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Abstract

Applying gang scheduling can alleviate the blockade
problem caused by exclusively space-sharing schedul-
ing. To simply allow jobs to run simultaneously on the
same processors as in the conventional gang schedul-
ing, however, may introduce a large number of time
slots in the system. In consequence the cost of context
switches will be greatly increased, and each running
job can only obtain a small portion of resources in-
cluding memory space and processor utilisation and so
no jobs can finish their computations quickly. In this
paper we present some experimental results to show
that to properly divide jobs into different classes and
to apply different scheduling strategies to jobs of dif-
ferent classes can greatly reduce the average number of
time slots in the system and significantly improve the
performance in terms of average slowdown.

1 Introduction

Scheduling strategies for parallel processing can be
classified into either space sharing, or time sharing.
Currently most clusters for parallel processing only
adopt space-sharing strategies, in which each parti-
tioned processor subset is dedicated to a single job and
the job will exclusively occupy the subset until comple-
tion. However, one major drawback of space sharing
is the blockade situation, that is, short jobs can easily
be blocked for a long time by long jobs. Though the
backfilling technique can be applied to alleviate this
problem to certain extent [5, 7], under heavy work-
load the blockade can still be a serious problem. As
more parallel software packages have been developed
for various kinds of applications and more and more
ordinary users are getting familiar with multiple pro-
cessor systems, it is expected that the workload on
machines with multiple processors will become heavy
in the near future. To alleviate this blockade problem,
time-sharing strategies have to be considered.
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Because processes of the same parallel job need to
coordinate with each other during the computation,
coordinated scheduling of parallel jobs across the pro-
cessors is a critical factor to achieve efficient paral-
lel execution in a time-shared environment. Currently
the most popular scheme for coordinated scheduling is
explicit coscheduling [6], or gang scheduling [4]. With
gang scheduling time is divided into time slots and
all parallel jobs, controlled by a global scheduler, take
turns to receive the service in a coordinated manner.

One major fundamental problem associated with
conventional gang scheduling is resource contention.
Currently nearly all time-sharing strategies assume
that the resources in a system are unlimited. This
assumption is not true and makes the proposed strate-
gies impractical. In a real system the processing speed
of processors is limited. If there is a large number of
jobs running simultaneously on the same set of pro-
cessors, no job is able to complete quickly. Because
the memory space in a real system is also limited, it is
quite possible that the system can run out of memory
space if a number of jobs are allowed to run simul-
taneously and then some jobs have to be paged or
swapped out to the secondary memory. However, the
experimental results show that simply applying the
methods of paging and swapping may seriously harm
the process coordination of parallel jobs and thus de-
grade the system and job performance [1]. Therefore,
there is an urgent need to design new time-sharing
strategies that take both processor and memory con-
straints into consideration.

Recently several methods have been proposed to al-
leviate this kind of contention problem. For example,
the reported experimental results in [1] show that us-
ing a queue to delay job execution is more efficient
than running jobs all together with paging applied.
In [9], for another example, the authors first set a mul-
tiprogramming level, or a limit for the maximum num-
ber of jobs which are allowed to run simultaneously on
the same processors. If the maximum level is reached,



the new arrivals have to be queued. The author then
combines the gang scheduling and the backfilling tech-
nique to achieve a reasonably good performance.

Using a waiting queue to delay jobs execution is
a good way to alleviate the problem of resource con-
tention. The question is, however, which jobs should
be queued. Conventionally, jobs are not distinguished
according to their execution times when gang schedul-
ing is considered. It should be pointed out that the
simple round robin scheme used in gang scheduling
works well only if the sizes of jobs are distributed in a
wide range. Gang scheduling using the simple round
robin may not perform as well as even a simple FCFS
scheme in terms of average response time, or average
slowdown, when all the incoming jobs are long. The
results of our recent study show that limiting the num-
ber of long jobs to time-share the same processors can
improve both the average job performance and proces-
sor utilisation [12]. To ensure an efficient utilisation of
the limited computing power and at the same time to
satisfy the performance requirements of various kinds
of applications in a give parallel system, therefore, pri-
orities need to be considered and assigned for different
jobs.

