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Abstract time, but each node is exclusively assigned to a job. Sub-
mitted jobs are kept in a priority queue which is always
Effective scheduling strategies to improve response timgayversed according to a priority policy in search of the
throughput, and utilization are an important consideratioext job to execute. Space sharing in isolation can re-
in large supercomputing environments. Such machirgst in poor utilization since there could be nodes that are
have traditionally used space-sharing strategies to accamutilized despite a waiting queue of jobs. Furthermore,
modate multiple jobs at the same time. This approathe wait and response times for jobs with an exclusively
however, can result in low system utilization and larggpace-sharing strategy can be relatively high.
job wait times. This paper discusses three techniques théw vze th hes to alleviate th bl
can be used beyond simple space-sharing to greatly im- ¢ analyze thre€ approacnes 1o alleviate the problems

prove the performance figures of large parallel syste sIth space sharing scheduling. The first is a technique

The first technique we analyze is backfilling, the secoﬁgued backfilling [6, 14], which attempts to assign unuti-

is gang-scheduling, and the third is migration. The malfﬁed nodes to jobs that are behind in the priority queue (of

contribution of this paper is an evaluation of the benefi\f\éa'.tIng jobs), rather than keep thgm idle. T(.) .prevent ;tar—
from combining the above techniques. We demonstrvf%tlon for larger jobs, (conservative) backfilling requires

that, under certain conditions, a strategy that combir{ g\t a job selected out of order completes before the jobs

backfilling, gang-scheduling, and migration is always be f::ta$hih§adrg;gﬁnréhe fég% ql;g:rjsetgrerzch de:;lnegst?_
ter than the individual strategies for all quality of servic - 1S app qut u provi :

. mate of job execution times, in addition to the number of
arameters that we consider. . A )
P nodes required by each job. Jobs that exceed their execu-
tion time are killed. This encourages users to overestimate

1 Introduction the execution time of their jobs.

The second approach is to add a time-sharing dimen-

Large scale parallel machines are essential to meet ¢ien to space sharing using a technigue called gang-
needs of demanding applications at supercomputing @sheduling or coscheduling [16, 22]. This technique vir-
vironments. In that context, it is imperative to provideualizes the physical machine by slicing the time axis
effective scheduling strategies to meet the desired quiato multiple virtual machines. Tasks of a parallel job
ity of service parameters from both user and system pare coscheduled to run in the same time-slices (same vir-
spectives. Specifically, we would like to reduce respontel machines). In some cases it may be advantageous to
and wait times for a job, minimize the slowdown that schedule the same job to run on multiple virtual machines
job experiences in a multiprogrammed setting compargtdultiple time-slices). The number of virtual machines
to whenitis run in isolation, maximize the throughput ancteated (equal to the number of time slices), is called the
utilization of the system, and be fair to all jobs regardlessultiprogramming level (MPL) of the system. This multi-
of their size or execution times. programming level in general depends on how many jobs

Scheduling strategies can have a significant impact can be executed concurrently, but is typically limited by
the performance characteristics of a large parallel sygystem resources. This approach opens more opportuni-
tem[2, 3,4, 7,10, 13, 14, 17, 18, 21, 22]. Early strategitiss for the execution of parallel jobs, and is thus quite ef-
used a space-sharing approach, wherein jobs can run deative in reducing the wait time, at the expense of increas-
currently on different nodes of the machine at the sarimg the apparent job execution time. Gang-scheduling



does not depend on estimates for job execution time. from system and user perspectives. We show that rele-

The third approach is to dynamically migrate tasks §fnt performance parameters are almost invariant to the
a parallel job. Migration delivers flexibility of adjustingdccuracy of average job execution time estimation. Sec-
your schedule to avoid fragmentation [3, 4]. Migratiofion 4 describes gang-scheduling, and the various phases
is particularly important when collocation in space and/éivolved in computing a time-sharing schedule. Sec-
time of tasks is necessary. Collocation in space is ifon 5 demonstrates the significant improvements in per-
portant in some architectures to guarantee proper comrfiimance that can be achieved with time-sharing tech-
nication among taskg(g, Cray T3D, CM-5, and Blue niques, particularly when enhanced with baCkfI”lng and
Gene). Collocation in time is important when tasks ha@igration. Finally, Section 6 presents our conclusions and
to be running concurrently to make progress in commuiiossible directions for future work.
cation €.g, gang-scheduling).

Itis a logical next step to attempt to combine these ap- Evaluation methodology
proaches — gang-scheduling, backfilling, and migration

— to deliver even better performance for large paraligjhen selecting and developing job schedulers for use in
systems. Progressing to combined approaches requifgge parallel system installations, it is important to un-

a careful examination of several issues related to bagfrstand their expected performance. The first stage is to
filling, gang-scheduling, and migration. Using detailegaye a characterization of the workload and a procedure
simulations based on stochastic models derived from reglsynthetically generate the expected workloads. Our
workloads, this paper analyzes (i) the impact of OV&hethodology for generating these workloads, and from

estimating job execution times on the effectiveness @fere obtaining performance parameters, involves the fol-
backfilling, (i) a strategy for combining gang-schedulingying steps:

and backfilling, (iii) the impact of migration in a gang- . . ) ]

scheduling, migration, and backfilling in one scheduling, - Generate synthetic workloads based on the derived
system. mathematical models.

We find that overestimating job execution times does ] . . )
not really impact the quality of service parameters, re3- Slmqlate the behavior of the different scheduling
gardless of the degree of overestimation. As a result, we Policies for those workloads.
can conservatively estimate the execution time of & job iny - petermine the parameters of interest for the different
a coscheduled system to be the multiprogramming level scheduling policies.

(MPL) times the estimated job execution time in a ded-

icated setting after considering the associated overhed¥g,now describe these steps in more detail.
such as context-switch overhead. These results help us

construct a backfilling gang-scheduling system, call@dl Workload modeling

BGS, which fills in holes in the Ousterhout schedulirr:]% ] ) )
matrix [16] with jobs that are not necessarily in first-co Rarallel workloads often are over-dispersive. That is, both

first-serve (FCFS) order. It is clearly demonstrated th#fP interarrival time distribution and job service time (ex-
under certain conditions, this combined strategy is alwa§gution time on a dedicated system) distribution have co-
better than the individual gang-scheduling or backfillingfficients of variation that are greater than one. Distribu-
strategies for all the quality of service parameters that WNs with coefficient of variation greater than one are also
consider. By combining gang-scheduling and migratiéﬁfe”ed to as long-tailed d|str|bl_Jt|o_ns, _and can be fitted
we can further improve the system performance paraffléquately with Hyper Erlang Distributions of Common
eters. The improvement is larger when applied to plaiffder- In [12] such a model was developed, and its ef-
gang-scheduling (without backfilling), although the afficacy demonstrated by using it to fit a typical workload
solute best performance was achieved by combining %fm the Cornell University Theory Center. Here we use

three techniques: gang-scheduling, backfilling, and S model to fit a typical workload from the ASCI Blue-
gration. Pacific System at Lawrence Livermore National Labora-

tory (LLNL), an IBM RS/6000 SP.

