
Practical Heterogeneous Placeholder Scheduling
in Overlay Metacomputers: Early Experiences

Christopher Pinchak, Paul Lu, and Mark Goldenberg

Department of Computing Science
University of Alberta

Edmonton, Alberta, T6G 2E8
Canadafpinchak|paullu|goldenbe g@cs.ualberta.ca

http://www.cs.ualberta.ca/˜paullu/Trellis/

Abstract

A practical problem faced by users of high-
performance computers is: How can I automatically
load balance my jobs across different batch queues,
which are in different administrative domains, if
there is no existing grid infrastructure? It is com-
mon to have user accounts for a number of individual
high-performance systems (e.g., departmental, uni-
versity, regional) that are administered by different
groups. Without an administration-deployed grid in-
frastructure, one can still create a purely user-level
aggregation of individual computing systems.

The Trellis Project is developing the techniques
and tools to take advantage of a user-levelover-
lay metacomputer. Because placeholder scheduling
does not require superuser permissions to set up or
configure, it is well-suited to overlay metacomputers.
This paper contributes to the practical side of grid
computing by empirically demonstrating that place-
holder scheduling can work across different admin-
istrative domains, across different local schedulers
(i.e., PBS and Sun Grid Engine), and across differ-
ent programming models (i.e., Pthreads, MPI, and
sequential). We also describe a new metaqueue sys-
tem to manage jobs with explicit workflow depen-
dencies.

Keywords: scheduling, metascheduler, metacom-
puting, computational grids, load balancing, place-
holders, overlay metacomputers, metaqueue

1 Introduction

Metacomputing and grid computing are active re-
search areas with the goal of developing the infras-
tructure and technology to create virtual computers
from a collection of computers (for example, [3, 5,
8]). However, the constituent computers may be het-
erogeneous in their operating systems, local sched-
ulers, and administrative control. The Trellis Project
at the University of Alberta is addressing some of
these issues through platform-independent systems
to access computational resources [12, 14, 15] and
remote data access [19]. The goals of the Trellis
Project are not as comprehensive as other grid and
metacomputing projects, but all of the projects share
the goal of making it easier to take advantage of dis-
tributed computational and storage resources. In this
paper, we extend our previous work [15] on the prob-
lems related to effectively scheduling computational
tasks on computers that have different system admin-
istrators, especially in the absence of a single batch
scheduler.

1.1 Motivation: Overlay Metacomputers

Users often want to harness the cumulative power of
an ad hoc collection of high-performance computers.
Often, the problem is that each computer has a differ-
ent batch scheduler, independent queues, and differ-
ent groups of system administrators. Two known so-
lutions to this problem are: (1) implement a system-

Design Option Description Main Advantages Current Disadvantages

Metaqueue Front-end queue that
can redirect jobs to
other queues.
(E.g., routing queues in
OpenPBS [13].)

Load balancing. Unified
interface.

Requires common
software systems,
protocols, and
administrative support.

Computational
Grid

Common set of
protocols and software
infrastructure for
metacomputing.
(E.g., Globus Toolkit [5]
and Legion [8].)

Comprehensive set of
features, including resource
discovery and load
balancing.

Relies on common grid
infrastructure and
cooperation of
administrative domains.
Generally speaking,
unprivileged users cannot
install or configure a grid.

User Scripts Manual job placement
and partitioning.

Simplicity. Poor load balancing. Slow
queue problem. Requires
user intervention.

Placeholder
Scheduling

User-level
implementation of
metaqueue. No special
infrastructure or
administrative support
required.

Load balancing. Flexibility
to create per-user and
per-workload overlay
metacomputers. Can be
layered on top of existing
(heterogeneous) queues,
metaqueues, administrative
domains, and grids.

Single job and advance
reservations cannot span
multiple queues or
domains. No support for
cross-domain resource
discovery, etc.

Table 1: Design Options for Grid and Metacomputer Scheduling

level metaqueue or (2) deploy a computational grid
(Table 1).

First, if all of the individual computers are un-
der a single group of system administrators, it would
be possible (and preferable) to create a system-level
metaqueue. For example, the OpenPBS implementa-
tion of the Portable Batch System (PBS) [13] sup-
ports routing queues. Similar capabilities exist in
other workload management systems, such as Plat-
form Computing’s LSF [11]. Jobs are submitted to
routing queues that decide which execution queue
should receive the jobs. The advantage of a system-
level and system-scheduled metaqueue is that more
efficient scheduling decisions can be made. In ef-
fect, there is a single scheduler that knows about all
jobs in all queues. Also, a system-level metaqueue
would, presumably, be well-supported and conform
to the security and sharing policies in force within

the administrative domain. However, if the collection
of computers with execution queues spans multiple
administrative domains, it may be difficult and im-
practical to implement such a metaqueue. The disad-
vantage of a system-scheduled metaqueue is that the
local system administrators may be required to relin-
quish some control over their queues. If the centres
are located at different institutions, it can be difficult
to obtain such administrative concessions.

Second, if the various system administrators can
be persuaded to adopt a single grid infrastructure,
such as Globus [5], Legion [8], or Condor [3], a
metaqueue can be implemented as part of a compu-
tational grid. The advantage of computational grids
is that they offer a comprehensive set of features,
including resource discovery, load balancing, and a
common platform. However, if the system adminis-
trators have not yet set up a grid, the user cannot take

Group HPC

Dept. HPC

HPC Centre 1

HPC Centre 2

Server

Overlay Metacomputer A
Overlay Metacomputer B

Figure 1: Overlay Metacomputers

advantage of the grid features. Furthermore, what if
a user has access to two systems that belong to two
separate grids?

