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Abstract

A fundamental problem with distributed applications is
to map activities such as computation or data transfer onto
a set of resources that will meet the application’s require-
ment for performance, cost, security, or other quality of
service metrics. An application or client must engage in
a multi-phase negotiation process with resourcemanagers,
as it discovers, reserves, acquires, configures, monitors,
and potentially renegotiates resource access. Current ap-
proaches to resource management tend to specialize for
specific classes of resource (processor, network, etc.), and
have addressed coordination across resources in a limited
fashion, if at all. We present a generalized resource man-
agement model in which resource interactions are mapped
onto a well defined set of platform-independent service level
agreements (SLAs). We instantiate this model in theSer-
vice Negotiation and Acquisition Protocol(SNAP) which
provides lifetime management and an at-most-once creation
semantics for remote SLAs. The result is a resource man-
agement framework for distributed systems that we believe
is more powerful and general than current approaches. We
explain how SNAP can be deployed within the context of the
Globus Toolkit.

1 Introduction

A common requirement in distributed computing sys-
tems such as Grids [16, 19] is to negotiate access to, and
manage, resources that exist within different administrative
domains than the requester. Acquiring access to these re-
mote resources is complicated by the competing needs of
theclient and theresource owner. The client needs to un-
derstand and affect resource behavior, often requiring as-

surance or guarantee on the level and type of service being
provided by the resource. Conversely, the owner wants to
maintain local control and discretion over how the resource
can be used. Not only does the owner want to control usage
policy, he often wants to restrict how much policy informa-
tion is exposed to clients. A common means for reconciling
these two competing demands is to negotiate aservice-level
agreement(SLA), by which a resource provider “contracts”
with a client to provide some measurable capability or to
perform a task. An SLA allows clients to understandwhat
to expect from resourceswithout requiring detailed knowl-
edge of competing workloads or resource owners’ policies.

However, negotiation of SLAs for distributed Grid ap-
plications is complicated by the need to coordinate ac-
cess to multiple resources simultaneously. For example,
large distributed simulations [6] can require access to many
large computational resources at one time. On-line exper-
iments [38] require that computational resources be avail-
able when the experiment is being conducted, and process-
ing pipelines such as data-transfer [21], data-analysis [25, 3]
and visualization pipelines [8] require simulations access to
a balanced resource set.

Given that each of the resources in question may be
owned and operated by a different provider, establishing a
single SLA across all of the desired resources is not pos-
sible. One solution to this problem is to define a resource
management model in which management functions are de-
composed into different types of SLAs that can be com-
posed incrementally, allowing for coordinated management
across the desired resource set. Specifically, we propose
three different types of SLAs:� Task service level agreements(TSLAs) in which one

negotiates for the performance of an activity or task.
A TSLA is, for example, created by submitting a job
description to a queuing system. The TSLA charac-
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Figure 1. Three types of SLA—RSLA, TSLA, and BSLA—allow a cli ent to schedule resources as time
progresses from t0 to t6. In this case, the client acquires two resource promises (RS LAs) for future
times; a complex task is submitted as the sole TSLA, utilizin g RSLA 1 to get initial portions of the
job provisioned; later, the client applies RSLA 2 to acceler ate provisioning of another component of
the job; finally, the last piece of the job is provisioned by th e manager without an explicit RSLA.

terizes a task in terms of its service steps and resource
requirements.� Resource service level agreements(RSLAs) in which
one negotiates for the right to consume a resource. A
RSLA can be negotiated without specifying what ac-
tivity the resource will be used for. For example, an
advance reservation takes the form of an RSLA. The
RSLA characterizes a resource in terms of its abstract
service capabilities.� Binding service level agreements(BSLAs) in which
one negotiates for the application of a resource to a
task. For example, an RSLA promising network band-
width might be applied to a particular TCP socket. The
BSLA associates a task, defined either by its TSLA or
some other unique identifier, with the RSLA and the
resource capabilities that should be met by exploiting
the RSLA.

As illustrated in Figure 1, the above SLAs define a service
management model in which one can submit tasks to be per-
formed, get promises of capability, and bind the two. By
combining these agreements in different ways, we can rep-
resent a variety of service management approaches includ-
ing: batch submission, resource brokering, co-allocation
and co-scheduling.

One concrete example of a BSLA might be to increase
the number of physical memory pages bound to a running
process, based on observed data regarding the working-set
size of the service. Another example is network QoS: a
reservation regarding the path between two Internet host ad-
dresses may guarantee a client a minimum bandwidth flow
as an RSLA. The client must bind TCP socket addresses
to this logical flow at runtime as a BSLA—the sockets are
identifiable “tasks” most likely not managed with a TSLA.
The complexity of real-world scenarios is addressed with
combinations of such SLAs. The proposed SLA model is

independent of the service being managed—the semantics
of specific services are accommodated by the details of the
agreement, and not in the types of agreements negotiated.
Because of its general applicability, we refer to the proto-
cols used to negotiate these SLAs as theService Negotiation
and Acquisition Protocol(SNAP).

