
Scheduling Jobs on Parallel Systems Using
a Relaxed Backfill Strategy

William A. Ward, Jr., Carrie L. Mahood, and John E. West
Computer Sciences Corporation

Attention: CEERD-IH-C, U.S. Army Engineer Research and Development Center
Major Shared Resource Center, 3909 Halls Ferry Road

Vicksburg, Mississippi 39180, USAfWilliam.A.Ward.Jr, Carrie.L.Mahood, John.E.Westg@erdc.usace.army.mil
http://www.erdc.hpc.mil

Abstract

Backfill is a technique in which lower priority jobs re-
quiring fewer resources are initiated before one or more
currently waiting higher priority jobs requiring as yet un-
available resources. Processors are frequently the resource
involved and the purpose of backfilling is to increase sys-
tem utilization and reduce average wait time. Generally, a
scheduler backfills when the user-specified runtimes indi-
cate that executing the lower priority jobs will not delay the
anticipated initiation of the higher priority jobs. This paper
explores the possibility of using a relaxed backfill strategy
in which the lower priority jobs are initiated as long as they
do not delay the highest priority job too much. A simulator
was developed to model this approach; it uses a parameter! to control the length of the acceptable delay as a factor of
the user-estimated run time. Experiments were performed
for ! = 0, 1, 2, 3, and1 with both user-estimated run time
and actual run time using workload data from two parallel
systems, a Cray T3E and an SGI Origin 3800. For these
workloads, queue wait time is typically shortest for! = 1
and the effect of poor user run time estimates is relatively
small. More experiments must be performed to determine
the generality of these results.

1 Scheduling Policies

Many practical job scheduling policies, whether for
uniprocessor or multiprocessor systems, incorporate the no-
tion of job priority. Perhaps the simplest example of a pri-
ority scheme is setting a job’s priority to elapsed time in
the queue; if this priority scheme is used to dictate the or-
der of job initiation, then a “first-come, first-served” (FCFS)
policy results. Other, more elaborate schemes based on the

number of processors requested and user estimates of run-
time are, of course, possible. A second important concept
involves how to use the resulting prioritized list of jobs. If,
when a job completes, the prioritized list is searched for
the first job that will run using the available number of pro-
cessors, then a “first-fit, first-served” (FFFS) policy results;
there are also “best-fit, first-served” (BFFS) (to fit the avail-
able number of processors the tightest) and “worst-fit, first-
served” (WFFS) (to fit the most jobs) versions of this policy.
Performance of these and other policies has been discussed
in[1, 5, 10].

Another approach to using the resulting prioritized job
list is to treat the highest priority job as the one that must
execute next, and then save resources as other jobs complete
until there are sufficient resources to run that job. Depend-
ing on the workload, this may lead to underutilization of the
system, increased wait times, and also to job “starvation,”
where a job is waiting to execute but is never initiated[4,
p. 38]. A partial solution to this is to execute lower prior-
ity jobs, but then pre-empt them when necessary to execute
the highest priority job. This is implemented by virtually
all operating systems on uniprocessors and tightly-coupled
multiprocessors; very often the job will remain memory res-
ident while pre-empted so that it may be easily restarted at
the next time quantum. Implementing this capability on a
large-scale parallel system requires a job checkpointing ca-
pability; some parallel systems, e.g., the Cray T3E, have
it while others, particularly cluster systems, do not. Even
on those that do, it is sometimes undesirable to operate the
system in that mode because of the resources wasted by fre-
quently changing from one job to another. In fact, on highly
parallel systems where the processors required to run the
job are the critical resource, the scheduler will often allo-
cate processors to a job for the job’s lifetime and simply al-
low the job to run to completion, never pre-empting it[12].

This is known as “variable partitioning”[3] or “pure space
sharing”[1].