A practical problem that exists today is that many
researchers have access to a variety of different com-
puter systems that do not share a computational grid
or a data grid (Figure 1). In fact, each of the individ-
ual systems may have a different local batch sched-
uler (e.g., OpenPBS, LSF, Sun Grid Engine [21]).
The researcher merely has an account on each of
the systems. For example, Researcher A has access
to his group’s system, a departmental system, and a
system at a high-performance computing centre. Re-
searcher B has access to her group’s server and (per-
haps) a couple of different high-performance com-
puting centres, including one centre in common with
Researcher A. It would be ideal if all of the systems
could be part of one metacomputer or computational
grid. But, the different systems may be controlled by
different groups who may not run the same grid soft-
ware. Yet, Researchers A and B would still like to be
able to exploit the aggregate power of their systems.

Of course, the user can manually submit jobs to
the different queues at different centres. In the case
of user-scheduled jobs, the schedulers at each queue
are unaware of the other jobs or queues. The user
has complete control and responsibility for job place-
ment and monitoring. Although this strategy is in-
convenient, it is a common situation. The advantage
is that different administrative groups do not have to
agree on common policies; the user merely has to
have an account on each machine. The disadvan-
tage of user-scheduled jobs is that they are labour-
intensive and inefficient when it comes to load bal-
ancing [15].

A better solution than manual interaction with the
local schedulers is to create anoverlay metacom-
puter, a user-level aggregate of individual computing
systems (Figure 1). A practical and usable overlay
metacomputer can be created by building upon ex-
isting networking and software infrastructure, such
as Secure Shell (ssh) [1], Secure Copy (scp), and
World Wide Web (WWW) protocols. Because the in-
frastructure is accessible at the user-level (or part of
a well-supported, existing infrastructure) Researcher
A can create a personal Overlay Metacomputer A.
Similarly, Researcher B can create a personal Over-
lay Metacomputer B, which can overlap with Re-
searcher A’s metacomputer (or not).

1.2 Motivation: Placeholder Scheduling

Placeholder scheduling creates a user-level
metaqueue that interacts with the local sched-
ulers and queues of the overlay metacomputer.
More details are provided in Section 2. Instead of
a push model, in which jobs are moved from the
metaqueue to the local queue, placeholder schedul-
ing is based on a pull model in which jobs are
dynamically bound to the local queues on demand.
The individual local schedulers do not have to be
aware of the user-level metaqueue (which preserves
all of the local scheduler’s policies) because only
the placeholderjobs have to communicate with the
user-level metaqueue; thelocal schedulerdoes not
interact with the metaqueue.

Placeholder scheduling has three main advan-
tages. First, the user-level metaqueue is built us-
ing only standard software or well-supported infras-
tructure. Software systems that require a lot of new

daemons, applications, configuration, and adminis-
tration are less likely to be adopted and supported
by a wide community. Our system is layered on
top of existing secure network infrastructure (i.e.,
Secure Shell) and existing batch scheduler systems
(i.e., we use OpenPBS [13] and Sun Grid Engine
[21]). Second, placeholder scheduling does not re-
quire superuser privileges or special administrative
support. Different users can create private metaque-
ues that can load balance across different systems.
Third, user-level metaqueues have similar load bal-
ancing benefits to system-level metaqueues, except
that placeholder scheduling works across heteroge-
neous systems even if the different administrators do
not have common scheduling infrastructure or poli-
cies. In the absence of a system-level metaqueue or a
computational grid, which is still the common case,
placeholder scheduling can still be used to load bal-
ance jobs across multiple queues.

1.3 Contributions

In our previous work [15], we described a prototype
implementation of placeholder scheduling and a set
of experiments. That was a proof-of-concept sys-
tem and empirical evidence for the efficacy of place-
holder scheduling. This paper extends our previous
work and contributes to the practical aspects of com-
putational grids and metacomputing by detailing a
new implementation of placeholder scheduling that:

1. Works across three different administrative
domains, none of which are part of the same
system-level grid or metacomputer. We use
systems located in our department, at the Uni-
versity of Alberta’s high-performance comput-
ing centre, and at the University of Calgary.

2. Works with different local batch scheduler
systems. Our previous experiments used only
PBS. For the first time, we show how the Sun
Grid Engine can interoperate with our user-level
metaqueue as easily as PBS.

3. Can use an SQL database, instead of a flat
file, to maintain the state of the user-level
metaqueue. The original flat file approach
is still supported and used when appropriate.

The SQL-based option adds the benefits of so-
phisticated concurrency control and fault toler-
ance. We have also implementedsupport for
specifying and maintaining workflow depen-
dencies between jobs. Therefore, as with a
dataflow model, all jobs of a larger computation
can be submitted to the system, but jobs will
only be executed when their predecessor jobs
have been completed.

4. Includes dynamic monitoring and throttling
of placeholders. We demonstrate a simple but
effective system for controlling the number of
placeholders in each local queue. When the lo-
cal system is lightly loaded, more placeholders
are created in order to maximize the through-
put of the metaqueue. When the local system is
heavily loaded, fewer placeholders are used be-
cause there is no benefit in having more place-
holders.

2 Placeholders

2.1 The Concept

A placeholder can be defined as a unit of potential
work. For an actual unit of work (i.e., a job), it
is possible for any placeholder, within a group of
placeholders, to actually complete the work. For ex-
ample, in Figure 2, six placeholders (i.e., PH1 to
PH6) have been submitted to six different queues
on three different computer systems. Any one of
the placeholders is capable of executing the next job
in the metaqueue. The run-time binding of place-
holder to job occurs at placeholderexecutiontime
(not placeholdersubmissiontime) under the control
of a command-line server (discussed in Section 2.2).
We provide the implementation details in Section 3,
but for now, one can think of a placeholder as a
specially-crafted job submitted to the local batch
scheduler. The placeholder job doesnot have any
special privileges.