The service management approach proposed here ex-
tends techniques first developed within the Globus Toolkit’s
GRAM service [10] and then extended in the experimen-
tal GARA system [20, 21, 33]. An implementation of
this architecture and protocol can leverage a variety of ex-
isting infrastructure, including the Globus Toolkit’s Grid
Security Infrastructure [18] and Monitoring and Discov-
ery Service [9]. We expect SNAP protocol to be eas-
ily implemented within the Open Grid Services Architec-
ture (OGSA) [17, 36], which provides request transport, se-
curity, discovery, and monitoring.

The remainder of this paper has the following struc-
ture: in Section 2 we present several motivating scenarios
to apply SLA models to Grid RM problems; in Section 3
we present the SNAP protocol messages and state model,
which embeds a resource and task language characterized
in Section 4. In Section 5, we briefly formalize the rela-
tionship between the various SLA and resource languages
in terms of their satisfaction or solution spaces. Finally,in
Sections 6 and 7, we describe how SNAP can be imple-
mented in the context of Globus services and relate it to
other QoS and RM work.

2 Motivating Scenarios

The SNAP SLA model is designed to address a broad
range of applications through the aggregation of simple
SLAs. In this section we examine two common scenarios:
a Grid with “community schedulers” mediating access to
shared resources on behalf of different client groups, and a
file-transfer scenario where QoS guarantees are exploited to
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Figure 2. Community scheduler scenario.
Multiple users (J1–J7) gain access to shared
resources (R1–R6). Community schedulers
(S1–S2) mediate access to the resources by
making TSLAs with the users and in turn mak-
ing RSLAs and TSLAs with the individual re-
sources.

perform data staging under deadline conditions.

2.1 Community Scheduler Scenario

A community scheduler (sometime referred to as a re-
source broker) is an entity that acts as an intermediary be-
tween the community and its resources: activities are sub-
mitted to the community scheduler rather than to the end
resource, and the activities are scheduled onto community
resources in such as way as to optimize the community’s
use of its resource set.

As depicted in Figure 2, a Grid environment may con-
tain many resources (R1–R6), all presenting an RSLA in-
terface as well as a TSLA interface. Optimizing the use of
resources across the community served by the scheduler is
only possible if the scheduler has some control over the re-
sources used by the community. Hence the scheduler nego-
tiates capacity guarantees via RSLAs with a pool of under-
lying resources, and controls those capabilities via TSLAs
and BSLAs. This set of agreements abstracts away the im-
pact of other community schedulers as well as any “non-
Grid” local workloads, provided the resource managers en-
force SLA guarantees at the resources.

Community scheduler services (S1 and S2 in Figure 2)
present a TSLA interface to users. Thus a community mem-
ber can submit a task to the scheduler by negotiating a
TSLA, and the scheduler in turn hands this off to a resource
by binding this TSLA against one of the existing RSLAs.
The scheduler may also offer an RSLA interface. This
would allow applications to co-scheduler activities across
communities, or combine community scheduled resources
with additional non-community resources.

The various SLAs offered by the community scheduler
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S1

J3J2
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Figure 3. File transfer scenario. File trans-
fer scheduler obtains disk and network reser-
vations before submitting transfer endpoint
jobs to perform transfer jobs for clients.

and underlying resources result in a very flexible resource
management environment. Users in this environment inter-
act with community and resource-level schedulers as appro-
priate for their goals and privileges. A privileged client with
a batch job such as J7 in Figure 2 may not need RSLAs, nor
the help of a community scheduler, because the goals are ex-
pressed directly in the TSLA with resource R6. The interac-
tive job J1 needs an RSLA to better control its performance.
Jobs J2 to J6 are submitted to community schedulers S1 and
S2 which might utilize special privileges or domain-specific
knowledge to efficiently implement their community jobs.
Note that not all users require RSLAs from the community
scheduler, but S1 does act as an RSLA “reseller” between J2
and resource R3. Scheduler S1 also maintains a speculative
RSLA with R1 to more rapidly serve future high-priority
job requests.

2.2 File Transfer Scenarios

In this scenario, we consider that the activity requested
by the user is to transfer a file from one storage system to an-
other. Generalizing the community scheduler example, we
augment the behavior of the scheduler to understand that a
transfer requires storage space on the destination resource,
and network and endpoint I/O bandwidth during the trans-
fer. The key to providing this service is the ability of the
scheduler to manage multiple resource types and perform
co-scheduling of these resources.

2.2.1 File Transfer Service

As depicted in Figure 3, the file transfer scheduler S1
presents a TSLA interface, and a network resource manager
R2 presents an RSLA interface. A user submits a transfer
job such as J1 to the scheduler with a deadline. The sched-
uler obtains a storage reservation on the destination resource
R3 to be sure that there will be enough space for the data



before attempting the transfer. Once space is allocated, the
scheduler obtains bandwidth reservations from the network
and the storage devices, giving the scheduler confidence
that the transfer can be completed within the user-specified
deadline. Finally, the scheduler submits transfer endpoint
jobs J2 and J3 to implement the transfer J1 using the space
and bandwidth promises.

2.2.2 Job Staging with Transfer Service

SLAs can be linked together to address more complex re-
source co-allocation situations. We illustrate this consid-
ering a job, or application, that consists of three activities:
data is transferred from a storage system to an intermediate
location where some computation is performed using the
data. The output of the computation is then transferred to
its final destination. The computation is performed on re-
sources allocated to a community of users. However, for
security reasons, the computation is not performed using a
group account, but rather, a temporary account is dynam-
ically created for the computation (In [30], we describe a
community authorization service which can be used to au-
thorize activities on behalf of a user community).