A second way to resolve this issue is to allow the sched-
uler to use “backfilling,” a technique in which lower prior-
ity jobs requiring fewer resources are initiated before one or
more currently waiting higher priority jobs requiring as yet
unavailable resources[6, 11]. Here, users supply a number
of processors required to run their jobs along with an esti-
mate of the time required. Based on this information, lower
priority jobs are allocated idle processors and allowed to run
as long as they complete before the earliest feasible time for
running the highest priority job. Apparently, this scheme
depends on user time estimates for its effectiveness. How-
ever, there is some evidence that poor estimates do not ad-
versely affect overall performance of this scheduling policy,
although individual jobs may be delayed[7, p. 91][13, pp.
140-141]. Generally, use of backfill significantly improves
system utilization and reduces job wait time versus the same
scheduling policy without backfill. Not all scheduling poli-
cies are amenable to the use of backfill; the strategy that
repeatedly dispatches the highest priority job that fits until
no more jobs can be started is an example.

2 Backfill Variants

There are two basic approaches to backfill: conservative
backfill, which allows a lower priority job to run only if
it will not delayanyof the higher priority waiting jobs, and
aggressive backfill, which will allows a lower priority job to
run if it will not delay the highest priority job[8]. Regard-
less of which approach is used, there are further subvariants
distinguished by how the backfilled job is chosen. Possibil-
ities include (i) selecting the highest priority job that will
fit, (ii) selecting the job that fits the best, and (iii) selecting
a combination of jobs that fit the best. All three of these ap-
proaches are essentially implementations of a greedy strat-
egy that “makes a locally optimal choice in the hope that
this choice will lead to a globally optimal solution”[2, p.
329]. Optimal performance is not achievable since it would
require knowledge of jobs yet to be submitted.

Obviously the interpretation of “fit” allows for varia-
tions. An easy approach considers only the number of
processors requested; however, this may not be optimal in
terms of system utilization. For example, suppose two jobs
requesting the same number of processors may be back-
filled, and the first job has a higher priority and a lower time
estimate than the second. If, after running the first job, no
other jobs may be backfilled, then system utilization over
that period will be lower. If the number of processors over
time is treated as a two-dimensional space to be filled with
jobs, then packing algorithms that consider all waiting jobs
as candidates may be applied.

This notion of backfill fit has been extended by Talby and

Feitelson in their concept of “slack-based backfilling”[12].
In this approach, three parameters – a job’s individual pri-
ority, a tunable systemwide “slack factor,” and the system
average wait time – are used to compute a job’s “slack.”
The system slack factor is used to control how long jobs
will have to wait for execution; e.g., a slack factor of 3 im-
plies that jobs may wait up to 3 times the average wait time.
Once priorities and slacks have been calculated for all wait-
ing jobs, then it is possible to compute a cost for a particular
schedule of these jobs. Selecting the least costly schedule
from all possible schedules is analogous to the knapsack
problem[9, pp. 3, 261] and is, as noted in [12], an NP-hard
problem. Talby and Feitelson provide several heuristics to
reduce the search space of candidate schedules, and then use
a simulator implementation of their method to demonstrate
its effectiveness.

A different perspective on selecting backfill candidates is
found in [14] and [15]; there, the authors contrast the use of
accurate runtime estimates in backfill algorithms with user-
supplied overestimates. A parameterR is used to specify
the overestimate, withR = 1 corresponding to the actual
runtime. Their tests included two actual and one artificial
workload traces. Significantly, they observed decreasing
average wait time with increasingR, particularly for the ac-
tual workloads. (For convenience, this will be referred to
as the “ZK” method after the last names of the authors in
[14].)

Instead of using the standard aggressive backfill crite-
rion, this paper proposes a “relaxed” backfill technique in
which jobs are backfilled as long as they do not delay the
highest priority job “too much.” This approach is similar in
spirit to the slack-based approach in that the highest priority
job may not be scheduled at the earliest possible time, and
similar in technique to the ZK method in that it increases
the size of the backfill time window. A tunable system pa-
rameter,!, expressing the allowable delay as a factor of the
user-specified runtime of the highest priority job, controls
the degree of backfill relaxation used by the scheduler. For
example, if! = 1:2, then a job may be backfilled as long
as it does not cause a delay greater than 20 percent of the
highest priority job’s user-specified runtime. This relaxed
backfill approach is illustrated in Fig. 1.

