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Abstract. BlueGene/L is a massively parallel cellular architecture system with a toroidal interconnect. Cellular
architectures with a toroidal interconnect are effective at producing highly scalable computing systems, but typi-
cally require job partitions to be both rectangular and contiguous. These restrictions introduce fragmentation issues
that affect the utilization of the system and the wait time and slowdown of queued jobs. We propose to solve
these problems for the BlueGene/L system through scheduling algorithms that augment a baseline first come first
serve (FCFS) scheduler. Restricting ourselves to space-sharing techniques, which constitute a simpler solution to
the requirements of cellular computing, we present simulation results for migration and backfilling techniques on
BlueGene/L. These techniques are explored individually and jointly to determine their impact on the system. Our
results demonstrate that migration can be effective for a pure FCFS scheduler but that backfilling produces even
more benefits. We also show that migration can be combined with backfilling to produce more opportunities to
better utilize a parallel machine.

1 Introduction

BlueGene/L (BG/L) is a massively parallel cellular architecture system. 65,536 self-contained computing
nodes, orcells, are interconnected in a three-dimensional toroidal pattern [19]. In that pattern, each cell
is directly connected to its six nearest neighbors, two eachalong thex, y, andz axes. Three-dimensional
torus interconnects are simple, modular, and scalable, particularly when compared with systems that have a
separate, typically multistage, interconnection network[13]. Examples of successful toroidal-interconnected
parallel systems include the Cray T3D and T3E machines [11].

There is, however, a price to pay with toroidal interconnects. We cannot view the system as a simple
fully-connected interconnection network of nodes that areequidistant to each other (i.e., a flat network).
In particular, we lose an important feature of systems like the IBM RS/6000 SP, which lets us pick any
set of nodes for execution of a parallel job, irrespective oftheir physical location in the machine [1]. In
a toroidal-interconnected system, the spatial allocationof nodes to jobs is of critical importance. In most
toroidal systems, including BG/L, job partitions must be both rectangular (in a multidimensional sense)
and contiguous. It has been shown by Feitelson and Jette [7] that, because of these restrictions, significant
machine fragmentation occurs in a toroidal system. Fragmentation results in low system utilization and high
wait time for queued jobs.

In this paper, we analyze a set of strictly space-sharing scheduling techniques to improve system utiliza-
tion and reduce the wait time of jobs for the BG/L system. Time-sharing techniques such as gang-scheduling
are not explored since these types of schedulers demand morehardware resources than are practically avail-
able in a cellular computing environment. We analyze the twotechniques of backfilling [8, 14, 17] and
migration [3, 20] in the context of a toroidal-interconnected system. Backfilling is a technique that moves
lower priority jobs ahead of other higher priority jobs, as long as execution of the higher priority jobs is
not delayed. Migration moves jobs around the toroidal machine, performing on-the-fly defragmentation to
create larger contiguous free space for waiting jobs.



We conduct a simulation-based study of the impact of our scheduling algorithms on the system perfor-
mance of BG/L. Using actual job logs of supercomputing centers, we measure the impact of migration and
backfilling as enhancements to a first-come first-serve (FCFS) job scheduling policy. Migration is shown to
be effective in improving maximum system utilization whileenforcing a strict FCFS policy. We also find
that backfilling, which bypasses the FCFS order, can lead to even higher utilization and lower wait times.
Finally, we show that there is a small benefit from combining backfilling and migration.

The rest of this paper is organized as follows. Section 2 discusses the scheduling algorithms used to
improve job scheduling on a toroidal-interconnected parallel system. Section 3 describes the simulation
procedure to evaluate these algorithms and presents our simulation results. Section 4 describes related work
and suggests future work opportunities. Finally, Section 5presents the conclusions.

2 Scheduling Algorithms

System utilization and average job wait time in a parallel system can be improved through better job schedul-
ing algorithms [4, 5, 7, 9, 10, 12, 14–17, 21, 22, 26]. The opportunity for improvement over a simple first-
come first-serve (FCFS) scheduler is much greater for toroidal interconnected systems because of the frag-
mentation issues discussed in Section 1. The following section describes four job scheduling algorithms that
we evaluate in the context of BG/L. In all algorithms, arriving jobs are first placed in a queue of waiting
jobs, prioritized according to the order of arrival. The scheduler is invoked for every job arrival and job
termination event in order to schedule new jobs for execution.