In Figure 4, TSLA1 represents a temporary user account,
such as might be established by a resource for a client who
is authorized through a Community Authorization Service.
All job interactions by that client on the resource become
linked to this long-lived SLA—in order for the account to
be reclaimed safely, all dependent SLAs must be destroyed.
The figure illustrates shows how the individual SLAs as-
sociated with the resources and tasks can be combined to
address the end-to-end resource and task management re-
quirements of the entire job. Of interest in this example are:

TSLA1 is the above-mentioned temporary user account.

RSLA1 promises the client 50 GB of storage in a particular
filesystem on the resource.

BSLA1 binds part of the promised storage space to a par-
ticular set of files within the filesystem.

TSLA2 runs a complex job which will spawn constituent
parts for staging of input and output data.

TSLA3 is the first file transfer task, to stage the input to the
job site without requiring any additional QoS guaran-
tees in this case.

TSLA4 is the second file transfer task, to stage the large
output from the job site under a deadline to save the
data before the local filesystem space is lost.

RSLA2 and BSLA2 are used by the file transfer service to
achieve the additional bandwidth required to complete
the (large) transfer before the deadline.
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Figure 4. Dependent SLAs for file transfers
associated with input and output of a job with
a large temporary data space. BSLA2 is de-
pendent on TSLA4 and RSLA2, and has a life-
time bound by those two.

The job TSLA2 might have built-in logic to establish the
staging jobs TSLA3 and TSLA4, or this logic might be part
of the provider performing task TSLA2 on behalf of the
client. In the figure, the nesting of SLA “boxes” is meant
to illustrate how lifetime of these management abstractions
can be linked in practice. Such linkage can be forced by a
dependency between the subjects of the SLAs, e.g. BSLA2
is meaningless beyond the lifetime of TSLA4 and RSLA2,
or optionally added as a management convenience, e.g. trig-
gering recursive destruction of all SLAs from the root to
hasten reclamation of application-grouped resources.

2.3 Resource Virtualization

In the scenarios above, the Community Scheduler can be
viewed as virtualizing a set of resources from other man-
agers for the benefit of its community of users. This type of
resource virtualization is important as it helps implement
the trust relationships that are exploited in Grid applica-
tions. The user community trusts their scheduler to form
agreements providing resources or performing tasks, and
the scheduler has its own trust model for determining what
resources are acceptable targets for the community work-
load.

Another type of virtualization in dynamic service envi-
ronments like OGSA is thefactory service [17]. A man-
ager in such an environment is a factory, providing a long-
lived contact point to initiate short-lived SLAs. The SLA
factory exposes the agreements as set of short-lived, state-
ful services which can be manipulated to control one SLA.
Resource virtualization is particularly interesting whena
TSLA creates a job which can itself provide Grid ser-
vices. This process is described for “active storage” systems
in [25] and [8], where data extraction jobs convert a com-
pute cluster with parallel storage into a high-performance
data server. Such an action can be thought of as the dy-
namic deployment of new services “on demand,” a critical
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Figure 5. Agreement state transitions. State
of SLAs is affected by client requests (solid
arrows) and other internal behaviors in the
manager (dashed arrows).

property for a permanent, but adaptive, global Grid [19].

3 The SNAP Agreement Protocol

The core of our RM architecture is a client-service inter-
action used to negotiate SLAs. The protocol applies equiva-
lently when talking to authoritative, localized resource own-
ers or to intervening brokers.

We describe each operation in terms of unidirectional
messages sent from client to service or service to client. All
of these operations follow a client-server remote procedure-
call (RPC) pattern, so we assume the underlying transport
will provide correlation of the initiating and response mes-
sages. One way of interpreting the following descriptions
is that the client to service message corresponds to the RPC
call, and the return messages represent the possible result
values of the call. This interpretation is consistent with how
such a protocol would be deployed in a Web Services envi-
ronment, using WSDL to model the RPC messages [7, 1].

3.1 Agreement State Transitions

Due the the dependence of BSLAs on RSLAs (and pos-
sible TSLAs), there are four states through which planning
progresses, as depicted in Figure 5:

S0: SLAs either have not been created, or have been re-
solved by expiration or cancellation of the SLAs.

S1: The TSLAs and RSLAs have been agreed upon, but
are not matched with each other.

S2: The TSLA is matched with the RSLA, and this group-
ing represents a dependent BSLA to resolve the task.

S3: Resources are being utilized for the task and can still
be controlled or changed.

As indicated in Figure 5 with solid arrows, client establish-
ment of SLAs enters the state S1, and can also lead to state
S2 by establishing BSLAs. It is possible for the manager
to unilaterally create a BSLA representing its schedule for
satisfying a TSLA, and only the manager can move from
a BSLA into a run-state S3 where resources are actively
supporting a task. Either client termination requests, task
completion, or other faults may lead back to a prior state,
including termination of SLAs in state S0.