Increasing! has an effect similar to increasingR in the
ZK approach in that it increases the backfill time window
in which jobs may be scheduled. Setting the relaxation pa-
rameter to1 allows several interesting cases, depending
on the priority calculation used; this will be discussed be-
low. Other variants include making! relative to CPU hours
requested or to priority instead of runtime. For example, in
the latter case, a job would be eligible for backfilling if there
were sufficient processors to run it and if its priority when
multiplied by! was greater than the priority of the highest
priority job.

3 Job Priority

As has already been noted, use of backfill requires some
notion of job priority, since that determines the highest pri-
ority job for which resources are being reserved and affects
the choice of backfilled jobs. Intuitively, as a job waits
longer, its priority should increase; e.g., the priority calcu-
lation should include a factor such as(t� tq)�, wheret is
the current time andtq is the time the job was queued. Next,
although this is somewhat arbitrary, jobs with shorter user
time estimates may be favored over ones estimated to run
longer, corresponding to a factor ofw� , � < 0, wherew is
the user-estimated walltime for the job.

Further, the number of processors may be taken into ac-
count in calculating job priority. In a similar spirit to the
estimated walltime, one might assign a higher priority to
a job requesting fewer processors. However, running jobs
requiring only one or a few processors is often considered
not the best use of expensive, highly parallel systems, and
so one might be led to the opposite conclusion and assign
a lower priority to such a job. When selecting a backfill
candidate, this latter alternative has the attractive property
of tending to favor jobs that fit the backfill space tighter.
This recommends inclusion of the factorn
 , wheren is the
user-requested number of processors. Note than even with
a low priority, a job requiring few processors still makes a
good backfill candidate and tends to be initiated relatively
quickly.

Finally, the local queue structure may also be reflected
in the priority calculation; e.g., a site having four queues –
background, primary, challenge, and urgent – might assign
factors of 1, 2, 4, and 8, respectively, to reflect the increas-
ing importance of jobs in those categories. More generally,
this factor could be of the formrÆ , wherer represents the
relative importance of the queues andÆ is the queue number.

Suppose time is measured in seconds, a typical job uses
32 processors, and that the queues are numbered as follows:
background: -1, primary: 0, challenge: 1, and urgent: 2.
Then a possible job priority calculation is of the formP = � t� tq3600 ��� w3600��� n32�
rÆ : (1)

Thus, a typical 32-processor job having an estimated 1-hour
runtime that has waited in the primary queue for 1 hour has
a current priority of 1.

Coupled with the backfill scheme described above, sev-
eral policies are possible. If� = 1 and� =
 = Æ = ! =0, then an FCFS algorithm results.� = 1, � =
 = Æ = 0,
and! = 1 yields an FFFS policy. If� = � = Æ = 0 and! =1, then
 = 1 produces a BFFS policy, while
 = �1
produces a WFFS policy. Setting�, �, andÆ to nonzero
values specifies a family of interesting subvariants of these

policies. Furthermore, the tunability of the parameters al-
lows for emphasis of job aspects that are most important for
a particular system.

4 Simulation Results

A scheduler simulator written in Perl was used to com-
pare the effectiveness of the proposed approach with several
other scheduling policies. The algorithm used in the simu-
lator is shown in Fig. 2. The key element of this algorithm
is the backfill window calculation. Ift+ hpwait is the ear-
liest time that the highest priority job could run, then the
backfill window is bfwindow = ! � hpwait and backfill
candidates are jobs for which there are enough CPUs and
which will complete beforet + bfwindow. The priority
calculation in Eq. 1 with� = 1, � = �1,
 = 1, andr = 10 was used to assign job priorities. In particular, the� n32�
 term places jobs using larger numbers of processors
higher in the priority list; this tends to somewhat counteract
the tendency to backfill with numerous small jobs. Finally,
priorities for waiting jobs were recalculated once every sim-
ulated minute.