Scheduler 1: First Come First Serve (FCFS).For FCFS, we adopt the heuristic of traversing the waiting
queue in order and scheduling each job in a way that maximizesthe largest free rectangular partition remain-
ing in the torus. For each job of sizep, we try all the possible rectangular shapes of sizep that fit in the torus.
For each shape, we try all the legal allocations in the torus that do not conflict with running jobs. Finally, we
select the shape and allocation that results in the maximal largest free rectangular partition remaining after
allocation of this job. We stop when we find the first job in the queue that cannot be scheduled.

A valid rectangular partition does not always exist for a job. There are job sizes which are always
impossible for the torus, such as prime numbers greater thanthe largest dimension size. Because job sizes
are known at job arrival time, before execution, jobs with impossible sizes are modified to request the next
largest possible size. Additionally, there are legal job sizes that cannot be scheduled because of the current
state of the torus. Therefore, if a particular job of sizep cannot be scheduled, but some free partition of sizeq > p exists, the job will be increased in size by the minimum amount required to schedule it. For example,
consider a4 � 4 (two-dimensional) torus with a single free partition of size 2 � 2. If a user submits a job
requesting 3 nodes, that job cannot be run. The scheduler increases the job size by one, to 4, and successfully
schedules the job.

Determining the size of the largest rectangular partition in a given three-dimensional torus is the most
time-intensive operation required to implement the maximal partition heuristic. When considering a torus
of shapeM �M �M , a straightforward exhaustive search of all possible partitions takesO(M9) time.
We have developed a more efficient algorithm that computes incremental projections of planes and uses
dynamic programming techniques. This projection algorithm has complexityO(M5) and is described in
Appendix A.

An FCFS scheduler that searches the torus in a predictable incremental fashion, implements the maximal
partition heuristic, and modifies job sizes when necessary is the simplest algorithm considered, against which
more sophisticated algorithms are compared.

Scheduler 2: FCFS With Backfilling.Backfilling is a space-sharing optimization technique. With backfilling,
we can bypass the priority order imposed by the job queuing policy. This allows a lower priority jobj to be



scheduled before a higher priority jobi as long as this reschedule does not delay the estimated starttime of
job i.

The effect of backfilling on a particular schedule for a one-dimensional machine can be visualized in
Figure 1. Suppose we have to schedule five jobs, numbered from1 to 5 in order of arrival. Figure 1(a) shows
the schedule that would be produced by a FCFS policy without backfilling. Note the empty space between
timesT1 andT2, while job3 waits for job2 to finish. Figure 1(b) shows the schedule that would be produced
by a FCFS policy with backfilling. The empty space was filled with job5, which can be executed before job3 without delaying it.
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Fig. 1. FCFS policy without (a) and with (b) backfilling. Job numberscorrespond to their position in the priority queue.

The backfilling algorithm seeks to increase system utilization without job starvation. It requires an es-
timation of job execution time, which is usually not very accurate. However, previous work [8, 18, 23] has
shown that overestimating execution time does not significantly affect backfilling results. Backfilling has
been shown to increase system utilization in a fair manner onan IBM RS/6000 SP [8, 23].

Backfilling is used in conjunction with the FCFS scheduler and is only invoked when there are jobs in
the waiting queue and FCFS halts because a job does not fit in the torus. A reservation time for the highest-
priority job is then calculated, based on the worst case execution time of jobs currently running in the torus.
The reservation guarantees that the job will be scheduled nolater than that time, and if jobs end earlier than
expected the reservation time may improve. Then, if there are additional jobs in the waiting queue, a job is
scheduled out of order so long as it does not prevent the first job in the queue from being scheduled at the
reservation time. (Jobs behind the first one may be delayed.)

Just as the FCFS scheduler dynamically increases the size ofjobs that cannot be scheduled with their
current size, similar situations may arise during backfilling. Unlike FCFS, however, the size increase is
performed more conservatively during backfilling, becausethere are other jobs in the queue which might
better utilize the free nodes of the torus. Therefore, a parameterI specifies the maximum size by which the
scheduler will increase a job. For example, by settingI = 1 (our default value), backfilling increases a job
size by at most one node. This parameter is used only during the backfilling phase of scheduling; the FCFS
phase will always increase the first job in the queue as much asis required to schedule it.

