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Abstract. BlueGene/L is a massively parallel cellular architectustem with a toroidal interconnect. Cellular
architectures with a toroidal interconnect are effectivpraducing highly scalable computing systems, but typi-
cally require job partitions to be both rectangular and igrtus. These restrictions introduce fragmentation ssue
that affect the utilization of the system and the wait timel afowdown of queued jobs. We propose to solve
these problems for the BlueGene/L system through schegalgorithms that augment a baseline first come first
serve (FCFS) scheduler. Restricting ourselves to spaséaghtechniques, which constitute a simpler solution to
the requirements of cellular computing, we present sinafatesults for migration and backfilling techniques on
BlueGene/L. These techniques are explored individualty jamtly to determine their impact on the system. Our
results demonstrate that migration can be effective forra BICFS scheduler but that backfilling produces even
more benefits. We also show that migration can be combined beitkfilling to produce more opportunities to
better utilize a parallel machine.

1 Introduction

BlueGene/L (BG/L) is a massively parallel cellular arcbitege system. 65,536 self-contained computing
nodes, orcells are interconnected in a three-dimensional toroidal patt&9]. In that pattern, each cell
is directly connected to its six nearest neighbors, two edohg thez, y, andz axes. Three-dimensional
torus interconnects are simple, modular, and scalablécplarly when compared with systems that have a
separate, typically multistage, interconnection netWd8. Examples of successful toroidal-interconnected
parallel systems include the Cray T3D and T3E machines [11].

There is, however, a price to pay with toroidal interconsetife cannot view the system as a simple
fully-connected interconnection network of nodes thategaidistant to each other.€., a flat network).

In particular, we lose an important feature of systems Ihe iBM RS/6000 SP, which lets us pick any
set of nodes for execution of a parallel job, irrespectiveheir physical location in the machine [1]. In
a toroidal-interconnected system, the spatial allocatibnodes to jobs is of critical importance. In most
toroidal systems, including BG/L, job partitions must bahbcectangular (in a multidimensional sense)
and contiguous. It has been shown by Feitelson and Jettbd¥]ldecause of these restrictions, significant
machine fragmentation occurs in a toroidal system. Fraggtien results in low system utilization and high
wait time for queued jobs.

In this paper, we analyze a set of strictly space-sharingdiding techniques to improve system utiliza-
tion and reduce the wait time of jobs for the BG/L system. Fsharing techniques such as gang-scheduling
are not explored since these types of schedulers demandhawaheare resources than are practically avail-
able in a cellular computing environment. We analyze the taahniques of backfilling [8, 14,17] and
migration [3, 20] in the context of a toroidal-interconreattsystem. Backfilling is a technique that moves
lower priority jobs ahead of other higher priority jobs, asd as execution of the higher priority jobs is
not delayed. Migration moves jobs around the toroidal mashperforming on-the-fly defragmentation to
create larger contiguous free space for waiting jobs.



We conduct a simulation-based study of the impact of ourdidivey algorithms on the system perfor-
mance of BG/L. Using actual job logs of supercomputing asnige measure the impact of migration and
backfilling as enhancements to a first-come first-serve (F@HScheduling policy. Migration is shown to
be effective in improving maximum system utilization whéaforcing a strict FCFS policy. We also find
that backfilling, which bypasses the FCFS order, can leadda &igher utilization and lower wait times.
Finally, we show that there is a small benefit from combiniagkiilling and migration.

The rest of this paper is organized as follows. Section 2udses the scheduling algorithms used to
improve job scheduling on a toroidal-interconnected pelralystem. Section 3 describes the simulation
procedure to evaluate these algorithms and presents oulasiom results. Section 4 describes related work
and suggests future work opportunities. Finally, Sectigmesents the conclusions.

