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Abstract. The performance of job scheduling policies strongly depends on the properties
of the incoming jobs. If the job characteristics often change, the scheduling policy should
follow these changes. For this purpose the dynP job scheduler family has been developed.
The idea is to dynamically switch the scheduling policy during runtime. In a basic version
the policy switching is controlled by two parameters.

The basic concept of the self-tuning dynP scheduler is to compute virtual schedules for each
policy in every scheduling step. That policy is chosen which generates the ’best’ schedule.
The performance of the self-tuning dynP scheduler no longer depends on a adequate setting
of the input parameters.

We use a simulative approach to evaluate the performance of the self-tuning dynP scheduler
and compare it with previous results. To drive the simulations we use synthetic job sets that
are based on trace information from four computing centers (CTC, KTH, PC2, SDSC) with
obviously different characteristics.

1 Introduction

A modern resource management system for supercomputers consists of many different components
which are all vital for the everyday usage of the machine. Despite the fact that the management
software should be working properly, the scheduler plays a major role in improving the acceptance,
usability, and performance of the machine. The performance of the scheduler could be seen as a
quality of service with regard to the performance of the users jobs (e.g. wait and response time).
But also the machine owner is interested in a good scheduler performance for e. g. increasing the
utilization of the machine.

Hence, much work has been done in the field of improving or developing new scheduling al-
gorithms and policies in general. Some examples to mention are: gang-scheduling [2] (combined
with migration and backfilling [20]), several backfilling variants (conservative [4], EASY [13], or
slack-based [18]), or a tool for predicting job runtimes [14]. Also, research for explicit machines
was done, e.g. for the IBM SP2 and the LoadLeveler System [18,11], or the IBM ASCI Blue [5,
10).

It is common to use simulation environments for evaluating scheduling algorithms. Job sets
are often based on trace information from real machines. Especially for that purpose a Parallel
Workload Archive [17] was established. During the last years such simulation environments were
also used to evaluate scheduling algorithms for upcoming computational grid environments [1].
Admittedly no grid job trace is available at the moment.

In this paper we follow a similar approach: we built a simulation environment tailored for our
resource management system CCS (Computing Center Software) [8]. In that simulation environ-
ment the exact scheduling process of CCS is modelled. Because real trace data from our hpcLine
cluster exists, it is possible to develop and evaluate new scheduling algorithms. Our cluster is op-
erated in space sharing mode, as our users often need the exclusive access to the network interface
and the full compute power of the nodes. Three scheduling policies are historically grown: FCFS
(first come, first serve), SJF (shortest jobs first) and LJF (longest jobs first), each supplemented
with conservative backfilling.



In the following we present a scheduler family developed for our system. It is based on the three
single policies and dynamically switches between them automatically and in real time. Further-
more, it offers self-tuning ability, so that no interaction or startup parameter is necessary. Besides
a trace based job set from our machine (PC2), we also evaluated the algorithms with three other
trace based job sets from the Cornell Theory Center (CTC), the Swedish Royal Institute of Tech-
nology (KTH) and the San Diego Supercomputer Center (SDSC).

The remainder of this paper is organized as follows: In the next section some related work is
presented. In section 3 the algorithms are presented, starting with the basic variant and the self-
tuning dynP scheduler with two different deciders. After that the used workloads are presented and
examined in section 4. The evaluation in section 5 starts with a short look on the used performance
metrics and proceeds with the results. We surveyed different aspects of the algorithms and also
present a comparison with previous work. Finally this paper ends with a conclusion in section 6.

2 Related Work

Ramme and Gehring [12, 6] introduced the IVS (Implicit Voting System) for scheduling the MPP-
systems of a virtual machine-room in 1996. The problem was that the systems were switched
between batch and interactive mode manually at fixed times of the day (i.e. interactive mode
during working hours and batch mode for the rest of the day and during weekends). This static
solution restricted the usage of the systems very much. The idea was, that the users themselves
should vote for the used scheduling method depending on the characteristics of their favored
resource requests. However, the users should not vote explicitly. Therefore the IVS was developed.
Three strategies are used as a basis: FCFS, FFIH (first fit, increasing height), and FFDH (first fit,
decreasing height). FFIH sorts the request list by increasing estimated job runtime, so that short
(interactive) jobs are at the front. FFDH sorts the requests in a opposite order than FFIH. Using
FFIH leads to a shorter average waiting time in general, whereas FFDH commonly improves
the overall system utilization. Hence the basic idea of IVS is to check, whether more batch or
interactive jobs are in the system. Depending on that, IVS switches between FFDH (more batch
jobs) or FFTH (more interactive jobs). If the system is not saturated, FCFS is used. IVS was never
implemented and tested in a real environment, as the project finished with the Ph.D. thesis.

Feitelson and Naaman [3] published work about self-tuning systems in 1999. Modern operating
systems are highly parameterized, so that the administrative staff is forced to use a trial-and-error
approach for optimizing these parameters. A better way would be to automate this process. The
idea is to look at past information (i.e. log files), use this information as input for simulations
with different parameter values, and evaluate them. Genetic algorithms are set in to derive new
parameter values. With these genetic parameter values again simulations are driven in the idle loop
of the machine to conduct a systematic search for optimal parameter values. The authors call such
systems which learn about their environment self-tuning, as the system itself automatically searches
for optimized parameter values. In a case study for scheduling batch jobs on a iPSC/860 they found
out that with the self-tuning search procedure the overall system utilization can be improved from
88% (with the default parameters) to 91%. That means, that the number of resources lost to
fragmentation is reduced by one quarter.