The first placeholder to request a new unit of work
is given the next job in the metaqueue, which mini-
mizes the mean response time for that job. The place-
holder “pulls” the job onto the local computer sys-
tem. Ignoring fault-tolerance, the same job is never

Queue 3

PH2 PH3PH1

Queue 1

PH6

Queue 1 Queue 2

PH4 PH5

Command−line
Server

Queue 1 Queue 2

Computer 1 Computer 2 Computer n

Secure
Shell

Command Contents of metaqueue

Front of the queue

lines

Figure 2: Placeholder System Architecture

given to more than one placeholder, and multiple
placeholders can request individual jobs from a sin-
gle metaqueue containing many jobs. If there are
no jobs in the metaqueue when the placeholder be-
gins execution, it can either exit the local queue or it
can re-submit itself to the same queue. Informally,
if there is no work to give to a placeholder when it
reaches the front of the queue, the placeholder can go
back to the end of the line without consuming a sig-
nificant amount of machine resources. Other practi-
cal aspects of placeholder management are discussed
in Section 6.

All placeholders that are submitted to any system
are done so on behalf of the user (i.e., the jobs belong
to the user’s account identity). Therefore, all per-user
resource accounting mechanisms remain in place.
Some metacomputing systems execute jobs submit-
ted to the metaqueue under a special account. We
preserved submission from user accounts for three
reasons: (1) job priority, (2) job accounting, and (3)
security. Some sites base job priority on informa-
tion about past jobs submitted by the user; other sites
record this information for accounting (and possibly
billing) purposes. Finally, security breaches of user

accounts are significantly less dangerous than those
of a superuser or privileged account.

2.2 Command-Line Server

The command-line server controls what executables
and arguments should be executed by the placehold-
ers. As an intermediary between the placeholders
and the user-level metaqueue, it is possible for users
to dynamically submit jobs to the command-line
server and be assured that, at some point, a place-
holder will execute the job.

We have augmented the command-line server
with the ability to sequence jobs (and their respec-
tive command-line arguments) according to work-
flow dependencies. When jobs are submitted to
the metaqueue, which is used by the command-line
server, the user can optionally list job dependencies.
Jobs cannot be assigned to placeholders (i.e., ex-
ecuted) until the predecessor jobs have been com-
pleted. Consequently, jobs may be executed in an
order different from that in which they were submit-
ted to the metaqueue, but the order of execution is
always with respect to the required workflow.

5

1

PGSQL

dque

Placeholder

ssh getcmdline

Command−line
Arguments

2

3

4

st−brides

brule

Server
Cmd−line

a b

File DB

Figure 3: Steps in Placeholder Execution

3 Implementation

The basic architecture of our system is presented in
Figure 2. We use the Secure Shell [1] for client-
server communication across networks and either
OpenPBS [13] or Sun Grid Engine [21] for the local
batch schedulers. In our simple experimental sys-
tem, placeholders contact the command-line server
via Secure Shell. Placeholders use a special-purpose
public-private key pair that allows it to authenticate
and invoke the command-line server on the remote
system.

All placeholders within the experimental system
are submitted using the same user accounts. Cur-
rently, the placeholders and command-line server ex-
ecute under normal user identities that do not have
any special privileges. In fact, as discussed above, it
is important that the placeholders are submitted via
the user account to allow for proper prioritization and
accounting at the local queue. And, should a mali-
cious user acquire the private key of the placeholder,
the damage would be limited because normal user
accounts are non-privileged.

3.1 Example: Steps in Placeholder Execu-
tion

The flow of control for an example placeholder on
the machinest-brides is shown in Figure 3. The

actions this placeholder takes before executing are as
follows:

1. The placeholder reaches the front of the batch
scheduler queuedque .

2. The placeholder script contacts the command-
line server on machinebrule via Secure
Shell. The name of the current machine (st-
brides) is sent along as a parameter.

3. The command-line server retrieves the next
command line. Command lines are stored in ei-
ther (a) a flat file (as with the parallel sorting
application described in Section 3.3), or in (b) a
PostgreSQL [16] database (as with the checkers
database application described in Section 3.4).

4. The results of the query are returned to the wait-
ing placeholder. In the event that there are
more command lines available, but none can
be assigned because of dependencies, the place-
holder is instructed to wait a short time and re-
submit itself. If no more command lines are
available, a message is sent notifying the place-
holder to terminate without further execution.

5. The placeholder uses the returned command
line to begin execution.

3.2 Dynamic Monitoring and Throttling of
Placeholders

Because placeholders progress through the queue
multiple times, it may be advantageous to consider
the queue waiting time of the placeholder. Waiting
time information may be utilized in order to decide
how many placeholders to simultaneously maintain
in a given queue. Low waiting times indicate that
the queue is receiving “fast” service, and it may be
a good idea to submit multiple placeholders to take
advantage of the favourable conditions. For exam-
ple, on a multiprocessor system, it may be possi-
ble to have different jobs execute concurrently on
different processors; one job per placeholder. Con-
versely, high waiting times indicate that the queue is
“slow” for the placeholder parameters and little will
be gained by increasing the number of placeholders
in the queue. Also, one does not want to have too
many placeholders in the queue if the queue is mak-
ing slow progress, lest they interfere with other users.
This ability to throttle the number of placeholders
may further reduce the makespan of a set of jobs.

3.3 Parallel Sort

A sorting application was chosen because of ease of
implementation and because it may be implemented
in a variety of different ways. Sorting may be done
sequentially using a well-known efficient sorting al-
gorithms (in our case, QuickSort), and in parallel (we
used, Parallel Sorting by Regular Sampling (PSRS)
[10]). Additionally, PSRS may be implemented in
both a shared and distributed memory environment,
allowing it to perform a sort on a variety of parallel
computers. The variety of platforms on which a sort
can be performed allows us to experiment with het-
erogeneous placeholder scheduling, with respect to
the programming model.