2 Scheduling Algorithms

System utilization and average job wait time in a parallstegn can be improved through better job schedul-
ing algorithms [4,5,7,9, 10,12, 14-17, 21, 22, 26]. The oppity for improvement over a simple first-
come first-serve (FCFS) scheduler is much greater for tataiderconnected systems because of the frag-
mentation issues discussed in Section 1. The following@edescribes four job scheduling algorithms that
we evaluate in the context of BG/L. In all algorithms, amiyijobs are first placed in a queue of waiting
jobs, prioritized according to the order of arrival. The edtler is invoked for every job arrival and job
termination event in order to schedule new jobs for exeoutio

Scheduler 1: First Come First Serve (FCF3jor FCFS, we adopt the heuristic of traversing the waiting
queue in order and scheduling each job in a way that maxintedargest free rectangular partition remain-
ing in the torus. For each job of sipewe try all the possible rectangular shapes of gitteat fit in the torus.
For each shape, we try all the legal allocations in the tdrasdo not conflict with running jobs. Finally, we
select the shape and allocation that results in the maxengds$t free rectangular partition remaining after
allocation of this job. We stop when we find the first job in theege that cannot be scheduled.

A valid rectangular partition does not always exist for a. jdbere are job sizes which are always
impossible for the torus, such as prime numbers greaterttfetargest dimension size. Because job sizes
are known at job arrival time, before execution, jobs witlpossible sizes are modified to request the next
largest possible size. Additionally, there are legal j@d@sithat cannot be scheduled because of the current
state of the torus. Therefore, if a particular job of gizeannot be scheduled, but some free partition of size
q > p exists, the job will be increased in size by the minimum antoequired to schedule it. For example,
consider at x 4 (two-dimensional) torus with a single free partition ofeszx 2. If a user submits a job
requesting 3 nodes, that job cannot be run. The schedulesaises the job size by one, to 4, and successfully
schedules the job.

Determining the size of the largest rectangular partitioa igiven three-dimensional torus is the most
time-intensive operation required to implement the makipaatition heuristic. When considering a torus
of shapeM x M x M, a straightforward exhaustive search of all possible fiant takesO(M?) time.

We have developed a more efficient algorithm that compute®mental projections of planes and uses
dynamic programming techniques. This projection algaritias complexityO (M%) and is described in
Appendix A.

An FCFS scheduler that searches the torus in a predictafylenmental fashion, implements the maximal
partition heuristic, and modifies job sizes when necessaheisimplest algorithm considered, against which
more sophisticated algorithms are compared.

Scheduler 2: FCFS With Backfillingdackfilling is a space-sharing optimization technique.higiackfilling,
we can bypass the priority order imposed by the job queuitigypd his allows a lower priority joby to be



scheduled before a higher priority jélas long as this reschedule does not delay the estimatedistarbf
jobi.

The effect of backfilling on a particular schedule for a oiveehsional machine can be visualized in
Figure 1. Suppose we have to schedule five jobs, numberedifitors in order of arrival. Figure 1(a) shows
the schedule that would be produced by a FCFS policy withadkfilling. Note the empty space between
timesT; andTy, while job 3 waits for job2 to finish. Figure 1(b) shows the schedule that would be preduc
by a FCFS policy with backfilling. The empty space was fillethwob 5, which can be executed before job
3 without delaying it.
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Fig. 1. FCFS policy without (a) and with (b) backfilling. Job numbegsrespond to their position in the priority queue.

The backfilling algorithm seeks to increase system utitiratvithout job starvation. It requires an es-
timation of job execution time, which is usually not very acte. However, previous work [8, 18, 23] has
shown that overestimating execution time does not sigmifigaaffect backfilling results. Backfilling has
been shown to increase system utilization in a fair mannemoi8M RS/6000 SP [8, 23].

Backfilling is used in conjunction with the FCFS scheduled &nonly invoked when there are jobs in
the waiting queue and FCFS halts because a job does not fé othis. A reservation time for the highest-
priority job is then calculated, based on the worst casewudi@attime of jobs currently running in the torus.
The reservation guarantees that the job will be schedulddteothan that time, and if jobs end earlier than
expected the reservation time may improve. Then, if thezeadditional jobs in the waiting queue, a job is
scheduled out of order so long as it does not prevent the dinsinj the queue from being scheduled at the
reservation time. (Jobs behind the first one may be delayed.)

