
The Impact of More Accurate Requested Runtimes on Production
Job Scheduling Performance

Su-Hui Chiang Andrea Arpaci-Dusseau Mary K. Vernon

Computer Sciences Department
University of Wisconsin-Madison

{suhui, dusseau, vernon}@cs.wisc.edu

Abstract

This paper addresses the question of whether more accu-
rate requested runtimes can significantly improve high-
performance priority backfill policies, for production
workloads running on leading edge systems such as the
1500 Origin 2000 system at NCSA or the new Tera-
GRID. This question has been studied previously for
FCFS-backfill using a limited set of performance met-
rics. The new results for higher performance backfill
policies, heavier system load, and for a broader range of
performance metrics show that more accurate requested
runtimes have much greater potential to improve system
performance than suggested in previous results. Further-
more, the results show that (a) using user test runs to
improve requested run time estimates can achieve most
of the benefit, and (b) users who provide more accurate
requested runtimes can expect improved performance,
even if other users do not provide the more accurate re-
quests.

1 Introduction

Many state-of-the-art production parallel job schedulers
are non-preemptive and use a requested runtime for each
job to make scheduling decisions. For example, the
EASY Scheduler for the SP2 [Lif95, SCZL96] imple-
ments the First-Come First-Served (FCFS)-backfill pol-
icy, in which the requested runtime is used to deter-
mine whether a job is short enough to be backfilled on
a subset of the nodes during a period when those nodes
would otherwise be idle. The more recent Maui Sched-
uler ported to the NCSA Origin 2000 (O2K) [NCSa]
and the large NCSA Linux Cluster [NCSb] implements
a parameterized priority-backfill scheduler that uses the
requested runtime to determine job priority as well as
whether it can be backfilled. Recent work [CV01a] has
shown that the priority-backfill policy on the O2K has

similar performance to FCFS-backfill, but that modify-
ing the policy priority parameters to favor short jobs, in
a manner analogous to some of the high performance
scheduling policies originally developed for unipro-
cessor systems, provides superior average wait, 95th-
percentile wait, and average slowdown, as well as sim-
ilar maximum wait time as for FCFS-backfill, for the
large production workloads that run on the O2K. Thus,
the requested runtimes are needed not only for backfill
decisions, but also to enable favoring short jobs in a way
that improves service for nearly all jobs.

The advantages of nonpreemptive scheduling policies
include low scheduling overhead and relatively easy
implementation. Furthermore, simulation results for
the O2K job traces show that non-preemptive back-
fill policies that give priority to jobs with short re-
quested runtime can have performance that is reason-
ably competitive with high performance (but more dif-
ficult to implement) preemptive policies such as gang
scheduling or spatial equi-partitioning [CV01a]. This
relatively high performance is achieved in spite of the
fact user estimated runtimes are often highly inaccu-
rate [FW98, MF01, CB01, CV01b]. For example, anal-
ysis of the NCSA O2K logs shows that 30% of the jobs
that request 200 or more hours of runtime terminate in
under ten hours [CV01b].

The key open question addressed in this paper is whether
the high performance backfill policies could be fur-
ther improved with more accurate requested runtimes.
Several previous simulation studies of FCFS-backfill
show that more accurate requested runtime has only
minimal impact on the average wait time or average
slowdown [FW98, STF99, ZFMS00, ZFMS01, MF01].
We briefly revisit the question for FCFS-backfill, using
workloads from recent months on the O2K that have sig-
nificantly heavier system load (e.g., up to 100% cpu de-
mand), and using a more complete set of performance
measures. More importantly, we investigate the question
of whether more accurate requested runtimes can sig-

nificantly improve the higher-performance backfill poli-
cies that use requested runtimes to favor short jobs. We
evaluate these questions using complete workload traces
from the NCSA O2K and consider not only average wait
time and average slowdown as in previous studies, but
also the maximum and 95th-percentile wait time. Each
of these measures is obtained as a function of actual job
runtime and as a function of the number of processors, to
determine how performance varies for jobs with differ-
ent actual runtime or jobs that use large or small numbers
of processors.

To study the above key question, two design issues that
relate to preventing starvation in backfill policies that
favor short jobs require further investigation. As dis-
cussed in Sections 2.3 and 3.1, preventing starvation
was not fully addressed in previous work. In particular,
the problem is more significant for the heavier system
load in recent months on the O2K. The first design is-
sue is the reservation policy; that is, how many jobs are
given reservations and whether the reservations arefixed
or theydynamicallychange for dynamic priority func-
tions. The second design issue is the relative weight in
the priority function for requested job runtime and cur-
rent job wait time. A more complete analysis of these
issues is needed in order to set these parameters properly
for studying the potential improvement of more accurate
requested runtimes.

The key results in the paper are as follows:

• For a set of high performance backfill policies
that favor short jobs (i.e., LXF&W-, SJF&W-,
LX1/2F&W-, and ST 1/2F&W-backfill), more ac-
curate requested runtimes dramatically improve the
average slowdown, greatly improve the average and
maximum wait for short jobs without increasing the
average wait for long jobs, and greatly improves the
95th-percentile wait for all jobs.

• Nearly all of this improvement is realized even if
requested runtime is up to a factor of two times the
actual runtime. Furthermore, (a) much of the im-
provement can be achieved even if only 50% - 80%
of the jobs provide the approximately accurate run-
time requests, and (b) test runs to more accurately
estimate requested runtime do not reduce the per-
formance gains.

Additional contributions of the paper include:

• A summary of the very recent workloads (Octo-
ber 2000 - July 2001) on the O2K, including sev-
eral months with heavier processor and memory
demand than workloads used previously to design
scheduling policies. Note that heavier system load
can have a significant impact on the magnitude

of the performance differences among alternative
scheduling policies.

• For the NCSA O2K architecture and workload, us-
ing a small number of reservations (2 to 4) out-
performs a single reservation, but a larger number
of reservations results in poor performance during
months with exceptionally heavy load.

• Compared to the highest performance previous
backfill policy, namely LXF&W-backfill with sin-
gle reservation, LXF&W-backfill with two to four
reservations or two proposed new priority backfill
policies (LX1/2F&W and ST 1/2F&W-backfill),
with two reservations, significantly improve the
maximum wait time.

• In systems where only 60% of the jobs provide ap-
proximately accurate requested runtimes, the jobs
with improved runtime requests have nearly the
same wait time statistics as if 100% of the jobs pro-
vided approximately accurate requested runtimes,
thus providing a significant incentive for individual
users to improve the accuracy of their runtime re-
quests.

The remainder of this paper is organized as follows. Sec-
tion 2 provides background on the system and workloads
used in this study, and on related previous work. Sec-
tion 3 provides results concerning the impact of reserva-
tion policies and the relative priority weight between job
requested runtime and current job wait time for backfill
policies. Section 4 studies the potential benefit of us-
ing more accurate requested runtimes in priority backfill
policies. Section 5 shows whether the benefit of more
accurate requested runtimes can be realized by using test
runs to estimate the more accurate requested runtimes.
Section 6 provides the conclusions of this work.

2 Background

2.1 The NCSA Origin 2000 System

The NCSA O2K is a large production parallel system
that provides 960 processors and 336 GB of memory for
processing batch jobs that do not request a dedicated
host. The processors are partitioned into eight hosts,
each of which has 64 or 128 processors and 32 or 64
GB of memory. The jobs are scheduled using a ported
version of the Maui Scheduler that implements a backfill
policy with a parameterized priority function, and evicts
a job if it has run one hour longer than its requested run-
time. More detail about the system and scheduler con-
figuration can be found in [NCSa, CV01a].