Our project to develop an effective and practical
coscheduling system is divided into three key stages.
In the context of gang scheduling computing resources
are two dimensional. In designing resource allocation
strategies we have to consider resources in both time
and space. At the first stage we investigated effective
resource allocation (packing) and re-allocation (re-
packing) schemes for gang scheduling. We designed a
job re-packing strategy for resource re-allocation and
time slot reduction. Combining certain existing ef-
ficient allocation and re-allocation strategies, we can
greatly enhance both resource utilisation and job per-
formance [10, 11].

At the second stage we try to introduce priority
scheduling into gang scheduling by dividing jobs into
classes, such as, long, medium and short according
to their required execution times. Different allocation
strategies are then used for jobs of different classes
to satisfy performance requirements of different ap-
plication. For example, we may queue long jobs to
limit the number of long ones time-sharing the same
processors and to allow short ones to be executed im-
mediately without any delay. The method to classify
jobs into classes and treat them differently is not new
at all. However, it has not been studied systemat-
ically in the context of gang scheduling. We believe
that the performance of gang scheduling can be signifi-
cantly improved by taking the priority scheduling into

consideration. Since the computing power is limited,
to give one class of jobs a special treatment will no
doubt affect the performance of jobs in other classes.
A hard question is how to design scheduling strategies
such that the performance of jobs in one class can be
improved without severely punishing the others.

To solve the problem of memory pressure we need
to consider scheduling and memory management si-
multaneously. Another advantage of dividing jobs into
classes is that we are able to choose a particular type
of jobs for paging and swapping to alleviate the mem-
ory pressure without significantly degrade the overall
job performance. Therefore, in our future work, that
is, the third stage of our project we will consider to
combine memory management with gang scheduling
to directly solve the problem of memory pressure.

In this paper we shall present some simulation re-
sults from our second stage research, to show that,
by properly classifying jobs (which are generate from
a particular workload model) and choosing different
scheduling strategies to different classes of jobs, we
are able to improve the overall performance without
severely degrading the performance of long jobs.

The paper is organised as follows: In Section 2
we briefly describe the gang scheduling system imple-
mented for our experiments. A workload model used
in our experiments is discussed in Section 3. Exper-
imental results and discussions are presented in Sec-
tions 4. Finally the conclusions are given in Section 5.

2  Owur Experimental System

The gang scheduling system implemented for our
experiments is mainly based on a job re-packing allo-
cation strategy which is introduced for enhancing both
resource utilisation and job performance [10, 11].

Conventional resource allocation strategies for gang
scheduling only consider processor allocation within
the same time slot and the allocation in one time slot
is independent of the allocation in other time slots.
One major disadvantage of this kind of allocation is
the problem of fragmentation. Because processor al-
location is considered independently in different time
slots, freed processors due to job termination in one
time slot may remain idle for a long time even though
they are able to be re-allocated to existing jobs run-
ning in other time slots.

One way to alleviate the problem is to allow jobs to
run in multiple time slots [3, 8]. When jobs are allowed
to run in multiple time slots, the buddy based allo-
cation strategy will perform much better than many



other existing allocation schemes in terms of average
slowdown [3].

Another method to alleviate the problem of frag-
mentation is job re-packing. In this scheme we try
to rearrange the order of job execution on the origi-
nally allocated processors so that small fragments of
idle processors from different time slots can be com-
bined together to form a larger and more useful one in
a single time slot. Therefore, processors in the system
can be utilised more efficiently. When this scheme is
incorporated into the buddy based system, we can set
up a workload tree to record the workload conditions of
each subset of processors. With this workload tree we
are able to simplify the search procedure for available
processors, to balance the workload across the proces-
sors and to quickly determine when a job can run in
multiple time slots and when the number of time slots
in the system can be reduced.