The rest of this paper is organized as follows. SecC . : . )
. ! . -~ Our modeling procedure involves the following steps:
tion 2 describes our approach to modeling parallel job

workloads and obtaining performance characteristics ol. First we group the jobs into classes, based on the
scheduling systems. It also characterizes our base work- number of nodes they require for execution. Each
load quantitatively.  Section 3 analyzes the impact of classis a bin in which the upper boundary is a power
job execution time estimation on the overall performance of 2.



2. Then we model the interarrival time distribution fothe overestimation factor as follows: Lagbe a uniformly
each class, and the service time distribution for eadtstributed random number in the range< y < 1. If
class as follows: y < @, then the overestimation factor isile(, estimated

i ] time = execution time). Ify > &, then the overestimation
(@) From the job traces, we compute the first threg.i, is(1—®)/(1—y).

moments of the observed interarrival time and
the first three moments of the observed service
time. Distribution of job execution time

(b) Then we select the Hyper Erlang Distribution
of Common Order that fits these 3 observed
moments. We choose to fit the moments of the
model against those of the actual data because
the first 3 moments usually capture the generic
features of the workload. These three moments
carry the information on the mean, variance,
and skewness of the random variable, respec-

Probability density function p(x) for jobs

tively.

Next, we generate various synthetic workloads from the L
observed workload by varying the interarrival rate and ser- 0 0L 02 O o e By 1
vice time used. The Hyper Erlang parameters for these
synthetic workloads are obtained by multiplying the inter- Figure 1: The? models for overestimation.

arrival rate and the service time each by a separate mul-
tiplicative factor, and by specifying the number of jobs
to generate. From these model parameters synthetic 4
traces are obtained using the procedure described in [12].
Finally, we simulate the effects of these synthetic worl-he baseline workload is the synthetic workload gener-
loads and observe the results. ated from the parameters directly extracted from the ac-
Within a workload trace, each job is described by itsial ASCI Blue-Pacific workload. It consists of 10,000
arrival time, the number of nodes it uses, its executigobs, varying in size from 1 to 256 nodes, in a system
time on a dedicated system, and an overestimation factith a total of 320 nodes. Some characteristics of this
Backfilling strategies require an estimate of the job exeorkload are shown in Figures 2 and 3. Figure 2 reports
cution time. In a typical system, it is up to each user tbe distribution of job sizes (number of nodes). For each
provide these estimates. This estimated execution timgois size, between 1 and 256, Figure 2(a) shows the num-
always greater than or equal to the actual execution tinber of jobs of that size, while Figure 2(b) plots the number
since jobs are terminated after reaching this limit. We capf-jobs withat mostthat size. (In other words, Figure 2(b)
ture this discrepancy between estimated and actual egethe integral of Figure 2(a).) Figure 3 reports the dis-
cution times for parallel jobs through averestimation tribution of total CPU time, defined as job execution time
factor. The overestimation factor for each job is the ration a dedicated setting times its number of nodes. For each
between its estimated and actual execution times. Djab size, Figure 3(a) shows the sum of the CPU times for
ing simulation, the estimated execution time is used e jobs of that size, while Figure 3(b) is a plot of the sum
clusively for performing job scheduling, while the actuaif the CPU times for all jobs ait mostthat size. (In other
execution time is used to define the job finish event.  words, Figure 3(b) is the integral of Figure 3(a).) From
In this paper, we adopt what we call tdemodel of Figures 2 and 3 we observe that, although large jobs (de-
overestimation. In thé@ model,® is the fraction of jobs fined as those with more than 32 nodes), represent only
that terminate at exactly the estimated time. This typicaBp% of the number of jobs, they constitute more than 80%
corresponds to jobs that are killed by the system becao$¢he total work performed in the system. This baseline
they reach the limit of their allocated time. The rest of thgorkload corresponds to a system utilizatiorpcf 0.55.
jobs (1 — ®) are distributed such that the distribution ofSystem utilization is defined in Section 2.3.)
jobs that end at a certain fraction of their estimated timeln addition to the baseline workload of Figures 2 and 3
is uniform. This distribution is shown in Figure 1. It hasve generate 8 additional workloads, of 10,000 jobs each,
been shown to represent well actual job behavior in largg varying the model parameters so as to increase aver-
systems [6]. To obtain the desired distribution for execage job execution time. More specifically, we generate
tion times in the® model, in our simulations we computehe 9 different workloads by multiplying the average job

Workload characteristics
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Figure 2: Workload characteristics: distribution of job sizes.
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Figure 3: Workload characteristics: distribution of cpu time.

execution time by a factor frorh.0 to 1.8 in steps 00.1. From these we compute:
For a fixed interarrival time, increasing job execution time ; _ _
typically increases utilization, until the system saturates. ® t; = t; — t{: response time for joh

2.3 Performance metrics

The synthetic workloads generated as described in Sece
tion 2.1 are used as input to our event-driven simulator of
various scheduling strategies. We simulate a system with

t¥ = t? — t?: wait time for jobs.
S; = %ﬁ?g the slowdown for jobi. To reduce

the statistical impact of very short jobs, itis common
practice [5, 6] to adopt a minimum execution time of

320 nodes, and we monitor the following parameters: I" seconds. This is the reason for thex(-,T") terms
o t2: arrival time for jobi in the definition of slowdown. According to [6], we
v ' adoptl’ = 10 seconds.

o t¥: start time for jobi.
To report quality of service figures from a user’s perspec-

tive we use the average job slowdown and average job
wait time. Job slowdown measures how much slower
than a dedicated machine the system appears to the users,
which is relevant to both interactive and batch jobs. Job

otf

: execution time for joli (in a dedicated setting).

¢/ finish time for job.

(2

e 1n;: number of nodes used by job



wait time measures how long a job takes to start execue n; is the number of occupied nodes between schedul-
tion and therefore it is an important measure for inter- ing events andi+ 1, more specificallyp; +e; = N.

active jobs. In addition to objective measures of quality

of service, we also use these averages to characterize th%system IS |nlasatgrated sta}te W.h.en Increasing the_load
fairness of a scheduling strategy. We evaluate faimess S not result in an increase in ut|I|za_t|on. At this pomt,
comparing average and standard deviation of slowdo _IOSS of C?Pac'_ty Is equal to one minus the maximum
and wait time for small jobs, large jobs, and all jobs conficievable utilization. More specifically,= 1 — pyqa-
bined. As discussed in Section 2.2, large jobs are those
that use more than 32 nodes, while small jobs use 329" The impact of overestimation on
fewer nodes. .