3 Algorithms

In this section the different versions of the dynP (for dynamic Policy) scheduler family and the
history of development are presented. We start with the basic dynP scheduler which needs a lower
and upper bound as parameters. Then follows the self-tuning dynP scheduler with an introduction
to the simple decider and its disadvantages. Finally the new, advanced decider for the self-tuning
dynP scheduler is presented.



3.1 The Basic dynP Scheduler

We started our work with two job sets which were derived from traces of our 96-node hpcLine
cluster. This machine is managed by CCS which is a long-term running project at the PC2. All
policies are combined with (conservative) backfilling [4]. Currently, CCS is configured to use FCFS
for scheduling jobs. Now the question is, has performance suffered, because we have used FCFS
instead of SJF or LJF. So we have developed a simulation framework for evaluating the three
scheduling policies with two trace based job sets from our machine.

The results show, that FCFS is a good average for both job sets [15]. The other policies show
opposing results: for the first job set SJF is better than FCFS and LJF is worst, and for the second
job set, LJF is the best, followed by FCFS and SJF is worst. From that we have developed the idea
of dynamically switching the scheduling policy during runtime. A decision criterion was needed to
decide when to switch from one policy to the other. For that we have used the average estimated
runtime of all jobs currently in the waiting queue. The decider is evoked every time a new job is
submitted and the algorithm works as follows:

basic_dynP_algorithm()
{
IF (jobs in waiting queue >= 5) {
AERT = average estimated runtime of all jobs currently in the waiting queue;
IF (0 < AERT <= lower_bound) { switch to SJF; }
ELSE IF (lower_bound < AERT <= upper_bound) { switch to FCFS; }
ELSE IF (upper_bound < AERT) { switch to LJF; }
reorder waiting queue according to new policy;

Note, we are using a threshold of 5 jobs to prevent unnecessary policy switches, if the waiting
queue is too short. An experimental search is done to find appropriate parameter values for the
two bounds. With the right settings this basic dynP scheduler outperforms FCF'S for both job sets.
The different behavior for the two job sets (with the same bounds) is obvious when looking at the
usage of the three policies. For the first job set (with more short jobs) FCFS and SJF is used more
than three quarters of the whole schedule time. The second job set consisted of more long jobs, so
that LJF was used most of the time.

3.2 The Self-Tuning dynP Scheduler

One problem still is, that a long lasting trial-and-error process is needed, to find proper values for
the two bounds. The fact that our simulation environment is now working with full schedules! and
inspired by Feitelsons and Naamans work about self-tuning systems [3], brought us to the idea
of the self-tuning dynP scheduler: Let the scheduler generate full schedules for each of the three
strategies in every scheduling step. And switch to that policy which generates the best schedule
for the current situation.

core_self_tuning_dynP_algorithm()

{
mySchedule = JobQueue.generateSchedule("FCFS");
FCFS = mySchedule.getQuality(QualityParameter);
mySchedule = JobQueue.generateSchedule("SJF");
SJF = mySchedule.getQuality(QualityParameter) ;
mySchedule = JobQueue.generateSchedule ("LJF");
LJF = mySchedule.getQuality(QualityParameter) ;
// call the decider
switch_to_best_policy(FCFS,SJF,LJF);

The quality parameter in getQuality() specifies the metrics for evaluating the virtual schedule
and is one of the following;:

1 A newly submitted job is directly placed in the schedule and a proposed starttime is assigned to it.
This feature allows to work with advanced reservations.



— Makespan (MS)
MS = max j.EndTime

j€Jobs
— Average Response Time (ART)

> (j.EndTime — j.SubmitTime)
j€Jobs

ART =
|Jobs|

— Average Response Time weighted by Width (ARTwW)
> (j.requestedResources x (j.EndTime — j.SubmitTime))

ARTwW = 187

> j.requestedResources
jE€Jobs
Note, that the best schedule has the lowest quality number. Preliminary evaluations have shown
that using the average response time weighted by job width leads to good results for different
workloads. By weighting the response time with the job width, jobs requesting more resources
have a greater influence on the quality of the schedule. Otherwise small, often insignificant jobs
would have the same influence as such large jobs. The initial policy is FCFS.

A Simple Decider At first we use a quite simple decider mechanism for the switch_to_best_policy()
method. In [16] we show that the self-tuning dynP scheduler combined with this simple decider
achieves only average results for the two trace based job sets. The simple decider works as follows:

switch_to_best_policy(FCFS,SJF,LJF) {
// the simple decider
IF (SJF <= LJF) {
IF (FCFS <= SJF) { newPolicy = "FCFS"; }
ELSE { newPolicy = "SJF"; }
} ELSE {
IF (FCFS <= LJF) { newPolicy = "FCFS"; }
ELSE { newPolicy = "LJF"; }
}
}
When looking at how often each policy was used during the whole schedule to start jobs, we
found out that the simple decider preferred to use FCFS and SJF, but seldom uses LJF. Therefore,
we analyzed all possible combinations of schedule quality numbers (cf. Tab. 1). Note, that we are

using the following abbreviations in the table:

— with FCFS (SJF and LJF respectively) we mean the quality (ARTwW) of the schedule gen-
erated with FCFS
— the three symbols <, =, > are used for comparing the quality numbers

For example: FCFS < SJF means that the FCFS generated schedule has a lower ARTwW than
the SJF generated schedule and is therefore better. Note, case 4 is split up for counting the cases
(cf. Tab. 6) and better understanding.