Utilization data from two systems at the U.S. Army En-
gineer Research and Development Center (ERDC) Major
Shared Resource Center (MSRC) were used in this study.
The first machine is a Cray T3E currently running version
2.0.5.49 of the UnicosMK operating system (OS) and ver-
sion 2.1p14 of the OpenPBS scheduler; the scheduler has
been highly customized for use at the ERDC MSRC. The
T3E was initially configured with 512 600-MHz Alpha pro-
cessors, each with 256 Mb of memory. During 5-15 Au-
gust 2001, part of the period under study, this system was
out of service while it was reconfigured to include an addi-
tional 256 675-MHz Alpha processors, each with 512 Mb of
memory. This change in number of processors is reflected
in this study. These processors are termed “application pro-
cessing elements” (PEs). There are additional “command
PEs” available for interactive login and “OS PEs” for OS
processes, but because they are not part of the processor
pool available to the scheduler, they are not included in this
study.

The second machine is an SGI Origin 3800 (O3K) cur-
rently running version 6.5 of the IRIX OS and version
5.1.4C of the PBS Pro scheduler. The O3K has 512 400-
MHz MIPS R12000 processors grouped into 4-processor
nodes; each node has 4 Gb of memory. On 2 February 2002,
this system was reconfigured to implement cpusets with the
net effect being to reduce the number of available proces-
sors from 512 to 504, with 8 processors being reserved for
the OS. This change is also reflected in the study.

Ordered from lowest to highest priority, there are “back-
ground,” “primary,” “challenge,” and “urgent” queues on
both systems. A guiding operational tenet is to give jobs in

these latter two categories premium service. Additionally,
there is a “dedicated” queue that allows a particular group
of users exclusive access to the system. In preparation for
running in dedicated mode, the scheduler stops submitting
jobs from the other queues and running jobs are allowed
to complete. Then, while in dedicated mode, only jobs in
the dedicated queue are run. At the end of this period,
the other queues are restarted. While in this mode a sys-
tem is essentially operating outside of the normal schedul-
ing regime because only jobs in one particular queue may
run and other jobs, regardless of their priority and of sys-
tem resource availability, may not. Consequently, 80 out of
66,038 jobs on the T3E and 362 out of 71,500 jobs on the
O3K run in this mode were eliminated from the study.

This left 65,958 jobs run on the T3E between 10 Oc-
tober 1999 and 10 April 2002 and 71,138 jobs run on the
O3K between 13 November 2000 and 9 April 2002; these
were used as input data to the simulation study. Five dif-
ferent backfill relaxation levels were studied using the run
logs from both systems:! = 0 (no backfill), 1 (aggressive
backfill), 2, 4, and1. For each of the two systems and for
each of the five! levels, two scenarios were simulated: one
using the user-estimated runtime, and one using the actual
runtime. In each case the runtime (estimated or actual) was
used inboth the priority calculation (Eq. 1) and the back-
fill algorithm. In each of these 20 runs, total job wait time
was computed by month and compared against actual wait
time. The results are presented in Tables 1-4. Each simula-
tion run covered the full time period noted above for each
system, but only results for the period 1 April 2001 to 31
March 2002 are shown; the results for months not shown
are quite similar in character.

As expected, scheduling without backfill performs the
poorest. With few exceptions, as the backfill criterion is re-
laxed wait time decreases. More specifically, considering
the T3E results based on user estimated runtimes in Table
1, if a value of! = 1 had been preselected, then relaxed
backfill would have shown a reduction versus actual wait
time for every month, and the average monthly decrease in
wait time would have been 46 percent. Versus standard ag-
gressive backfill, there would also have been a reduction
for every month with an average monthly decrease of 67
percent. Furthermore, relaxed backfill is an improvement
over standard aggressive backfill as implemented here for
every! > 1 tested. Obviously, the observed reduction in
wait time must be achieved by increasing the number of jobs
backfilled. This is shown in Table 2 where, again consider-
ing the results based on user estimates, the number of jobs
backfilled consistently increases for increasing values of!
for every month.

An possible drawback to relaxed backfilling is that as the
scheduler is given a larger pool of backfill candidates from
which to choose, lower priority are scheduled earlier and the

priority scheme may be undermined. More specifically, it is
possible that the observed improvement in overall wait time
may have come at the expense of high priority jobs. Ta-
ble 3 shows that this is not the case. The systems at ERDC
have four queues, background, primary, challenge, and ur-
gent. With the exception of April 2001, the wait times for
challenge and urgent jobs decrease for increasing values of! and the times for the! =1 case are less than the actual
wait times.