We measure quality of service from the system’s per- backflllmg
spective with two parameters: utilization and capacit o i o _
loss. Utilization is the fraction of total system resourcgaCkf'"'”g is a space-sharing optimization technique.
that are actually used during the execution of a workloaffith backfilling, we can bypass the priority order im-
Let the system hav& nodes and execute jobs, where Posed by the job queuing policy. This allows a lower pri-

jobm is the last job to finish execution. Also, let the firsrity job j to be scheduled before a higher priority jos
job arrive at timet = 0. Utilization is then defined as ~ 10ng as this reschedule does not incur a delay on the start

time of job for that particular schedule. This require-

Yty 1) ment of not delaying higher priority jobs is exactly what
th x N imposes the need for an estimate of job execution times.

he effect of backfilling on a particular schedule can be

L7 - sualized in Figure 4. Suppose we have to schedule five
waiting in the queue to execute, and (ii) it has empty nod

. ; . .OJ%%S, numbered from 1 to 5 in order of arrival. Figure 4(a)
(either physical or virtual) but, because of fragmentati Thows the schedule that would be produced by a FCFS

it St.i” cannot execut(_a those waiting jobs. Before we C?‘blicy without backfilling. Note the empty space between
define loss of capacity, we need to introduce some m ﬁﬁesTl andT5, while job3 waits for job2 to finish. Fig-

concepts. Ascheduling evertakes place whenever a ne re 4(b) shows the schedule that would be produced by a

job arrives or an executing job terminates. By definitio&,CFs policy with backfilling. The empty space was filled

there ar@m scheduling events, occurring at times for with job 5, which can be executed before j8bwithout
i=1,...,2m. Lete; be the number of nodes left empt X

. . . ) BGeIaying it.
between scheduling evenitandi + 1. Finally, leté; be 1 A common perception with backfilling is that one needs

i therg are any jobs waiting in the queue ‘?f‘eY SChEdu“ﬁg\‘airly accurate estimation of job execution time to per-
eventi, and 0 otherw[se. Loss .Of capacity in a pure%rm good backfilling scheduling. Users typically provide
space-shared system is then defined as an estimate of job execution time when jobs are submit-
2m=1 _ ¢ N ted. However, it has been shown in [6] that there is not
dim1 €i(Yir1 —¢i)d . . .
7 (2) necessarily correlation between estimated and actual ex-
tm X N ecution times. Since jobs are killed when the estimated
To compute the loss of capacity in a gang-schedulitige is reached, users have an incentive to overestimate
system, we have to keep track of what happens in edbl execution time. This is indeed a major impediment
time-slice. Please note that here one time-slice is not &x-applying backfilling to gang-scheduling. The effective
actly equal to one row in the matrix since the last timgate at which a job executes under gang-scheduling de-
slice could be shorter than a row in time due to the fagends on many factors, including: (i) what is the effective
that a scheduling event could happen in the middle ofraultiprogramming level of the system, (ii) what other jobs
row. Lets; be the number of time slices between schedware present, and (iii) how many time slices are occupied
ing event; and scheduling event- 1. We can then define by the particular job. This makes it even more difficult to
o1 estimate the correct execution time for a job under gang-
Y1 €i(Yi1 =) + T x CS x 5; X ni]l §;  scheduling.
th x N We conducted a study of the effect of overestimation on
(3) the performance of backfilling schedulers using a FCFS
where prioritization policy. The results are summarized in Fig-
ure 5 for thed model. Figures 5(a) and 5(b) plot average
job slow down and average job wait time, respectively,
e ('S is the context-switch overhead (as a fraction @fs a function of system utilization for different values of
T; ®. We observe very little impact of overestimation. For

T
A system incurs loss of capacity when (i) it has jot{ﬁ

KR =

R =

e T is the duration of one row in the matrix;
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Figure 4: FCFS policy without (a) and with (b) backfilling. Job rhars correspond to their position in the priority
queue.

utilization up top = 0.90, overestimation actually helps4 Gang-scheduling
in reducing job slowdown. However, we can see a little
benefit in wait time from more accurate estimates. In the previous sections we only considered space-sharing
scheduling strategies. An extra degree of flexibility in
We can explain why backfilling is not that sensitive tgcheduling parallel jobs is to share the machine resources
the estimated execution time by the fOIIOWing reasoningét Oniy Spatia"y but also tempora”y by partitioning the
On average, overestimation impacts both the jobs that gfge axis into multiple time slices [2, 4, 8, 11, 20]. As an
running and the jObS that are Waiting. The scheduler CO@'}(amp|e, time_sharing an 8_processor System with a mul-
putes a later finish time for the running jobs, creatinghrogramming level of four is shown in Figure 7. The fig-
larger holes in the schedule. The larger holes can thg@ shows the scheduling matrix (also called @ester-
be used to accommodate waiting jobs that have overegiut matriy that defines the processors and each time-
mated execution times. The prObablhty of flndlng a bacgi'ice_ JZ represents th@-th task of ]Osz The matrix is
filling candidate effectively does not change with the ovegyclic in that time-slice 3 is followed by time-slice 0. One
estimation. cycle through all the rows of the matrix defineschedul-
cycle. Each row of the matrix defines an 8-processor
ual machine, which runs at/4th of the speed of the
ﬁysical machine. We use these four virtual machines
3 run two 8-way parallel jobsJy and.J;) and several

Even though the average job behavior is insensitiiiiergt
to the average degree of overestimation, individual jo
can be affected. To verify that, we group the jobs in

10 classes based on how close is their estimated t'mesﬁ%)aller iobs s, Ju. Js, J). All tasks of a parallel job

t_h(fr Oactualg ?l)iglcu Lgclaosnatlllnir?(.)sgqgl;g‘or:(\?vdh?cl:,hctlrﬁ?,ra-are always coscheduled to run concurrently, which means
L= o L . JOD: . that all tasks of a job should be assigned to the same row
tio of execution time to estimated time falls in the ran

95 the matrix. This approach gives each job the impres-

j(ébxwla?g%t)i’r(rieﬁ‘olr)(i?alli)j(z)i;s ':(igli;%flsi?;'\fs ??W%\Etrae%‘_esion that it is still running on a dedicated, albeit slower,
timators) and (iii) jobs in class 9 (best estimators) wh machine. This type of scheduling is commonly called

® = 0.2. We observe that those users that provide go ng-scheduling2]. Note that some jobs can appear in

estimates are rewarded with a lower average wait time. ltiple rows (such as job# andJ;).