The Advanced Decider In Tab. 1 four cases are marked (cases: 1, 6b, 8c, and 10c) with bold
fonts. In these cases the simple decider favors FCFS (three times) and SJF. We developed a new,
more advanced decider which generates decisions as found in the last column. Note, that in three
cases no exact decision is possible based on the quality of the three schedules and the current
policy:

— case 6¢: the current policy (LJF) needs to be changed, as it is obviously the worst. FCFS or
SJF can be taken, as both are equal. We choose FCFS, as it might be beneficial for the average
response time of the generated schedule.

— case 8b: similar to case 6¢, but FCFS or LJF can be taken.

— case 10a: similar to case 6¢, but SJF or LJF can be taken. We choose SJF for preferring short
jobs.

Later we will present results which show, that the three cases are not critical as they are not often
reached (cf. Tab. 6).



simple advanced
case combinations decider decider
1 FCFS = SJF = LJF FCFS current policy
2 SJF < FCFS, SJF < LJF SJF SJF
3 FCFS < SJF, FCFS < LJF FCFS FCFS
4 LJF < FCFS, LJF < SJF
a || FCFS < SJF LJF LJF
b || FCFS = SJF LJF LJF
c || FCFS > SJF LJF LJF
5 FCFS = SJF, LJF < FCFS (— LJF < SJF) LJF LJF
6 FCFS = SJF, FCFS < LJF (— SJF < LJF)
a || current policy = FCFS current policy current policy
b || current policy = SJF FCFS current policy
¢ || current policy = LJF FCFS FCFS
7 FCFS = LJF, SJF < FCFS (— SJF < LJF) SJF SJF
8 FCFS = LJF, FCFS < SJF (— LJF < SJF)
a || current policy = FCFS current policy current policy
b || current policy = SJF FCFS FCFS
c || current policy = LJF FCFS current policy
9 SJF = LJF, FCFS < SJF (— FCFS < LJF) FCFS FCFS
10 SJF = LJF, SJF < FCFS (— LJF < FCFS)
a || current policy = FCFS SJF SJF
b || current policy = SJF current policy current policy
¢ || current policy = LJF SJF current policy

Table 1. Behavior of the single and advanced decider for all combinations of schedule quality numbers.

4 Workloads

In previous work we used two job sets which were 3-month traces from our machine of the year
2000. They consist of roughly 8 000 jobs and are described more detailed in [15]. Now for this work
we generated a job trace of the complete year 2001. Additionally, we downloaded three job traces
from Feitelsons Parallel Workload Archive [17] which were already used in many other publications
before. We used traces from:

— the Cornell Theory Center (CTC)
— the Swedish Royal Institute of Technology (KTH)
— the San Diego Supercomputer Center (SDSC)

All logs were derived from IBM SP2 machines. Besides the standard job information (e.g. job
width, submit time, etc.) these three traces also hold information about the estimated runtime of
the jobs. This information is essential when working with a backfilling scheduler.

The four job traces were then analyzed to build synthetic job sets with 10 000 jobs each. These
synthetic job sets retained the characteristics of the original traces (e.g. unused nodes during the
night or weekends). This mechanism of analyzing the trace and generating new jobs from the
obtained information has some advantages:

1. Job sets of various sizes (number of jobs) can be generated. This method is used here.

2. The information from the trace analysis can be modified to generate job sets with different
characteristics.

3. Other modifications can easily be applied, e.g. large jobs are split up in width, so that the
maximum job width is only 64, but the total area of all jobs is not changed.

The complete process of analyzing the trace and generating synthetic job sets is described in
[9]. The four most important job properties to be analyzed are: submission time (more precisely:
interarrival time), width (number of requested resources), estimated and actual runtime. The
submission time of all jobs is best expressed by a Weibull distribution (f(z) = 1 — e~ (8)"). The
three other properties could not be expressed by any distribution although they are dependent
on each other. Hence, a 3-dimensional matrix is generated which holds probability values for all



possible combinations of width, estimated and actual runtime. Tab. 2 shows the output of the
trace analyzer. Note that except for PC2_trace jobs with a longer actual than estimated runtime
occurred in the traces. CCS Kkills jobs that try to run longer than estimated.

The job generator is started with the information of the trace analyzer. When a new job should
be generated, first the submission time is computed from a random number and the Weibull
distribution of job interarrival times. Another three random numbers and the probability matrix
for the width, estimated and actual runtime are used to generate the three missing parameters of
a new job.