Remarkably, these improvements were obtained in spite
of consistently poor user runtime estimates; the average ra-
tio of actual runtime to user-estimated runtime on the T3E
for this period is 29 percent. Another measure of the ap-
proach’s robustness is its performance relative to that ob-
tainable using exact runtimes. Referring again to Table 1
and considering the! = 1 case, the monthly wait times
obtained using user estimates are actually less than those
obtained using exact runtimes for 6 of the 12 months shown.

The method’s performance on the O3K, as shown in Ta-
bles 4 and 5, is similar. Considering the results obtained us-
ing user-estimated runtimes and a value of! =1, relaxed
backfill would have outperformed both the actual scheduler
and aggressive backfill every month with average monthly
decreases in wait time of 87 and 62 percent, respectively.
Again, these improvements were obtained in spite of user-
estimated runtimes being high by an average factor of 4, and
were an average of only 9 percent more than what would
have been achievable using actual runtimes. Table 6 shows,
as was the case with the T3E, that decreased wait times do
not come at the expense of high priority jobs.

5 Conclusions

This study indicates that accurate user run time estimates
are not necessary for a backfill scheme to be effective and
that use of exact run times is not always superior to coarse
estimates. Although the formulation of this approach is
somewhat different from the ZK methodology, the results
here support similar findings in [14] and [15] in the sense
that as the size of the backfill time window is increased,
more jobs are backfilled and overall wait time decreases.
More specifically, the ZK parameterR is analogous in func-
tion to the! used here.

Relaxed backfill with! = 1 is equivalent to a vari-
ant of some first-, best-, or worst-, fit policy. Thus, all of
these approaches are part of a larger family of methods and
are obtainable by selecting appropriate values for! and for
the parameters in the priority scheme. It is possible that
this parameter space could form the basis for a taxonomy of
scheduling policies.

The results gathered here indicate that if relaxed backfill
is allowable from a policy perspective, then it (particularly
the! =1 version) may be quite effective in reducing total

job wait time versus aggressive backfill. Although the time
span and size of the input data, as well as the use of data
from two different systems, give credence to this conclu-
sion, further study is necessary to provide additional con-
firmation of the method’s applicability. This would include
use of data from other systems or other user populations,
a different priority assignment scheme, a different backfill
scheme, or use of! values relative to processor hours or
priority instead of hours.

More specifically, assuming the technique is widely ap-
plicable, sensitivity analyses should be conducted to deter-
mine how the method behaves for various priority param-
eters and to determine the best settings for a given system
and workload. An important aspect of this would also be
to determine if the! = 1 version is superior for all pri-
ority schemes. Finally, an appropriate modification to this
approach should be developed to guarantee that jobs do not
wait indefinitely.

6 Acknowledgments and Disclaimer

The authors gratefully acknowledge the inspiration for
this approach provided by Dr. Daniel Duffy, Computer Sci-
ences Corporation (CSC), ERDC MSRC. This work was
supported by the U.S. Department of Defense (DoD) High
Performance Computing Modernization Program through
the ERDC MSRC under contract number DAHC94-96-C-
0002 with CSC.

The findings of this article are not to be construed as an
official DoD position unless so designated by other autho-
rized documents. Citation of trademarks herein does not
constitute an official endorsement or approval of the use of
such commercial products, nor is it intended to infringe in
any way on the rights of the trademark holder.

References

[1] K. Aida, H. Kasahara, and S. Narita. Job scheduling scheme
for pure space sharing among rigid jobs. In D. G. Feitelson
and L. Rudolph, editors,Job Scheduling Strategies for Par-
allel Processing, volume 1459 ofLecture Notes in Computer
Science, pages 98–121, Berlin Heidelberg New York, 1998.
Springer-Verlag.

[2] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduc-
tion to Algorithms. MIT Press, Cambridge, Massachusetts,
1990.

[3] D. G. Feitelson. A survey of scheduling in multipro-
grammed parallel systems. Research Report RC 19790
(87657), IBM T.J. Watson Research Center, October 1994.