The conclusion is that the “quality” of an estimation is

not really defined by how close it is to the actual execd-1 Considerations in building a scheduling
tion time, but by how much better it is compared to the matrix

average estimation. Users do get a benefit, and therefore

an encouragement, from providing good estimates. ~ Créating one more virtual machine for the execution of a
new 8-way job in the case of Figure 7 requires, in princi-

Our findings are in agreement with the work describgde, only adding one more row to the Ousterhout matrix.
in [19]. In that paper, the authors describe mechanisiewever, there is a cost associated with time-sharing, due
to more accurately predict job execution times, based mwstly to: (i) the cost of the context-switches themselves,
historical data. They find that more accurate estimates(idf additional memory pressure created by multiple jobs
job execution time lead to more accurate estimates of wslitaring nodes, and (iii) additional swap space pressure
time. The authors do observe an improvement in averageised by more jobs executing concurrently. For that rea-
job wait time, for a particular Argonne National Laborason, the degree of time-sharing is usually limited by a pa-
tory workload, when using their predictors instead of preameter that we call, in analogy to uniprocessor systems,
viously published work [1, 9]. the multiprogramming level (MPL). A gang-scheduling
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system with multiprogramming level of 1 reverts back to  tempt to schedule as many jobs for execution as pos-
a space-sharing system. sible, constrained by the physical number of proces-
In our particular simulation of gang-scheduling, we  sors and the multiprogramming level. Only after that
make the following assumptions and scheduling strate- we attempt toexpanda job, by making it occupy
gies: multiple rows of the matrix. (See jobg and.J; in

. . Figure 7.)
1. Multiprogramming levels are kept at modest levels,

in order to guarantee that the images of all tasks ir#. For a particular instance of the Ousterhout matrix,
a node remain in core. This eliminates paging and €ach job has an assignedme row Even if a job
significantly reduces the cost of context switching. appears in multiple rows, one and only one of them
Furthermore, the time slices are sized so that the cost is the home row. The home row of a job can change
of the resulting context switches are small. More during its life time, when the matrix is recomputed.
specifically, in our simulations, we use MRL 5, The purpose of the home row is described in Sec-
and CS (context switch overhead fractichp%. tion 4.2.

2. Assignments of tasks to processors are static. ThafPang-scheduling is a time-sharing technique that can
is, once spatial scheduling is performed for the tasRE aPPlied together with any prioritization policy. In par-

of a parallel job, they cannot migrate to other nodelicular, we have shown in previous work [7, 15] that gang-
scheduling is very effective in improving the performance

3. When building the scheduling matrix, we first atef FCFS policies. This is in agreement with the results



P P P P P P P P
time-slice O Ji Ji Ji Ji Ji Ji Ji Ji
time-slice 1 J J J J J Jo Jo Jo
time-slice 2 J3 J3 J3 J3 Js Jy Js Js
time-slice 3 Js Js Js Js Js Jy Js Js

Figure 7: The scheduling matrix defines spatial and time allocation.

in [4, 17]. We have also shown that gang-schedulify ~Scheduling strategies
is particularly effective in improving system responsive-
ness, as measured by average job wait time. Howewdhen analyzing the performance of the time-shared
gang scheduling alone is not as effective as backfillis§ategies we have to take into account the context-switch
in improving average job response time, unless very higierhead. Context switch overhead is the time used by the
multiprogramming levels are allowed. These may not §¥stem in suspending a currently running job and resum-
achievable in practice by the reasons mentioned in the grg the next job. During this time, the system is not doing
vious paragraphs. useful work from a user perspective, and that is why we
characterize it as overhead. In the IBM RS/6000 SP, con-
text switch overhead includes the protocol for detaching
4.2 The phases of scheduling and attaching to the communication device. It also in-
] ) ] . cludes the operations to stop and continue user processes.
Every job arrival or departure constitutesseheduling \when the working set of time-sharing jobs is larger than
eventin the system. For each scheduling event, a ngig physical memory of the machine, context switch over-
scheduling matrix is computed for the system. EV&fyaq should also include the time to page in the working
though we analyze various scheduling strategies in tis of the resuming job. For our analysis, we character-
paper, they all follow an overall organization for compufz¢ context switch overhead as a percentage of time slice.
ing that matrix, which can be divided into the fOHOW'”gI'ypicaIIy, context switch overhead values should be be-

steps: tween 0 to 5% of time slice.

1. CleanMatrix: The first phase of a scheduler re- .
moves every instance of a job in the Ousterhout ma-1 ~ Gang-scheduling GS)

trix that is not at its assigned home row. Removinghe first scheduling strategy we analyze is plain gang-
duplicates across rows effectively opens the opporigneduling GS). This strategy is described in Section 4.
nity of selecting other waiting jobs for execution. pq, gang-scheduling, we implement the four scheduling

. . . steps of Section 4.2 as follows.
2. CompactMatrix: This phase moves jobs from less

populated rows to more populated rows. It furthgfjeanmatrix: The implementation of CleanMatrix is
increases the availability of free slots within a singleest illustrated with the following algorithm:
row to maximize the chances of scheduling a largg, i = first rowto last row
job. for all jobs in rowi
if rowi is not home of job, renove job
3. Schedule:This phase attempts to schedule new jobs. |t eliminates all occurrences of a job in the scheduling
We traverse the queue of waiting jobs as dictated byatrix other than the one in its home row.
the given priority policy until no further jobs can be
fitted into the scheduling matrix. CompactMatrix: We implement the CompactMatrix
step in gang-scheduling according to the following algo-
4. FillMatrix: This phase tries to fill existing holes innthm:
the matrix by replicating jobs from their home row8° , [ L%ot PoPu 8180 rov 1o s} populated row
into a set of replicated rows. This operation is essen- for each job in rowi ‘ ‘
tiaIIy the opposite ot leanMatrix . if it can be noved to rowj, then nove job
We traverse the scheduling matrix from the least popu-
The exact procedure for each step is dependent on ldted row to the most populated row. We attempt to find
particular scheduling strategy and the details will be pneew homes for the jobs in each row. The goal is to pack
sented as we discuss each strategy. the most jobs in the least number of rows.