This way of generating job sets was also used in [7, 1] before. The four job sets we constructed
are described in Tab. 3. Note that again the maximum values for the actual runtime are often
greater than estimated, so this property was taken over from the traces. Of course our simulation
environment kills all jobs, that try to run longer than estimated.

|| CTC_trace| KTH_trace PC2_trace | SDSC_trace

number of jobs 79302 28490 35094 67667
maximum job width 336 100 96 128
width of machine (batch) 430 100 96 352
average requested resources 10.72 7.68 6.34 10.53
avg 24324 s 13677 s 11716 s 14337 s
estimated runtime min 0s 60 s 1s 0s
max 64 800 s 216 000 s 1209600 s 172800 s
avg 10983 s 8876 s 4346 s 6119 s
actual runtime min 0s 0s 1s 0s
max 71998 s 226 709 s 604 800 s 510209 s
jobs with actual > 7180 478 0 4327
estimated runtime (=9.056 %) | (=1.68 %) (=0%)| (=6.39 %)
avg 369 s 1031 s 870 s 934 s
interarrival time min 0s 0s 0s 0s
max 164472 s 327952 s 313861 s 79503 s
likelihood of 0.0063932 | 0.0116883 0.0659942 0.0104926
interarrival time
Weibull: « 0.35 0.35 0.25 0.4
Weibull: 3 60 200 40 290
original scheduler EASY EASY FCFS + EASY
cons. backfilling

Table 2. Output of the trace analyzer.

H CTC_syn KTH_syn | PC2_syn | SDSC_syn

number of jobs 10000 10000 10000 10000
maximum job width 330 100 96 128
width of machine (batch) 430 100 96 352
average requested resources 10.67 7.73 6.48 10.71
avg 24260 s 13643 s| 11516 s 14305 s
estimated runtime min 0s 60 s 1s 0s
max 64 800 s 216000 s | 604800 s 64800 s
avg 10924 s 9060 s 4442 s 6085 s
actual runtime min 0s 0s 1s 0s
max 71998 s 215965 s | 604800 s 64884 s
jobs with actual > 929 178 0 640
estimated runtime (=929%) | (=178 %) | (=0%) | (= 6,40 %)
avg 287 s 1047 s 1013 s 945 s
interarrival time min 0s 0s 0s 0s
max 24815 s 191258 s | 236 546 s 76019 s

Table 3. Properties of the four synthetic job sets.
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Fig. 1. Distributions of job runtime for the four synthetic job sets.

Fig. 1 shows distributions for the estimated and actual runtimes. The staircase shape of the
estimated runtime curves indicates that users tend to use common or round values, (e.g. PC2_syn:
10 minutes (600 seconds), 30 minutes (1800 seconds), or 2 hours (7200 seconds). These estimates
are used for about 52% of all jobs). The curves for the actual runtime are smoother, as jobs usually
have different runtimes and do not end at specific times. However steps are also visible, e.g. for
PC2_syn and the 2 hour mark. This indicates that many jobs that were estimated to run for 2
hours also ended at that time. Likely these jobs were underestimated, as CCS kills jobs that try
to run longer than estimated.

5 Evaluation

It is common practice to evaluate new or modified scheduling algorithms with simulations before
they are actually deployed in a real environment. For that we developed a simulation framework,
called MuPSSIiE (= Multi Purpose Scheduling Simulation Environment).

Today, many scheduling systems only look at the current time and try to start as many waiting
jobs as possible. 2 With that a scheduler cannot specify a starting time for a submitted job. A
unique feature of our simulation environment is that it always generates the full schedule for all
jobs in the system. Two advantages of such an approach are:

1. Proposed start times are assigned to jobs right after their submission as they are directly
placed in the schedule.
2. Advanced reservations with guaranteed start times are possible.

Like backfilling schedulers such an approach needs information about the job’s estimated run-
time. Reservations also need information about their start time, which could either be a keyword
(now, asap) or a time/date string. All jobs without reservations are called variable jobs as they
can be started at any time. A rescheduling process is done every time a job ends. At that time,
every running and pending job is placed into the schedule. The order in which variable jobs are
newly placed is specified by the scheduling policy. Note that the scheduling policy has no influence
on reservations.

Generating the full schedule is also the basis for the self-tuning scheduler. In principle it would
be possible to evaluate this algorithm with job sets which contain variable jobs and reservations.
But as no real job/reservation traces exist, we concentrate only on variable jobs in this context.

The simulation framework basically is a set of stand-alone tools, like job set converters/modifiers,
job set and schedule analyzers, a schedule viewer, a single machine scheduler (with several poli-
cies and the dynP algorithm implemented), and a multi-site grid scheduler that can work with

2 Of course, information about the near future (i.e. runtime of already running jobs) is also needed when
backfilling is applied.



advanced reservations. It is developed and implemented in ANSI C+4 on a Windows system
(Borland C++ Builder), but the simulation runs are done on Linux systems. The execution time
of a single simulation run is between some seconds and up to 24 hours (on AMD Athlon XP 1800+
systems). This strongly depends on the length of the average backlog, as the longer the backlog
gets, the longer the rescheduling process takes. Note, that the self-tuning dynP scheduler has to
compute two additional schedules in each step for comparing the three policies. A detailed survey
on the execution time of a self-tuning step showed, that it took about 0.05 seconds for an average
of 185 jobs (CTC_syn, shrinking factor of 0.80) to find the best scheduling policy. For resource
management systems like CCS, where 2 minutes are estimated for constructing a partition of
nodes, checking and cleaning them, the execution time of the self-tuning step can be neglected,
even if it grows.

For evaluating the self-tuning scheduler and the advanced decider we did simulation runs with
all combinations of all three quality metrics and the four synthetic job sets. Additional simulation
runs for the three single policies (FCFS, SJF, LJF) as an evaluation basis were done.

We also used a shrinking factor to decrease the average interarrival time. With that the 10000
jobs are submitted in a shorter time. The consequences are:

— the average backlog grows,
— the utilization increases,
— jobs wait longer for their start.