Just as the FCFS scheduler dynamically increases the sjpbsthat cannot be scheduled with their
current size, similar situations may arise during backfilliUnlike FCFS, however, the size increase is
performed more conservatively during backfilling, becatlsze are other jobs in the queue which might
better utilize the free nodes of the torus. Therefore, amater! specifies the maximum size by which the
scheduler will increase a job. For example, by setting 1 (our default value), backfilling increases a job
size by at most one node. This parameter is used only durababkfilling phase of scheduling; the FCFS
phase will always increase the first job in the queue as mu@hraguired to schedule it.

Scheduler 3: FCFS With MigrationThe migration algorithm rearranges the running jobs in trag in
order to increase the size of the maximal contiguous reatandree partition. Migration in a toroidal-
interconnected system compacts the running jobs and cawitgdhe effects of fragmentation.

While migration does not require any more information thalFB, it may require additional hard-
ware and software functionality. This paper does not attdmpuantify the overhead of that functionality.
However, accepting that this overhead exists, migratianlg undertaken when the expected benefits are
deemed substantial. The decision to migrate is therefasecban two parameterbN,,,., the ratio of free
nodes in the system compared to the size of the torusi-Bpg,., the fraction of free nodes contained in the



maximal free partition. In order for migration to establelisignificant larger maximal free partitioRN;,,
must be sufficiently high anBN,,,,,, must be sufficiently low. Section 3.4 contains further asiglpf these
parameters.

The migration process is undertaken immediately after tBE$ phase fails to schedule a job in the
waiting queue. Jobs already running in the torus are orgdniz a queue of migrating jobs sorted by size,
from largest to smallest. Each job is then reassigned a newigra using the same algorithm as FCFS and
starting with an empty torus. After migration, FCFS is pearied again in an attempt to start more jobs in
the rearranged torus.

In order to ensure that all jobs fit in the torus after mignatijob sizes are not increased if a reassignment
requires a larger size to fit in the torus. Instead, the jokemaved from the queue of migrating jobs,
remaining in its original partition, and reassignment hegagain for all remaining jobs in the queue. If
the maximal free partition size after migration is worsentltze original assignment, which is possible but
generally infrequent under the current scheduling héasisimigration is not performed.

Scheduler 4: FCFS with Backfilling and MigratiofBackfilling and migration are independent scheduling
concepts, and an FCFS scheduler may implement both of thestdns simultaneously. First, we schedule
as many jobs as possible via FCFS. Next, we rearrange the ttarmugh migration to minimize fragmen-
tation, and then repeat FCFS. Finally, the backfilling atgar from Scheduler 2 is performed to make a
reservation for the highest-priority job and attempt toestifle jobs with lower priority so long as they do not
conflict with the reservation. The combination of thesege$i should lead to an even more efficient utiliza-
tion of the torus. For simplicity, we call this schedulinghaique, that combines backfilling and migration,
B+M.

3 Experiments

We use a simulation-based approach to perform quantitatessurements of the efficiency of the proposed
scheduling algorithms. An event-driven simulator was tived to process actual job logs of supercom-
puting centers. The results of simulations for all four sithers were then studied to determine the impact
of their respective algorithms. We begin this section witkhart overview of the BG/L system. We then
describe our simulation environment. We proceed with audision of the workload characteristics for the
two job logs we consider. Finally, we present the experimengsults from the simulations.

3.1 The BlueGene/L System

The BGI/L system is organized as3a x 32 x 64 three-dimensional torus of nodes (cells). Each node
contains processors, memory, and links for interconngdiinits six neighbors. The unit of allocation for
job execution in BG/L is a 512-node ensemble organized i an8 x 8 configuration. Therefore, BG/L
behaves as 4 x 4 x 8 torus of thesesupernodesWe use this supernode abstraction when performing job
scheduling for BG/L.

3.2 The Simulation Environment

The simulation environment models a torus of 128 (supegsad a three-dimensiondl x 4 x 8 config-
uration. The event-driven simulator receives as input dggband the type of scheduler (FCFS, Backfill,
Migration, or B+M) to simulate. There are four primary ew&int the simulator: (1) aarrival eventoccurs
when a job is first submitted for execution and placed in thedualer's waiting queue; (2)schedule event
occurs when a job is allocated onto the torus, (3jat eventoccurs after a standard delay of one second
following a schedule event, at which time a job begins to eund (4) &finish evenbccurs upon completion



of a job, at which point the job is deallocated from the toilise scheduler is invoked at the conclusion of
every event that affects the states of the torus or the wgadfireue i(e., the arrival and finish events).