3.2 Agreement Meta-Language

The SNAP protocol maintains a set of manager-side
SLAs using client-initiated messages. All SLAs contain an
SLA identifierI , the client
 with whom the SLA is made,
and an expiration timetdead, as well as a specific TSLA,
RSLA, or BSLA descriptiona:hI; 
; tdead; ai
Each SLA type defines its own descriptive content, e.g. re-
source requirements or task description. In this section we
assume an extensible language J for describing tasks (jobs),
with a subset language R�J capable of expressing resource
requirements in J as well as standalone resource require-
ments. The necessary features of such a language are ex-
plored later in Section 4.

We also assume a relationa0 v a, or a0 “models” a,
which means thata0 describes the same terms of agreement
asa but might possible add additional terms or further re-
strict a constraint expressed ina. In other words, any time
SLA a0 conditions are met, so area conditions. This con-
cept is examined more closely in Section 5.

3.2.1 RSLA Content

An RSLA contains the (potentially complex) resource ca-
pability descriptionr expressed in the R subset of the J lan-
guage. Therefore, a complete RSLA in a manager has the
form: hI; 
; tdead; hriRi:
3.2.2 TSLA Content

A TSLA contains the (potentially complex) job descriptionj expressed in the J language. Therefore, a complete TSLA
in a manager has the form:hI; 
; tdead; hjiTi
The descriptionj also includes a resource capability de-
scriptionr = j #R which expresses what capabilityr is
to be applied to the task, and using what RSLA(s). If the
named RSLAs are not sufficient to satisfyr, the TSLA im-
plies the creation of one or more RSLAs to satisfyj.
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Figure 6. RM protocol messages. The proto-
col messages establish and maintain SLAs in
the manager.

3.2.3 BSLA Content

A BSLA contains the descriptionj of an existing task in the
language J. The descriptionj may reference a TSLA for the
task, or some other unique description in the case of tasks
not initiated by a TSLA. Therefore, a complete stand-alone
RSLA in a manager has the form:hI; 
; tdead; hjiBi
As for TSLAs, the BSLA descriptionj may reference ex-
isting RSLAs and if they do not satisfy the requirements inj, the BSLA implies the creation of one or more RSLAs to
satisfyj.
3.3 Operations

3.3.1 Allocate Identifier Operation

There are multiple approaches to obtaining unique identi-
fiers suitable for naming agreements. To avoid describing
a security infrastructure-dependent approach, we suggesta
special light-weight agreement to allocate identifiers from
a manager. This operation is analogous to opening a timed
transaction in a database system. The client sends:getident(tdead)
asking the manager to allocate a new identifier that will be
valid until time tdead. On success, the manager will re-
spond: useident(I; tdead)
and the client can then attempt to create reliable RM agree-
ments using this identifier as long as the identifier is valid.

3.3.2 Agreement Operation

A client negotiates an SLA using a valid identifier obtained
usinggetident(: : :). The client issues a single message

with arguments expressed in the agreement language from
Section 3.2: request(I; 
; tdead; a)
The SLA descriptiona captures all of the requirements of
the client. On success, the manager will respond with a
message of the form:agree(I; 
; tdead; a0)
wherea0 v a as described in Sections 3.2 and 5. In other
words, the manager agrees to the SLA descriptiona0, and
this SLA will terminate attdead unless the client performs asetdeath(I; t) operation to change its scheduled lifetime.

A client is free to re-issue requests, and a manager is re-
quired to treat duplicate requests received after a successful
agreement as being equivalent to a request for acknowledg-
ment on the existing agreement. This idempotence is en-
abled by the unique identifier of each agreement.

3.3.3 Set Termination Operation

We believe thatidempotence(i.e. an at-most-once seman-
tics) combined withexpiration is well-suited to achiev-
ing fault-tolerant agreement. We define our operations as
atomic and idempotent interactions that create SLAs in the
manager. Each SLA has a termination time, after which a
well-defined reclamation effect occurs. This termination ef-
fect can be exploited at runtime to implement a spectrum of
negotiation strategies: a stream of short-term expirationup-
dates could implement a heart-beat monitoring system [34]
to force reclamation in the absence of positive signals, while
a long-term expiration date guarantees SLAs will persist
long enough to survive transient outages.

With this operation, a client can set a new termination
time for the identifier (and any agreement named as such).
The client changes the lifetime by sending a message of the
form: setdeath(I; tdead)
wheretdead is the new wall-clock termination time for the
existing SLA labeled byI . On success the manager will
respond with the new termination time:willdie(I; tdead)
and the client may reissue thesetdeath(: : :) message if
some failure blocks the initial response. Agreements can be
abandoned with a simple request ofsetdeath(I; 0) which
forces expiration of the agreement.

The lifetime represented bytdead is the lifetime of the
agreement named byI . If the agreement makes promises
about times in the future beyond its current lifetime, those
promises expire with the SLA. Thus, it is a client’s respon-
sibility to extend or renew an SLA for the full duration re-
quired.
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3.4 Change

Finally, we support the common idiom of atomicchange
by allowing a client to resend the request on the same SLA
identifier, but with modified requirement content. The ser-
vice will respond as for an initial request, or with an error if
the given change is not possible from the existing SLA state.
When the response indicates a successful SLA, the client
knows that any preceding agreement named byI has been
replaced by the new one depicted in the response. When the
response indicates failure, the client knows that the stateis
unchanged from before the request.