Table 1. Summary of Monthly NCSA O2K Workloads

Month Overall
Job Class

vst sj st sj mt sj lt sj vst mj st mj mt mj lt mj vst lj st lj mt lj lt lj
Oct00

#jobs 6552 1342 2491 576 276 248 624 240 50 57 362 208 78
proc demand 82% 1% 11% 9% 7% 0% 10% 11% 2% 0% 14% 13% 4%
mem demand 81% 0% 6% 7% 9% 0% 6% 6% 2% 0% 6% 18% 20%

Nov00
#jobs 6257 1719 2279 417 60 287 499 186 16 146 513 110 25
proc demand 85% 1% 10% 8% 3% 1% 9% 12% 3% 1% 21% 13% 3%
mem demand 61% 1% 5% 5% 2% 0% 5% 6% 1% 0% 11% 11% 14%

Dec00
#jobs 4782 1114 2056 563 164 100 203 215 59 45 135 113 15
proc demand 89% 0% 10% 10% 9% 0% 4% 18% 4% 0% 8% 13% 12%
mem demand 63% 0% 6% 8% 5% 0% 2% 10% 6% 0% 3% 13% 9%

Jan01
#jobs 4837 945 2000 649 164 185 267 158 151 37 170 97 14
proc demand *102% 1% 9% 13% 7% 0% 4% 18% 10% 0% 9% 15% 14%
mem demand 76% 0% 6% 8% 5% 0% 3% 10% 14% 0% 6% 9% 14%

Feb01
#jobs 6784 2328 2264 479 180 357 333 119 63 281 219 91 70
proc demand *97% 1% 9% 9% 8% 0% 6% 13% 7% 0% 11% 12% 22%
mem demand *87% 1% 6% 5% 5% 0% 4% 8% 8% 0% 8% 14% 28%

Mar01
#jobs 5929 1915 1869 644 221 372 290 140 50 78 224 87 39
proc demand *100% 1% 12% 11% 10% 1% 4% 10% 5% 0% 11% 18% 17%
mem demand *92% 1% 7% 8% 9% 0% 3% 6% 8% 0% 9% 11% 30%

Apr01
#jobs 6206 2106 2304 643 202 235 238 70 78 47 159 90 34
proc demand 78% 1% 13% 12% 9% 0% 5% 8% 5% 0% 8% 8% 8%
mem demand 77% 1% 6% 7% 7% 0% 3% 3% 9% 0% 9% 8% 25%

May01
#jobs 6573 2220 2012 611 191 364 355 115 96 214 246 104 45
proc demand *99% 2% 12% 10% 10% 1% 6% 10% 12% 1% 8% 19% 9%
mem demand *92% 1% 5% 9% 6% 0% 3% 4% 14% 1% 10% 18% 20%

Jun01
#jobs 6364 2076 2317 690 82 271 346 113 86 91 189 84 19
proc demand 86% 2% 12% 15% 6% 1% 8% 10% 9% 1% 9% 10% 4%
mem demand 75% 1% 7% 11% 4% 0% 4% 4% 12% 0% 9% 17% 6%

Jul01
#jobs 5705 1363 2070 664 136 243 415 177 111 102 263 131 30
proc demand 89% 1% 12% 15% 5% 1% 7% 14% 6% 1% 12% 10% 5%
mem demand 81% 1% 8% 9% 5% 0% 4% 7% 13% 0% 9% 18% 8%

’*’ indicates exceptionally high load.

Job
Class

vst st mt lt sj mj lj Time class: requested runtime
≤5hrs [5, 50) [50, 200) [200, 400) P≤ 8 P≤ 16 P≤ 64 P = requested processors

hrs hrs hrs M ≤ 2GB M ≤ 4GB M ≤ 25GB M = requested memory

2.2 Workloads

In this study, we evaluate scheduling policy perfor-
mance using simulations with ten different one-month
job traces (obtained during October 2000 - July 2001)
from the O2K. Three of these months (October - Decem-
ber 2000) were fully characterized in [CV01b]. The load

during each month is summarized in Table 1. The overall
processing demand (”proc demand”) per month is based
on the actual runtimes of the jobs submitted that month,
and is expressed as a percentage of the total available
processor-minutes for the month. Similarly the overall
memory demand per month is the sum of the memory
used by jobs submitted during the month, expressed as

0

0.2

0.4

0.6

0.8

1 1m

 10
m

 1h 5h 10
h

 5
0h

 10
0h

 20
0h

 40
0h

cu
mu

lat
ive

 fr
ac

tio
n o

f jo
bs

actual runtime (minutes)

100 101 102 103 104

R = 50h
R = 400h

(a) Distribution of Actual Runtime

10
0

10
1

10
2

10
3

10
4

0.1

0.2

0.3

0.4

ac
tua

l ru
nti

me
 / r

eq
ue

ste
d

requested runtime (minutes)

10
m

1h 5h 10
h

50
h

20
0h

40
0h

50−percentile
35−percentile
20−percentile

(b) Distributions of Actual/Requested Runtime

Figure 1. Inaccuracy in the Requested Runtime (R) for O2K Wor kloads
(January 2001 - July 2001)

a fraction of the memory available that month. Percent-
ages of processor and memory demand are also given
for each job class, where job class is defined by the re-
quested runtime and requested processor and memory
resources, as defined below the table.

There are two key differences in the traces summa-
rized in the table compared to those considered previ-
ously [CV01a, CV01b]. First, the actual job runtime in
these traces includes the initial datasetup time, during
which the job occupies its requested resources (i.e., pro-
cessors and memory) but it has not yet started its com-
putation. The data setup time adds negligible (≤ 1%)
total cpu and memory load each month, but it is signif-
icant (e.g., 10 hours) for some jobs. Second, the traces
include four months (January - March and May 2001)
that have exceptionally high demand for processor re-
sources (i.e., very close to 100%), and three of those
months (February, March, and May 2001) also have ex-
ceptionally high memory demand (> 90%). The other
three months in 2001 (April, June, and July) have cpu
demand (80 - 90%) and memory demand (70 - 80%)
that is typical in earlier O2K workloads [CV01a]. Re-
sults in the paper will be shown for three of the heavy
load months (January - March 2001), one of the months
that follows a heavy load month (April 2001) and one
typical month (July 2001).

Other characteristics of the workloads during 2001 are
similar to the previous months in 2000. In particular,
there is an approximately similar mix of job classes (i.e.,
sizes) from month to month (as shown in Table 1), and
there is a large discrepancy between requested and ac-
tual runtimes, as illustrated in Figure 1. For jobs sub-
mitted during January - July 2001, Figure 1(a) plots the
distribution of actual runtime for jobs that requested 50
hours, and jobs that requested 400 hours. Figure 1(b)
plots points in the distribution (i.e., the 20th-, 35th-, and
50th-percentile) of the ratio of the actual runtime divided
by the requested runtime as a function of requested run-
time. These results show that the requested runtimes

can be very inaccurate. For example, Figure 1(a) shows
that almost 30% of the jobs that request 400 hours of
runtime actually terminate in under 10 hours, and an-
other 10% have actual runtime between 10 and 50 hours.
Furthermore, for requested runtime of 50 hours or 400
hours, approximately 10% of the jobs terminate in un-
der 1 minute. Figure 1(b) shows that for any range of
requested runtimes greater than one minute, 35% of the
jobs use less than 10% of their requested runtime (i.e.,
requested runtime is a factor of 10 or more times the
actual runtime), and another 15% of the jobs have actual
runtime between 10% and 30% of the requested runtime.
Similarly large discrepancies between requested and ac-
tual runtimes have also recently been reported for many
SP2 traces [MF01, CB01]. In particular, the results by
Cirne and Berman [CB01] show that for four SP2 traces,
50-60% of the jobs use under 20% of the requested run-
time, which is very similar to the results for the NCSA
O2K workloads reviewed above.

2.3 Previous Work

In this section, we review previous work on three top-
ics: alternative priority functions for backfill policies,
the impact of reservation policies, and the impact of us-
ing more accurate requested runtimes on backfill poli-
cies.

The most comprehensive previous comparison of al-
ternative priority backfill policies [CV01a] shows that,
among the priority functions defined in Table 2, the
LXF&W-backfill policy that gives priority to short jobs
while taking current job waiting time into account out-
performs FCFS-backfill, whereas SJF-backfill has the
problem of starvation (i.e., large maximum wait) under
high load. This previous paper also provides a review of
earlier papers [ZK99, ZFMS00, PK00] that compare the
SJF-backfill and FCFS-backfill policies.

Reservation policies concern (a) the number of jobs
waiting in the queue that are given (earliest possible)

Table 2. Priority Functions of Previous Backfill Policies

Priority Weight
Job MeasureFCFS SJF LXF LXF&W

1 0 0 w(0.02) current wait time,Jw, in hours
0 1 0 0 inverse of requested runtime (1

R)
0 0 1 1 current job expansion factor (Jw + R in hours

R in hours)

reservations for processor and memory resources, and
(b) whether the reservations are dynamic or fixed. Pre-
vious results by Feitelson and Weil [FW98] show that,
for FCFS-backfill and a set of SP workloads, average
slowdown is similar when only one (i.e., the oldest)
waiting job has a reservation or when all jobs have a
reservation. In more recent work [MF01] they find sim-
ilar results for further SP2 workloads, for workloads
from other systems, and for many synthetic workloads,
but they find that for many other SP2 monthly work-
loads, a single reservation significantly improves the
average slowdown (by> 40%) and average response
time (by > 30%). Several papers study backfill poli-
cies that have reservations for all waiting jobs [STF99,
PK00, ZFMS00], while still other papers evaluate back-
fill policies that give reservations to only one waiting
job [Lif95, SCZL96, Gib97, ZK99, CV01a].