5.1 Metrics

Measuring the performance of a scheduler respectively the quality of the generated schedule can
be done with different metrics. In general they can be classified in two groups: owner centric and
user centric. Owner centric criteria mainly focus on the schedule as a whole, e. g. the makespan,
utilization, loss of capacity [19], or number of jobs processed over a given time period. Machine
owners make use of such numbers to document how good/effective their machine was used or to
emphasize the need for a faster machine. The machine users are generally not interested in such
numbers, as they only want the output of their jobs as soon as possible. For them metrics like the
average response or wait time or the slowdown of their jobs is interesting. But the requirements of
both groups sometimes overlap. Owners may be interested in short response times for their users,
as this somehow represents a quality of service they provide.

In this work we use three main metrics in the evaluation: the utilization of a schedule, the
average response time (ART) and the average job slowdown (SLD). We further weight the jobs
response time and slowdown with its width for giving larger jobs a larger influence. Additionally
we bound the slowdown by 60 seconds, so that very short jobs are not considered [4].

Utilization (N = number of total resources):

> (j.RequestedResources  j.RunTime)
jE€Jobs

TIL =
u N x (lastEndTime — firstSubmitTime)

Average response time weighted by job width:

> (j.RequestedResources * j.ResponseTime)

ARTwW — je€Jobs

> j.RequestedResources
jE€Jobs

Average Slowdown weighted by width and bound by 60 seconds:

> (j.RequestedResources * j.Slowdown)

SLDwW 60 = 157

> j.RequestedResources
jE€Jobs



with:

— j.RunTime = j.EndTime — j.StartTime

— j.ResponseTime = j.EndTime — j.SubmitTime
mazx(j. ResponseTime, 60)

— j.Slowd =
Jotowdown max(j.RunTime, 60)

Later we will show diagrams where these three metrics are plotted on the y-axis for different
shrinking factors on the x-axis. Note, that each data point in a diagram refers to one simulation
run. Points connected by a line are simulation runs with equal configurations (quality parameter,
decider) and job input. Only the shrinking factor is decreased to simulate a higher workload for
the scheduler.

5.2 Results

In the following we present the performance of the self-tuning dynP scheduler with the advanced
decider. We compare these results against the simple decider and the three basic strategies. When
talking about metrics (e.g. ARTwW) we will use the following definitions: With ’quality metrics’
we mean the metrics used in the self-tuning scheduler for measuring the three schedules in each
step (cf. Sec. 3.2). But with ’performance metrics’ we are talking about measuring the complete
schedule after the simulation ended. Additionally, when ’response time’ is written, the average
response time weighted by job width (ARTwW) of the whole schedule is meant.

Comparison of simple and advanced decider At first we compare the results with three
quality metrics: ART, ARTwW, and MS (Makespan). In Tab. 4 the most important criteria are
presented. In the first column different performance metrics for measuring the complete simulated
schedule are given. With LOC we mean the loss of capacity and when the system is in a saturated
state the equation loss of capacity = 1 - wutilization holds. A high loss of capacity indicates that
many resources are lost, as jobs are waiting and they could not be started (they need more resources
than available). A small loss of capacity indicates that either no jobs were waiting or the machine
was fully utilized. The numbers in the table were obtained using a shrinking factor of 1.00. The
columns show the performance numbers with the simple or advanced decider and a quality metrics
for the self-tuning function. Finally, the last three rows of each block show the number of jobs
started with each of the three policies during the whole scheduling process.

Obviously the SDSC_syn job set is not really useful, as the schedule seems to be quite empty
(low utilization), and the schedules do not change very much with different deciders or quality
metrics (e. g. the response times are almost the same). Combined with the low utilization the loss
of capacity shows, that almost no jobs were waiting when resources could be utilized.

When looking at the user-centric performance metric ARTwW the advanced decider is almost
always better than the simple decider, with only one exception: MS as quality metrics and the
SDSC_syn job set (by 0.09%). The maximum benefit is reached with the KTH_syn job set and
quality metrics ARTwW, where the response time gets better by 30.74%. Also a user-centric
quality metrics for the self-tuning scheduler improves the response time for the whole simulated
schedule more than the utilization. On the other hand the MS quality metrics does not improve
the total utilization that much. Because the job area does not change, a shorter makespan directly
results in a higher utilization. Possibly the utilization can easier be improved with the MS quality
metrics, if a higher workload is used (shrinking factor < 1.00).

Overall, the ARTwW quality metrics generates the best results for KTH syn and PC2_syn,
only for CTC_syn ART is slightly better.

The usage of the policies over the time shows that the simple decider favors FCFS regardless
which quality metrics or job set was used. Especially when the utilization should be increased, it
is better to use the LJF policy. This behavior is seen for the advanced decider with the MS quality
metrics as over about 7000 jobs are started with LJF. In case of the two user-centric quality
metrics ARTwW and ART, only between 750 and 1350 jobs are started with FCFS (for CTC_syn,



ARTwW ART MS

CTC_syn simple | advanced simple | advanced simple | advanced
ARTwW 25980 s | 21912s||26082s| 21648 s|| 27268 s| 25829 s
UTIL 75.36 % | 75.70 % || 74.02 % | 74.96 % || 75.64 % | 75.08 %
LOC 0.12650 0.10911 || 0.13731 0.12099 || 0.09054 | 0.10395
jobs started with SJF 2703 6115 2472 5860 130 551
jobs started with FCFS 6817 1296 6418 1144 5295 953
jobs started with LJF 477 2586 1107 2993 4572 8493
KTH syn | | |