Schedule: The Schedule phase for gang-scheduling trfpr waiting jobs. The reservation corresponds to a partic-
verses the waiting queue in FCFS order. For each jobular time in a particular row of the matrix. It is possible
looks for the row with the least number of free columrihat a job will be run before its reserved time and in a
in the scheduling matrix that has enough free columnsrtw different than reserved. However, using a reservation
hold the job. This corresponds to a best fit algorithm. Tlgeiarantees that the start time of a job will not exceed a
row to which the job is assigned becomes its home rogertain limit, thus preventing starvation.
We stop when the next job in the queue cannot be schedThe issue of reservations impact both the CompactMa-
uled right away. trix and Schedule phases. When moving jobs in Com-
pactMatrix we must make sure that the moved job does
FillMatrix: ~ After the schedule phase completes, weot conflict with any reservations in the destination row.
proceed to fill the holes in the matrix with the existingn the Schedule phase, we first attempt to schedule each
Jobs. We use the following algorithm in executing the Fillob in the waiting queue, making sure that its execution

Matrix phase. does not violate any reservations. If we cannot start a job,
do{ we compute the future start time for that job in each row
fo; each Lob in starting time order of the matrix. We select the row with the lowest start-
%157 ob can be replicated in same col ums ing time, and make a reservation for that job in that row.

do it and break This new reservation could be different from the previous

} while matrix changes reservation of the job. The reservations do not impact the

The algorithm attempts to replicate each job at ledsf Matrix phase, since the assignments in this phase are
once (In the algorithm, once a chance of replicating a j&nPorary and the matrix gets cleaned in the next schedul-
is found, we stop looking for more chances of replica?d €vent.
ing the same job, but instead, we start other jobs) , al-T0 verify that the assumption that overestimation of job
though some jobs can be replicated multiple times. We g¥ecution times indeed do not impact overall system per-

through the jobs in starting time order, but other orderingrmance, we experimented with various value®oRe-
policies can be applied. sults are shown in Figure 8. For those pl&&S with all
four phases and MPL=5 was used. We observe that differ-
. ) ences in wait time are insignificant across the entire range
5.2 Backfilling gang-scheduling BGS) of utilization. For moderate utilizations of up to 75%, job
: - ... slowdown differences are also insignificant. For utiliza-
Gang-scheduling and backfilling are two opt|m|zat|op f 850 hiaher. i I hibits |
techniques that operate on orthogonal axes, space s © 85./0 and higher, job s_owd_own exhibits arger
. . : = .~ variation with respect to overestimation, but the variation
backfilling and time for gang scheduling. It is temptin

. : X . i imation is not necessaril
to combine both techniques in one scheduling system t %?tc;r:monotomc and perfect estimat y

we call backfilling gang-schedulinBGS). In principle
this can be done by treating each of the virtual machines
created by gang-scheduling as a target for backfilling. Tgt_eg ComparingGS, BGS, and BF
difficulty arises in estimating the execution time for par-
allel jobs. In the example of Figure 7, jolds and.Js exe- We compare three different scheduling strategies, with a
cute at a rate twice as fast as the other jobs, since theyt@jgal of seven configurations. They all use FCFS as the
pear in two rows of the matrix. This, however, can changeioritization policy. The first strategy is a space-sharing
during the execution of the jobs, as new jobs arrive apdlicy that uses backfilling to enhance the performance
executing jobs terminate. parameters. We identify this strategyBi. We also use
Fortunately, as we have shown in Section 3, even stgree variations of the gang-scheduling strategy, with mul-
nificant average overestimation of job execution time htisrogramming levels 2, 3, and 5. These configurations
little impact on average performance. Therefore, it is reare identified byGS-2, GS-3, GS-5, respectively. Fi-
sonable to attempt to use a worst case scenario whenrgsly, we consider three configurations of the backfilling
timating the execution time of parallel jobs under gangang-scheduling strategy. That is, backfilling is applied to
scheduling. We take the simple approach of computiegch virtual machine created by gang-scheduling. These
the estimated time under gang-scheduling as the prodar referred to aBGS-2, BGS-3. andBGS-5, for multi-
of the estimated time on a dedicated machine and the mprisgramming level 2, 3, and 5. The results presented here
tiprogramming level. are based on th&-model, with® = 0.2. We use the per-
In backfilling, each waiting job is assigned a maximurfiormance parameters described in Section 2.3, namely (i)
starting time based on the predicted execution times of tneerage slow down, (ii) average wait time, and (iii) aver-
current jobs. That start time is a reservation of resourcage loss of capacity, to compare the strategies.
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Figure 8: Average job wait time and slow down BGS (best) with® model of overestimation.

Figure 9 shows the average job slow down for all ouwve either keep the context switch overhead low enough
seven configurations. Each plot ((a), (b), (c), and (d)) lsatBGS is always better thaBF or we use an adaptive
for a different value of context switch overhead as a fraseheduler that switches betweBR andBGS depending
tion of time slice. The time slice is 200 seconds. If wen the utilization of the system. Let,;:i..; be the uti-
look only at the case of zero context switch overhead, \Weation at whichBF starts performing better thaBGS.
observe that regular gang scheduligS( strategies) re- For utilization smaller thap.,;¢;c.;, we useBGS. When
sults in very high slow downs, even at low or moderatdilization goes beyongd.,;;;cq.;, We useBF. Further in-
(less tharp = 0.75) utilizations.BF always performs bet- vestigation of adaptive scheduling is beyond the scope of
ter thanGS-2 andGS-3. It also performs better thaBS- this paper.

5 wherr: ugh;a_tmnl IS gre;tet{ th?hn O'$5'. Tdhe_((j:on"lnblned alo'Figure 10 shows the average job wait time for all our
proach BGS) is always better than its individua COMPOgeyen configurations. Again, each plot is for a different

nents BF an_dGS with corr.esponding multiprogrqmmingvalue of context-switch overhead. We observe that reg-
Ievgl). The |mprov§ment In average slow P'OW” IS MONPr5y gang-schedulinddS strategies) results in very high
tonic with the multiprogramming level. This observatloulait times, even at low or moderate (less thas 0.75)

also applies most of the time for the standard deviati(%ﬂilizations. Even with 0% context switching overhead
Given a highest tolerable slow dowBG S allows the sys- saturation takes place at — 0.84 for GS-5 and at ,

tem to be driven to much higher utilizations. We want t/()) — 0.79 for GS-3. At 5% overhead, the saturations oc-

emphasize that significant improvements can be achie\(:%q atp = 0.73 andp = 0.75 for GS-3 andGS-5 respec-

tively. Backfilling performs better than gang-scheduling
h respect to wait time for utilizations aboye= 0.72.

It saturates gt = 0.95. The combined approacBGS) is

always better than its individual componerB$(andGS

with corresponding multiprogramming level) for a zero

context switch overhead. The improvementin average job

wait time is monotonic with the multiprogramming level.