With dynamic reservations, job reservations and the or-
dering of job reservations can change when a new job
arrives, or if the relative priorities of the waiting jobs
change with time. For example, in SJF-backfill with a
single dynamic reservation, an arriving job will preempt
the reservation held by a longer job. Withfixedreserva-
tions, in contrast, once a job is given a reservation, it may
be given an earlier reservation when another job termi-
nates earlier than its requested runtime, but recomputed
job reservations will have the same order as the existing
reservations, even if a job that has no reservation or a
later reservation attains a higher priority. A single fixed
reservation is used to reduce starvation in SJF-backfill
in [CV01a]. In [PK00], each job is given a reservation
when it arrives. They compare a form of dynamic (”no
guarantee”) reservations, in which reservations are only
recomputed if and when a job finishes early but the re-
computed reservations are done in priority (i.e., FCFS or
SJF) order, against ”guaranteed reservations”, in which
job reservations are recomputed only in the same order
as the existing reservations. They find that the dynamic
reservations have lower average slowdown and average
wait than guaranteed reservations for the priority backfill
policies studied, including SJF-backfill. Results in this
paper include the maximum wait measure, which shows
that fixed reservations improve SJF-backfill; otherwise
the results in this paper are consistent with their results.

Two previous papers show that perfectly accurate re-
quested runtimes for FCFS-backfill improve the average
slowdown by no more than 30% [MF01] and the av-
erage wait time by only 10 - 20% [STF99], compared
to using the highly inaccurate requested runtimes given
in SP traces. Several papers [FW98, ZK99, ZFMS00,
ZFMS01, MF01] compare the performance of various
models of requested runtimes against perfectly accu-
rate runtime requests. For a given actual runtime, they
model the requested runtime overestimation (i.e., re-
quested runtime - actual runtime) as a factor times the
actual runtime, where the factor is drawn from a uni-
form distribution between 0 and a fixed parameter C.
The paper [ZK99] also includes a model where the fac-
tor is deterministic. The results in those papers show that
even for C as large as 300 [FW98, MF01] (or 50 [ZK99]
or 10 [ZFMS00, ZFMS01]), the average slowdown or
average wait is similar to, or even slightly better than
that of C = 0. Additional results in [MF01] show that
multiplying the user requested runtimes by two slightly
improves on average slowdown and response time for
SP workloads and FCFS-backfill. These papers con-
clude that there is no benefit of using accurate requested
runtimes for FCFS-backfill and SJF-backfill. We note
that for large C (or when multiply requested runtime by
two), jobs with long runtimes can have very large run-
time overestimation, which leaves larger holes for back-
filling shorter jobs. As a result, average slowdown and
average wait may be lower, as reported in these previ-
ous papers. On the other hand, these systems may have
poorer maximum wait, which was not studied in any of
these previous papers.

3 Reducing Starvation in Systems
that Favor Short Jobs

Backfill policies that favor short jobs have the potential
problem of poor maximum wait for long jobs. Mecha-
nisms for reducing the maximum wait include using a
larger number of reservations, and increasing the prior-
ity weight on the current job wait time. On the other
hand, either of these mechanisms may increase the aver-

0

2

4

6

av
g

wa
it t

im
e

(h
rs

)

Ja
n

01

Fe
b

01

M
ar

 0
1

Ju
n

01

Ju
l 0

1

previous
typical

month after
heavy load

new heavy load
 (Jan−Mar)

(a) Avg Wait

0

10

20

30

95
−p

er
ce

nt
ile

 w
ai

t (
hr

s)

Ja
n

01

Fe
b

01

M
ar

 0
1

Ju
n

01

Ju
l 0

1

FCFS−bf, 1 reservation
SJF−bf, 1 fixed
LXF&W(0.02)−bf, 1 dynamic

(b) 95th-percentile Wait

0

200

400

600

m
ax

 w
ai

t t
im

e
(h

rs
)

Ja
n

01

Fe
b

01

M
ar

 0
1

Ju
n

01

Ju
l 0

1

(c) Max Wait

10
0

10
2

10
4

0

2

4

6

8

10

12
1m 10m 1h 10h 50h

av
g

wa
it

tim
e

(h
rs

)

actual runtime (minutes)

FCFS−bf, 1 reservation
LXF&W(0.02)−bf, 1 dynamic
SJF−bf, 1 fixed res.

(d) Avg Wait vs. Actual Runtime
(January 2001)

10
0

10
2

10
4

0

5

10

15

20

1m 10m 1h 10h 50h

95
−p

er
ce

nt
ile

 w
ait

 (h
rs

)
actual runtime (minutes)

(e) 95th-percentile Wait vs. Actual Runtime
(January 2001)

Figure 2. Performance Comparisons of Previous Backfill Poli cies

age and 95th-percentile wait for all jobs. The goal of this
section is to provide a more comprehensive evaluation
of the trade-offs in the wait time measures for different
reservation policies and for alternative priority functions
that give different relative weight to the current job wait-
ing time. In evaluating the tradeoffs for each policy, we
seek to achieve a maximum wait that is no greater than
the maximum wait in FCFS-backfill, while reducing the
average and 95th-percentile wait time as much as possi-
ble.

In this section, and in the remainder of the paper, policy
comparisons will be shown for five representative work-
loads. These workloads include (a) three of the four new
exceptionally heavy loadmonths (i.e., January - March
2001), which are the most important months for policy
optimization, (b) June 2001, which has similar policy
performance at April 2001 since both of these months
follow an exceptionally heavy load month, and (c) July
2001 which has a typical load and policy performance
similar to October - December 2000 and other previ-
ously studied workloads. The other new exceptionally
heavy load month (May 2001) has somewhat lower wait
time statistics for each policy than the other three excep-
tionally heavy months, due to a larger number of short
jobs submitted that month.

Section 3.1 evaluates previous backfill policies to show
that starvation is a more significant problem for the new
exceptionally heavy load workloads on the NCSA O2K.
Section 3.2 evaluates several alternative reservation poli-
cies. Section 3.3 evaluates several new priority functions

with different relative weights on the current job waiting
time and compares the best new priority backfill policies
against FCFS-backfill.

3.1 Re-evaluation of Previous Policies

In this section, we use the recent O2K workloads to re-
evaluate the FCFS-backfill, SJF-backfill, and LXF&W-
backfill policies (defined in Table 2). Note that both
SJF-backfill and LXF&W-backfill favor short jobs, but
LXF&W-backfill also has a priority weight for current
job wait time. The reservation policies in these previ-
ously defined schedulers are: FCFS-backfill uses one
reservation, LXF&W-backfill uses one dynamic reser-
vation, and SJF-backfill uses one fixed reservation (to
reduce the maximum wait).

Figure 2 compares the three policies, showing (a) over-
all average wait, (b) 95th-percentile wait, (c) maximum
wait, and (d)-(e) average and 95th-percentile wait, re-
spectively, as a function of actual runtime, during a rep-
resentative heavy load month. Comparisons in previous
work [CV01a] are similar to the comparisons for the July
2001 workload in figures (a) - (c). Conclusions for the
new heavy load months that are similar to previous work
are that (1) both SJF-backfill and LXF&W-backfill have
significantly lower 95th-percentile wait (for all ranges
of actual runtime) than that of FCFS-backfill, and (2)
SJF-backfill has the problem of poor maximum wait for
many of the workloads, as shown in figure (c). Conclu-

0

1

2

3

4

5

av
g

w
ai

t t
im

e
(h

rs
)

Ja
n

01

F
eb

 0
1

M
ar

 0
1

Ju
n

01

Ju
l 0

1

1 dynamic
2 dynamic
4 dynamic
8 dynamic

(a) Avg Wait

0

10

20

30

95
−

pe
rc

en
til

e
w

ai
t (

hr
s)

Ja
n

01

F
eb

 0
1

M
ar

 0
1

Ju
n

01

Ju
l 0

1

1 dynamic
2 dynamic
4 dynamic
8 dynamic

(b) 95th-percentile Wait

0

100

200

300

400

500

m
ax

 w
ai

t t
im

e
(h

rs
)

Ja
n

01

F
eb

 0
1

M
ar

 0
1

Ju
n

01

Ju
l 0

1

1 dynamic
2 dynamic
4 dynamic
8 dynamic

(c) Max Wait

0

50

100

150

200

a
vg

 s
lo

w
d

o
w

n

Ja
n

 0
1

F
e

b
 0

1

M
a

r
0

1

Ju
n

 0
1

Ju
l 0

1

1 dynamic
2 dynamic
4 dynamic
8 dynamic

(d) Avg Slowdown

Figure 3. Impact of Number of Reservations on LXF-backfill
(Dynamic Reservations)

sions for the new heavy load months thatdiffer from the
results in previous work (and also differ from the results
for July 2001), are that (1) both LXF&W-backfill and
SJF-backfill have considerably loweraverage waitthan
FCFS-backfill (for most ranges of actual runtimes), and
(2) LXF&W-backfill also has significantlyhigher maxi-
mum waitthan FCFS-backfill.