A job log contains information on the arrival time, execuatiime, and size of all jobs. Given a torus of
size N, and for each jolj the arrival timet?, execution timet; and sizes;, the simulation produces values

for the start timef; and finish timet;.c of each job. These results are analyzed to determine treenviol)

parameters for each job: (1) wait tini¢ = ¢ — t7, (2) response time; = tj-c — 1§, and (3) bounded

AVA . . .
slowdownt?s = % for I' = 10 seconds. Thé term appears according to recommendations in [8],
]’

because some jobs have very short execution time, which istyrtdhe slowdown.
Global system statistics are also determined. Let the sitionl time span bd’ = maxy; (tf ) —
minyy (t3). We then define system utilization (also caltapacity utilizedl as
Sjt§

Wyl = Y ™~ 1)

Vi

Similarly, let f(¢) denote the number of free nodes in the torus at tiraad¢(¢) denote the total number
of nodes requested by jobs in the waiting queue at tinfden, the total amount of unused capacity in the
systemuwynused is defined as:

max (tf) max (0 f(t) - Q(t))
_ ’ dt. 2
Wunused /min(t;?) TN ?

This parameter is a measure of the work unused by the systeaus there is a lack of jobs requesting
free nodes. Thenax term is included because the amount of unused work cannassetthan zero. The
balance of the system capacity is lost despite the presdrjobsothat could have used it. The measure of
lost capacity in the system, which includes capacity logsiabee of the inability to schedule jobs and the
delay before a scheduled job begins, is then derived as:

Wiost = 1 — wytil — Wunused (3)

3.3 Workload characteristics

We performed experiments on a 10,000-job span of two job @dgained from theParallel Workloads
Archive[6]. The first log is from NASA Ames’s 128-node iPSC/860 maxh{from the year 1993). The
second log is from the San Diego Supercomputer Center’s (3038-node IBM RS/6000 SP (from the
years 1998-2000). For our purposes, we will treat each nodbdse two systems as representing one
supernode (512-node unit) of BG/L. This is equivalent tdisgaall job sizes in the log by 512, which is the
ratio of the number of nodes in BG/L to the number of nodes @s¢h128-node machines. Table 1 presents
the workload statistics and Figure 2 summarizes the digtab of job sizes and the contribution of each
job size to the total workload of the system. Using these gs las a basis, we generate logs of varying
workloads by multiplying the execution time of each job bycefficientc, mostly varyinge from 0.7 to

1.4 in increments of 0.05. Simulations are performed fosettleduler types on each of the logs. With these
modified logs, we plot wait time and bounded slowdown as ation®f system utilization.

3.4 Simulation Results

Figures 3 and 4 present plots of average job wait tit}i¢ 4nd average job bounded slowdowffl, respec-
tively, vs system utilization 4 ) for each of the four schedulers considered and each of théafwlogs.
We observe that the overall shapes of the curves for waitéintebounded slowdown are similar.



Table 1. Statistics for 10,000-job NASA and SDSC logs.

NASA Ames iPSC/860 I®DSC IBM RS/6000 SP log

Number of nodes: 128 128
Job size restrictions: powers of 2 none
Job size (nodes)
Mean: 6.3 9.7
Standard deviation: 14.4 14.8
Workload(node-seconds)
Mean: 0.881 x 10° 7.1 x 10°
Standard deviation: 5.41 x 108 25.5 x 108
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Fig. 2. Job sizes and total workload for NASA Ames iPSC/860((a) anyignd San Diego Supercomputer Center (SDSC) IBM
RS/6000 SP((b) and (d)).

The most significant performance improvement is attaineautih backfilling, for both the NASA and
SDSC logs. Also, for both logs, there is a certain benefit froigration, whether combined with backfilling
or not. We analyze these results from each log separately.