With a combination of job re-packing, running jobs
in multiple time slots, minimising time slots in the
system, and applying buddy based scheme to allocate
processors in each time slot we are able to achieve high
efficiency in processor utilisation and a great improve-
ment in job performance [11].

Our experimental system is based on the gang
scheduling system described above. In this experimen-
tal system, however, jobs are classified and limits are
set to impose restriction on how many jobs are allowed
to run simultaneously on the same processors.

To classify jobs we introduce two parameters. As-
sume the execution time of the longest job is . A
job will be considered “long” in each test if its exe-
cution time is longer than at¢ for 0.0 < o < 1.0.
A job is considered “medium” if its execution time is
longer than «,,t¢, but shorter than or equal to a;t¢ for
0.0 < ayp, < . Otherwise, the job will be considered
“short”. By varying these two parameters we are able
to make different job classifications and to see how
different classifications affect the system performance.

We introduce a waiting queue for medium and long
jobs in our coscheduling system. To alleviate the
blockade problem the backfilling technique is adopted.
Because the backfilling technique is applied, a long job
in front of the queue will not block the subsequent
medium sized jobs from entering the system. There-
fore, one queue is enough for both classes of jobs. A
major advantage of using a single queue for two classes
of jobs is that the jobs will be easily kept in a proper
order based on their arriving times. Note that in our
experimental system short jobs can be executed im-
mediately on their arrivals without any delay.

To conduct our experiments we further set two

other parameters. One parameter k,, is the limit for
the number of both medium and long jobs to be al-
lowed to time-share the same processors. If the limit is
reached, the incoming medium and long jobs have to
be queued. The other parameter k; is the limit for the
number of long jobs to be allowed to run simultane-
ously on the same processors. If that limit is reached,
the incoming long jobs have to be queued. By varying
these two parameters we are able to see how the added
queue affects the system performance.

3 The Workload Model

In our experiment we adopted one workload model
proposed in [2]. Both job runtimes and sizes (the
number of processors required) in this model are dis-
tributed uniformly in log space (or uniform-log dis-
tributed), while the interarrival times are exponen-
tially distributed. This model was constructed based
on observations from the Intel Paragon at the San
Diego Supercomputer Center and the IBM SP2 at the
Cornell Theory Center and has been used by many
researchers to evaluate their parallel job scheduling
algorithms.

Since the model was originally built to evaluate
batch scheduling policies, we made a few minor mod-
ifications in our simulation for gang scheduling. In
many real systems jobs are classified into two classes,
that is, interactive and batch jobs. A batch job is one
which tends to run much longer and often requires
a larger number of processors than interactive ones.
Usually batch queues are enabled for execution only
during the night. In our experiments we only consider
interactive jobs. Job runtimes will have a reasonably
wide distribution, with many short jobs but a few rel-
atively long ones and they are rounded to the number
of time slots within a range between 1 and 240.

In following sections we present some experimental
results. We assume that there are 128 processors in
the system. In each experiment we measure the av-
erage slowdown and the average number of time slots
which are defined as follows:

Assume the execution time and the turnaround
time for job 4 are t§ and t}, respectively. The slow-
down for job i is s; = t7/t¢. The average slowdown s
is then s = 31", s;/m for m being the total number
of jobs.

If ¢; is the total time when there are i time slots
in the system, the average number of time slots in
the system during the operation can be defined as
n=3Y'_,iti/ \_, t; where  is the largest number of
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Figure 1: Average slowdown when a,, = 0.0 and a; =
1.0.

time slots encountered in the system during the com-
putation.

For each estimated system workload, 10 different
sets of 10000 jobs were generated using the workload
model described above and the final result is the av-
erage of these 10 runs.

4 Experimental Results

We conducted four different experiments. Some of
our experimental results are presented in the following
subsections.