The starvation problems of LXF&W-backfill and SJF-
backfill are addressed in the next two sections. The ques-
tions are (1) whether multiple reservations can improve
the performance, particularly the maximum wait, of SJF-
backfill and LXF&W-backfill, (2) whether fixed reser-
vations can improve the maximum wait for LXF&W-
backfill, and (3) whether new priority functions, such as
adding a priority weight for current waiting time to the
SJF-backfill priority function, or more generally whether
new relative priority weights between requested job run-
time and current job wait time, can improve on the previ-
ous policy priority functions. Section 3.2 addresses the
first two questions. Section 3.3 studies the third ques-
tion.

3.2 New Reservation Policy Comparisons

This section studies the impact of reservation policies,
i.e., the number of reservations and dynamic versus fixed
reservations, on backfill policies. We use three sim-
ple priority backfill policies to evaluate the reservation
policies, namely: FCFS-backfill, SJF-backfill, and LXF-
backfill (all with weight on current waiting time equal to
zero). Adding weights for current waiting time will be
studied in the next section.

For each of the three policies, we evaluated the perfor-
mance for the following numbers of reservations: 1, 2, 4,
6, 8, 12, and 16. For the LXF-backfill and SJF-backfill
policies that have dynamic priority functions, we evalu-
ate the performance of both dynamic and fixed reserva-
tions, each over the entire range of number of reserva-
tions.

Figure 3 shows the performance of LXF-backfill with
up to eight dynamic reservations. Twelve and sixteen
reservations have similar or worse performance as that
of eight reservations. The impact of the number of reser-
vations is similar for FCFS-backfill and SJF-backfill (not
shown to conserve space), except that four reservations
performs slightly better for SJF-backfill. The key con-
clusion is that using a few (i.e., 2-4) reservations sig-
nificantly reduces the maximum wait time compared to
using a single reservation, by about 30% for most of the
new heavy load months, as shown in Figure 3(c). Fur-
thermore, using more than a couple of reservations usu-
ally makes minimal further improvement for the max-
imum wait, yet significantly increases the average and
95th-percentile wait, as shown in Figure 3(a) and (b), for
the new heavy load workloads or immediately following
the heavy load months. For months with a typical O2K
load (e.g., July 2001), the impact of reservation policies
on backfill policies is minimal, which agrees with pre-
vious results for the average slowdown of FCFS-backfill
in [FW98].

Other results omitted to conserve space show that fixed
and dynamic reservations (with 2-4 reservations) have
similar performance for LXF-backfill and the policies
developed in the next section. However, for SJF-backfill,
dynamic reservations has higher maximum wait than
fixed reservations because (particularly under heavy
load) dynamic reservations for jobs with long requested
runtimes are often usurped by newly arriving jobs that
have short requested runtimes.

3.3 New Priority Functions

In this section, we propose three alternative new prior-
ity functions and study the impact of alternative priority
weights for current job wait time together with the im-
pact of reservation policies. The next section will com-
pare the best new priority functions against the previous
backfill policies.

Table 3. Weights for New Priority Backfill Policies

Priority Weight
Job Measure

SJF&W ST 1/2F&W LX1/2F&W

w(0.05-0.2) w(0.01-0.05) w(0.01-0.02) current wait time,Jw, in hours

1 0 0 Jr = 400
∗

R in hours

0 1 0
√

Jr

0 0 1
√

Jx, whereJx = Jw + R in hours
R in hours

(* The maximum O2K requested runtime, R, is 400 hours.)

0

1

2

3

4

av
g

w
ai

t t
im

e
(h

rs
)

Ja
n

01

Fe
b

01

M
ar

 0
1

Ju
n

01

Ju
l 0

1

W
w

 = 0
W

w
 = 0.005

W
w

 = 0.01
W

w
 = 0.02

W
w

 = 0.05

(a) Avg Wait

0

5

10

15

20

25

95
−p

er
ce

nt
ile

 w
ai

t (
hr

s)

Ja
n

01

Fe
b

01

M
ar

 0
1

Ju
n

01

Ju
l 0

1

W
w

 = 0
W

w
 = 0.005

W
w

 = 0.01
W

w
 = 0.02

W
w

 = 0.05

(b) 95th-percentile Wait

0

100

200

300

400

m
ax

 w
ai

t t
im

e
(h

rs
)

Ja
n

01

Fe
b

01

M
ar

 0
1

Ju
n

01

Ju
l 0

1

(c) Max Wait

Figure 4. Performance Comparisons of Job Wait Priority Valu es (Ww) for L X1/2F&W-backfill
(One Dynamic Reservation)

The new (dynamic) priority functions are defined in
Table 3. The SJF&W priority extends the previous
SJF function with a weight for the current job wait
time. Note that in theJr metric for the SJF&W and
ST 1/2F&W priority functions, the inverse of requested
runtime (1/R) is normalized to the maximum allowed
requested runtime (i.e., 400 hours). The ST 1/2F&W
the LX1/2F&W priority functions are designed to re-
duce discrimination against longer requested runtimes
by applying a square root to the job metric that includes
requested runtime. We find that ST 1/2F&W-backfill
and LX1/2F&W-backfill (with an appropriate priority
weight Ww) only very slightly outperform SJF&W-
backfill and LXF&W-backfill, as will be shown be-
low. Thus, further alternatives for discriminating against
longer requested runtimes are not likely to lead to any
significant improvement.

Figure 4 shows the impact of alternative priority weights
for current wait time (Ww) on LX1/2F&W-backfill with
one dynamic reservation. Results are similar for 2-4
reservations, and for the other two new priority func-
tions, as well as for LXF&W (not shown). The Fig-
ure shows that average and 95th-percentile wait are not
highly sensitive toWw in the range of 0.005 - 0.05, and
that during heavy load months, this range ofWw values
significantly reduces the maximum wait (by 30-50%)
compared toWw = 0. Larger values ofWw (e.g.,Ww =
1) significantly increase the average and 95th-percentile

wait time, with only small improvements in the maxi-
mum wait (not shown).

Similar to the previous section, we find that using a small
number of reservations (i.e., two or three) outperforms a
single reservation for each of the alternative new priority
functions.

Figure 5 compares the performance of FCFS-backfill,
LXF&W(0.02)-backfill, and the two best alternative new
priority backfill policies (i.e., LX1/2F&W(0.01) and
ST 1/2F&W(0.05)-backfill, which slightly outperform
SJF&W-backfill), each with 2 - 3 reservations. One
key result is that using 2-4 reservations instead of one
reservation has improved the overall performance of all
four policies. For example, compared to Figure 2, the
maximum wait for FCFS-backfill and LXF&W(0.02)-
backfill is reduced by up to 30% while the average
or 95th-percentile wait is increased by on the order of
10% or less. Another key result is that LXF&W(0.02)-
backfill with 2-4 reservations has maximum wait that
is reasonably competitive with FCFS-backfill, yet sig-
nificantly outperforms FCFS-backfill for the other wait
time statistics. LX1/2F&W-backfill has very slightly
better overall performance than LXF&W-backfill. Fi-
nally, ST 1/2F&W-backfill has better average and 95th-
percentile wait than LX1/2F&W-backfill, but more of-
ten has significantly poorer maximum wait than FCFS-
backfill (e.g., in February and June 2001).