Scheduler 3: FCFS With Migration.The migration algorithm rearranges the running jobs in the torus in
order to increase the size of the maximal contiguous rectangular free partition. Migration in a toroidal-
interconnected system compacts the running jobs and counteracts the effects of fragmentation.

While migration does not require any more information than FCFS, it may require additional hard-
ware and software functionality. This paper does not attempt to quantify the overhead of that functionality.
However, accepting that this overhead exists, migration isonly undertaken when the expected benefits are
deemed substantial. The decision to migrate is therefore based on two parameters:FNtor, the ratio of free
nodes in the system compared to the size of the torus, andFNmax, the fraction of free nodes contained in the



maximal free partition. In order for migration to establisha significant larger maximal free partition,FNtor
must be sufficiently high andFNmax must be sufficiently low. Section 3.4 contains further analysis of these
parameters.

The migration process is undertaken immediately after the FCFS phase fails to schedule a job in the
waiting queue. Jobs already running in the torus are organized in a queue of migrating jobs sorted by size,
from largest to smallest. Each job is then reassigned a new partition, using the same algorithm as FCFS and
starting with an empty torus. After migration, FCFS is performed again in an attempt to start more jobs in
the rearranged torus.

In order to ensure that all jobs fit in the torus after migration, job sizes are not increased if a reassignment
requires a larger size to fit in the torus. Instead, the job is removed from the queue of migrating jobs,
remaining in its original partition, and reassignment begins again for all remaining jobs in the queue. If
the maximal free partition size after migration is worse than the original assignment, which is possible but
generally infrequent under the current scheduling heuristics, migration is not performed.

Scheduler 4: FCFS with Backfilling and Migration.Backfilling and migration are independent scheduling
concepts, and an FCFS scheduler may implement both of these functions simultaneously. First, we schedule
as many jobs as possible via FCFS. Next, we rearrange the torus through migration to minimize fragmen-
tation, and then repeat FCFS. Finally, the backfilling algorithm from Scheduler 2 is performed to make a
reservation for the highest-priority job and attempt to schedule jobs with lower priority so long as they do not
conflict with the reservation. The combination of these policies should lead to an even more efficient utiliza-
tion of the torus. For simplicity, we call this scheduling technique, that combines backfilling and migration,
B+M.

3 Experiments

We use a simulation-based approach to perform quantitativemeasurements of the efficiency of the proposed
scheduling algorithms. An event-driven simulator was developed to process actual job logs of supercom-
puting centers. The results of simulations for all four schedulers were then studied to determine the impact
of their respective algorithms. We begin this section with ashort overview of the BG/L system. We then
describe our simulation environment. We proceed with a discussion of the workload characteristics for the
two job logs we consider. Finally, we present the experimental results from the simulations.

3.1 The BlueGene/L System

The BG/L system is organized as a32 � 32 � 64 three-dimensional torus of nodes (cells). Each node
contains processors, memory, and links for interconnecting to its six neighbors. The unit of allocation for
job execution in BG/L is a 512-node ensemble organized in an8 � 8 � 8 configuration. Therefore, BG/L
behaves as a4 � 4 � 8 torus of thesesupernodes. We use this supernode abstraction when performing job
scheduling for BG/L.

3.2 The Simulation Environment

The simulation environment models a torus of 128 (super)nodes in a three-dimensional4 � 4 � 8 config-
uration. The event-driven simulator receives as input a joblog and the type of scheduler (FCFS, Backfill,
Migration, or B+M) to simulate. There are four primary events in the simulator: (1) anarrival eventoccurs
when a job is first submitted for execution and placed in the scheduler’s waiting queue; (2) aschedule event
occurs when a job is allocated onto the torus, (3) astart eventoccurs after a standard delay of one second
following a schedule event, at which time a job begins to run,and (4) afinish eventoccurs upon completion



of a job, at which point the job is deallocated from the torus.The scheduler is invoked at the conclusion of
every event that affects the states of the torus or the waiting queue (i.e., the arrival and finish events).