In essence, the service compares the incoming SLA re-
quest with its internal policy state to determine whether
to treat it as acreate, change, or lookup. The purpose of
change semantics is to preserve state in the underlying re-
source behavior where that is useful, e.g. it is often possible
to preserve an I/O channel or compute task when QoS lev-
els are adjusted. Whether such a change is possible may
depend both on the resource type, implementation, and lo-
cal policy. If the change is refused, the client will have to
initiate a new request and deal with the loss of state through
other means such as task check-pointing.

Change is also useful to adjust the degree of commit-
ment in an agreement. An expected use is to monoton-
ically increase the level of commitment in a promise as
a client converges on an application schedule involving
multiple resource managers, essentially implementing an
arbitrary-length, timed, multi-phase commit protocol across
the managers which may be in different administrative do-
mains. However, there is no requirement for this monotonic
increase—a client may also want to decrease the level of
commitment if they lose confidence in their application plan
and want to relax agreements with the manager.

4 Resource and Task Meta-Language

The resource and scheduling language J assumed in Sec-
tion 3 plays an important role in our architecture. Clients
in general must request resources by property, e.g. by ca-
pability, quality, or configuration. Similarly, clients must

understand their assignments by property so that they can
have any expectation of delivery in an environment where
other clients’ assignments and activities may be hidden
from view.

In this section we examine some of the structures we be-
lieve are required in this language, without attempting to
specify a concrete language. As a general note, we believe
that resource description must be dynamically extensible,
and the correct mechanism for extension is heavily depen-
dent on the technology chosen to implement SNAP. Sets of
clients and resources must be able to define new resource
syntax to capture novel devices and services, so the lan-
guage should support these extensions in a structured way.
However, a complex new concept may sometimes be cap-
tured by composing existing primitives, and hopefully large
communities will be able to standardize a relatively small
set of such primitives.

4.1 Resource Metrics

Many resources have parameterized attributes, i.e. a met-
ric describing a particular property of the resource such as
bandwidth, latency, orspace. Descriptions may scope these
metrics to a window of time[t0; t1℄ in which the client de-
sires access to a resource with the given qualities. We use
a generic scalar metric and suggest below how they can be
composed to model conventional resources.

A scalar metric can exactly specify resource capacity.
Often requirements are partially constraining, i.e. they iden-
tify ranges of capacity. We extend scalar metrics as unary
inequalities to use the scalar metrics as alimit. The limit
syntax can also be applied to time values, e.g. to specify a
start time of “� t” for a provisioning interval that starts “on
or before” the exact timet.
Time metrics t expressed in wall-clock time, e.g. “Wed

Apr 24 20:52:36 UTC 2002.”

Scalar metrics xu expressed inx real-valued unitsu, e.g.512Mbytes, or 10�10�3 s=seek.

Max limit <m and�m specify an exclusive or inclusive
upper limit on the given metricm, respectively.



Min limit >m and�m specify an exclusive or inclusive
lower limit on the given metricm, respectively.

These primitives are “leaf” constructs in a structural re-
source description. They define a syntax, but some of their
meaning is defined by the context in which they appear.

4.2 Resource Composites

The resource description language is compositional. Re-
alistic resources can be modeled as composites of simpler
resource primitives. Assuming a representation of resourcesr1, r2 etc. we can aggregate them using various typed con-
structs.

Set [r1; r2; : : :℄ combining arbitrary resources that are all
required.

Typed Set [r1; r2; : : :℄type combining type-specific re-
sources. Groups are marked with atype to con-
vey the meaning of the collection of resources,
e.g.[x1 bytes; x2 bytes=s℄disk might collect space and
bandwidth metrics for a “filesystem” resource.

Array n � r is an abbreviation for the group ofn identi-
cal resource instances[r; r; : : : ; r℄, e.g. for convenient
expression of symmetric parallelism.

The purpose of typed groups is to provide meaning to the
metric values inside—in practice the meaning is denoted
only in an external specification of the type, and the com-
puter system interrogating instances of R will be imple-
mented to recognize and process the typed composite. For
example, the[x1 bytes; x2 bytes=s℄disk composite tells us
that we are constraining the speed and size of a secondary
storage device with the otherwise ambiguous metrics for
space and bandwidth.

Resources are required over periods of time, i.e. from a
start timet0 to an end timet1, and we denote this asr[t0;t1℄.
A complex time-varying description can be composed of a
sequence of descriptions with consecutive time intervals:r = h[r1℄[t0;t1℄; [r2℄[t1;t2℄; : : : ; [rn℄[tn�1;tn℄i[t0;tn℄
Each subgroup within a composite must have a lifetime
wholly included within the lifetime of the parent group.

4.3 Resource Alternatives

We define disjunctivealternativesto complement the
conjunctive composites from section 4.2.

Alternative _ (r1; r2; : : :) differs from a resource set in
that only one elementri must be satisfied.

As indicated in the descriptions above, limit modifiers are
only applicable to scalar metrics, while the alternative con-
cept applies to all resource description elements. Alterna-
tives can be used to express alternate solution spaces for the
application requirements within distinct planning regimes,
or to phrase similar requirements using basic and special-
ized metrics in the event that a client could benefit from
unconventional extensions to R that may or may not be rec-
ognized by a given manager.