[4] R. Finkel.An Operating System Vade Mecum. Prentice-Hall,
Englewood Cliffs, New Jersey, 1988.

[5] R. Gibbons. A historical application profiler for use by par-
allel schedulers. In D. G. Feitelson and L. Rudolph, editors,
Job Scheduling Strategies for Parallel Processing, volume

1291 ofLecture Notes in Computer Science, pages 58–77,
Berlin Heidelberg New York, 1997. Springer-Verlag.

[6] Intel Corp. iPSC/860 Multi-User Accounting, Control, and
Scheduling Utilities Manual, May 1992. Order Number
312261-002.

[7] D. Jackson, Q. Snell, and M. Clement. Core algorithms of
the Maui scheduler. In D. G. Feitelson and L. Rudolph, edi-
tors,Job Scheduling Strategies for Parallel Processing, vol-
ume 2221 ofLecture Notes in Computer Science, pages 87–
102, Berlin Heidelberg New York, 2001. Springer-Verlag.

[8] D. A. Lifka. The ANL/IBM SP scheduling system. In D. G.
Feitelson and L. Rudolph, editors,Job Scheduling Strate-
gies for Parallel Processing, volume 949 ofLecture Notes in
Computer Science, pages 295–303, Berlin Heidelberg New
York, 1995. Springer-Verlag.

[9] B. M. E. Moret and H. D. Shapiro.Algorithms from P to NP.
Benjamin/Cummings, Redwood City, California, 1991.

[10] E. W. Parsons and K. C. Sevcik. Implementing multi-
processor scheduling disciplines. In D. G. Feitelson and
L. Rudolph, editors,Job Scheduling Strategies for Parallel
Processing, volume 1291 ofLecture Notes in Computer Sci-
ence, pages 166–192, Berlin Heidelberg New York, 1997.
Springer-Verlag.

[11] D. D. Sharma and D. K. Pradhan. Job scheduling in mesh
multicomputers. InIntl. Conf. Parallel Processing, vol-
ume II, pages 1–18, August 1994.

[12] D. Talby and D. G. Feitelson. Supporting priorities and im-
proving utilization of the IBM SP2 scheduler using slack-
based backfilling. In13th Intl. Parallel Processing Symp.,
pages 513–517, April 1999.

[13] Y. Zhang, H. Franke, J. E. Moreira, and A. Sivasubrama-
nian. An integrated approach to parallel scheduling using
gang-scheduling, backfill, and migration. In D. G. Feitel-
son and L. Rudolph, editors,Job Scheduling Strategies for
Parallel Processing, volume 2221 ofLecture Notes in Com-
puter Science, pages 133–158, Berlin Heidelberg New York,
2001. Springer-Verlag.

[14] D. Zotkin and P. J. Keleher. Job-length estimation and per-
formance in backfilling schedulers. In8th High Performance
Distributed Computing Conf.IEEE, 1999.

[15] D. Zotkin, P. J. Keleher, and D. Perkovic. Attacking the
bottlenecks of backfilling schedulers.Cluster Computing,
3(4):245–254, 2000.

time
C, D, & E queued

of
CPUs

a) No backfill

A

B

C
(pr i = 30)

D
(pr i = 20)

E
(pr i = 10)

time
C, D, & E queued

of
CPUs

b) Strict backfill

A

B

C
(pr i = 30)

D
(pr i = 20)

E
(pr i = 10)

time
C, D, & E queued

of
CPUs

c) Relaxed backfill

A

B

C
(pr i = 30)

D
(pr i = 20)

E
(pr i = 10)

Figure 1. Schedule for running five jobs under three scheduling policies

SPECIFY number of CPUs in model
SPECIFY queues (e.g., background, primary, challenge)
SPECIFY dt (time interval for checking queue status)
SPECIFY alpha, beta, gamma, delta, and omega for priority calculation
SET t = 0
SET twake = 0

WHILE (more input OR jobs in ready queue OR jobs in run queue)

IF (t >= twake AND more input)
READ next command
IF (command is "queue <job>")

PUT job in ready queue
ELSE IF (command is "sleep <tsleep>")