A job log contains information on the arrival time, execution time, and size of all jobs. Given a torus of
sizeN , and for each jobj the arrival timetaj , execution timetej and sizesj , the simulation produces values

for the start timetsj and finish timetfj of each job. These results are analyzed to determine the following

parameters for each job: (1) wait timetwj = tsj � taj , (2) response timetrj = tfj � taj , and (3) bounded

slowdowntbsj = max (trj ;� )max(tej ;� ) for � = 10 seconds. The� term appears according to recommendations in [8],

because some jobs have very short execution time, which may distort the slowdown.
Global system statistics are also determined. Let the simulation time span beT = max8j (tfj ) �min8k (tak). We then define system utilization (also calledcapacity utilized) aswutil =X8j sjtejTN : (1)

Similarly, let f(t) denote the number of free nodes in the torus at timet andq(t) denote the total number
of nodes requested by jobs in the waiting queue at timet. Then, the total amount of unused capacity in the
system,wunused, is defined as:wunused= Z max (tfj )min (taj ) max (0; f(t)� q(t))TN dt: (2)

This parameter is a measure of the work unused by the system because there is a lack of jobs requesting
free nodes. Themax term is included because the amount of unused work cannot be less than zero. The
balance of the system capacity is lost despite the presence of jobs that could have used it. The measure of
lost capacity in the system, which includes capacity lost because of the inability to schedule jobs and the
delay before a scheduled job begins, is then derived as:wlost = 1� wutil � wunused (3)

3.3 Workload characteristics

We performed experiments on a 10,000-job span of two job logsobtained from theParallel Workloads
Archive [6]. The first log is from NASA Ames’s 128-node iPSC/860 machine (from the year 1993). The
second log is from the San Diego Supercomputer Center’s (SDSC) 128-node IBM RS/6000 SP (from the
years 1998-2000). For our purposes, we will treat each node in those two systems as representing one
supernode (512-node unit) of BG/L. This is equivalent to scaling all job sizes in the log by 512, which is the
ratio of the number of nodes in BG/L to the number of nodes in these 128-node machines. Table 1 presents
the workload statistics and Figure 2 summarizes the distribution of job sizes and the contribution of each
job size to the total workload of the system. Using these two logs as a basis, we generate logs of varying
workloads by multiplying the execution time of each job by a coefficient
, mostly varying
 from 0.7 to
1.4 in increments of 0.05. Simulations are performed for allscheduler types on each of the logs. With these
modified logs, we plot wait time and bounded slowdown as a function of system utilization.

3.4 Simulation Results

Figures 3 and 4 present plots of average job wait time (twj ) and average job bounded slowdown (tbsj ), respec-
tively, vssystem utilization (wutil ) for each of the four schedulers considered and each of the two job logs.
We observe that the overall shapes of the curves for wait timeand bounded slowdown are similar.



Table 1.Statistics for 10,000-job NASA and SDSC logs.

NASA Ames iPSC/860 logSDSC IBM RS/6000 SP log
Number of nodes: 128 128
Job size restrictions: powers of 2 none
Job size (nodes)

Mean: 6:3 9:7
Standard deviation: 14:4 14:8

Workload(node-seconds)
Mean: 0:881 � 106 7:1� 106
Standard deviation: 5:41 � 106 25:5� 106
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Fig. 2. Job sizes and total workload for NASA Ames iPSC/860((a) and (c)) and San Diego Supercomputer Center (SDSC) IBM
RS/6000 SP((b) and (d)).

The most significant performance improvement is attained through backfilling, for both the NASA and
SDSC logs. Also, for both logs, there is a certain benefit frommigration, whether combined with backfilling
or not. We analyze these results from each log separately.

NASA log: All four schedulers provide similar average job wait time and average job bounded slowdown
for utilizations up to 65%. The FCFS scheduler saturates at about 77% utilization, whereas the Migration
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Fig. 3.Mean job wait timevsutilization for (a) NASA and (b) SDSC logs.
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Fig. 4.Mean job bounded slowdownvsutilization for (a) NASA and (b) SDSC logs.

scheduler saturates at about 80% utilization. Backfilling (with or without migration) allows utilizations
above 80% and saturates closer to 90% (the saturation regionfor these schedulers is shown here by plotting
values of
 > 1:4). We note that migration provides only a small improvement in wait time and bounded
slowdown for most of the utilization range, and the additional benefits of migration with backfilling becomes
unpredictable for utilization values close to the saturation region. In the NASA log, all jobs are of sizes that
are powers of two, which results in a good packing of the torus. Therefore, the benefits of migration are
limited.