4.4 Resource Configuration

The final feature present in our description language is
the ability to intermingle control orconfigurationdirec-
tives within the resource statement. In a trusting envi-
ronment, this intermingling is merely a notational conve-
nience to avoid presenting two isomorphic statements—one
modeling the requirements of the structured resource and
one providing control data to the resource manager for the
structured resource. Task configuration details are what are
added to the language R to define the activity language J.

Configure a := v specifies an arbitrary configuration at-
tributea should have valuev.

In an environment with limited trust and permissions, some
resources may be unavailable for certain configurations due
to owner policy. We therefore suggest treating them as
primitive metrics when considering the meaning of the de-
scription for resource selection, while also considering them
as control data when considering the meaning of the de-
scription as an activity configuration.

4.5 RSLA Binding

To support the referencing of RSLAs, we require a way
to associate an existing RSLA with a sub-requirement in J:

RSLA Binding [r; IB℄bind specifies requirementr but also
says it should be satisfied using the RSLA identified
by IB.

This construct supports the explicit resource planning de-
scribed in Section 3.2.

5 SLA Constraint-Satisfaction Model

In a fully-developed SLA environment, one can imag-
ine agreements including auditing commitments, negotiated
payments or exchange of service, and remediation steps in
case of agreement violation. However, in this paper we fo-
cus on a weaker form of agreement where clients more or
less trust resource providers to act in good faith, and cost
models for service are not explicitly addressed nor pro-
scribed. Nonetheless, the entire purpose of our protocol
hinges on an understanding ofsatisfactionof SNAP SLAs.
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The satisfaction of an SLA requires a non-empty “solution
set” of possible resource and task schedules which deliver
the capabilities and perform the directives encoded in the J
language elements within the SLA. A self-contradictory or
unsatisfiableSLA has an empty solution set. We denote the
ideal solution set withsolution operatorsSR(r) andSJ(j)
which apply to descriptions in R or J.

While the language R is assumed to be a syntacticsubset
of J, the set of solution setsfSR(r) j r 2 Rg is asuperset
of the set of solution setsfSJ(j) j j 2 Jg, and given a pro-
jection of requirementsj #R2 R, the solution setSR(j #R)
is a superset ofSJ(j). This inversion occurs because the
additional syntactic constructs in J are used to express addi-
tional task constraints beyond the resource capabilities ex-
pressible in R. We would like a relation between descrip-
tions to capture this relationship between solution sets for
the descriptions. We say that arefineddescriptionj0 mod-
elsj, or j0 v j, if and only ifSJ(j0) � SJ(j). This concept
of refinement is used to define the relationship between re-
quested and agreed-upon SLAs in the SLA negotiation of
Section 3.3.2.

Just as J is more expressive than R, BSLAs are more
expressive than TSLAs or RSLAs. The TSLA says that
a manager will “run jobj according to its self-expressed
performance goals and provisioning requirements.” The
RSLA says that a manager will “provide resource capabil-
ity r when asked by the client.” A corresponding BSLA
encompasses both of these and says the manager will “ap-
ply resourcer to help satisfy requirements while perform-
ing job j.” Therefore we extend our use of the “models”
relation to SLAs. This set-ordered structure in the SNAP

concept domain is illustrated in Figure 8.

6 Implementing SNAP

The RM protocol architecture described in this article is
general and follows a minimalist design principle in that
the protocol captures only the behavior that is essential to
the process of negotiation. We envision that SNAP would
not be implemented as a stand alone protocol, but in prac-
tice would be layered on top of more primitive protocols
and services providing functions such as communication,
authentication, naming, discovery, etc. For example, the
Open Grid Services Architecture [17] defines basic mecha-
nisms for creating, naming, and controlling the lifetime of
services. In the following, we explore how SNAP could be
implemented on top of the OGSA service model.

6.1 Authentication and Authorization

Because Grid resources are both scarce and shared, a
system of rules for resource use, orpolicy, is often asso-
ciated with a resource to regulate its use [37]. We assume a
wide-area security environment such as GSI [18] will be in-
tegrated with the OGSA to provide mutually-authenticated
identity information to SNAP managers such that they may
securely implement policy decisions. Both upward infor-
mation flow and downward agreement policy flow in a com-
plex service environment, such as depicted in Figure 9,
are likely subject to policy evaluation that distinguishesbe-
tween clients and/or requests.

6.2 Resource Heterogeneity

The SNAP protocol agreements can be mapped onto a
range of existing local resource managers, to deploy its ben-
eficial capabilities without requiring wholesale replacement
of existing infrastructure. Results from GRAM testbeds
have shown the feasibility of mapping TSLAs onto a range
of local job schedulers, as well as simple time-sharing com-
puters [15, 5, 32]. The GARA prototype has shown how
RSLAs and BSLAs can be mapped down to contempo-
rary network QoS systems [20, 21, 33]. Following this
model, SNAP manager services representadaptationpoints
between the SNAP protocol domain and local RM mecha-
nisms.