0

2

4

6

a
vg

 w
a

it
tim

e
 (

h
rs

)

Ja
n

 0
1

F
e

b
 0

1

M
a

r
0

1

Ju
n

 0
1

Ju
l 0

1

(a) Avg Wait

0

10

20

30

9
5

−
p

e
rc

e
n

til
e

 w
a

it
(h

rs
)

Ja
n

 0
1

F
e

b
 0

1

M
a

r
0

1

Ju
n

 0
1

Ju
l 0

1

FCFS, 2 reservations
ST1/2F&W(0.05), 2 dynamic
LX1/2F&W(0.01), 2 dynamic
LXF&W(0.02), 3 dynamic

(b) 95th-percentile Wait

0

50

100

150

200

m
a

x
w

a
it

tim
e

 (
h

rs
)

Ja
n

 0
1

F
e

b
 0

1

M
a

r
0

1

Ju
n

 0
1

Ju
l 0

1

(c) Max Wait

0

50

100

150

200

a
v
g

 s
lo

w
d

o
w

n

J
a

n
 0

1

F
e

b
 0

1

M
a

r
0

1

J
u

n
 0

1

J
u

l
0

1

(d) Avg Slowdown

Figure 5. Comparisons of New Priority Backfill Policies that Favor Short Jobs

The overall conclusion is that, similar to results
in [CV01a], giving priority to short jobs but also using an
appropriate weight for current job wait can significantly
outperform FCFS-backfill. In the remainder of this pa-
per, we study the impact of more accurate requested run-
times on these high performance backfill policies that
favor short jobs.

4 More Accurate Requested Run-
times

There is reason to believe that runtimes can be more ac-
curately estimated for the jobs that run on the O2K. In
particular, a majority of the jobs use one of the default
requested runtimes, which are ”very small” (5 hours),
”small” (50 hours), ”medium” (200 hours), and ”large”
(400 hours). This indicates that users have the habit of
specifying hugely approximate requested runtimes due
to the course-grain defaults that are available. Further-
more, since the current priority-backfill policy provides
similar 95th-percentile waiting time for the entire range
of job runtimes (see Figure 2(e) and results in [CV01a]),
there isn’t currently any incentive for an individual user
to provide a more accurate requested runtime. This ex-
plains why, for example, many of the jobs that have ac-
tual runtime of 10 hours have requested runtime of 50,
200, or 400 hours.

This section uses notation defined in Table 4 and eval-
uates the performance improvement, as a function of
actual job runtime, for various scenarios of more accu-
rate requested runtimes. LettingT denote the actual job
runtime from the trace, we consider three cases. In the
first (implausible) case, each requested runtime is per-
fect (i.e.,R∗ = T). In the second case, the requested
runtimes are imperfect but areapproximatelyaccurate
(i.e., R∗ = min{R, kT }, 1 < k ≤ 2). In the third
case, only a fraction (e.g., 80% or 60%) of the jobs have
these approximately accurate requested runtimes, while
the rest of the jobs, selected randomly, have requested

runtimes as given in the job log, which are generally
highly inaccurate. The first case is used to provide a
bound on the maximum benefit of more accurate run-
times, while the second and third cases are used to assess
performance gains that are more likely to be achievable.
Section 5 will explore the performance impact of using
short test runs to achieve the more accurate runtime re-
quests.

We present results fork = 2. We also considered
smaller values ofk, in particulark = 1.2, which results
in slightly better performance, but we omit those results
below to conserve space. As noted in Section 2.3, sev-
eral previous papers [FW98, ZK99, ZFMS00, ZFMS01]
have used a random (i.e., uniform) distribution of re-
quested runtime overestimations, with a large upper
bound (e.g., 10, 50, or 300). In contrast, our scenar-
ios assume that requested runtime is never larger than
the actual requested runtime in the workload trace. The
fraction of jobs that use inaccurate requested runtimes
from the trace represent runtimes that can’t (easily) be
accurately estimated and/or carelessly specified runtime
requests. This fraction is varied in the experiments.

Previous results suggest that using more accurate re-
quested runtimes has only minimal impact on the av-
erage slowdown and average wait time for FCFS-
backfill [FW98, STF99, ZK99, ZFMS00, ZFMS01].
This section investigates whether the benefit of more
accurate requested runtimes is more significant for the
above scenarios, higher system loads, and more com-
plete performance measures, as well as for priority back-
fill policies that use requested runtimes to favor short
jobs. Section 4.1 reassesses the impact of more accurate
requested runtimes on FCFS-backfill, whereas Section
4.2 evaluates the impact of more accurate requested run-
times on the policies that favor short jobs.

Table 4. Notation

Symbol Definition
T Actual job runtime
R User requested runtime from the O2K logs
R* Simulated requested runtime
P Number of requested processors

10
0

10
2

10
4

0

2

4

6

8

10

12
1m 10m 1h 10h 50h

av
g

w
ai

t t
im

e
(h

rs
)

actual runtime (minutes)

R* = R
R* = T

(a) Avg Wait vs. T
(June 2001)

0

10

20

30

40

9
5

−
p

e
rc

e
n

til
e

 w
a

it
(h

rs
)

Ja
n

 0
1

F
e

b
 0

1

M
a

r
0

1

Ju
n

 0
1

Ju
l 0

1

R* = R
R* = T

(b) 95th-Percentile Wait

10
0

10
2

10
4

0

20

40

60

80

100
1m 10m 1h 10h 50h

m
ax

 w
ai

t t
im

e
(h

rs
)

actual runtime (minutes)

R* = R
R* = T

(c) Max Wait vs. T
(Jan. 2001)

0

50

100

150

200

a
vg

 s
lo

w
d

o
w

n

Ja
n

 0
1

F
e

b
 0

1

M
a

r
0

1

Ju
n

 0
1

Ju
l 0

1

R* = R
R* = T

(d) Avg Slowdown

Figure 6. Impact of Perfect Requested Runtimes for FCFS-bac kfill

4.1 FCFS-backfill Results

Figure 6 compares the performance of perfectly accu-
rate requested runtimes (i.e., R* = T) against user re-
quested runtimes from the trace (i.e., R* = R) for FCFS-
backfill with two reservations. The results for previous
typical O2K workloads (e.g., July 2001) agree with pre-
vious results in [FW98]; that is, using more accurate
runtimes has only very slight impact on system perfor-
mance. Moreover, perfect requested runtimes have min-
imal impact on the overall average waiting time for each
month (not shown), and on the 95th-percentile wait each
month, shown in Figure 6(b). On the other hand, as
shown in Figure 6(a) for June 2001, accurate runtime
requests improve the average wait of very short jobs
(T < 30 minutes) during and immediately following
the new exceptionally heavy load months. More signif-
icantly, Figure 6(c) shows that accurate requested run-
times significantly improve maximum wait time for most
actual job runtimes, for many of the exceptionally heavy
load months and immediately following new heavy load
months. Figure 6(d) shows that actual runtimes signifi-
cantly reduce average slowdown under and immediately
following new heavy load months (by up to 60% in Feb.
2001).

We note that perfect requested runtimes generally im-
proves the wait time for short jobs because these jobs
can be backfilled more easily. Accurate requested run-
times also improve the maximum wait for long jobs due
to shorter backfill windows. Using approximately accu-
rate requested runtimes (i.e.,R∗ = kT) has a somewhat
lower impact on system performance than using perfect
runtime requests (not shown to conserve space).

4.2 Results for Policies that Favor Short
Jobs

This section studies the potential impact of using more
accurate requested runtimes for policies that favor short
jobs. We present the results for LX1/2F&W-backfill.
Results are similar for the other priority backfill poli-
cies that favor short jobs (such as ST 1/2F&W-backfill).
First, we consider the case whereall jobs have requested
runtimes within a small factor of their actual runtimes.
Then, we consider the impact of the case where only
80% or 60% of the jobs have approximately accurate re-
quested runtimes.

Figure 7 compares the performance of perfectly accurate
runtime requests (i.e., R* = T) and approximately accu-
rate runtime requests (i.e., R* = Min{R, 2T}) against
requested runtimes from the trace (i.e., R* = R). Graphs
(a)-(d) contain the overall performance measures each
month, whereas graphs (e)-(h) show performance versus
requested number of processors or actual runtime for the
March 2001 workload. Results for other months (not
shown) are similar.

