migrated during a quantum.
For medium to high I/O workloads (figures 9(a), (b),

(d), and (e)), Migrate-IOGS outperforms the other three
scheduling strategies. With respect to I/O intensive work-
loads, under high loads (i.e.,te′ ≥ 2500 seconds),
Migrate-IOGS improves all three performance metrics
by 100% compared to the second best scheme, IOGS.
With the help of migration, Migrate-IOGS has 6524 lo-
cal jobs at loadte′ = 3000 seconds, which is a significant
improvement compared to its counter part without mi-
gration (Adaptive-IOGS) which only has 831 local jobs.
With respect to medium I/O workloads, it improves the
performance by at least 60% for all three metrics com-
pared to the second best scheme - Adaptive-IOGS.

For low I/O workloads (figures 9 (c) and (f)), for the
same reason mentioned in section 3.5, Migrate-IOGS is
not as good as GS. However, the difference is very small,
especially at high loads.

4 Impact of workloads

In the earlier sections, we assume that all the jobs in
a workload are homogeneous. For example, any jobi

in the I/O intensive workload (rIO=0.5), hasrIO
i =0.5.

In this section, we consider a mixed workload including
jobs with different I/O intensities. Namely, every job in
the mixed workload is equally likely to have I/O intensity
rIO of 0.1, 0.33, or 0.5.

Figures 10(a),(b) show the results comparing these

11

1800 2000 2200 2400 2600 2800 3000
0

10

20

30

40

50

60

70

80

90

100

Average Job Execution Time (x second)

A
ve

ra
ge

 J
ob

 S
lo

w
do

w
n

GS
IOGS
Adaptive−IOGS
Migrate−IOGS, C=20%, Q= ∞

2200 2400 2600 2800 3000 3200 3400 3600 3800
0

10

20

30

40

50

60

70

80

90

100

Average Job Execution Time (x second)

A
ve

ra
ge

 J
ob

 S
lo

w
do

w
n

GS
IOGS
Adaptive−IOGS
Migrate−IOGS, C=20%, Q= ∞

3000 3500 4000 4500 5000
0

10

20

30

40

50

60

70

80

90

100

Average Job Execution Time (x second)

A
ve

ra
ge

 J
ob

 S
lo

w
do

w
n

GS
IOGS
Adaptive−IOGS
Migrate−IOGS, C=20%, Q= ∞

(a) rIO = 0.5 (b) rIO = 0.33 (c) rIO = 0.1

1800 2000 2200 2400 2600 2800 3000
0

10

20

30

40

50

60

70

80

90

100

Average Job Execution Time (x second)

A
ve

ra
ge

 J
ob

 W
ai

t T
im

e
(x

10
00

 s
ec

on
ds

)

GS
IOGS
Adaptive−IOGS
Migrate−IOGS, C=20%, Q= ∞

2200 2400 2600 2800 3000 3200 3400 3600 3800
0

10

20

30

40

50

60

70

80

90

100

Average Job Execution Time (x second)

A
ve

ra
ge

 J
ob

 W
ai

t T
im

e
(x

10
00

 s
ec

on
ds

)

GS
IOGS
Adaptive−IOGS
Migrate−IOGS, C=20%, Q= ∞

3000 3500 4000 4500 5000
0

10

20

30

40

50

60

70

80

90

100

Average Job Execution Time (x second)

A
ve

ra
ge

 J
ob

 W
ai

t T
im

e
(x

10
00

 s
ec

on
ds

)

GS
IOGS
Adaptive−IOGS
Migrate−IOGS, C=20%, Q= ∞

(d) rIO = 0.5 (e) rIO = 0.33 (f) rIO = 0.1

Figure 9: Comparison of GS, IOGS, Adaptive-IOGS and Migrate-IOGS. For Migrate-IOGS, we assume the migra-
tion cost 10% of the time quantum, and not more than 64 tasks can be migrated in the same quantum.