ARTwW 48077 s | 33299 s |/ 49301 s| 40663 s || 50497 s| 50395 s
UTIL 66.00 % | 65.64 % || 66.01 % | 65.64 % || 66.14 % | 66.11 %
LOC 0.16398 0.16456 || 0.17121 0.18386 || 0.16588 0.16629
jobs started with SJF 2865 7885 2768 5730 142 322
jobs started with FCFS 6854 1345 6313 1313 5951 686
jobs started with LJF 278 767 916 2954 3904 8989
PC2.syn | | I

ARTwW 43124 s| 31493 s || 42795s| 31994 s || 47747 s| 47260 s
UTIL 42.60 % | 42.49 % || 42.60 % | 42.58 % || 42.60 % | 42.60 %
LOC 0.22423 0.23792 || 0.22147 | 0.23937 || 0.22724 | 0.22722
jobs started with SJF 2553 7550 2615 6651 65 391
jobs started with FCFS 7344 1062 7106 766 6789 229
jobs started with LJF 103 1388 279 2673 3146 9380
SDSC_syn || || H

ARTwW 9969 s 9936 s 9963 s 9921 s 9982 s 9991 s
UTIL 31.32 % | 31.32 % {3132 % | 31.32 % ||31.32 % | 31.32%
LOC 0.00133 0.00119 || 0.00135 0.00124 || 0.00135 0.00135
jobs started with SJF 317 3924 309 1031 1 0
jobs started with FCFS 9561 4206 9517 4797 9570 3087
jobs started with LJF 121 1869 173 4171 428 6912

Table 4. Comparing the results (rows) of the simple and advanced decider with shrinking factor = 1.00
and three different quality metrics. Note, the numbers in ’jobs started with ...” are also 1/100th % of all
jobs.

KTH_syn and PC2_syn). Here SJF is the best choice for optimizing the schedulers performance
(both for response time and utilization), as about two-thirds of all jobs are started with that
policy. In general the advanced decider achieves better results than the simple decider, especially
when focusing on user-centric performance metrics. And this does not depend on the used quality
metrics (even when using MS as quality metrics). Except for the KTH_syn job set this also holds
for the owner-centric performance metrics. The advanced decider does not favor any specific policy,
like it was with the simple decider and FCFS. Hence, completely different numbers for the jobs
started with each policy are achieved with the advanced decider. This shows, that the self-tuning
scheduler with the advanced decider really reacts on different job set characteristics.

Detailed look at the advanced decider After this brief performance overview we now take
a more detailed look at the advanced decider. In Tab. 5 we used a shrinking factor of 1.00 and
ARTwW as quality metrics for the self-tuning function. Again some average values, the utilization,
loss of capacity, and the number of jobs started with each policy are shown. The number of switches
to each policy, the number of cases with the same policy as before, and the average size of the
backlog (length of waiting queue) at the start of the self-tuning function is printed.

Like before the SDSC_syn job set is not very helpful for our evaluations, as jobs only wait
some 44 seconds in average, which is roughly 0.7% of the average actual runtime. For the other
job sets the percentage are 35% for CTC_syn, 84% for KTH_syn and even 91% for PC2_syn. Also
the numbers for the ’total tries of switches’ and ’average backlog at start of self-tuning’ show,
that submitted jobs in the SDSC_syn job set are started right away, without getting delayed.



|| CTCsyn | KTH_syn | PC2_syn | SDSC_syn

average actual runtime 10927 s 9063 s 4442 s 6085 s
average wait time 3178 s 6925 s 4577 s 44.02 s
ART 14105 s| 15989 s 9018 s 6129 s
ARTwW 21912 s| 33299 s| 31493 s 9936 s
utilization 75.70% 65.64% | 42.49% 31.32%
LOC 0.10911 0.16456 | 0.23792 0.00119
jobs started with SJF 6115 7885 7550 3924
jobs started with FCFS 1296 1345 1062 4206
jobs started with LJF 2586 767 1388 1869
total tries of switches 16 946 18 840 15552 509
switches to SJF 4.49 % 5.80 % 3.61 % 3.73 %
switches to FCFS 4.59 % 5.85 % 3.64 % 3.93 %
switches to LJF 0.59 % 0.45 % 0.23 % 0.98 %
same policy 90.32 % | 87.92 % | 92.52 % 91.36 %
average backlog 22.05 14.48 15.04 6.36
at start of self-tuning

Table 5. Detailed results of the self-tuning dynP scheduler and the advanced decider using ARTwW as
quality metrics. The numbers are equal to the third column of Tab. 4.

Additionally the low number of total tries of policy switches shows that the self-tuning functionality
only makes sense, when more than one job is in the schedule and not yet running. Later we will
use the shrinking factor for increasing the workload with the SDSC_syn job set to achieve useful
results.

We now take a look at the number of policy switches. Obviously almost all calls (> 90%) to
the advanced decider (total tries of switches) result in using the same policy as before, although
the average size of the backlog at the start of the self-tuning function is considerably large (again
except for SDSC_syn). When a decision is made and the new policy is different from the current
policy, most of the switches are done between SJF and FCFS for all four job sets. Only a minority
of policy switches is done to LJF. With the fact that most of the jobs are started with SJF, the
advanced decider seems to use FCFS only for one or two job starts and then switches back to SJF.
But if it was decided to switch to LJF, many jobs are started with that policy. So the switches to
LJF are quite effective and useful, and the decisions to switch to FCFS are often undone after a
short time.