SDSC log: With the SDSC log, the FCFS scheduler saturates at 63%, whilethe stand-alone Migration
scheduler saturates at 73%. In this log, with jobs of more varied sizes, fragmentation occurs more frequently.
Therefore, migration has a much bigger impact on FCFS, significantly improving the range of utilizations
at which the system can operate. However, we note that when backfilling is used there is again only a small
additional benefit from migration, more noticeable for utilizations between 75 and 85%. Utilization above
85% can be achieved, but only with exponentially growing wait time and bounded slowdown, independent
of performing migration.



Figure 5 presents a plot of average job bounded slowdown (tbsj ) vssystem utilization (wutil ) for each of
the four schedulers considered and each of the two job logs. We also include results from the simulation
of a fully-connected (flat) machine, with and without backfilling. (A fully-connectedmachine does not
suffer from fragmentation.) This allows us to assess the effectiveness of our schedulers in overcoming the
difficulties imposed by a toroidal interconnect. The overall shapes of the curves for wait time are similar to
those for bounded slowdown.

Migration by itself cannot make the results for a toroidal machine as good as those for a fully connected
machine. For the SDSC log, in particular, a fully connected machine saturates at about 80% utilization with
just the FCFS scheduler. For the NASA log, results for backfilling with or without migration in the toroidal
machine are just as good as the backfilling results in the fully connected machine. For utilizations above 85%
in the SDSC log, not even a combination of backfilling and migration will perform as well as backfilling on
a fully connected machine.
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Fig. 5.Mean job bounded slowdownvsutilization for the NASA and SDSC logs, comparing toroidal and flat machines.

Figure 6 plots the number of migrations performed and the average time between migrationsvssystem
utilization for both workloads. We show results for the number of total migrations attempted, the number
of successfulmigrations, and the maximum possible number of successful migrations (max successful). As
described in Section 2, the parameters which determine if a migration should be attempted areFNtor, the
ratio of free nodes in the system compared to the size of the torus, andFNmax, the fraction of free nodes
contained in the maximal free partition. According to our standard migration policy, a migration is only
attempted whenFNtor � 0:1 andFNmax � 0:7. A successfulmigration is defined as a migration attempt
that improves the maximal free partition size. Themax successfulvalue is the number of migrations that are
successful when a migration is always attempted (i.e., FNtor � 0:0 andFNmax � 1:0).

Almost all migration attempts were successful for the NASA log. This property of the NASA log is a
reflection of the better packing caused by having jobs that are exclusively power of two in size. For the
SDSC log, we notice that many more total attempts are made while about 80% of them are successful. If we
always try to migrate every time the state of the torus is modified, no more than 20% of these migrations are
successful, and usually much less.

For the NASA log, the number of migrations increases linearly while the average time between these
migrations varies from about 90 to 30 minutes, depending on the utilization level and its effect on the amount
of fragmentation in the torus. In contrast to the NASA log, the number of migrations in the SDSC log do not



increase linearly as utilization levels increase. Instead, the relationship is closer to an elongated bell curve.
As utilization levels increase, at first migration attemptsand successes also increase slightly to a fairly steady
level. Around the first signs of saturation the migrations tend to decrease (i.e., at around 70% utilization for
the Migration scheduler and 77% for B+M). Even though the number of successful migrations is greater
for the SDSC log, the average time between migrations is still longer as a result of the larger average job
execution time.

Most of the benefit of migration is achieved when we only perform migration according to our param-
eters. Applying these parameters has two main advantages: we reduce the frequency of migration attempts
so as not to always suffer the required overhead of migration, and we increase the average benefits of a
successful migration. This second advantage is apparent when we compare the mean job wait time results
for our standardFNtor andFNmax settings to that of the scheduler that always attempts to migrate. Even
though the maximum possible number of successful migrations is sometimes twice as many as our actual
number of successes, Figure 7 reveals that the additional benefit of these successful migrations is very small.
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Fig. 6. Number of total, successful, and maximum possible successful migrationsvs utilization ((a) and (b)), and average time
between migrationsvsutilization ((c) and (d)).
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Fig. 7.Mean job wait timevsutilization for the NASA and SDSC logs, comparing the standard migration policy to a full migration
policy that always attempts to migrate.