2000 2500 3000 3500
0

10

20

30

40

50

60

70

80

90

100

Average Job Execution Time (x second)

A
ve

ra
ge

 J
ob

 S
lo

w
do

w
n

GS
IOGS
Adaptive−IOGS
Migrate−IOGS, C=20%, Q= ∞

2000 2500 3000 3500
0

10

20

30

40

50

60

70

80

90

100

Average Job Execution Time (x second)

A
ve

ra
ge

 J
ob

 W
ai

t T
im

e
(x

10
00

 s
ec

on
ds

)

GS
IOGS
Adaptive−IOGS
Migrate−IOGS, C=20%, Q= ∞

(a) Average job slowdown (b) Average job wait time

Figure 10: Comparison of GS, IOGS, Adaptive-IOGS
and Migrate-IOGS under a mixed workload.

four schemes under such a mixed workload. We observe
that Migrate-IOGS outperforms the other three for both
metrics.

5 Concluding Remarks

This paper studies the impact of job I/O intensity on the
design of a job scheduler. Nowadays, scientific applica-
tions are becoming more complex and more I/O demand-
ing than ever. For such applications, the system with
dedicated I/O nodes does not provide enough scalability.
Rather, a serverless approach [1, 2] is a viable alternative.
However, with the serverless approach, a job’s execution

time is decided by whether it is co-located with the file
blocks it needs.

Gang scheduling (GS), which is widely used in su-
percomputing centers to schedule parallel jobs, is com-
pletely not aware of the application’s spatial preferences.
We find that gang scheduling does not do a good job if
the applications are I/O intensive.

We propose a new scheme, called IOGS (I/O aware
gang scheduling), which assigns jobs to their file nodes,
leading to a much shortened execution. Our results show
that this scheme can improve the performance of I/O
intensive workloads significantly, while it does not fare
well for workloads with lower I/O intensity.

Further, we propose Adaptive-IOGS (Adaptive I/O
aware gang scheduling), which takes the middle ground
between gang scheduling and IOGS. Based on the matrix
utilization, it adaptively assigns jobs either to their files
nodes or just random nodes. We show that Adaptive-
IOGS is the best for most of the workloads, except for
those with high I/O intensity, and imposing very high
load on the system.

Finally, we integrate migration technique to Adaptive-
IOGS, by migrating jobs to their file nodes during their
execution if those nodes are freed by others, leading
to Migrate-IOGS (Migration adaptive I/O aware gang

12

scheduling). Our results clearly show that Migrate-IOGS
outperforms the other three significantly for a wide spec-
trum of workloads.

References
[1] T. Anderson, M. Dahlin, J. Neefe, D. Roselli D. Pat-

terson, and R. Wang. Serverless Network File Sys-
tems. ACM Transactions on Computer System,
14(1):41–79, 1996.

[2] W. J. Bolosky, J. R. Douceur, D. Ely, and
M. Theimer. Feasibility of a serverless distributed
file system deployed on an existing set of desktop
PCs . InProceedings of the ACM SIGMETRICS
2000 Conference on Measurement and Modeling of
Computer Systems, pages 34–43, 2000.

[3] P. F. Corbett and D. G. Feitelson. The Vesta par-
allel file system.ACM Transactions on Computer
System, 14(3):225–264, 1996.

[4] D. G. Feitelson. A Survey of Scheduling in Mul-
tiprogrammed Parallel Systems. Technical Report
RC 19790 (87657), IBM T. J. Watson Research
Center, October 1994.

[5] D. G. Feitelson. A Survey of Scheduling in Mul-
tiprogrammed Parallel Systems. Technical Report
Research Report RC 19790(87657), IBM T. J. Wat-
son Research Center, October 1994.

[6] D. G. Feitelson and M. A. Jette. Improved Uti-
lization and Responsiveness with Gang Scheduling.
In IPPS’97 Workshop on Job Scheduling Strate-
gies for Parallel Processing, volume 1291 ofLec-
ture Notes in Computer Science, pages 238–261.
Springer-Verlag, April 1997.