We also did a case analysis, where the occurrence of each case in the decision algorithm (cf.
Tab. 1) is counted. Tab. 6 shows the results. Over two-thirds of all cases are 6b (FCFS is equal
to SJF, LJF is worse, the current policy is SJF and SJF is chosen). Later, Fig. 4 shows, that SJF
is the best single policy for a shrinking factor of 1.00. Hence, the advanced decider chooses SJF
most of the time. And as FCFS is not much worse than (or equal to) SJF, it can often happen
that FCFS and SJF generate equal schedules in a scheduling step, so the current policy SJF is
used further on. Case 6b also effects the percentages of different decisions to the simple decider
and of cases, where the current policy is taken, so that both are above 78%.

Looking at the three critical cases (6¢, 8b, and 10a) from Sec. 3.2 (a new policy has to be taken
but the decider can choose from two) shows that case 6c¢ is seldom used (< 1%) and the other two
never. With that the advanced decider only favors FCFS in an insignificant number of cases, so
that the advanced decider can be called fair with regard to the used policies.

Performance at different workloads The following shrinking factors for the interarrival time
are used to generate varying workloads:

— CTC_syn: from 1.00 down to 0.65
KTH_syn: from 1.00 down to 0.60
— PC2_syn: from 0.80 down to 0.40
SDSC_syn: from 0.60 down to 0.30



|| ¢TCsyn| KTH.syn| PC2syn| SDSC.syn

case: 1 2549 1693 2209 271
cases: 2 & 7 1324 1756 920 27
cases: 3 & 9 692 1029 535 15
cases: 4b & 5 1298 403 304 31
case: 4a 5 5 2

case: 4c 4 3 0 0
case: 6a 81 116 58 8
case: 6b 10669 13664 11449 150
case: 6¢ 100 81 36 5
case: 8a 224 89 39 1
case: 8b 0 1 0 0
case: 8c 0 0 0 0
case: 10a 0 0 0 0
case: 10b 37 26 17 1
case: 10c 0 0 0 0
total I 16 946 | 18840 | 15552 | 509
differences to the simple decider 13218 15357 13658 421
(14-6b+8c+10c) (=78.00%) | (=81.51%) | (=87.82%) | (=82.71%)
taking the current policy 14 858 15932 14076 462
(14-5+6a+6b+8a+8c+10b+10c) || (=87.68%) | (=84.56%) | (=90.51%) | (=90.76%)

Table 6. Case analysis of the advanced decider using ARTwW as quality metrics. Refer to Tab. 1 for
details.

Note, these values for the shrinking factor are chosen for generating useful performance numbers
for medium utilizations. If the values are further decreased the saturated state is reached. In the
diagrams we plot the shrinking factor on the x-axis and one of the three metrics introduced in
Sec. 5.1 on the y-axis. Each data point refers to a single simulation run. Reducing the shrinking
factor (and thereby the average interarrival time) increases the workload for the scheduler.

In Fig. 2 the performance of the simple and advanced decider with the three quality metrics
from Sec. 3.2 is compared. The quality metrics ART and ARTwW generate better results than
the makespan criterion, which better improves the utilization (not shown in a diagram). As can
be seen in Tab. 4 the MS quality parameter for the advanced decider prefers to take LJF. LJF
(combined with backfilling) is known for improving the utilization, as it allows the backfilling
routine to start jobs in the holes of the LJF schedule.

Comparing the simple and advanced decider for the ARTwW quality parameter shows, that the
advanced decider is mostly superior when looking at the response times. Noticeable improvements
are achieved for the PC2_syn job set, where the advanced decider is approximately 30% better
than the simple decider with the same quality metrics. For KTH _syn the improvements are still
at 20% whereas for CTC_syn both deciders are not that much different.

If a different metrics (slowdown) is used for the comparison (Fig. 3 only shows job sets CTC_syn
and PC2_syn) especially for the CTC_syn job set the order changes. Only in that case the simple
decider achieves smaller (i.e. better) slowdown values than the advanced decider. Whereas for
PC2_syn the difference between the simple and advanced decider even grows for small shrinking
factors, and the slowdown value remains almost constant over a wide range of shrinking factors.
Note, the PC2_syn job set generates 10 times higher slowdowns than CTC_syn. In the following
we are concentrating on the quality parameter ARTwW for the self-tuning scheduler with the
advanced decider.

In three diagrams (performance metric ARTwW in Fig. 4, SLDwW_60 in Fig. 5, and utiliza-
tion in Fig. 8) we compare the advanced decider with quality metrics ARTwW, the three single
strategies FCFS, SJF, and LJF (each combined with conservative backfilling), and the basic dynP
(with 7200s for the lower and 9000s for the upper bound). The bounds for basic dynP were the
best in [15] for two job sets extracted form the PC2 workload.
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Here the old bound setting for the basic dynP scheduler performs bad for the four synthetic job
sets. This shows that in a real world environment the system administrator would have to re-adapt
these bounds once in a while. Especially when the overall job set characteristic often change, a
self-tuning scheduler is easier to handle.