A generic PBS placeholder is shown in Figure 4.
The placeholder includes the ability to dynamically
increase and decrease the number of placeholders in
the queue. As illustrated, a placeholder is similar to
a regular PBS job script. The lines beginning with
#PBS(lines 4-11, Figure 4) are directives interpreted
by PBS at submission time. The command line is re-
trieved from the command-line server (in our case,
using the programgetcmdline) and stored into

theOPTIONSshell variable (line 18, Figure 4). This
variable is later evaluatedat placeholder execution
timewith the command(s) that will be executed (line
50, Figure 4). The late binding of placeholder to exe-
cutable name and command-line arguments is key to
the flexibility of placeholder scheduling.

The placeholder then evaluates the amount of time
it has been queueing for (line 32, Figure 4), and con-
sults a local script to determine what action to take
(line 38, Figure 4). It may increase the placeholders
in the queue by one (lines 44-47, Figure 4), main-
tain the current number of placeholders in the queue
by resubmitting itself after finishing the current com-
mand line (line 60, Figure 4), or decrease the number
of placeholders in the queue by not resubmitting it-
self after completing the current command line (lines
53-55, Figure 4).

Likewise, the basic command-line server is sim-
ple. Command lines themselves are stored in flat
files, and the command-line server is implemented
as a C program that accesses these files as a con-
sumer process. Each invocation of the command-
line server removes exactly one line from the flat file,
which contains the arguments for one job. Each re-
quest to the command-line server invokes a new pro-
cess, and mutual exclusion is implemented using the
flock() system call.

3.4 Checkers Database

The checkers database program is an ongoing
research project that aims to compute endgame
databases for the game of checkers [6]. For this
paper, we are only concerned with the application-
specific workflow properties of the computation. The
placeholders for this application are simpler than in
the previous example as they are not capable of regu-
lating the number of jobs in the queue (see Figures 5
and 6; note the similarities between the placeholder
scripts for PBS and SGE). For our experiment, the
local computer systems are uniprocessors and they
are dedicated to the computation. Therefore, there is
little advantage in having more than one placeholder
per queue.

The databases are computed using retrograde anal-
ysis [6]. To create parallelism and reduce memory
requirements, the databases are logically divided into

1 #!/bin/sh
2 ## Generic placeholder PBS script
3
4 #PBS -S /bin/sh
5 #PBS -q queue
6 #PBS -l ncpus=4
7 #PBS -N Placeholder
8 #PBS -l walltime=02:00:00
9 #PBS -m ae
10 #PBS -M pinchak@cs.ualberta.ca
11 #PBS -j oe
12
13 ## Environment variables:
14 ## CLS_MACHINE - points to the command-line server’s host .
15 ## CLS_DIR - remote directory in which the command-line se rver is located.
16 ## ID_STR - information to pass to the command-line server .
17 ## Note the back-single-quote, which executes the quoted command.
18 OPTIONS=‘ssh $CLS_MACHINE "$CLS_DIR/getcmdline $ID_S TR"‘
19
20 if [$? -ne 0]; then
21 /bin/rm -f $HOME/MQ/$PBS_JOBID
22 exit 111
23 fi
24 if [-z $OPTIONS]; then
25 /bin/rm -f $HOME/MQ/$PBS_JOBID
26 exit 222
27 fi
28
29 STARTTIME=‘cat $HOME/MQ/$PBS_JOBID‘
30 NOWTIME=‘$HOME/bin/mytime‘
31 if [-n "$STARTTIME"] ; then
32 let DIFF=NOWTIME-STARTTIME
33 else
34 DIFF=-1
35 fi
36
37 ## Decide if we should increase, decrease, or maintain pla ceholders in the queue
38 WHATTODO=‘$HOME/decide $DIFF‘
39
40 if [$WHATTODO = ’reduce’] ; then
41 /bin/rm -f $HOME/MQ/$PBS_JOBID
42 fi
43
44 if [$WHATTODO = ’increase’]; then
45 NEWJOBID=‘/usr/bin/qsub $HOME/psrs/aurora-pj.pbs‘
46 $HOME/bin/mytime > $HOME/MQ/$NEWJOBID
47 fi
48
49 ## Execute the command from the command-line server
50 $OPTIONS
51
52 ## leave if ’reduce’
53 if [$WHATTODO = ’reduce’] ; then
54 exit 0
55 fi
56
57 /bin/rm -f $HOME/MQ/$PBS_JOBID
58
59 ## Recreate ourselves if ’maintain’ or ’increase’
60 NEWJOBID=‘/usr/bin/qsub $HOME/psrs/aurora-pj.pbs‘
61
62 $HOME/bin/mytime > $HOME/MQ/$NEWJOBID

Figure 4: Generic PBS Placeholder

1 #!/bin/sh
2
3 ## Checkers DB Placeholder PBS script
4
5 #PBS -S /bin/sh
6 #PBS -N CheckersPH
7 #PBS -q dque
8 #PBS -l ncpus=1
9 #PBS -l walltime=02:00:00
10 #PBS -j oe
11 #PBS -M pinchak@cs.ualberta.ca
12 #PBS -m n
13
14 OPTIONS=‘ssh $CLS_MACHINE $CLS_DIR/next_job.py $ID_S TR‘
15
16 RETURNVAL="$?"
17
18 if ["$RETURNVAL" -eq 2]; then
19 exit 111
20 fi
21 if ["$RETURNVAL" -eq 1]; then
22 sleep 5
23 qsub checkers_script.pbs
24 exit
25 fi
26 if [-z "$OPTIONS"]; then
27 exit 222
28 fi
29
30 cd $CHECKERS_DIR
31 $OPTIONS
32
33 ssh $CLS_MACHINE $CLS_DIR/done_job.py $ID_STR
34
35 qsub checkers_script.pbs