NASA log: All four schedulers provide similar average job wait timelaverage job bounded slowdown
for utilizations up to 65%. The FCFS scheduler saturatebaitita7 7% utilization, whereas the Migration
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Fig. 3. Mean job wait timevs utilization for (a) NASA and (b) SDSC logs.
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Fig. 4. Mean job bounded slowdowws utilization for (a) NASA and (b) SDSC logs.

scheduler saturates at about 80% utilization. BackfillmgH or without migration) allows utilizations
above 80% and saturates closer to 90% (the saturation regitimese schedulers is shown here by plotting
values ofc > 1.4). We note that migration provides only a small improvemenivait time and bounded
slowdown for most of the utilization range, and the addgidrenefits of migration with backfilling becomes
unpredictable for utilization values close to the satoratiegion. In the NASA log, all jobs are of sizes that
are powers of two, which results in a good packing of the tofierefore, the benefits of migration are
limited.

SDSC log: With the SDSC log, the FCFS scheduler saturates at 63%, \Whielestand-alone Migration
scheduler saturates at 73%. In this log, with jobs of morgdasizes, fragmentation occurs more frequently.
Therefore, migration has a much bigger impact on FCFS, fiignily improving the range of utilizations
at which the system can operate. However, we note that whekiiltiag is used there is again only a small
additional benefit from migration, more noticeable forimsitions between 75 and 85%. Utilization above
85% can be achieved, but only with exponentially growingtwiaie and bounded slowdown, independent
of performing migration.



Figure 5 presents a plot of average job bounded slowdmgﬁ/h\(ssystem utilization 4y ) for each of
the four schedulers considered and each of the two job logsaléé include results from the simulation
of a fully-connected fat) machine, with and without backfilling. (A fully-connectedachine does not
suffer from fragmentation.) This allows us to assess thecéffeness of our schedulers in overcoming the
difficulties imposed by a toroidal interconnect. The oMeshbpes of the curves for wait time are similar to
those for bounded slowdown.

Migration by itself cannot make the results for a toroidakimae as good as those for a fully connected
machine. For the SDSC log, in particular, a fully connectethine saturates at about 80% utilization with
just the FCFS scheduler. For the NASA log, results for bdetdilwith or without migration in the toroidal
machine are just as good as the backfilling results in thg éalhnected machine. For utilizations above 85%
in the SDSC log, not even a combination of backfilling and rtiign will perform as well as backfilling on
a fully connected machine.
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Fig. 5. Mean job bounded slowdowws utilization for the NASA and SDSC logs, comparing toroidatidlat machines.

Figure 6 plots the number of migrations performed and thea@estime between migrations system
utilization for both workloads. We show results for the nanbf total migrations attempted, the number
of successfumigrations, and the maximum possible number of successfyfations (ax successfulAs
described in Section 2, the parameters which determine iigaation should be attempted afd\;,,., the
ratio of free nodes in the system compared to the size of thes,t@andFN,,..., the fraction of free nodes
contained in the maximal free partition. According to owargtard migration policy, a migration is only
attempted wheN,, > 0.1 andFN,,.. < 0.7. A successfuimigration is defined as a migration attempt
that improves the maximal free partition size. Thax successfilalue is the number of migrations that are
successful when a migration is always attemptes, €N, > 0.0 andFN,,.,. < 1.0).

Almost all migration attempts were successful for the NAB4.IThis property of the NASA log is a
reflection of the better packing caused by having jobs thateaclusively power of two in size. For the
SDSC log, we notice that many more total attempts are made ahout 80% of them are successful. If we
always try to migrate every time the state of the torus is ffiredli no more than 20% of these migrations are
successful, and usually much less.

For the NASA log, the number of migrations increases lineatile the average time between these
migrations varies from about 90 to 30 minutes, dependindnemitilization level and its effect on the amount
of fragmentation in the torus. In contrast to the NASA log thumber of migrations in the SDSC log do not



increase linearly as utilization levels increase. Instélagl relationship is closer to an elongated bell curve.
As utilization levels increase, at first migration attermgotsl successes also increase slightly to a fairly steady
level. Around the first signs of saturation the migrationsitéo decreasd.€., at around 70% utilization for
the Migration scheduler and 77% for B+M). Even though the benof successful migrations is greater
for the SDSC log, the average time between migrations islatier as a result of the larger average job
execution time.