The single policy SJF combined with conservative backfilling achieves the lowest response times
and slowdowns for all four job sets and also over a wide range of shrinking factors. For maximum
utilization LJF is the best choice. In some way this is interesting, FCFS is commonly used in
many resource management systems, as it might be a good tradeoff between low response times
and high utilizations on many machines.

For the PC2_syn job set the advanced decider (with quality parameter ARTwW) achieves a
similar performance than SJF, but cannot outperform it. For the CTC_syn job set and smaller
shrinking factors than 0.9 the performance drops significantly. The advanced decider cannot com-
pete with FCFS and even reaches the performance of the taillight LJF. For the other two job sets
the advanced decider generally follows FCFS. Note, these statements are true for response time
(ARTwW in Fig. 4) as well as for slowdown (SLDwW_60 in Fig. 5).

The diagrams for the utilization (Fig. 8) shows that for small shrinking factors all schedulers
achieve similar or equal utilizations. As soon as the saturated state is reached, the values differ.
Obviously the LJF scheduler achieves the highest utilizations (95% and more), as the sorting of
the waiting queue might leave much room for the backfilling method.

It is very interesting and at the same time unexplainable that the self-tuning scheduler with
the advanced decider and quality parameter ARTwW can follow SJF and/or FCFS for 3 of the 4
job sets, but not for CTC_syn.

Pure curiosity lead us to the idea of computing the slowdown for different actual runtimes
separately. Arbitrarily we used the following categorization: <5bm, <10m, <1h, <12h, and >12h.
Almost 50% of all jobs fall in the first class with a maximum actual runtime of 5 minutes. Therefore
we analyzed the results again and now computed the average slowdown weighted by width with
a 300 seconds (= 5 minutes) bound. The diagrams in Fig. 7 (SLDwW_300) are similar to the 60
second bound version, except that the scaling on the y-axis has changed to smaller values. This
shows, that very short running jobs (roughly 50% of all jobs) have a great influence on the overall
quality of the schedule, but they have no influence on the ranking of the schedulers itself. Still,
these small jobs are considered in the self-tuning step (Sec. 3.2). So another solution would be to
neglect these small jobs there, too, but the problem is, that the self-tuning process only knows
about runtime estimates (and not actual values).

One possible reason for the poor performance of the self-tuning scheduler could be false or
inaccurate runtime estimates. Therefore we ran the simulations again, but now with each jobs
estimated runtime set to the actual runtime.

Comparing the diagrams in Fig. 6 with Fig. 4 shows only a small performance gain of the
advanced decider. SJF is still the best choice and the self-tuning scheduler comes close to its
performance. But the perfect estimates diagram show a different interesting aspect: good runtime
estimates become more important with an increased workload (i. e. smaller shrinking factor; sat-
urated state). Exemplary we take a look at the SJF curve and the CTC_syn job set. Anyhow
the response time starts at about 20.000 seconds (for 1.00 as shrinking factor), with either real
or perfect estimates used. As soon as the workload increased (e.g. to a shrinking factor of 0.7)
the difference is remarkable (102.725 s for perfect and 145.212 s for real estimates). Even bigger
differences can be observed for the PC2_syn job set.

6 Conclusions and Future Work

In this paper we presented the process of developing a job scheduler family with dynamic policy
switching and self-tuning ability. The basic idea of self-tuning is to generate complete schedules
for each of the three policies (FCFS, SJF, LJF) in each scheduling step. Then these schedules
are measured by means of a quality metrics and that policy is chosen, which generates the best
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Fig. 8. Utilization of complete schedules. Similar diagrams as in Fig. 4, but with a different metric on the
y-axis. Note, only here higher values on the y-axis are better.

schedule. We use the average response time (unweighted and weighted by the job width) and the
makespan as quality metrics.

At first we developed a simple decider mechanism which already achieved reasonable good
results for two trace job sets. When investigating the behavior of that decider in detail, we found
out that this decider sometimes prefers FCFS when other policies obviously should have been
taken. Therefore we developed the advanced decider.

We evaluated the self-tuning dynP scheduler with this advanced decider in a simulation envi-
ronment. To have more diversity in the results we used four synthetic job sets, which are based
on real trace logs from four different computing centers. Additionally we decreased the average
interarrival time between two jobs to generate a higher workload for the scheduler.

The results show that the advanced decider achieves a better performance (up to 30%) than
the simple decider using the same quality metrics. The best quality metrics to use is ARTwW. A
future deployment of the algorithm in the resource management software CCS will show, whether
the simulated results can be achieved, or the influence of overestimation is too large. A real world
deployment also has to show, whether the non-predictability of the scheduler discourages users
from working with the system or not. Additionally users might submit fake jobs (long estimated
runtime and short or none actual runtime) to trick the system, so that their real computing job
is favored.

Future version of the self-tuning dynP scheduler might come with several enhancements. With
a ’slackness’ option the schedule quality of the current schedule is virtually increased by e.g. 5%.
Hence a new policy has to be better than the current policy by 5%. With a ’reduced future’ option
enabled, the qualities of the three schedules in each self-tuning step are only computed from e.g.
the first 20 started jobs or all jobs that are started within the next 6 hours. Thereby jobs which
will be started far in the future are not considered. Additionally more scheduling policies (e.g.
FFIA) and quality parameters (e.g. slowdown and wait time) might be added. Also combining
several quality parameters for the self-tuning process might improve the performance. A desirable



performance curve for the self-tuning dynP scheduler would always stay below or is equal to the
best single policy at any workload.
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