In contrast to the FCFS-backfill results in the previous
section (shown in Figure 6), there is an even larger po-
tential benefit of using more accurate requested runtimes
for LX1/2F&W-backfill, because accurate runtime re-
quests enable LX1/2F&W-backfill to give priority to
jobs that are actually shorter. In particular, Figures 7(a)
- (d) show that perfectly accurate runtime requests im-
prove not only the maximum wait and average slow-
down, but also the average and 95th-percentile wait time
over all jobs. Furthermore, the average slowdown is dra-
matically improved ineverymonth, including the typical

0

1

2

3

4

a
v
g

 w
a

it
 t
im

e
 (

h
rs

)

J
a

n
 0

1

F
e

b
 0

1

M
a

r
0

1

J
u

n
 0

1

J
u

l
0

1

(a) Avg Wait

0

5

10

15

20

25

9
5

−
p

e
rc

e
n

ti
le

 w
a

it
 (

h
rs

)

J
a

n
 0

1

F
e

b
 0

1

M
a

r
0

1

J
u

n
 0

1

J
u

l
0

1

R* = R
R* = T
R* = min{R, 2T}

(b) 95th-Percentile Wait

0

50

100

150

200

m
a

x
 w

a
it
 t
im

e
 (

h
rs

)

J
a

n
 0

1

F
e

b
 0

1

M
a

r
0

1

J
u

n
 0

1

J
u

l
0

1

(c) Max Wait

0

50

100

150

a
v
g

 s
lo

w
d

o
w

n

J
a

n
 0

1

F
e

b
 0

1

M
a

r
0

1

J
u

n
 0

1

J
u

l
0

1

(d) Avg Slowdown

1 2 4 8 16 32 64
0

20

40

60

80

av
g

w
ai

t t
im

e
(h

rs
)

number of requested processors

R* = R
R* = min{R,2T}
R* = T

(e) Avg Wait vs. P
(March 2001)

10
0

10
2

10
4

0

2

4

6

8

10

12
1m 10m 1h 10h 50h

av
g

w
ai

t t
im

e
(h

rs
)

actual runtime (minutes)

R* = R
R* = min{R,2T}
R* = T

(f) Avg Wait vs. T
(March 2001)

10
0

10
2

10
4

0

1

2

3

4

1m 10m 1h 10h 50h

95
−p

er
ce

nt
ile

 w
ai

t (
hr

s)
actual runtime (minutes)

(g) 95th-percentile Wait vs.
T (July 2001)

10
0

10
2

10
4

0

10

20

30

40

50
1m 10m 1h 10h 50h

m
ax

 w
ai

t t
im

e
(h

rs
)

actual runtime (minutes)

(h) Max Wait vs. T
(July 2001)

Figure 7. Performance Improvement for Accurate Runtime Req uests under L X1/2F&W-backfill

O2K load months (e.g., July 2001). These four graphs
also show that even if the the requested runtimes are
only approximately accurate (i.e., R* = Min{R, 2T}),
similar improvement in average and 95th-percentile wait
time, as well as similar dramatic improvement in average
slowdown, can be achieved.

Figure 7(e) shows that accurate or approximately accu-
rate requested runtimes improve the average wait time
for jobs with a large number of requested processors (≥
32).

Figures 7(f)-(h) show that more accurate requested run-
times improve the average wait for short jobs (up to 10
hours), 95th-percentile wait for all jobs, and the max-
imum wait for all but the very largest jobs. Note also
that the improvement in the average wait for short jobs
is significantly larger than the improvement for accurate
runtime requests in FCFS-backfill,andthe improvement
is achieved without increasing the average wait time for
longer jobs. Furthermore, when requested runtimes are
accurate or approximately accurate, the average wait un-
der LX1/2F&W-backfill decreases (monotonically) as
the actual runtime decreases; this is a desirable property
that, to our knowledge, has not been demonstrated for
any previous system with a backfill policy.

Next, we consider scenarios in which not all jobs have
approximately accurate requested runtimes. Two sys-
tems are evaluated: hybrid(4:1) and hybrid(3:2), where
in the hybrid(4:1) system, 4 out of 5 jobs (i.e., 80% of
jobs), selected randomly, have approximately accurate
requested runtime (i.e., R* = minR, 2T). Again, results
will be shown for LX1/2F&W-backfill, and the results

are similar for the other priority backfill policies that fa-
vor short jobs.

Figure 8 compares hybrid(4:1) and hybrid(3:2) against
the case where all jobs have perfectly accurate runtime
requests (i.e, R* = T), and the case where all jobs use
requested runtimes from the trace (i.e, R* = R). The key
conclusion is that much of the benefit of accurate re-
quested runtimes can be achieved even if only 60% or
80% of the jobs have approximately accurate requested
runtimes. Specifically, Figures 8(a) and (b) show that
hybrid(4:1) has similar average and 95th-percentile wait
time as the system with perfect runtime requests. Fig-
ure 8(c) shows that hybrid(4:1) has somewhat higher
maximum wait than when requested runtimes are per-
fectly accurate, but has lower maximum wait than for
user requested runtimes in the trace. Figure 8(d) shows
that hybrid(4:1) has much lower average slowdown than
the system with user requested runtimes from the trace.
If only 60% of the jobs have improved requested run-
times, i.e., hybrid(3:2), the performance improvement is
smaller than that in hybrid(4:1), but hybrid(3:2) still has
lower average and 95th-percentile wait time and signif-
icantly lower average slowdown than that of using very
inaccurate requested runtimes from the trace. Further
reducing the fraction of the jobs to have improved re-
quested runtimes results in a system more similar to that
of using requested runtimes from the trace.

We now provide results that show that the jobs that have
more accurate requested runtimes see most of the perfor-
mance benefit. In particular, Figure 9 compares the wait
time statistics for’accurate jobs’(i.e., R* ≤ 2T) in the

0

1

2

3

4

av
g

w
ai

t t
im

e
(h

rs
)

Ja
n

01

F
eb

 0
1

M
ar

 0
1

Ju
n

01

Ju
l 0

1

R* = R
R* = T
hybrid(4:1)
hybrid(3:2)

(a) Avg Wait

0

5

10

15

20

25

95
−p

er
ce

nt
ile

 w
ai

t (
hr

s)

Ja
n

01

F
eb

 0
1

M
ar

 0
1

Ju
n

01

Ju
l 0

1

R* = R
R* = T
hybrid(4:1)
hybrid(3:2)

(b) 95th-Percentile Wait

0

50

100

150

200

m
ax

 w
ai

t t
im

e
(h

rs
)

Ja
n

01

F
eb

 0
1

M
ar

 0
1

Ju
n

01

Ju
l 0

1

R* = R
R* = T
hybrid(4:1)
hybrid(3:2)

(c) Max Wait

0

50

100

150

av
g

sl
ow

do
w

n

Ja
n

01

F
eb

 0
1

M
ar

 0
1

Ju
n

01

Ju
l 0

1

R* = R
R* = T
hybrid(4:1)
hybrid(3:2)

(d) Avg Slowdown

Figure 8. Performance of Hybrid(x:y) Approximately Accura te:Inaccurate Requested Runtimes
(LX1/2F&W-backfill, Approximately Accurate R* = Min{R, 2T})

0

1

2

3

4

av
g

wa
it (

hr
s)

Ja
n

01

Fe
b

01

M
ar

 0
1

Ju
n

01

Ju
l 0

1

R* = R − all jobs
hybrid(3:2) − inaccurate jobs
hybrid(3:2) − accurate jobs

(a) Avg Wait
(T ≤ 50 hours)

0

5

10

15

20

95
−p

er
ce

nt
ile

 w
ait

 (h
rs

)

Ja
n

01

Fe
b

01

M
ar

 0
1

Ju
n

01

Ju
l 0

1

R* = R − all jobs
hybrid(3:2) − inaccurate jobs
hybrid(3:2) − accurate jobs

(b) 95th-percentile Wait
(T ≤ 50 hours)

0

50

100

150

200

m
ax

 w
ait

 (h
rs

)

Ja
n

01

Fe
b

01

M
ar

 0
1

Ju
n

01

Ju
l 0

1

R* = R − all jobs
hybrid(3:2) − inaccurate jobs
hybrid(3:2) − accurate jobs

(c) Max Wait
(T ≤ 50 hours)

0

50

100

150

200

av
g

slo
wd

ow
n

Ja
n

01

Fe
b

01

M
ar

 0
1

Ju
n

01

Ju
l 0

1

R* = R − all jobs
hybrid(3:2) − inaccurate jobs
hybrid(3:2) − accurate jobs

(d) Avg Slowdown
(T ≤ 50 hours)

10
0

10
2

10
4

0

2

4

6

8
1h 10h 50h

av
g

wa
it (

hr
s)

actual runtime (minutes)

hybrid(3:2) − inaccurate jobs
hybrid(3:2) − accurate jobs

(e) Avg Wait vs. T
(June 2001)