Most of the benefit of migration is achieved when we only penfenigration according to our param-
eters. Applying these parameters has two main advantageseduce the frequency of migration attempts
S0 as not to always suffer the required overhead of migratiad we increase the average benefits of a
successful migration. This second advantage is apparegt wie compare the mean job wait time results
for our standard=N,,,- andFN,,,.. settings to that of the scheduler that always attempts toat@gEven
though the maximum possible humber of successful migratieisometimes twice as many as our actual
number of successes, Figure 7 reveals that the additionafibef these successful migrations is very small.
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Fig. 6. Number of total, successful, and maximum possible suagessfjrationsvs utilization ((a) and (b)), and average time
between migrationss utilization ((c) and (d)).
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Fig. 7. Mean job wait timevsutilization for the NASA and SDSC logs, comparing the staddaigration policy to a full migration
policy that always attempts to migrate.

We complete this section with an analysis of results foresystapacity utilized, unused capacity, and
lost capacity. The results for each scheduler type and batidard job logsq= 1.0) are plotted in Figure 8.
The utilization improvements for the NASA log are barelyioeéble — again, because its jobs fill the torus
more compactly. The SDSC log, however, shows the greatgsbirament when using B+M over FCFS,
with a 15% increase in capacity utilized and a 54% decreadeiamount of capacity lost. By themselves,
the Backfill and Migration schedulers each increase capatilization by 15% and 13%, respectively,
while decreasing capacity loss by 44% and 32%, respectiVélyse results show that B+M is significantly
more effective at transforming lost capacity into unusegaacity. Under the right circumstances, it should
be possible to utilize this unused capacity more effegtivel
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4 Related and Future Work

The topics of our work have been the subject of extensiveiguewesearch. In particular, [8, 14, 17] have
shown that backfilling on a flat machine like the IBM RS/6000 iSRn effective means of improving
guality of service. The benefits of combining migration amathgrscheduling have been demonstrated both
for flat machines [24, 25] and toroidal machines like the CF& [7]. The results in [7] are particularly
remarkable, as system utilization was improved from 33%h \&i pure space-sharing approach, to 96%
with a combination of migration and gang-scheduling. Thekain [21] discusses techniques to optimize
spatial allocation of jobs in mesh-connected multicomptancluding changing the job size, and how to
combine spatial- and time-sharing scheduling algorithimsefficient job scheduling technique for a three-
dimensional torus is described in [2]. This paper, theeftwuilds on this previous research by applying
a combination of backfilling and migration algorithms, asively through space-sharing techniques, to
improve system performance on a toroidal-interconnecystesn.

Future work opportunities can further build on the resuftthis paper. The impact of different FCFS
scheduling heuristics for a torus, besides the largestdagttion heuristic currently used, can be studied.
It is also important to identify how the current heuristitdates to the optimal solution in different cases.
Additional study of the parametets FN,-, andFN,,., may determine further tradeoffs associated with
partition size increases and more or less frequent migratitempts. Finally, while we do not attempt to
implement complex time-sharing schedulers such as thasg insgang-scheduling, a more limited time-
sharing feature may be beneficial. Preemption, for exangliews for the suspension of a job until it is
resumed at a later time. These time-sharing techniques nogidp the means to further enhance the B+M
scheduler and make the system performance of a toroidakotnected machine more similar to that of a
flat machine.

5 Conclusions

We have investigated the behavior of various schedulingritlgns to determine their ability to increase
processor utilization and decrease job wait time in the B&y&tem. We have shown that a scheduler which
uses only a backfilling algorithm performs better than a dalex which uses only a migration algorithm,
and that migration is particularly effective under a woddahat produces a large amount of fragmentation
(i.e., when many small to mid-sized jobs of varied sizes represurnth of the workload). Migration has
a significant implementation overhead but it does not regairy additional information besides what is
required by the FCFS scheduler. Backfilling, on the othedhdnes not have a significant implementation
overhead but requires additional information pertainmghe execution time of jobs.