Figure 5: PBS Placeholder for Computing Checkers Databases

1 #!/bin/sh
2
3 ## Checkers DB Placeholder SGE script
4
5 #$ -S /bin/sh
6 #$ -N CheckersPH
7 #$ -j y
8 #$ -M pinchak@cs.ualberta.ca
9 #$ -m n
10
11 OPTIONS=‘ssh $CLS_MACHINE $CLS_DIR/next_job.py $ID_S TR‘
12
13 RETURNVAL="$?"
14
15 if ["$RETURNVAL" -eq 2]; then
16 exit 111
17 fi
18 if ["$RETURNVAL" -eq 1]; then
19 sleep 5
20 qsub checkers_script.sge
21 exit
22 fi
23 if [-z "$OPTIONS"]; then
24 exit 222
25 fi
26
27 cd $CHECKERS_DIR
28 $OPTIONS
29
30 ssh $CLS_MACHINE $CLS_DIR/done_job.py $ID_STR
31
32 qsub checkers_script.sge

Figure 6: Sun Grid Engine Placeholder for Computing Checkers Databases

0230

1220 2111 3002

20121121

10220131

3200

2210 3101

0032

Figure 7: Dependencies Between Slices of the Checkers Endgame Databases

CREATE TABLE Targets (
tar_id int PRIMARY KEY,
tar_name varchar(64) UNIQUE

);
CREATE TABLE Jobs (

tar_id int REFERENCES Targets, -- target ID
j_num int, -- number within target
comm_line varchar(800), -- command line
PRIMARY KEY (tar_id, j_num)

);
CREATE TABLE Before (

pre_id int REFERENCES Targets ON DELETE CASCADE, -- prerequ isite
dep_id int REFERENCES Targets, -- dependent target
PRIMARY KEY (pre_id, dep_id)

);
CREATE TABLE Running (

tar_id int REFERENCES Targets, -- target ID
j_num int, -- number within target
machine varchar(20), -- host name
PRIMARY KEY (tar_id, j_num)

);

Figure 8: Definition Script for Jobs Database

./mqsub.py -deps "0022 0031" -l "3200" -c "Bin/run.it 3 2 0 0 0 0 >& Results/3200.00"

Figure 9: Submission of the Job For Computing a Slice in “3 2 0 0”

individual jobs, called slices. We denote a slice us-
ing four numbers. These numbers stand for the num-
ber of black kings, white kings, black checkers and
white checkers. The slices are further subdivided
into smaller slices based on the position of the most
advanced checker of each side (see [6] for details).
Because the results of one slice may be needed be-
fore another slice can be computed, there is an inher-
ent workflow dependency.

Figure 7 shows the dependencies between slices
of the databases for the case in which black has three
pieces and white has two pieces on the board. For
example, consider a position with 2 black kings, 2
white kings, 1 black checker and no white checkers.
This position is in slice “2 2 1 0” of the databases.
Now, if a black checker advances to a king, then we
have 3 black kings, 2 white kings and no checkers.
The new position is in slice “3 2 0 0”. Thus, positions
in slice “2 2 1 0” can play into positions in slice “3 2
0 0”. This is reflected by an edge at the top of Figure
7. Therefore, slice “3 2 0 0” has to be computed

before slice “2 2 1 0”.

In general, slices at the same level of the lattice in
Figure 7 can be computed in parallel; slices at dif-
ferent levels of the lattice have to be computed in the
proper order (i.e., from top to bottom).

Information about the dependencies between
board configurations is conveniently stored in a
Makefile. This Makefile is automatically produced
by a C program. Commands in the Makefile are calls
to a script (calledmqsub.py) that inserts job de-
scriptions and dependencies into a simple relational
database (i.e. PostgreSQL [16]). The schema def-
inition script is shown in Figure 8. An example of
the submission of a job to the database is shown in
Figure 9. We provide a name (or label) for the cur-
rent target (or job) (following-l), the labels of the
jobs on which the current job depends (following
-deps), and the command line for computing the
slice (following -c).

Tuples in theTargets table (Figure 8) corre-
spond to targets in the Makefile. Commands within

targets are assigned consecutive numbers. Thus a
command is uniquely identified given its target ID
and job number within the target (see tableJobs).
Table Before summarizes information about de-
pendencies between targets. TableRunning con-
tains the jobs that are currently being run; for each
such job, the host name of the machine on which the
job is being run is stored.

The command-line server consults and modifies
the database of jobs in order to return the command
line of a job that can be executed without violating
any dependencies. The command-line server is in-
voked twice for each job: once to get the command
line for the job (Figure 5, line 14) and the other to let
the server know that the job has been completed (Fig-
ure 5, line 33). Both times, the host name is passed
as a parameter to the server.

The design of the jobs database simplifies the task
of the command-line server. All prerequisites for a
target are met if the target does not appear in the
dep id field of any tuple in theBefore table.
Also, when the last job of a target is returned, the tar-
get is deleted from theTargets table, which results
in cascading deletion of the corresponding tuples in
the database.

4 Experiments

4.1 Parallel Sort

The goals of the parallel sorting experiment are to
show the performance of placeholders in four orthog-
onal dimensions of heterogeneity: (1) parallel vs. se-
quential computer; (2) machine architecture; (3) dis-
tributed vs. shared memory; and (4) local scheduling
system. A summary of the systems with respect to
these dimensions is shown in Table 2.