6.3 Monitoring

A fundamental function for RM systems is the abil-
ity to monitor the health and status of individual services
and requests. Existing Grid RM services such as GRAM
and GARA include native protocol features to signal asyn-
chronous state changes from a service to a client. In addi-
tion to these native features, some RM state information is
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available from a more generalized information service, e.g.
GRAM job listings are published via the MDS in the Globus
Toolkit [10, 20, 9].

We expect the OGSA to integrate asynchronous sub-
scription/notification features. Therefore, we have omit-
ted this function from the RM architecture presented here.
An RM service implementation is expected to leverage this
common infrastructure for its monitoring data path. We
believe the agreement model presented in Sections 1, 3.2
and 3.1 suggest the proper structure for exposing RM ser-
vice state to information clients, propagating through the
upward arrows in Figure 9. Informationindex servicescan
cache and propagate this information because life-cycle of
the agreement state records is well defined in the RM pro-
tocol semantics, and the nested request language allows de-
tailed description of agreement properties.

6.4 Resource and Service Discovery

SNAP relies on the ability for clients to discover RM
services. We expect SNAP services to be discovered via a
combination of general discovery and registry services such
as the index capabilities of MDS-2 and OGSA, client con-
figuration via service registries such as UDDI, and static
knowledge about the community (Virtual Organization) un-
der which the client is operating. The discovery information
flow is exactly as for monitoring in Figure 9, with informa-
tion propagating from resources upward through commu-
nity indexes and into clients. In fact, discovery is one of the
purposes for a general monitoring infrastructure.

Due to the potential for virtualized resources described
in Section 2.3, we consider “available resources” to be a
secondary capability of “available services.” While service
environments provide methods to map from abstract service

names to protocol-level service addresses, it is also critical
that services be discoverable in terms of their capabilities.
The primary capability of a SNAP manager is the set of
agreements itoffers, i.e. that it is willing to establish with
clients.

6.5 Multi-phase Negotiation

There are dynamic capabilities that also restrict the
agreement space, including resource load and RM policy.
Some load information may be published to help guide
clients with their resource selection. However, proprietary
policy including priorities and hidden SLAs may effect
availability to specific classes of client.

The agreement negotiation itself is a discovery process
by which the client determines the willingness of the man-
ager to serve the client. By formulating future agreements
with weak commitment and changing them to stronger
agreements, a client is able to perform a multi-phase com-
mit process to discover more information in an unstruc-
tured environment. Resource virtualization helps discovery
by aggregating policy knowledge into a private discovery
service—a community scheduler can form RSLAs with ap-
plication service providers and then expose this virtual re-
source pool through community-specific agreement offers.

6.6 Standard Modeling Language

In Section 4 we present the abstract requirements of an
expressive resource language J. These requirements include
unambiguous encoding of provisioning metrics, job config-
uration, and composites. We also identify above the prop-
agation of resource and agreement state through monitor-
ing and discovery data paths as important applications of



the resource language. For integration with the OGSA,
we envision this language J being defined by an XML-
Schema [13] permitting extension with new composite el-
ement types and leaf metric types. The name-space features
of XML-Schema permit unambiguous extension of the lan-
guage with new globally-defined types.

This language serves the same purpose as RSL in
GRAM/GARA [10, 11, 20, 21] or Class Ads in Con-
dor [31, 26]. We suggest a more extensible model for novel
resource composites than RSL and a more rigorously typed
extension model than Class Ads, two features which we be-
lieve are necessary for large-scale, inter-operable deploy-
ments.

6.7 Agreement Delegation

In the preceding protocol description, mechanisms are
proposed to negotiate agreement regarding activity imple-
mentation or. These agreements capture adelegationof
resource or responsibility between the negotiating parties.
However, it is important to note that the delegation concept
goes beyond these explicit agreements. There are analo-
gous implicit delegations that also occur during typical RM
scenarios.

The TSLA delegates specific task-completion responsi-
bilities to the scheduler that are “held” by the user. The
scheduler becomes responsible for reliably planning and en-
acting the requested activity, tracking the status of the re-
quest, and perhaps notifying the user of progress or termi-
nal conditions. The RSLA delegates specific resource ca-
pacity to the user that are held by the manager. Depending
on the implementation of the manager, this delegation might
be mapped down into one or more hidden operational policy
statements that enforce the conditions necessary to deliver
on the guarantee. For example, a CPU reservation might
prevent further reservations from being made or an internal
scheduling priority might be adjusted to “steal” resources
from a best-effort pool when necessary.

Transfers of rights and responsibilities are transitive in
nature, in that an entity can only delegate that which is dele-
gated to the entity. It is possible to form RSLAs out of order,
but in order to exploit an RSLA, the dependent RSLAs must
be valid. Such transitive delegation is limited by availabil-
ity as well as trust between RM entities. A manager which
over-commits resources will not be able to make good on
its promises if too many clients attempt to use the RSLAs
at the same time. Viewing RSLAs and TSLAs as delegation
simplifies the modeling of heavy-weight brokers or service
providers, but it also requires a trust/policy evaluation in
each delegation step. A manager may restrict its delegations
to only permit certain use of the resource by a client—this
client may attempt to broker the resource to other clients,
but those clients will be blocked when they try to access
the resource and the manager cannot validate the delegation
chain.