This observation also applies most of the time for the stan-

At all combinations of context switch overhead and ut(ij- d deviati WitlBGS and text switch
lization, BGS outperformsGS with the same multipro- ard deviation. Wi and zero context switch over=

gramming levelBGS also outperformBF at low context head, the machine appears faster, more responsive and

switch overheads 0% or 1%. Even at context switch ové&f°"® far.

head of 2% or 5%BGS has significantly better slowdown We further analyze the scheduling strategies by com-
thanBF in an important operating range. For 2B6S-5 paring the behavior of the system for large and small jobs.
saturates ap = 0.93 whereasBF saturates ap = 0.95. (As defined in Section 2.2, a small job uses 32 or fewer
Still, BGS-5 is significantly better thamF for utiliza- nodes, while a large job uses more than 32 nodes.) The
tion up top = 0.92. For context switch overhead of 5%yesults for slowdown and wait times are shown in Fig-
BGS-5 is superior taBF only up top = 0.83. Therefore, ure 11, when a 0% context switch overhead is used. With
we have two options in designing the scheduler systeraspect to slowdown, we observe tHaGS-5 always per-

even with the low multiprogramming level of 2. For in
stance, if we choose a maximum acceptable slow dow!
20, the resulting maximum utilization jg= 0.67 for GS-
5, p = 0.76 for BF andp = 0.82 for BGS-2. That last
result represents an improvement of 20% d8&-5 with
a much smaller multiprogramming level. WiBGS-5,
we can drive utilization as high as= 0.87.
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Figure 9: Average job slowdown for four different values of contextch overhead.

forms better thamBF for either large or small jobs. With strategies. By definition, all strategies saturate at the line
respect to wait time, we observe that the improvement= 1 — p,,.,, Which is indicated by the dashed line
generated byBGS is actually larger for large jobs. Inin Figure 12. Again, the combined policies deliver con-
other words, for any given utilization, the difference isistently better results than the pure backfilling and gang
wait time between large and small jobs is les8®S-5 scheduling (of equal MPL) policies. The improvement is
than inBF. Both for BF andBGS, the machine appearsalso monotonic with the multiprogramming level. How-
less responsive to large jobs than to small jobs as utilizaser, all backfilling based policies (pure or combined) sat-
tion increases. However, the difference is largef@Br  urate at essentially the same point. Loss of capacity comes
At first, the BF results for slow down and wait time forfrom holes in the scheduling matrix. The ability to fill
large and small jobs may seem contradictory: small joti®se holes actually improves when the load is very high.
have smaller wait times but larger slow down. Slow dowe observe that the capacity loss Bff actually starts to
is a relative measure of the response time normalizeddscrease once utilization goes beygng 0.83. At very
the execution time. Since smaller jobs tend to have shottégh loads p > 0.95) there are almost always small jobs
execution time, the relative cost of waiting in the queue backfill holes in the schedule. Looking purely from a
can be larger. We note thBGS is very effective in af- system’s perspective, we note that pure gang-scheduling
fecting the wait time for large and small jobs in a way thagn only be driven to utilization betwegn= 0.82 and
ends up making the system feel more equal to all kindsf= 0.87, for multiprogramming levels 2 through 5. On
jobs. the other hand, the backfilling strategies can be driven to
Whereas Figures 9 through 11 report performance frarp to p = 0.95 utilization.
a user’s perspective, we now turn our attention to the sysTo summarize our observations, we have shown that
tem’s perspective. Figure 12 is a plot of the average ¢he combined strategy of backfilling with gang-scheduling
pacity loss as a function of utilization for all our seve(BGS) can consistently outperforms the other strategies
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Figure 10: Average job wait times for four different values of contaiteh overhead.

(backfilling and gang-scheduling separately) from the per- rially in figure 13 where 3 processes of job J in row
spectives of responsiveness, slow down, fairness, and 2 occupy the same columns as job A inrow 1. Job J
utilization. ForBGS to realize this advantage, context is migrated to 4 other processes in the same row and

switch cost must be kept low. We have shoRGS to

job A is replicated in this row. Consequently when

be superior tBF over the entire spectrum of workloads  we move from row 1 to row 2 in the scheduling cycle,
when the context switch overhead is 1% or less of the time job A does not need to be migrated (one-time effort).

slice.

5.4 Migration gang-scheduling MGS)

We now analyze how gang-scheduling can be improved
through the addition of migration capabilities. The pro-
cess of migration embodies moving a job to any row in

e Option 2 Instead of migrating job J to make space
for A, we can directly migrate job A to those slots
in row p that are free. This approach lets other jobs
in row p proceed without migration, but the down
side is that each time we come to rgwjob A in-
curs migration costs (recurring). This is again shown
pictorially in figure 13.

which there are enough free processors to execute that job ) )
(not just on the same columns). There are basically twoVe can quantify the cost of each of these two options

options each time we attempt to migrate a jaldfrom a
source rowr to a target row (in either case, row must
have enough free nodes):

e Option I We migrate the jobs in row that exe-

based on the following model. For the distributed system
we target, namely the IBM RS/6000 SP, migration can
be accomplished with a checkpoint/restart operation. Let
S(A) be the set of jobs in target rowthat overlap with
the nodes of job! in source row. LetC be the total cost

cute on the CPUs where the processes of A residémigrating one job, including the checkpoint and restart

to make space for A in row. This is shown picto-

operations. We consider the case in which (i) checkpoint
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Figure 11: Slowdown and wait time for large and small jobs.

and restart each have the same @2, (ii) the costC As discussed, migration in the IBM RS/6000 SP re-
is independent of the job size, and (iii) checkpoint arglires a checkpoint/restart operation. Although all tasks
restart are dependent operations.(you have to finish can perform a checkpointin parallel, resulting i6'ahat
checkpoint before you can restart). During the migratiasindependent of job size, there is a limit to the capacity
process, nodes participating in the migration cannot maked bandwidth that the file system can accept. Therefore
progress in executing a job. The total amount of resouraes introduce a parameté€} that controls the maximum
(processoix time) wasted during this process is the ovenumber of tasks that can be migrated in any time-slice.

head for the migration operation. When migration is used, the scheduling proceeds along
The overhead for option 1 is the following steps:
step reason
(g X |Al + C x Z 7)), (4) ClearMatrix Maximize holes
2 CollapseMatrix-1 | Compaction without migration
Jes(4) Schedule-1 Accommodate new jobs after compaction
L CollapseMatrix-2 | Compaction with migration

where|A| and|.J| denote the number of tasks in jods Schedule-2 Accommodate new jobs after migration
and.J, respectively. The operations for option 1 are illus- FillMatrix-1 Replicate jobs without migration
trated in Figure 13(a), with a singlejobin setS(A). The FillMatrix-2 Replicate jobs after migrating destination

first step is to checkpoint jold in its current set of nodes. ) ) ] o ) .
This checkpointing operation takes tir§/2. As soon as The'orderlng results in applying optimizations W|thou.t in-
the checkpointing is complete we can resume executi@#Ting unnecessary costs. We first attempt to optimize
To resume job in its new set of nodes requires a restafchedule-1, we then attempt to collapse with migration
step of time<.. Therefore, the total overhead for jobis (CollapseMatrix-2) and repeat scheduling (Schedule-2) to