4.1 Experiment one

In our first experiment a,, and «; are fixed, that
is, ay, = 0.0 and oy = 1.0. With this setting all
jobs are treated as equal and they may have to enter
the queue before being executed if k,, is not set to
infinity. The number of jobs to be allowed to time-
share the same processor is determined by k,,. Thus
the system performance will be affected by varying
this parameter. Some experimental results for average
slowdown are given in Fig. 1.

When £, = 1, it is just a simple FCFS scheduling
system with backfilling. It can be seen from this fig-
ure that the slowdown is very dramatically increased
after workload becomes greater than 0.4. Therefore,
exclusively space-sharing scheduling can only perform
well under light workload. When the system workload
becomes heavy, time sharing should be considered.

When k,, is increased, the performance is improved
as indicated in the figure. After k,, reaches certain
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Figure 2: (a) Average slowdown, (b) average number
of time slots and (c) maximum number of time slots,
when «,, = 0.8 and a; = 1.0.



value, however, further increase in k,, will not lead
to a great increase in performance. An interesting
point is that the simple gang scheduling system (by
setting ky,, = oo) will not perform as well as one with
km = 30 when the system workload becomes heavy.
This is because the computing power of a given sys-
tem is limited. If too many jobs time-share the same
set, of processors, each job can only obtain a very small
portion of processor utilisation and no job can com-
plete quickly. Thus the system performance will be
degraded.

4.2 Experiment two

In our first experiment jobs are not distinguished
based on their execution times. Though the perfor-
mance is improved by increasing k,,, the maximum
number of jobs which are allowed to time-share the
same processors, the improvement is not that signifi-
cant.

As mentioned in Section 1, the simple round robin
scheduling strategy will not perform well when a num-
ber of long jobs are running simultaneously on the
same processors. To demonstrate this in our second
experiment we set a,, = 0.8 and oy = 1, which means
jobs are divided into two classes, that is, “long” jobs
whose execution time is longer than 0.8t¢ for ¢¢ the
execution time of the longest job, and “short” jobs
whose execution time is shorter than or equal to 0.8¢°.
By varying k,, we can determine how many long jobs
can run simultaneously on the same processors.

Some experimental results are depicted in Fig. 2.
We can see in the figure that the average slowdown,
the average number of slots and the maximum slot
number (i.e. the maximum number of jobs which are
running simultaneously on the same processors during
the computation) are all reduced when k,, decreases.
It is a clear indication that limiting the number of long
jobs to run simultaneously on the same processors can
indeed improve overall system performance.

Comparing Fig. 2(a) with Fig. 1, we see that a
much smaller average slowdown can be obtained by
only queueing long jobs, but allowing other jobs to run
immediately on their arrivals. As depicted in Fig. 1,
for example, the average slowdown will become greater
than 150 when the workload is 0.9. However, it is a
very good result when the method of combining the
gang scheduling with backfilling is applied. By queue-
ing only long jobs, the average slowdown can be even
lower than 20 with k,, = 1 (or ky, = 2), which is a
significant improvement.

It can also been seen from Fig. 2(b) that for k,, =
1 the average number of slots is only about 5 when

the system workload is 0.9. thus queueing long jobs
can also decrease the average number of time slots in
contrast with the conventional gang scheduling.

4.3 Experiment three

Although the average slowdown is significantly de-
creased by queueing long jobs in gang scheduling, the
maximum slot number encountered during the com-
putation is relatively high in contrast to the strategy
which queues every incoming job once a hard limit for
the number of time slots is reached. The question is
if we can produce similar performance with reduced
maximum slot number.

In our third experiment we first set a,, = 0.0,
km = 6 and k; = 1, that is, we set a limit for maxi-
mum number of time slots to 6 and another limit for
long jobs which can time-share the same processors to
1. Thus the maximum slot number will never exceed 6
during the computation. By varying a; we can deter-
mine what jobs should be considered as long such that
a good performance can be obtained by blocking them
from running simultaneously on the same processors.
Some experimental results are depicted in Fig. 3(a).