Simulations of FCFS, backfilling, and migration space-stgascheduling algorithms have shown that
B+M, a scheduler which implements all of these algorithrhewss a small performance improvement over
just FCFS and backfilling. However, B+M does convert sigaifiity more lost capacity into unused capacity
than just backfilling. Additional enhancements to the B+Mestuler may harness this unused capacity to
provide further system improvements. Even with the perboroe enhancements of backfilling and migra-
tion techniques, a toroidal-interconnected machine ssdBG/L can only approximate the job scheduling
efficiency of a fully connected machine in which all nodesegaidistant.
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A Projection Of Partitions (POP) Algorithm

In a given three-dimensional torus of shaldex M x M where some nodes have been allocated for jobs,
the POP algorithm provides@(M?) time algorithm for determining the size of the largest freetangular
partition. This algorithm is a substantial improvementramexhaustive search algorithm that takig/°)
time.
Let FREEPART= {(B, S) | B is a base locatiofi, j, k) and S is a partition sizga, b, c) such that
Va,y,z, i <z < (i+a), j<y<((+b), k <z< (k+c¢),node(x mod M, y mod M, z mod
M) is free}. POP narrows the scope of the problem by determining thedamgctangular partitio® €
FREEPART rooted at each of thié?3 possible base locations and then deriving a global maxin@Giwen a
base location, POP works by finding the largest partition iirene dimension, then by projecting adjacent
one-dimensional columns onto each other to find the largaditipn in two dimensions, and iteratively
projecting adjacent two-dimensional planes onto eachr athind the largest partition in three dimensions.
First, a partition table of the largest one-dimensionatipians P € FREEPART is pre-computed for all
three dimensions and at every possible base locati6r(*) time. This is done by iterating through each
partition and whenever an allocated node is reached, alesrfor the current “row” may be filled in from
a counter value, where the counter is incremented for egelextt free node and reset to zero whenever an
additional allocated node is reached.

X=1 X=2 X=3 X =4

4

Fig. 9. 2-dimensional POP Algorithm applied to Base Location (1/@jjacent 1-dimensional columns are projected onto each
other asX is incremented

For a given base locatioft, j, k), we fix one dimension (e.gk), start a counteX = i in the next
dimension, and multiplX by the minimum partition table entry of the third dimension (x mod M, j, k),
wherez varies ag < z < X andX varies as < X < (i + M). As the example in Figure 9 shows, when
X = 1 for some fixedk at base locatiorfl, 2, k) the partition table entry in th& dimension will equal 3
since there are 3 consecutive free nodes, and our largesiblgopartition size is initially set to 3. When
X increases to 2, the minimum table entry becomes 2 becauiee afllocated node at locatid®, 4, k)
and the largest possible partition size is increased to 4n¥h= 3, we calculate a new largest possible
partition size of 6. Finally, when we come across a patrtitaile entry in theY” dimension of 0 because
of the allocated node at locatiqd, 2, k), we stop increasingl. We would also have to repeat a similar
calculation along th& dimension, by starting a count¥t

Finally, this same idea is extended to work for 3 dimensi@isen a similar base locatiofi, j, k), we
start a counteZ in the Z dimension and calculate the maximum two-dimensional fpamtgiven the current
value ofZ. Then we project the adjacent two-dimensional planes byementingZ and calculating the



largest two-dimensional partition while using the minimpartition table entry of th& andY dimensions
for (i, 7,z mod M), wherez varies as: < z < Z.

Using the initial partition table, it take@(A/) time to calculate a projection for two adjacent planes and
to determine the largest two-dimensional partition. Sithege areD (M) projections required fo© (M?3)
base locations, our final algorithm runs@{°) time.

When we implemented this algorithm in our scheduling sinmujave achieved a significant speed im-
provement. For the original NASA log, scheduling time imyed from an average of 0.51 seconds for every
successfully scheduled job to 0.16 seconds, while the SD&§®proved from an average of 0.125 seconds
to 0.063 seconds. The longest time to successfully schedjdb also improved from 38 seconds to 8.3
seconds in the NASA log, and from 50 seconds to 8.5 secontie iSIDSC log.