SET twake = t + tsleep
END IF

END IF

REMOVE any completed jobs from run queue
RECALCULATE priorities of jobs in ready queue
SORT ready queue in descending order by priority

IF (any jobs added to ready queue OR any jobs completed)
WHILE (enough CPUs)

START highest priority job (top of ready queue)
END WHILE
SET hpwait = time until highest priority job can run
SET bfwindow = omega * hpwait
WHILE (more jobs in ready queue to check)

IF (enough CPUs AND job will complete before t+bfwindow)
START backfill job

END IF
END WHILE

END IF

SET t = t + dt
END WHILE

Figure 2. Simulator algorithm for relaxed backfill

Table 1. Total wait times in hours by month under various scheduling policies using workload data
from the ERDC MSRC T3E. “Est” identifies results derived using user-estimated runtimes for both
the priority calculation and for backfilling. “Act” identifies results derived using actual runtimes for
both the priority calculation and for backfilling

Percent Actual Time Simulated Wait Time

Month Util. Wait Used !=0 !=1 !=2 !=4 !=1
2001/04 72.2 3494 Est 58735 4491 2430 1582 3050

Act 40165 2104 1450 1351 1511

2001/05 76.4 3007 Est 22976 6337 3945 2317 1952
Act 13432 3862 2871 2113 2057

2001/06 81.4 3224 Est 14651 5284 4003 2841 2046
Act 8850 3946 3304 2993 2828

2001/07 63.9 2856 Est 9611 3373 2161 1551 1175
Act 6365 2150 1646 1366 1079

2001/08 66.1 1174 Est 18141 2386 1626 1159 787
Act 10144 1042 849 789 776

2001/09 77.8 2817 Est 68851 16222 8578 3461 2232
Act 39327 4663 3506 3199 2857

2001/10 58.0 1403 Est 8898 2254 1436 895 481
Act 6667 1030 781 602 680

2001/11 68.7 2282 Est 14664 4073 2747 1950 1336
Act 9390 2073 1494 1585 1116

2001/12 62.8 2088 Est 9339 2573 1527 1108 1204
Act 4981 1661 1084 1050 915

2002/01 61.2 43366 Est 5365 2399 1141 859 563
Act 3425 1503 773 584 551

2002/02 72.9 4265 Est 24254 5354 3373 2488 1456
Act 11032 2753 1963 1704 1686

2002/03 74.9 3926 Est 33039 7767 5018 4017 2257
Act 18719 7773 4711 3331 2956

Total 69.2 73902 Est 288524 62513 37985 24228 18539
Act 172497 34560 24432 20667 19012

Table 2. Number of JOBS backfilled for selected months under various scheduling policies using
workload data from the ERDC MSRC T3E. “Est” identifies results derived using user-estimated
runtimes for both the priority calculation and for backfilling. “Act” identifies results derived using
actual runtimes for both the priority calculation and for backfilling

No. Time Jobs Backfilled

Month Jobs Used !=1 !=2 !=4 !=1
2001/05 2607 Est 1054 1241 1606 2582

Act 982 1087 1418 2576

2001/07 2144 Est 425 617 758 966
Act 390 453 627 914

2001/09 2798 Est 1420 1837 2106 2192
Act 1710 1756 1894 2188

2001/11 2226 Est 492 631 943 1184
Act 611 661 757 1183

2002/01 4140 Est 282 463 530 695
Act 333 417 496 680

2002/03 2768 Est 788 1082 1218 1552
Act 788 868 1064 1422

Table 3. Total wait times in hours by month for challenge/urgent jobs under various scheduling
policies using workload data from the ERDC MSRC T3E. These results were derived using user-
estimated runtimes for the priority calculation and for backfilling.