We performed an on-line experiment with three
different computers, in three different administrative
domains, and with three different local schedulers.
These are not simulated results. System A sorted
four million integer keys using four processors, Sys-
tem B sorted four million integer keys sequentially,
and System C sorted four million integer keys using
eight processors. During our experiment, there were
other users on two of the systems (i.e., System A and
C). Although the specific quantitative results are not

repeatable, the qualitative results are representative.
Also, note that System A is administered by the high-
performance computing centre of the University of
Alberta. System B is in our department and effec-
tively under our administrative control. System C is
administered by the of the University of Calgary.

The primary goal of placeholder scheduling is to
maximize throughput across a number of machines.
The throughput, as evidenced by the rate of execu-
tion, is shown in Figure 10. The cumulative number
of work units performed by each system is shown,
and the rate of execution is determined by the slopes
of the lines. System A exhibits a good initial execu-
tion rate, but then suddenly stops executing place-
holders. System B, the dedicated sequential ma-
chine, exhibits a steady rate of execution. System C
is somewhere in between, exhibiting a more or less
constant rate of execution, although this rate is be-
low that of the others. The bottom-most (bar) graph
in Figure 10 shows the number of work units com-
pleted per 5000 second time period.

An interesting point illustrated in Figure 10 is the
abrupt halt of execution of System A. By examining
the PBS logs, we believe that our placeholders used
up our user account’s quota of CPU time on the sys-
tem. As a result, System A becomes unable to exe-
cute additional work after roughly 7000 seconds, and
this can be perceived as a failure of System A. How-
ever, because of the placeholders, the other two sys-
tems (B and C) are able to compensate for the loss of
System A. After 7000 seconds, only Systems B and
C complete work units and are responsible for fin-
ishing off the remainder of the workload. Should the
loss have occurred without a scheduling system such
as placeholder scheduling, users would likely have to
discover and correct for this loss on their own.

Figures 11 and 12 show the queue lengths and
placeholders per queue, respectively. As Figure 11
shows, System A is significantly more loaded than
System C. However, System A is also more power-
ful than System C, and therefore execution rates are
higher. System A is also able to sustain more place-
holders in the queue for the first 7000 seconds, and
both queues exhibit increases and decreases in place-
holder counts due to changing queue conditions (Fig-
ure 12). It must be emphasized that these results are
obtained from computers working on other applica-

System Description Interconnect Scheduler Sorting
Algorithm

A
(akaaurora)

SGI Origin 2000, 46� 195
MHz R10000, 12 GB RAM, Irix
6.5.14f

Shared
Memory
NUMA

PBS Parallel
Shared
Memory

B
(akalacrete)

Single Pentium II, 400 MHz,
128 MB RAM, Linux 2.2.16

None Sun Grid
Engine

Sequential

C
(akamaci-cluster)

Alpha Cluster, mixture of
Compaq XP1000, ES40, ES45,
and PWS 500au, 206 processors
in 122 nodes, each node has
from 256 MB to 8 GB RAM,
Tru64 UNIX V4.0F

Gigabit
Ethernet

PBS Parallel
Distributed
Memory
(i.e., MPI)

Table 2: Experimental Platform for the Parallel Sorting Application

System Description Scheduler

D
(akasamson-pk)

Single AMD Athlon XP 1800+, 256 MB RAM,
Linux 2.4.9

Sun Grid Engine

E
(akast-brides)

Single AMD Athlon XP 1900+, 256 MB RAM,
Linux 2.4.9

PBS

Table 3: Experimental Platform for the Checkers Database Application

tions in addition to our own. No attempt has been
made to control the queues on Systems A or C.

4.2 Checkers Database

The purpose of the checkers database experiment is
twofold. First, the checkers database application is
a non-trivial application. Second, the computation
of one slice is dependent upon the completed com-
putation of other slices. Therefore, some form of
workflow management must be present to coordinate
the computation of board configurations. As was de-
scribed above, a new command-line server was im-
plemented to coordinate the computation.

Two different computers were used for comput-
ing the checkers databases (see Table 3). Figure 13
shows the throughput of the two computers in terms
of the number of board configurations each com-
puted. Because of the dependencies between some
board configurations (see Figure 7), some board con-

figurations must be computed sequentially. In our
case, System E computes more of these sequential
configurations than does System D. This is verified
by the load averages shown in Figure 14. Overall,
System E has a higher load, which indicates that it is
performing more work.

Unlike the parallel sorting experiment, there are
dependencies between jobs in the checkers database
application. Furthermore, the number of jobs that
can be computed concurrently varies from one (at
the very top and bottom of the lattice) to a signifi-
cant number (at the middle of the lattice) (Figure 7).
Therefore, there are bottleneck jobs and the two com-
puters are not fully-utilized during those bottleneck
phases (Figure 14). However, when there are con-
current jobs, our placeholder scheduling system and
the workflow-based command-line server is able to
exploit it.

0

500

1000

1500

2000

Execution Totals

0

500

1000

1500

2000

T
ot

al
 U

ni
ts

 C
om

pl
et

ed

0

500

1000

1500

2000

0 5000 10000 15000 20000
Time (Seconds from Start)

0

500

1000

1500

2000

U
ni

ts
 C

om
pl

et
ed System A

System B
System C
Total

Queue stops executing jobs
System A

System B

System C

Figure 10: Throughput for the Parallel Sorting Application

0

10

20

Queue Length

0 5000 10000 15000 20000
Time (Seconds from Start)

0

1

2

3

4

5

Q
ue

ue
 L

en
gt

h
(J

ob
s)

System A

System C Due to placeholders

Figure 11: Queue Lengths of the Parallel Machines

0

1

2

3

4

5

Placeholders in Queue

0 5000 10000 15000 20000
Time (Seconds from Start)