C x|J|. accommodate new jobs. After we are done accommodat-
incur a migration cost. Then we try FillMatrix-2 with mi-
C gration.
(Cx |A]+ 5 x > 1D (5)

The algorithm for CollapseMatrix-2 is the same as for
CollapseMatrix-1 inGS. The only difference are the con-
The migration for option 2 is illustrated in Figure 13(b)ditions for moving a job. With migration, a job can be
with a single jobJ in setS(A). The first step is to check-moved to any row and any set of columns, provided that
point job A. This checkpoint operation takes tin§e Af- (i) enough empty columns are available in the destina-
ter job A is checkpointed we can resume execution of jalon row, (i) number of migrated tasks does not violate
J. Therefore, the overhead for jobis % x |J|. Tore- the@ parameter, and (iii) a job must make progress, that
sume jobA we need to restart it in its new set of process, it must execute in at least one row for every cycle of
sors, which again takes tim%. The overhead for jobt scheduling. The last requirement is identical as for gang-
is thenC x |A]. scheduling GS). If migration is required to move a job to

JES(A)
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Figure 12: Loss of capacity fd8GS, GS, and BF, with different context-switch overheads.

a new target row, we consider the two options describBtf5S andMBGS are in the CollapseMatrix and Sched-
above (option 1 and option 2) and choose the one with thie steps.MBGS use the same scheduling B&S, that
least estimated cost. FillMatrix-2 uses the same algorithisnbackfilling is performed in each row of the matrix, and
as FillMatrix-1, with the following constraints when dereservations are created for jobs that cannot be immedi-
ciding to replicate a job in a new row. First, the job musttely scheduled. When compacting the matMBGS

not already be replicated in that row. Second, the ranwst make sure that reservations are not violated.

must have sufficient empty columns to execute the job

and the total number of migrated tasks must not exc .

parameter). Only option 1 (move jobs in target row) |:§% Comparing GS, BGS, MGS, and
considered for FillMatrix-2, and therefore those jobs must MBGS

not be present in any other row of the schedule. Givefpie 1 summarizes some of the results from migra-
these _algorithms, we ensure that mig'ration never inclﬁ@n applied to gang-scheduling and backfilling gang-
recurring cost. That is, & job will not ping-pong betweegnequling. For each of the nine workloads (numbered
different columns within the same scheduling matrix. om0 to 8) we present achieved utilizatigs) @nd aver-
age job slowdowns) for four different scheduling poli-
5.5 Migration backfilling gang-scheduling cies: (i) backfilling gang-scheduling without migration
(MBGS) (BGS), (ii) backfilling gang-scheduling with migration
(MBGS), (iii) gang-scheduling without migratior3S),
Just as we augmented plain gang-schedula8)(with and (iv) gang-scheduling with migratioMGS). We also
migration, the same can be done with backfilling ganghow the percentage improvement in job slowdown from
scheduling BGS). This creates the migration backfill-applying migration to gang-scheduling and backfilling
ing gang-schedulingMBGS). The differences betweengang-scheduling. Those results are from the best case
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(a) Migration option 1.J is migrated to CPUs P6-P9 in row 2 so thlatan executed in CPUs P1-P3 in row
2. This requires checkpointing J at the beginning of the time quaffimmmow 2) incurringC/2 cost, and
then the restart cost for those processes in the destination CPUsrngcamotherC /2 cost. Note thatd

can start executing in row 2 aftét/2 time while J can start only afte€ time units. The migration cost is
indicated by the black region. Whethéris removed from row 1 or not is optional (depends on the steps of

the algorithm).
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(b) Migration option 2:A is directly migrated to CPUs P7-P9. This requires checkpaiat the beginning
of the time quantum for row 2 (incurring/2 cost), and restarting in the destination CPUs subsequently
(incurring anothet’'/2 cost). Even though only’s processes are being migrated at P1-PBas to wait for
C'/2 time before it can execute (on all four of its CPUs).can begin execution aftér time units in CPUs
P7-P9. The migration cost is indicated by the black region. Again,lvenet is removed from row 1 or not
is optional (depends on the steps of the algorithm). If it is not redpa recurring migration cost is incurred
each time we transition from row 1 to row 2 in the schedule.
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Figure 13: The two migration options.

for each policy: zero cost and unrestricted number of ngjang-scheduling increases from 96% to 98% with mi-
grated tasks, with an MPL of 5. gration. Migration is a mechanism that significantly im-
groves the performance of gang-scheduling without the

We can see an improvement from the use of mig d for iob execution tim timat However. it |
tion throughout the range of workloads, for both gan(ﬁ—ee Or Job executio € estimates. - However, 1t 1S

scheduling and backfilling gang-scheduling. We also n 8t as gffectlve as ba.Ckf'I.Img N Improving plalq 9ang-
that the improvement is larger for mid-to-high utiIiza§ChEdu_“ng' The combination of backfllll_ng and migration
tions between 70 and 90%. Improvements for low utrit?SUItS in the best overall gang-scheduling system.
lization are less because the system is not fully stresse
and the matrix is relatively empty. Therefore, there ar[

not enough jobs to fill all the time-slices, and expandi

dFigure 14 shows average job slowdown and average
wait time as a function of the parametgr the max-

thout miaration i At hiah loads. th fhum number of task that can be migrated in any time
without migration IS €asy. Very high loads, In€ Mag.o “Each line is for a different combination of schedul-

trix is alregdy very fu.II. anq migration accomplishes le Fig mechanism and migration cogtq, BGS/10 repre-
than at mid-range utilizations. Improvements for back-

filing gang-scheduling are not as impressive as for ga ents backfilling gang-scheduling with migration cost of

" seconds. The time slice is 200 seconds). We con-

scheduling. Backiilling gang-scheduling already doessf"der two representative workloads, 2 and 5, since they

better job of filling holes in the matrix, and therefore th8efine the bounds of the operating range of interest. Be-

potentlalhbzn?flt ftrr? mbmltgr ation is Iesst.. V\gg; /batckﬂllt[? ond workload 5, the system reaches unacceptable slow-
gang-scheduling the best improvementis oata Ulllizgs,ns for gang-scheduling, and below workload 2 there

tion O.f 89%, _whereasownh ge}rjg-s_chedulmog we Obser?éelittle benefit from migration. We note that migration can

benefits as high as 92%, at utilization of 88%. significantly improve the performance of gang-scheduling
We note that the maximum utilization with gangeven with as little as 64 tasks migrated. (Note that the case

scheduling increases from 86% without migration to 94%ithout migration is represented by the paramélee 0

with migration. Maximum utilization for backfilling for number of migrated tasks.) We also observe a mono-