No. Actual Simulated Wait Time

Month Jobs Wait !=0 !=1 !=2 !=4 !=1
2001/04 1108 1845 21791 2939 1678 1190 2558
2001/05 1588 1921 11614 3686 2460 1428 1266
2001/06 600 1006 2853 2160 1851 1197 591
2001/07 806 1142 1601 737 510 398 222
2001/08 285 296 1142 447 339 298 200
2001/09 381 659 3493 1444 959 746 580
2001/10 280 667 1205 647 490 304 276
2001/11 448 741 2298 1311 1184 616 428
2001/12 593 797 1893 841 585 423 264
2002/01 656 496 893 655 398 301 134
2002/02 459 424 1821 1589 1408 1005 274
2002/03 446 891 3277 1478 1401 962 573

Total 7650 10885 53881 17934 13269 8868 7366

Table 4. Total wait times in hours by month under various scheduling policies using workload data
from the ERDC MSRC O3K. “Est” identifies results derived using user-estimated runtimes for both
the priority calculation and for backfilling. “Act” identifies results derived using actual runtimes for
both the priority calculation and for backfilling

Percent Actual Time Simulated Wait Time

Month Util. Wait Used !=0 !=1 !=2 !=4 !=1
2001/04 46.1 13755 Est 581 234 102 103 96

Act 495 195 169 163 103

2001/05 34.4 3793 Est 76 60 56 32 24
Act 49 34 28 26 24

2001/06 74.6 3408 Est 5844 2935 3550 1463 1043
Act 3058 1322 1123 899 960

2001/07 42.8 2441 Est 33 32 24 22 21
Act 32 31 31 31 21

2001/08 89.8 6351 Est 89345 15544 13575 5493 3868
Act 38697 6204 4263 3956 3479

2001/09 71.3 15179 Est 120081 12244 16405 2231 1788
Act 90146 4055 2426 1420 1622

2001/10 71.9 96093 Est 54436 24812 11727 1378 1006
Act 27581 5866 2108 1488 896

2001/11 73.7 11347 Est 6850 2085 1797 1613 1144
Act 4676 2045 1584 1415 941

2001/12 66.2 6690 Est 332 205 187 125 113
Act 250 158 159 149 103

2002/01 78.5 11196 Est 100232 7013 4050 3444 2710
Act 54634 4401 3855 2806 2602

2002/02 78.1 24051 Est 13003 6107 5316 3991 2788
Act 8853 3704 3394 3154 2270

2002/03 62.9 25274 Est 4283 2566 2332 1755 954
Act 3120 1156 965 822 859

Total 65.7 219578 Est 395096 73837 59121 21650 15555
Act 231291 29171 20105 16329 13880

Table 5. Number of JOBS backfilled by month under various scheduling policies using workload data
from the ERDC MSRC O3K. “Est” identifies results derived using user-estimated runtimes for both
the priority calculation and for backfilling. “Act” identifies results derived using actual runtimes for
both the priority calculation and for backfilling

No. Time Jobs Backfilled

Month Jobs Used !=1 !=2 !=4 !=1
2001/05 6732 Est 19 30 57 83

Act 33 56 68 83

2001/07 4990 Est 4 7 10 10
Act 6 6 6 10

2001/09 3713 Est 1329 2183 3710 3710
Act 936 2938 2902 3709

2001/11 1992 Est 375 464 467 547
Act 335 385 422 528

2002/01 4280 Est 2182 2358 2602 3262
Act 1942 2341 2686 3232

2002/03 4834 Est 581 733 954 2073
Act 524 593 754 2044

Table 6. Total wait times in hours by month for challenge/urgent jobs under various scheduling
policies using workload data from the ERDC MSRC O3K. These results were derived using user-
estimated runtimes for the priority calculation and for backfilling.

No. Actual Simulated Wait Time

Month Jobs Wait !=0 !=1 !=2 !=4 !=1
2001/04 2396 4694 116 113 52 56 55
2001/05 421 1347 3 3 5 5 4
2001/06 236 1536 533 473 785 963 386
2001/07 282 284 2 2 3 3 3
2001/08 410 1776 22678 5573 5384 693 160
2001/09 595 5081 12276 3402 4956 111 101
2001/10 1026 4713 3903 2661 2282 372 231
2001/11 727 2571 1484 880 751 750 576
2001/12 532 952 59 56 61 45 51
2002/01 667 2022 8344 2474 1553 1430 534
2002/02 726 6921 2167 1745 1467 1290 549
2002/03 1166 8558 1519 911 1043 689 117

Total 8134 40455 53084 18293 18342 6407 2767