6.8 Many Planners

Collective resource scenarios are the key motivation for
Grid RM. In our architecture, the local resource managers
do not solve these collective problems. The user, or an agent
of the user, must obtain capacity delegations from each of
the relevant resource managers in a resource chain. There
are a variety of brokering techniques which may help in this
situation, and we believe the appropriate technique must be
chosen by the user or community. The underlying Grid RM
architecture must remain open enough to support multiple
concurrent brokering strategies across resources that might
be shared by multiple user communities.

7 Other Related Work

Numerous researchers have investigated approaches to
QoS delivery [22]and resource reservation for networks [12,
14, 39], CPUs [24], and other resources.

Proposals for advance reservations typically employ
cooperating servers that coordinate advance reservations
along an end-to-end path [39, 14, 12, 23]. Techniques have
been proposed for representing advance reservations, for
balancing immediate and advance reservations [14], for ad-
vance reservation of predictive flows [12]. However, this
work has not addressed the co-reservation of resources of
different types.

The Condor high-throughput scheduler can manage net-
work resources for its jobs. However, it does not interact
with underlying network managers to provide service guar-
antees [2] so this solution is inadequate for decentralized
environments where network admission-control cannot be
simulated in this way by the job scheduler.

The concept of a bandwidth broker is due to Jacobson.
The Internet 2 Qbone initiative and the related Bandwidth
Broker Working Group are developing testbeds and require-
ments specifications and design approaches for bandwidth
brokering approaches intended to scale to the Internet [35].
However, advance reservations do not form part of their de-
sign. Other groups have investigated the use of differen-
tiated services (e.g., [40]) but not for multiple flow types.
The co-reservation of multiple resource types has been in-
vestigated in the multimedia community: see, for exam-
ple, [27, 29, 28]. However, these techniques are specialized
to specific resource types.

The Common Open Policy Service (COPS) protocol [4]
is a simple protocol for the exchange of policy information
between a Policy Decision Point (PDP) and its communica-
tion peer, called Policy Enforcement Point (PEP). Commu-
nication between PEP and PDP is done by using a persistent
TCP connection in the form of a stateful request/decision
exchange. COPS offers a flexible and extensible mecha-
nism for the exchange of policy information by the use of
the client-type object in its messages. There are currently
two classes of COPS client:



Outsourcing provides an asynchronous model for the
propagation of policy decision requests. Messages are
initiated by the PEP which is actively requesting deci-
sions from its PDP.

Provisioning in COPS follows a synchronous model in
which the policy propagation is initiated by the PDP.

Both COPS models map easily to SNAP with the SNAP
manager as a PDP and the resource implementation as a
PEP. A SNAP client can also be considered a PDP which
provisions policy (SLAs) to a SNAP manager which is
then the PEP. There is no analogue to COPS outsourcing
when considering the relationship between SNAP clients
and managers.

7.1 GRAM

The Globus Resource Allocation Manager (GRAM) pro-
vides job submission on distributed compute resources. It
defines APIs and protocols that allow clients to securely
instantiate job running agreements with remote sched-
ulers [10]. In [11], we presented a light-weight, opportunis-
tic broker called DUROC that enabled simultaneous co-
allocation of distributed resources by layering on top of the
GRAM API. This broker was used extensively to execute
large-scale parallel simulations, illustrating the challenge
of coordinating computers from different domains and re-
quiring out-of-band resource provisioning agreements for
the runs [6, 5]. In exploration of end-to-end resource chal-
lenges, this broker was more recently used to acquire clus-
tered storage nodes for real-time access to large scientific
datasets for exploratory visualization [8].

7.2 GARA

The General-purpose Architecture for Reservation and
Allocation (GARA) provides advance reservations and end-
to-end management for quality of service on different types
of resources, including networks, CPUs, and disks [20, 21].
It defines APIs that allows users and applications to manip-
ulate reservations of different resources in uniform ways.
For networking resources, GARA implements a specific
network resource manager which can be viewed as a band-
width broker.

In [33], we presented a bandwidth broker architecture
and protocol that addresses the problem of diverse trust
relationships and usage policies that can apply in multi-
domain network reservations. In this architecture, individ-
ual BBs communicate via bilaterally authenticated channels
between peered domains. Our protocol provides the secure
transport of requests from source domain to destination do-
main, with each bandwidth broker on the path being able
to enforce local policies and modify the request with ad-
ditional constraints. The lack of a transitive trust relation

between source- and end-domain is addressed by a delega-
tion model where each bandwidth broker on the path being
able to identify all upstream partners by accessing the cre-
dentials of the full delegation chain.

8 Conclusions

We have presented a new model and protocol for man-
aging the process of negotiating access to, and use of, re-
sources in a distributed system. In contrast to other ar-
chitectures that focus on managing particular types of re-
sources (e.g., CPUs or networks), our Service Negotiation
and Acquisition Protocol (SNAP) defines a general frame-
work within which reservation, acquisition, task submis-
sion, and binding of tasks to resources can be expressed for
any resource in a uniform fashion.

We have not yet validated the SNAP model and design
in an implementation. However, we assert that these ideas
have merit in and of themselves, and also note that most
have already been explored in limited form within the cur-
rent GRAM protocol and/or the GARA prototype system.
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