0

1

2

3

4

5

P
la

ce
ho

ld
er

s

System A

Queue stops executing jobs

System C

Figure 12: Number of Placeholders in Parallel Machine Queues

0

200

400

600

800

Execution Totals

0

200

400

600

800

B
oa

rd
 C

on
fig

ur
at

io
ns

 C
om

pu
te

d

0 1000 2000 3000 4000 5000 6000
Time (Seconds from Start)

0

50

100

150

200

250

300
System D
System E
Total

System D

System E

Figure 13: Throughput for the Checkers Database Application

0

0.5

1

1.5

Load Averages

0 1000 2000 3000 4000 5000 6000
Time (Seconds from Start)

0

0.5

1

1.5

Lo
ad

System D

System E

Figure 14: Load Averages for the Checkers Database Application

5 Related Work

Although the ideas behind placeholder scheduling
are quite simple, we are not aware of any other sys-
tem described in the literature that uses this tech-
nique. We suspect that, prior to the availability of
full-featured and open-source batch schedulers such
as OpenPBS, most users wrote custom scripts to dis-
tribute their work (for example, [6]), without gener-
alizing the system in the manner of this paper. We
feel that our contribution is in demonstrating how
placeholder scheduling can be implemented in a con-
temporary context and how it relates to metacom-
puting and computational grids. More tangentially,
large-scale distributed computation projects such as
SETI@home [18] use software clients that are, in
essence, single-purpose placeholders that pull work
on-demand from a server.

Placeholder scheduling shares many similarities
with self-scheduling taskswithin a parallel appli-
cation and the well-known master-worker paradigm
[17], in which placeholders are analogous to worker
processes. Of course, our presentation of placeholder
scheduling is in the context of job scheduling and not
task scheduling. Nonetheless, the basic strategies are
identical.

Of course, there is a large body of research in the
area of job scheduling and queuing theory (for exam-
ple, [4, 7, 9]). This paper has taken a more systems-
oriented approach to scheduling. Our scheduling dis-
cipline at the metaqueue (i.e., command-line server)
is currently simple: first-come-first-served. In the
future, we hope to investigate more sophisticated
scheduling algorithms that understand the dependen-
cies between jobs and try to compute a minimal
schedule.

Finally, resource discovery and scheduling is a
fundamental component of metacomputer and grid
computing research (for example, [5, 8]).

6 Discussion and Future Work

In this section, we discuss some other important,
practical aspects of placeholder scheduling. Many
of the following issues are to be addressed as part of
future work.

1. Advanced Placeholder Monitoring. We have
implemented a simple form of placeholder
monitoring and throttling. However, there are
some other forms of placeholder monitoring
that are also important and will be addressed in
future work.

Placeholders should be removed from local
batch queues if the command-line server has no
more jobs or too few jobs.We do not want a
placeholder to make it to the front of the queue,
allocate resources (which may involve draining
a parallel computer of all the sequential jobs so
that a parallel job can run), and then exit im-
mediately when the command-line server has
no work for it. A similarly undesirable situ-
ation occurs when there are fewer jobs in the
metaqueue than there are placeholders.

In both situations, placeholders should be au-
tomatically removed from the queues in order
to minimize the negative impact that they might
have on other users. If, later on, more work is
added to the command-line server, placeholders
can be re-started.

2. Fault Tolerance. Placeholders, by their nature,
contain some amount of fault tolerance. Be-
cause placeholders are usually present in more
than one queue, some queue failures (e.g., a
machine shutdown or network break) can occur
and the jobs will still be executed by placehold-
ers in the remaining queues. However, a more
systematic approach to detecting and handling
faults is required to improve the practicality of
placeholder scheduling.

As part of advanced placeholder monitoring
(discussed above), future placeholder schedul-
ing systems have to monitor and re-start place-
holders that disappear due to system faults.
Also, the system should be able to allocate the
same job to two different placeholders if a fault
is suspected and, if both placeholders end up
completing the job, deal with potential conflicts
due to job side effects.

3. Resource Matching. Modern batch sched-
uler systems provide the ability to specify con-
straints on the placement of jobs due to specific

resource requirements. For example, some jobs
require a minimum amount of physical memory
or disk space. Currently, our implementation
of placeholder scheduling does not provide this
capability, but it is an important feature for the
future.

4. Data Movement. Another practical problem
faced by users of metacomputers and compu-
tational grids is: If my computation can move
from one system to another, how can I ensure
that my data will still be available to my com-
putation?

Depending on the level of software, techni-
cal, and administrative support available, a data
grid (for example, [2, 20, 22]) or a distributed
file system (e.g., AFS, NFS) would be reason-
able solutions. However, as with system-level
metaqueues, it is not always possible (or practi-
cal) to have a diverse group of systems admin-
istrators agree to adopt a common infrastruc-
ture to support remote data access. Yet, having
transparent access to any remote data is an im-
portant, practical capability.

Data movement is something that the Trellis
Project has started to address. We have devel-
oped the Trellis File System (Trellis FS) to al-
low programs to access data files on any file
system and on any host on a network that can
be named by a Secure Copy Locator (SCL)
or a Uniform Resource Locator (URL) [19].
Without requiring any new protocols or infras-
tructure, Trellis can be used on practically any
POSIX-based system on the Internet. Read ac-
cess, write access, sparse access, local caching
of data, prefetching, and authentication are sup-
ported.

7 Concluding Remarks

The basic ideas behind placeholders and placeholder
scheduling are fairly straightforward: centralize the
jobs of the workload into a metaqueue (i.e., the
command-line server), use placeholders to pull the
job to the next available queue (instead of pushing
jobs), and use late binding to give the system maxi-
mum flexibility in job placement and load balancing.

Our contribution is in showing how such a system
can be built using only widely-deployed and contem-
porary infrastructure, such as Secure Shell, PBS, and
SGE. As such, placeholder scheduling can be used
in situations in which metaqueues and grids have not
yet been implemented by the administrators.