When a; = 1.0, no jobs will be treated as long.
This is the same as that in our first experiment by
combining the gang scheduling with backfilling and
then setting k,, = 6. The performance is first im-
proved with «; decreased starting from 1.0. However,
further decreasing «a; will cause an increase in average
slowdown. We can see from the figure that the best
performance is obtained when a; = 0.8.

Next we set a,, = 0.0, &k, = 6 and oy = 0.8. We
want to see how the system performs by varying k;.
Some experimental results are depicted in Fig. 3(b)
and (c). It is clearly shown in the figures that to allow
more long jobs to time-share the same processors can
only degrade the performance.

4.4 Experiment four

The results obtained from the third experiment is
not desirable, that is, these results are not as good as
those obtained by only queueing long jobs in the sec-
ond experiment. In contrast with the results obtained
by using the combination of the gang scheduling and
backfilling in our first experiment, however, both the
average slowdown and the average number of slots are
reduced if we set limits both for all jobs and for long
jobs to run simultaneously on the same processors.

In our fourth experiment we still set a; = 0.8,
kn = 6 and k; = 1, that is, the same set of long
jobs will be limited to time-share the same processors
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Figure 5: Comparison of the two strategies (old and
new) in average slowdown for long jobs

as that in the third experiment. However, we allow
a (small) number of real short jobs to run immedi-
ately on their arrivals by setting a,,, = 0.15. In this
way we hope that the number of time slots will not
be increased greatly during the computation and at
the same time the average slowdown will significantly
be reduced. Some experimental results (new) are de-
picted in Fig. 4. In order to provide a clearer view
about the performance, the best results (old) obtained
by setting a;,, = 0.8 and k,;, = 1 in our second exper-
iment, are also presented in the figure. We can see
that the two strategies (old and new) are comparable
in terms of average slowdown. Under heavy system
workload, however, a smaller average number of time
slots and a much smaller maximum number of time
slots is obtained in our fourth (or new) experiment.

Since a number of short jobs are allowed to run im-
mediately without delay, the performance of long jobs
might be severely degraded. As depicted in Fig. 5,
however, we find that no serious performance degra-
dation for long jobs in terms of slowdown occurs in our
experiment. To allow short jobs to run immediately
may enhance the system utilisation. This may be the
main reason why the overall system performance is
enhanced in our fourth experiment.

5 Conclusions

It is known that exclusively space-sharing schedul-
ing can cause blockade problem under heavy workload
and that this problem can be alleviated by applying
the gang scheduling strategy. Using gang scheduling
to simply allow jobs to run simultaneously on the same
processors, however, may introduce a large number of

time slots in the system. In consequence the cost of
context switches will be greatly increased, and each
running job can only obtain a small portion of re-
sources including memory space and processor utilisa-
tion and so no jobs can complete quickly. Therefore,
the number of jobs allowed to run in the system should
be limited. The question is what kind of jobs should
be queued so that the overall performance can be im-
proved, or at least will not be significantly degraded
in comparison with the conventional gang scheduling.
In this paper we presented some results obtained from
our experiments to show that to properly divide jobs
into different classes and to apply different scheduling
strategies to jobs of different classes can greatly re-
duce the average number of time slots in the system
and significantly improve the performance in terms of
average slowdown.

In our experiments we showed that a good overall
system performance can be obtained by first classify-
ing jobs into short, medium and long and then using
conventional gang scheduling for short, the combina-
tion of the gang and backfilling for medium and the
combination of the FCFS and backfilling for long jobs.

Although the average number of time slots is signif-
icantly reduced, which may greatly alleviate memory
pressure, our method can only be considered as an
indirect method for the problem of memory pressure
because it does not directly take memory requirements
into consideration. In our future research in the de-
velopment of an efficient and practical coscheduling
system we shall combine memory management with
scheduling to directly solve the problem of memory
pressure.
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