[7] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn,
K. C. Sevcik, and P. Wong. Theory and Practice in
Parallel Job Scheduling. InIPPS’97 Workshop on
Job Scheduling Strategies for Parallel Processing,
volume 1291 ofLecture Notes in Computer Sci-
ence, pages 1–34. Springer-Verlag, April 1997.

[8] D. G. Feitelson and A. M. Weil. Utilization
and predictability in scheduling the IBM SP2 with
backfilling. In12th International Parallel Process-
ing Symposium, pages 542–546, April 1998.

[9] H. Franke, P. Pattnaik, and L. Rudolph. Gang
Scheduling for Highly Efficient Multiprocessors. In
Sixth Symposium on the Frontiers of Massively Par-
allel Computation, Annapolis, Maryland, 1996.

[10] N. Islam, A. L. Prodromidis, M. S. Squillante, L. L.
Fong, and A. S. Gopal. Extensible Resource Man-
agement for Cluster Computing. InProceedings
of the 17th International Conference on Distributed
Computing Systems, pages 561–568, 1997.

[11] J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira,
and J. Riordan. Modeling of Workload in MPPs.
In Proceedings of the 3rd Annual Workshop on
Job Scheduling Strategies for Parallel Processing,
pages 95–116, April 1997. In Conjuction with
IPPS’97, Geneva, Switzerland.

[12] X. Ma, J. Jiao, M. Campbell, and M. Winslett. Flex-
ible and efficient parallel i/o for large-scale multi-
component simulations. InProceedings of The
4th Workshop on Parallel and Distributed Scien-
tific and Engineering Computing with Applications,
in conjunction with the 2003 International Parallel
and Distributed Processing Symposium, 2003.

[13] J. E. Moreira, H. Franke, W. Chan, L. L. Fong,
M. A. Jette, and A. Yoo. A Gang-Scheduling Sys-
tem for ASCI Blue-Pacific. InHigh-Performance
Computing and Networking, 7th International Con-
ference, volume 1593 ofLecture Notes in Computer
Science, pages 831–840. Springer-Verlag, April
1999.

[14] N. Nieuwejaar and D. Kotz. Low-level interfaces
for high-level parallel I/O. InProceedings of the
IPPS ’95 Workshop on Input/Output in Parallel and
Distributed Systems, pages 47–62, April 1995.

[15] J. K. Ousterhout. Scheduling Techniques for Con-
current Systems. InThird International Conference
on Distributed Computing Systems, pages 22–30,
1982.

[16] K. Suzaki and D. Walsh. Implementation of
the Combination of Time Sharing and Space Shar-
ing on AP/Linux. In IPPS’98 Workshop on
Job Scheduling Strategies for Parallel Processing,
March 1998.

[17] Y. Wiseman and D. G. Feitelson. Paired Gang
Scheduling. IEEE Transactions on Parallel and
Distributed Systems.

[18] Y. Zhang, H. Franke, J. Moreira, and A. Sivasubra-
maniam. The Impact of Migration on Parallel Job
Scheduling for Distributed Systems . InProceed-
ings of 6th International Euro-Par Conference Lec-
ture Notes in Computer Science 1900, pages 245–
251, Aug/Sep 2000.

[19] Y. Zhang, H. Franke, J. Moreira, and A. Sivasub-
ramaniam. Improving Parallel Job Scheduling by
Combining Gang Scheduling and Backfilling Tech-
niques. InProceedings of the International Paral-
lel and Distributed Processing Symposium, pages
133–142, May 2000.

[20] Y. Zhang, H. Franke, J. Moreira, and A. Siva-
subramaniam. An Integrated Approach to Paral-
lel Scheduling Using Gang-Scheduling, Backfilling
and Migration. IEEE Transactions on Parallel and
Distributed Systems, 14(3):236–247, March 2003.

13

[21] Y. Zhang, A. Sivasubramaniam, J. Moreira, and
H. Franke. A Simulation-based Study of Schedul-
ing Mechanisms for a Dynamic Cluster Environ-
ment. InProceedings of the ACM 2000 Interna-
tional Conference on Supercomputing, pages 100–
109, May 2000.

14