Table 1: Percentage improvements from migration.

work backfilling gang-scheduling gang-scheduling
load BGS MBGS % s GS MGS % s
p s p s better | p s p s better
0 055| 25| 055| 21| 19.2% | 0.55 3.9| 0.55 2.6 | 33.7%
1 061 32|061| 25| 23.9%| 0.61 7.0 | 0.61 4.0 | 42.5%
2 0.66| 38| 0.66| 29| 24.8% | 0.66 18.8 | 0.66 6.9 | 63.4%
3 0.72| 65| 0.72| 3.7| 43.1%| 0.72 448 | 0.72 13.5| 69.9%
4 0.77| 80| 0.77| 51| 36.6% | 0.78| 125.6| 0.77 29.4 | 76.6%
5 0.83|119| 0.83| 7.6 | 36.2% | 0.83| 405.6| 0.83 54.4| 86.6%
6 0.89| 224 | 0.88| 11.0| 50.8% | 0.86 | 1738.0| 0.88 | 134.2| 92.3%
7 094 | 349 | 094 | 209 | 40.2% | 0.86 | 4147.7| 0.94 | 399.3| 90.4%
8 0.96 | 67.9| 0.98 | 56.8 | 16.4% | 0.86 | 5941.5| 0.97 | 1609.9 | 72.9%

tonic improvement in slowdown and wait time with thevith running time longer than or equal to the median. For
number of migrated tasks, for both gang-scheduling athek shorter jobs, slowdown witRGS andMGS are 18.9
backfilling gang-scheduling. Even with migration cost@nd 104.8, respectively. On the other hand, for the longer
as high as 30 seconds, or 15% of the time slice, we sfilbs, slowdown witt BGS andMGS are 4.8 and 4.1, re-
observe a benefit from migration. Most of the benefit gpectively. These results confirm tHaGS favors short
migration is accomplished & = 64 migrated tasks, andrunning jobs. We note that the penalty for longer jobs in
we choose that value for further comparisons. Finally, iB&&S (as compared tdGS) is very small, whereas the
note that the behaviors of wait time and slowdown follolwenefit for shorter jobs is quite significant.
approximately the same trends. Thus, for the next analysisVe emphasize that MBGS, which combines all tech-
we focus on slowdown. niques (gang-scheduling, backfilling, and migration), pro-
Figure 15 compares loss of capacity, slowdown, anifles the best results. In particular, it can drive utilization
wait time for all four time-sharing strategie&S, BGS, highertharMGS, and achieves better slow down and wait
MGS and MBGS. Results shown are for MPL of 5,times thanBGS. Quantitatively, wait times wittMBGS
® = 0.2, and (forMGS and MBGS) a migration cost are 2 to 3 times shorter than wiBGS, and slowdown is
of 10 seconds (5% of the time-slice). We observe thk& to 2 times smaller.
MBGS is always better than the other strategies, for all
three performance parameters and across the spectrum of
utilization. Correspondingly, GS is always worse thantt®@  Conclusions
other strategies. The relative behavioB&S andMGS
deserves a more detailed discussion. This paper has reviewed several techniques to enhance
With respect to loss of capaciti/GS is consistently job scheduling for large parallel systems. We started with
better tharBGS. MGS can drive utilization up to 98% an analysis of two commonly used strategies: backfilling
while BGS saturates at 96%. With respect to wait timeynd gang-scheduling. We showed how the two could be
BGS is consistently better thaiGS. Quantitatively, the combined into a backfilling gang-scheduliiXS) strat-
wait time with MGS is 50-100% larger than witBGS egy that is always superior to its two components when
throughout the range of utilizations. With respect to slowhe context switch overhead is kept low. WBGS, we
down, we observe th&GS is always better thamMGS observe a monotonic improvement in job slowdown, job
and that the difference increases with utilization. Favait time, and maximum system utilization with the mul-
workload 5, the difference is as high as a factor of 5. Aiprogramming level.
first, it is not intuitive thatBGS can be so much better Further improvement in scheduling efficacy can be
thanMGS in the light of the loss of capacity and wait timeaccomplished with the introduction of migration. We
results. The explanation is thRGS favors short-running have demonstrated that both plain gang-scheduling and
jobs when backfilling, thus reducing the average job slowackfilling gang-scheduling benefit from migration. The
down. To verify that, we further investigated the behavischeduling strategy that incorporates all our techniques:
of MGS andBGS in two different classes of jobs: onegang-scheduling, backfilling, and migration consistently
class is comprised of the jobs with running time shorteutperforms the others for average job slow down, job
than the median (680 seconds) and the other class of jaladt time, and loss of capacity. It also achieves the high-



Workload 2, MPL of 5, T = 200 seconds

Workload 2, MPL of 5, T = 200 seconds

& MGSI0 ® -©- MGS/0
18 —>- MGS/10 |
—*— MGS/10 5 MGS/20
. B -8 MGS/20
o 1 H 165 —— MGS/30 |
8 —— MGS/30 2 MBGS/0
s |\ -~ MBGS/0 {
3 \ -4 MBGS/10 c14r -4 MBGS/10 ||
0.8 & MBGS/20 | z —4 MBGS/20
) % MBGS/30 S12r —%- MBGS/30 |
~ »
£06 g10r
K S sl
2 &
2 L
004 Z 6
2y
©
Loz} Foe—a— 4
: 2l
) ! . . ; ‘ o . . . . . .
% 50 100 150 200 250 300 0 50 100 150 200 250 300
Maximum number of migrated tasks Maximum number of migrated tasks
Workload 5, MPL of 5, T = 200 seconds Workload 5, MPL of 5, T = 200 seconds
% ‘ ‘ ‘ & MGSI0 4068 -6~ MGS/0
- MGS/10 —— MGS/10
525 -8 MGS/20 || 350 i mgggg i
=i —— MGS/30
S -~ MBGS/0 —>— MBGS/0
@ ~< MBGS/10 <3001 < MBGS/10 H
- 2f ~#— MBGS/20 { 2 &~ MBGS/20
> — MBGS/30 2250/ —%- MBGS/30 ||
s el
E15 g
Qo [
S 1 >
© <<
[=2}
o
g
205 I
4
—% < < §
o : . . . n . OH—G—Q@Q‘ : ; : - .
0 50 100 150 200 250 300 0 50 100 150 200 250 300

Maximum number of migrated tasks

Maximum number of migrated tasks

Figure 14: Slowdown and wait time as a function of number of migratskist

est system utilization, allowing the system to reach up tp4] D. G. Feitelson and M. A. Jettelmproved Uti-
98% utilization. When a maximum acceptable slowdown
of 20 is adopted, the system can achieve 94% utilization.
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