We complete this section with an analysis of results for system capacity utilized, unused capacity, and
lost capacity. The results for each scheduler type and both standard job logs (
 = 1.0) are plotted in Figure 8.
The utilization improvements for the NASA log are barely noticeable – again, because its jobs fill the torus
more compactly. The SDSC log, however, shows the greatest improvement when using B+M over FCFS,
with a 15% increase in capacity utilized and a 54% decrease inthe amount of capacity lost. By themselves,
the Backfill and Migration schedulers each increase capacity utilization by 15% and 13%, respectively,
while decreasing capacity loss by 44% and 32%, respectively. These results show that B+M is significantly
more effective at transforming lost capacity into unused capacity. Under the right circumstances, it should
be possible to utilize this unused capacity more effectively.

FCFS       Backfilling Migration      B+M    
0

0.2

0.4

0.6

0.8

1

System capacity statistics − baseline workload

Scheduler type

F
ra

ct
io

n 
of

 to
ta

l s
ys

te
m

 c
ap

ac
ity

Capacity unused
Capacity lost
Capacity utilized

FCFS       Backfilling Migration      B+M    
0

0.2

0.4

0.6

0.8

1

System capacity statistics − baseline workload

Scheduler type

F
ra

ct
io

n 
of

 to
ta

l s
ys

te
m

 c
ap

ac
ity

Capacity unused
Capacity lost
Capacity utilized

(a) NASA iPSC/860 (b) SDSC RS/6000 SP

Fig. 8. Capacity utilized, lost, and unused as a fraction of the total system capacity.



4 Related and Future Work

The topics of our work have been the subject of extensive previous research. In particular, [8, 14, 17] have
shown that backfilling on a flat machine like the IBM RS/6000 SPis an effective means of improving
quality of service. The benefits of combining migration and gang-scheduling have been demonstrated both
for flat machines [24, 25] and toroidal machines like the CrayT3D [7]. The results in [7] are particularly
remarkable, as system utilization was improved from 33%, with a pure space-sharing approach, to 96%
with a combination of migration and gang-scheduling. The work in [21] discusses techniques to optimize
spatial allocation of jobs in mesh-connected multicomputers, including changing the job size, and how to
combine spatial- and time-sharing scheduling algorithms.An efficient job scheduling technique for a three-
dimensional torus is described in [2]. This paper, therefore, builds on this previous research by applying
a combination of backfilling and migration algorithms, exclusively through space-sharing techniques, to
improve system performance on a toroidal-interconnected system.

Future work opportunities can further build on the results of this paper. The impact of different FCFS
scheduling heuristics for a torus, besides the largest freepartition heuristic currently used, can be studied.
It is also important to identify how the current heuristic relates to the optimal solution in different cases.
Additional study of the parametersI, FNtor, andFNmax may determine further tradeoffs associated with
partition size increases and more or less frequent migration attempts. Finally, while we do not attempt to
implement complex time-sharing schedulers such as those used in gang-scheduling, a more limited time-
sharing feature may be beneficial. Preemption, for example,allows for the suspension of a job until it is
resumed at a later time. These time-sharing techniques may provide the means to further enhance the B+M
scheduler and make the system performance of a toroidal-interconnected machine more similar to that of a
flat machine.

5 Conclusions

We have investigated the behavior of various scheduling algorithms to determine their ability to increase
processor utilization and decrease job wait time in the BG/Lsystem. We have shown that a scheduler which
uses only a backfilling algorithm performs better than a scheduler which uses only a migration algorithm,
and that migration is particularly effective under a workload that produces a large amount of fragmentation
(i.e., when many small to mid-sized jobs of varied sizes representmuch of the workload). Migration has
a significant implementation overhead but it does not require any additional information besides what is
required by the FCFS scheduler. Backfilling, on the other hand, does not have a significant implementation
overhead but requires additional information pertaining to the execution time of jobs.