Figure 9. Performance Benefit for Jobs with More Accurate Req uested Runtimes
(LX1/2F&W-backfill; Accurate R* = Min{R, 2T})

hybrid system against the wait time statistics for’inaccu-
rate jobs’(i.e., R* = R> 2T) in the hybrid system. The
figure also includes the performance when all jobs that
have requested runtimes as in the workload trace (i.e.,
R* = R - all jobs). The results are shown for hybrid(3:2),
in which only 60% of the jobs have improved requested
runtimes. Note that only the jobs with under 50 hours
of actual runtime are considered in the first four graphs
because requested runtime accuracy has more impact on
these jobs than on jobs with longer actual runtime (as
can be seen in Figure 9(e)). Figures 9(a) - (c) show that
during and immediately following the extremely heavy
load months, for actual runtime up to 50 hours, jobs with
accurate runtime requests have 20% lower average and
95th-percentile wait time and up to 50% lower maxi-
mum wait time than the jobs with inaccurate runtime
requests. Furthermore, the jobs with accurate runtime
requests improve the average and 95th-percentile wait
time of inaccurate jobs, compared to when all jobs have

the requested runtimes from the trace. Figure 9(d) shows
that for any month, the average slowdown of jobs with
accurate runtime requests is dramatically lower than that
of jobs with inaccurate requests, and also lower than the
overall average slowdown if all jobs use the requested
runtime from the trace (i.e., R* = R). Figure 9(e) fur-
ther shows that for actual runtime of up to 10 hours,
jobs with accurate requests achieve significantly lower
average wait time than that of inaccurate jobs, and aver-
age wait decreases monotonically as actual runtime de-
creases for the jobs with accurate requests.

5 Test Runs for Improving Re-
quested Runtimes

Results in Section 4 show that if a large fraction of the
jobs (e.g., at least 60%) have estimated runtimes within a

factor of two of their actual runtime, shorter jobs would
have lower expected and maximum wait than large jobs,
and large jobs will have better 95th-percentile and max-
imum wait than with the very inaccurate requested run-
times in the current O2K system. Thus, if users are pro-
vided with incentives and tools to provide more accurate
requested runtimes, the users will reap significant per-
formance benefit.

Some jobs have inherently inaccurate requested run-
times because the runtime is highly unpredictable for
any given (new) set of input parameters. For exam-
ple, some applications, including stochastic optimiza-
tion, have a number of iterations that is dependent on
how quickly the solution converges, which generally
can’t be predicted ahead of time. However, approxi-
mately accurate requested runtimes could be provided
for these latter codes if the computation is broken into
several runs, each except the last run having requested
runtime likely to be somewhat smaller than needed to
reach final convergence, and with the solution from one
run being input to the next run. For many other applica-
tions, codes are often run with similar input parameters
to previous runs, or with changes in the input parameters
that will affect run time in an approximately predictable
way (e.g., runtime can be estimated within a factor of
two), or the runtime request can be more accurate if a
short test run is made before the full run. Example ap-
plications that can estimate requested runtime after a test
run include those that involve iterative computation in
which the number of iterations and/or the time per iter-
ation are dependent on the input data, but can be esti-
mated reasonably well have running the first few itera-
tions.

This remainder of this section investigates whether most
of the benefit of more accurate requested runtimes
shown in the previous section can still be realized if
(some or all) users perform a test run to better estimate
the requested runtime for their jobs.

The assumptions regarding the test runs are as follows.
If the user requested runtime is already within a factor of
two of the actual runtime, we assume that it is likely that
the user is aware that a test run is not needed, and the
job is simply submitted as it was in the actual system.
Otherwise, the requested runtime for a test run is equal
to: (a) 10% of the user requested runtime (if the user
requested runtime is under 10 hours) or (b) one hour (if
the user requested runtime is greater than 10 hours). The
requested runtime for the test run represents the runtime
needed to estimate the full job runtime within a small
factor. Note that because the user requested runtimes are
highly inaccurate, the job might complete during the test
run. In the actual system, jobs might complete during

the test run either due to the user’s lack of experience in
how long the test run should be, or due to an unexpected
error in the execution. If the job does not complete dur-
ing this test run, the job is resubmitted with an improved
requested runtime (i.e., an estimated requested runtime
that is a small factor times the actual job runtime). As in
Section 4.2, we use R* = Min{R, 2T} for approximately
accurate requested runtimes. We also consider the case
where some fraction of the jobs do not make test runs,
and some fraction of those just just use the requested
runtime from the workload logs, representing jobs for
which the user is either not able or not interested in esti-
mating runtime more accurately.

Section 5.1 considers the scenario in which all full runs
have requested runtime within a factor of two of the
actual runtime, but two different fractions of jobs (i.e.,
100% or 25%) (randomly selected) make test runs before
submitting with the approximately accurate requested
runtime. Section 5.2 considers the scenario in which
20% or 50% of the jobs provide the same requested run-
times as in the job trace, while the other jobs provide
approximately accurate requested runtimes. Of the jobs
that provide approximately accurate runtime requests,
25% make the test run before submitting with the ap-
proximately accurate request.

5.1 Improved Requested Runtimes for All
Jobs

This section studies the impact of test runs for the op-
timistic (”best case performance”) scenario in which
all jobs provide approximately accurate requested run-
times. In one case (”25% testrun”), 25% of jobs that do
not have approximately accurate user requested runtime
from the trace are randomly selected to have a test run;
the remaining 75% of such jobs will have improved run-
time estimate without a test run, due to previous user
experience with the code. In the other case (”100%
testrun”), every job with improved runtime request re-
quires a test run. Note that ”100% testrun” is a pes-
simistic assumption that is not likely to occur in prac-
tice, whereas ”25% testrun” is more likely to be repre-
sentative of a realistic setting, particularly since many
applications are run a large number of times, and in
many cases previous executions can be used to improve
runtime request accuracy. Thus, we consider the ”25%
testrun” experiments to be representative of the practical
impact of using test runs to improve runtime estimate
accuracy.

During each month, 35-45% of the jobs have inaccurate
requested runtimes (i.e., R> 2T) and actual runtime T>
Min{1 hour, 10% R}. For such jobs, if a test run is used

0

1

2

3

4

a
v
g

 w
a

it
 t
im

e
 (

h
rs

)

J
a

n
 0

1

F
e

b
 0

1

M
a

r
0

1

J
u

n
 0

1

J
u

l
0

1

(a) Avg Total Wait

0

5

10

15

20

25

9
5

−
p

e
rc

e
n

ti
le

 w
a

it
 (

h
rs

)

J
a

n
 0

1

F
e

b
 0

1

M
a

r
0

1

J
u

n
 0

1

J
u

l
0

1

R* = R
R* = T − no test run
25% test run
100% test run

(b) 95-Percentile Total Wait

0

50

100

150

200

m
a

x
 w

a
it
 t
im

e
 (

h
rs

)

J
a

n
 0

1

F
e

b
 0

1

M
a

r
0

1

J
u

n
 0

1

J
u

l
0

1

(c) Max Total Wait

0

50

100

150

a
v
g

 s
lo

w
d

o
w

n

J
a

n
 0

1

F
e

b
 0

1

M
a

r
0

1

J
u

n
 0

1

J
u

l
0

1

(d) Avg Slowdown

Figure 10. Impact of Test-Runs to Determine Requested Runti mes
(LX1/2F&W-backfill; wait includes testrun wait and overhead; R* = Min{R, 2T})

to improve requested runtime, the job is resubmitted af-
ter the test run. The total extra load due to the test runs is
very small (only 1-3% increase in processor and memory
demand each month), even for 100% testrun. However,
the additional waiting time for the test run, and the test
run, must be included in the average and other measures
of total job waiting time.

Figure 10 compares 100% testrun and 25% testrun
against the optimal case where all jobs use actual run-
times (i.e., R* = T) without test runs and the case where
all jobs use the requested runtimes from the trace (i.e.,
R* = R). The average total wait, 95th-percentile total
wait, maximum total wait, and average slowdown, are
shown for representative recent O2K workloads. For
each of these measures except average slowdown during
February 2001, the performance of the 25% testrun case
is very similar to the case where R*=T. There are small
increases in maximum total wait during the heavy load
months and in the other measures for February 2001, but
overall the results show that a significant fraction of test
runs can be made to improve requested runtimes, and
if the improved requested runtimes are within a factor
of two of the actual runtime, then nearly the maximum
possible benefit of accurate requested runtimes can be
achieved.