As an extension of our original work with place-
holder scheduling, we have now empirically demon-
strated that placeholder scheduling can (1) load bal-
ance a workload across heterogeneous administra-
tive domains (Table 2), (2) work with different lo-
cal schedulers (Table 2), (3) implement workflow de-
pendencies between jobs (Section 3.4, Section 4.2),
and (4) automatically monitor the load on a particular
system in order to dynamically throttle the number of
placeholders in the queue (Section 3.2).

Given the growing interest in metacomputers and
computational grids, the problems of distributed
scheduling will become more important. Placeholder
scheduling is a novel and pragmatic technique used
to dynamically schedule, place, and load balance a
workload among multiple, independent batch queues
in an overlay metacomputer. Local system admin-
istrators maintain complete control of their individ-
ual systems, but placeholder scheduling provides the
same user benefits as a centralized meta-scheduler.

Acknowledgments

Thank you to C3.ca, the Natural Sciences and Engi-
neering Research Council of Canada (NSERC), and
the Canada Foundation for Innovation (CFI) for their
research support. Thank you to Lesley Schimanski
and the anonymous referees for their valuable com-
ments.

References

[1] D. J. Barrett and R. E. Silverman.SSH, the Se-
cure Shell: The Definitive Guide. O’Reilly and
Associates, Sebastopol, CA, 2001.

[2] J. Bester, I. Foster, C. Kesselman, J. Tedesco,
and S. Tuecke. GASS: A Data Movement and
Access Service for Wide Area Computing Sys-
tems. InProceedings of the Sixth Workshop on
I/O in Parallel and Distributed Systems, 1999.

[3] Condor. http://www.cs.wisc.edu/condor/.

[4] D. G. Feitelson, L. Rudolph, U. Schwiegel-
shohn, K. C. Sevcik, and P. Wong. Theory and
Practice in Parallel Job Scheduling. In D. G.
Feitelson and L. Rudolph, editors,Job Schedul-
ing Strategies for Parallel Processing, volume
1291 of Lecture Notes in Computer Science,
pages 1–34. 1997.

[5] Globus. http://www.globus.org/.

[6] R. Lake, J. Schaeffer, and P. Lu. Solving
Large Retrograde-Analysis Problems Using a
Network of Workstations. InProceedings of
Advances in Computer Chess 7, pages 135–
162, Maastricht, Netherlands, 1994. University
of Limburg.

[7] E. D. Lazowska, J. Zahorjan, G. S. Graham,
and K. C. Sevcik. Quantitative System Per-
formance. Computer Systems Analysis Using
Queueing Network Models. Prentice Hall, Inc.,
1984.

[8] Legion. http://www.cs.virginia.edu/˜legion/.

[9] M. R. Leuze, L. W. Dowdy, and K. H.
Park. Multiprogramming a Distributed-
Memory Multiprocessor. Concurrency, Prac-
tice and Experience, 1(1):19–34, September
1989.

[10] X. Li, P. Lu, J. Schaeffer, J. Shillington, P. S.
Wong, and H. Shi. On the Versatility of Par-
allel Sorting by Regular Sampling.Parallel
Computing, 19(10):1079–1103, October 1993.
Available at http://www.cs.ualberta.ca/˜paullu/.

[11] Load Sharing Facility (LSF).
http://www.platform.com/.

[12] G. Ma and P. Lu. PBSWeb: A Web-based Inter-
face to the Portable Batch System. InProceed-
ings of the 12th IASTED International Con-
ference on Parallel and Distributed Computing
and Systems (PDCS), pages 24–30, Las Vegas,
Nevada, U.S.A., November 6–9 2000. Avail-
able at http://www.cs.ualberta.ca/˜paullu/.

[13] OpenPBS: The Portable Batch System.
http://www.openpbs.com/.

[14] PBSWeb. http://www.cs.ualberta.ca/˜paullu/
PBSWeb/.

[15] C. Pinchak and P. Lu. Placeholders for Dy-
namic Scheduling in Overlay Metacomputers:
Design and Implementation.Journal of Paral-
lel and Distributed Computing. Under submis-
sion to special issue on Computational Grids.

[16] PostgreSQL Database Management System.
http://www.postgresql.org/.

[17] L. Rudolph, M. Slivkin-Allalouf, and E. Upfal.
A Simple Load Balancing Scheme for Task Al-
location In Parallel Machines. InProceedings
of the 3rd Annual ACM Symposium on Parallel
Algorithms and Architectures, pages 237–245,
Hilton Head, South Carolina, U.S.A, July 21–
24 1991. ACM Press.

[18] SETI@home. http://setiathome.ssl.berkeley.edu/.

[19] J. Siegel and P. Lu. User-Level Remote Data
Access in Overlay Metacomputers. InProceed-
ings of the 4th IEEE International Conference
on Cluster Computing, 2002.

[20] H. Stockinger, A. Samar, B. Allcock, I. Fos-
ter, K. Holtman, and B. Tierney. File and Ob-
ject Replication in Data Grids. InProceedings
of the Tenth International Symposium on High
Performance Distributed Computing (HPDC-
10), August 2001.

[21] Sun Grid Engine. http://www.sun.com/
software/gridware/sge.html.

[22] Brian S. White, Michael Walker, Marty
Humphrey, and Andrew S. Grimshaw. Le-
gionFS: A secure and scalable file system sup-
porting cross-domain high-performance appli-
cations. In ACM, editor,SC2001: High Per-
formance Networking and Computing. Denver,
CO, November 10–16, 2001, New York, NY
10036, USA and 1109 Spring Street, Suite 300,
Silver Spring, MD 20910, USA, 2001. ACM
Press and IEEE Computer Society Press.