Simulations of FCFS, backfilling, and migration space-sharing scheduling algorithms have shown that
B+M, a scheduler which implements all of these algorithms, shows a small performance improvement over
just FCFS and backfilling. However, B+M does convert significantly more lost capacity into unused capacity
than just backfilling. Additional enhancements to the B+M scheduler may harness this unused capacity to
provide further system improvements. Even with the performance enhancements of backfilling and migra-
tion techniques, a toroidal-interconnected machine such as BG/L can only approximate the job scheduling
efficiency of a fully connected machine in which all nodes areequidistant.
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A Projection Of Partitions (POP) Algorithm

In a given three-dimensional torus of shapeM �M �M where some nodes have been allocated for jobs,
the POP algorithm provides aO(M5) time algorithm for determining the size of the largest free rectangular
partition. This algorithm is a substantial improvement over an exhaustive search algorithm that takesO(M9)
time.

Let FREEPART= fhB;Si j B is a base location(i; j; k) andS is a partition size(a; b; 
) such that8 x; y; z; i � x < (i + a); j � y < (j + b); k � z < (k + 
), node(x modM; y modM; z modM) is freeg. POP narrows the scope of the problem by determining the largest rectangular partitionP 2
FREEPART rooted at each of theM3 possible base locations and then deriving a global maximum.Given a
base location, POP works by finding the largest partition first in one dimension, then by projecting adjacent
one-dimensional columns onto each other to find the largest partition in two dimensions, and iteratively
projecting adjacent two-dimensional planes onto each other to find the largest partition in three dimensions.

First, a partition table of the largest one-dimensional partitionsP 2 FREEPART is pre-computed for all
three dimensions and at every possible base location inO(M4) time. This is done by iterating through each
partition and whenever an allocated node is reached, all entries for the current “row” may be filled in from
a counter value, where the counter is incremented for each adjacent free node and reset to zero whenever an
additional allocated node is reached.
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Fig. 9. 2-dimensional POP Algorithm applied to Base Location (1,2): Adjacent 1-dimensional columns are projected onto each
other asX̃ is incremented.

For a given base location(i; j; k), we fix one dimension (e.g.,k), start a counter̃X = i in the next
dimension, and multiplỹX by the minimum partition table entry of the third dimensionfor (x modM; j; k),
wherex varies asi � x � X̃ andX̃ varies asi � X̃ � (i +M). As the example in Figure 9 shows, when
X̃ = 1 for some fixedk at base location(1; 2; k) the partition table entry in theY dimension will equal 3
since there are 3 consecutive free nodes, and our largest possible partition size is initially set to 3. When
X̃ increases to 2, the minimum table entry becomes 2 because ofthe allocated node at location(2; 4; k)
and the largest possible partition size is increased to 4. When X̃ = 3, we calculate a new largest possible
partition size of 6. Finally, when we come across a partitiontable entry in theY dimension of 0 because
of the allocated node at location(4; 2; k), we stop increasing̃X. We would also have to repeat a similar
calculation along theY dimension, by starting a counterỸ.

Finally, this same idea is extended to work for 3 dimensions.Given a similar base location(i; j; k), we
start a counter̃Z in theZ dimension and calculate the maximum two-dimensional partition given the current
value of Z̃. Then we project the adjacent two-dimensional planes by incrementingZ̃ and calculating the



largest two-dimensional partition while using the minimumpartition table entry of theX andY dimensions
for (i; j; z mod M), wherez varies ask � z � Z̃.

Using the initial partition table, it takesO(M) time to calculate a projection for two adjacent planes and
to determine the largest two-dimensional partition. Sincethere areO(M) projections required forO(M3)
base locations, our final algorithm runs inO(M5) time.

When we implemented this algorithm in our scheduling simulator, we achieved a significant speed im-
provement. For the original NASA log, scheduling time improved from an average of 0.51 seconds for every
successfully scheduled job to 0.16 seconds, while the SDSC log improved from an average of 0.125 seconds
to 0.063 seconds. The longest time to successfully schedulea job also improved from 38 seconds to 8.3
seconds in the NASA log, and from 50 seconds to 8.5 seconds in the SDSC log.