The test run overhead becomes prominent if all jobs with
R > 2T require a test run (i.e., 100% testrun). Fig-
ure 10(a) shows that the overall average wait time in
the case of ”100% testrun” is 0.5 - 1 hour longer than
that of using actual runtimes (without test runs), due to
test run wait and test run time incurred by over 35% of
the jobs each month. Similarly, Figure 10(b) and (c)
show that ”100% testrun” has worse maximum wait and
95th-percentile wait time than that using actual runtimes
in new heavy load months. Even so, ”100% testrun”
still has lower average and 95th-percentile wait and es-
pecially lower average slowdown than that of using re-
quested runtimes from the trace, under and immediately
following new heavy load months. In practice, we ex-

pect an even higher benefit of test run than that of ”100%
testrun” compared to using requested runtimes from the
trace.

5.2 Improved Requested Runtimes for a
Majority of the Jobs

This section considers scenarios where only 50% or 80%
of the jobs have improved requested runtime accuracy,
and test runs are needed in 25% of the cases to estimate
the improved requested runtimes. Again, we use R* =
Min{R, 2T} for approximately accurate requested run-
times. The two scenarios to be evaluated are thus named
hybrid(4:1) and hybrid(1:1) - 25% testrun. Note that hy-
brid(1:1) with 25% testrun represents a reasonably pes-
simistic, but possibly realistic scenario, in which only
50% of the jobs have approximately accurate requested
runtimes and one out of four jobs requires a test run to
improve requested runtime accuracy.

Figure 11 compares the above two hybrid scenarios with
25% test run against that of using requested runtimes
from the trace (i.e., ”R* = R”). The performance for
hybrid(4:1) without test run is also included in Fig-
ure 11(b) - (d) for comparison with hybrid(4:1) with
25% testrun. The results show that for both hybrid sys-
tems with testruns, the average wait for short jobs, the
95th-percentile wait, and the average slowdown is sig-
nificantly better than for the requested runtimes in the
O2K traces. The results also show that test runs do not
introduce significant overhead in the hybrid (4:1) sys-
tem.

6 Conclusions

In this paper, we used ten one-month more recent
traces from the NCSA O2K to evaluate whether high-
performance backfill policies can be further significantly

10
0

10
2

10
4

0

2

4

6

8

10

12
1m 10m 1h 10h 50h

av
g

w
ai

t t
im

e
(h

rs
)

actual runtime (minutes)

R* = R
hybrid(1:1) − 25% test run
hybrid(4:1) − 25% test run

(a) Avg Wait
(Representative Jan. 2001)

0

5

10

15

20

25

95
−p

er
ce

nt
ile

 w
ai

t (
hr

s)

Ja
n

01

Fe
b

01

M
ar

 0
1

Ju
n

01

Ju
l 0

1

R* = R
hybrid(4:1)
hybrid(4:1) − 25% test run
hybrid(1:1) − 25% test run

(b) 95th-Percentile Wait

0

50

100

150

200

m
ax

 w
ai

t t
im

e
(h

rs
)

Ja
n

01

Fe
b

01

M
ar

 0
1

Ju
n

01

Ju
l 0

1

R* = R
hybrid(4:1)
hybrid(4:1) − 25% test run
hybrid(1:1) − 25% test run

(c) Max Wait

0

50

100

150

av
g

sl
ow

do
w

n

Ja
n

01

Fe
b

01

M
ar

 0
1

Ju
n

01

Ju
l 0

1

R* = R
hybrid(4:1)
hybrid(4:1) − 25% test run
hybrid(1:1) − 25% test run

(d) Avg Slowdown

Figure 11. Performance of Hybrid(x:y) with Test Runs
(LX1/2F&W-backfill, R* = Min{R, 2T})

improved if the requested runtimes can be more accu-
rate. Many of these months have exceptionally heavy
load, which tends to make the policy performance differ-
entials larger than for lower load used in previous work.

To improve backfill policies for studying our key ques-
tion, we more fully evaluated the trade-offs between fa-
voring short jobs and preventing starvation for backfill
policies. Our results show that a few reservations (2 -
4) can significantly reduce the maximum wait time but
a larger number of reservations result in poor perfor-
mance; fixed reservation or dynamic reservation makes
minimal difference in most cases, except for SJF-backfill
which requires fixed reservation to reduce starvation.

Our results of using higher-performancebackfill policies
(such as LX1/2F&W-backfill and ST 1/2F&W-backfill
with two reservations), heavier system load, and a more
complete set of performance measures show that the po-
tential benefit of more accurate requested runtimes is
significantly larger than suggested in previous FCFS-
backfill results, even if each requested runtime is up to
twice the actual runtime. Furthermore, we show that
most of the benefit of more accurate requested runtimes
can be achieved by using test runs to improve requested
runtime accuracy even though there is test run overhead.
Our results also show that users who provide more ac-
curate requested runtimes can expect improved perfor-
mance, even if other jobs do not provide more accurate
requested runtimes.

References

[CB01] W. Cirne and F. Berman. A Comprehensive
Model of the Supercomputer Workload. In
Proc. IEEE 4th Annual Workshop on Work-
load Characterization, Austin, TX., Decem-
ber 2001.

[CV01a] S.-H. Chiang and M. K. Vernon. Produc-
tion job scheduling for parallel shared mem-

ory systems. InProc. Int’l. Parallel and Dis-
tributed Processing Symp. (IPDPS) 2001, San
Francisco, April 2001.

[CV01b] S.-H. Chiang and M. K. Vernon. Charac-
teristics of a large shared memory produc-
tion workload. In Proc. 7th Workshop on
Job Scheduling Strategies for Parallel Pro-
cessing, Cambridge, MA., June 2001.

[FW98] Dror G. Feitelson and Ahuva Mu’alem Weil.
Utilization and predictability in scheduling
the IBM SP2 with backfilling. InProc. 12th
Int’l. Parallel Processing Symp., pages 542–
546, Orlando, March 1998.

[Gib97] R. Gibbons. A historical application pro-
filer for use by parallel schedulers. InProc.
3rd Workshop on Job Scheduling Strategies
for Parallel Processing, Geneva, April 1997.
Lecture Notes in Comp. Sci. Vol. 1291,
Springer-Verlag.

[Lif95] D. Lifka. The ANL/IBM SP scheduling sys-
tem. InProc. 1st Workshop on Job Schedul-
ing Strategies for Parallel Processing, pages
295–303, Santa Barbara, March 1995. Lec-
ture Notes in Comp. Sci. Vol. 949, Springer-
Verlag.

[MF01] A. W. Mu’alem and D. G. Feitelson. Uti-
lization, Predictability, Workloads, and User
Runtime Estimates in Scheduling the IBM
SP2 with Backfilling.IEEE Trans. Parallel &
Distributed Syst., 12(6):529–543, June 2001.

[NCSa] NCSA Scientific Computing SGI Origin2000.
http://www.ncsa.uiuc.edu/SCD/Hardware/
Origin2000.

[NCSb] NCSA Scientific Computing: IA-32 Linux
Cluster. http://www.ncsa.uiuc.edu/UserInfo/
Resources/Hardware/IA32LinuxCluster.

[PK00] D. Perkovic and P. J. Keleher. Random-
ization, speculation, and adaptation in batch
schedulers. InProc. 2000 ACM/IEEE Super-
computing Conf., Dallas, November 2000.

[SCZL96] J. Skovira, W. Chan, H. Zhou, and K. Lifka.
The EASY-Loadleveler API Project. InProc.
2nd Workshop on Job Scheduling Strategies
for Parallel Processing, pages 41–47, Hon-
olulu, April 1996. Lecture Notes in Comp.
Sci. Vol. 1162, Springer-Verlag.

[STF99] W. Smith, V. Taylor, and I. Foster. Using run-
time predictions to estimate queue wait times
and improve scheduler performance. InProc.
5th Workshop on Job Scheduling Strategies
for Parallel Processing, pages 202–219, San
Juan, April 1999. Lecture Notes in Comp.
Sci. Vol. 1659, Springer-Verlag.

[ZFMS00] Y. Zhang, H. Franke, J. E. Moreira, and
A. Sivasubramaniam. Improving parallel job
scheduling by combining gang scheduling
and backfilling techniques. InProc. Int’l.
Parallel and Distributed Processing Symp.
(IPDPS) 2000, Cancun, May 2000.

[ZFMS01] Y. Zhang, H. Franke, J. E. Moreira, and
A. Sivasubramaniam. An analysis of space-
and time-sharing techniques for parallel job
scheduling. InProc. 7th Workshop on Job
Scheduling Strategies for Parallel Process-
ing, Cambridge, MA., June 2001.

[ZK99] D. Zotkin and P. J. Keleher. Job-length esti-
mation and performance in backfilling sched-
ulers. In8th IEEE Int’l Symp. on High Per-
formance Distributed Computing, pages 236–
243, Redondo Beach, August 1999.

