
On the Development of an E�cient Coscheduling SystemB. B. Zhou R. P. BrentSchool of Computing & Mathematics Oxford University Computing LaboratoryDeakin University Wolfson Building, Parks RoadGeelong, VIC 3217, Australia Oxford OX1 3QD, UKAbstractApplying gang scheduling can alleviate the blockadeproblem caused by exclusively space-sharing schedul-ing. To simply allow jobs to run simultaneously on thesame processors as in the conventional gang schedul-ing, however, may introduce a large number of timeslots in the system. In consequence the cost of contextswitches will be greatly increased, and each runningjob can only obtain a small portion of resources in-cluding memory space and processor utilisation and sono jobs can �nish their computations quickly. In thispaper we present some experimental results to showthat to properly divide jobs into di�erent classes andto apply di�erent scheduling strategies to jobs of dif-ferent classes can greatly reduce the average number oftime slots in the system and signi�cantly improve theperformance in terms of average slowdown.1 IntroductionScheduling strategies for parallel processing can beclassi�ed into either space sharing, or time sharing.Currently most clusters for parallel processing onlyadopt space-sharing strategies, in which each parti-tioned processor subset is dedicated to a single job andthe job will exclusively occupy the subset until comple-tion. However, one major drawback of space sharingis the blockade situation, that is, short jobs can easilybe blocked for a long time by long jobs. Though theback�lling technique can be applied to alleviate thisproblem to certain extent [5, 7], under heavy work-load the blockade can still be a serious problem. Asmore parallel software packages have been developedfor various kinds of applications and more and moreordinary users are getting familiar with multiple pro-cessor systems, it is expected that the workload onmachines with multiple processors will become heavyin the near future. To alleviate this blockade problem,time-sharing strategies have to be considered.

Because processes of the same parallel job need tocoordinate with each other during the computation,coordinated scheduling of parallel jobs across the pro-cessors is a critical factor to achieve e�cient paral-lel execution in a time-shared environment. Currentlythe most popular scheme for coordinated scheduling isexplicit coscheduling [6], or gang scheduling [4]. Withgang scheduling time is divided into time slots andall parallel jobs, controlled by a global scheduler, taketurns to receive the service in a coordinated manner.One major fundamental problem associated withconventional gang scheduling is resource contention.Currently nearly all time-sharing strategies assumethat the resources in a system are unlimited. Thisassumption is not true and makes the proposed strate-gies impractical. In a real system the processing speedof processors is limited. If there is a large number ofjobs running simultaneously on the same set of pro-cessors, no job is able to complete quickly. Becausethe memory space in a real system is also limited, it isquite possible that the system can run out of memoryspace if a number of jobs are allowed to run simul-taneously and then some jobs have to be paged orswapped out to the secondary memory. However, theexperimental results show that simply applying themethods of paging and swapping may seriously harmthe process coordination of parallel jobs and thus de-grade the system and job performance [1]. Therefore,there is an urgent need to design new time-sharingstrategies that take both processor and memory con-straints into consideration.Recently several methods have been proposed to al-leviate this kind of contention problem. For example,the reported experimental results in [1] show that us-ing a queue to delay job execution is more e�cientthan running jobs all together with paging applied.In [9], for another example, the authors �rst set a mul-tiprogramming level, or a limit for the maximum num-ber of jobs which are allowed to run simultaneously onthe same processors. If the maximum level is reached,



the new arrivals have to be queued. The author thencombines the gang scheduling and the back�lling tech-nique to achieve a reasonably good performance.Using a waiting queue to delay jobs execution isa good way to alleviate the problem of resource con-tention. The question is, however, which jobs shouldbe queued. Conventionally, jobs are not distinguishedaccording to their execution times when gang schedul-ing is considered. It should be pointed out that thesimple round robin scheme used in gang schedulingworks well only if the sizes of jobs are distributed in awide range. Gang scheduling using the simple roundrobin may not perform as well as even a simple FCFSscheme in terms of average response time, or averageslowdown, when all the incoming jobs are long. Theresults of our recent study show that limiting the num-ber of long jobs to time-share the same processors canimprove both the average job performance and proces-sor utilisation [12]. To ensure an e�cient utilisation ofthe limited computing power and at the same time tosatisfy the performance requirements of various kindsof applications in a give parallel system, therefore, pri-orities need to be considered and assigned for di�erentjobs.Our project to develop an e�ective and practicalcoscheduling system is divided into three key stages.In the context of gang scheduling computing resourcesare two dimensional. In designing resource allocationstrategies we have to consider resources in both timeand space. At the �rst stage we investigated e�ectiveresource allocation (packing) and re-allocation (re-packing) schemes for gang scheduling. We designed ajob re-packing strategy for resource re-allocation andtime slot reduction. Combining certain existing ef-�cient allocation and re-allocation strategies, we cangreatly enhance both resource utilisation and job per-formance [10, 11].At the second stage we try to introduce priorityscheduling into gang scheduling by dividing jobs intoclasses, such as, long, medium and short accordingto their required execution times. Di�erent allocationstrategies are then used for jobs of di�erent classesto satisfy performance requirements of di�erent ap-plication. For example, we may queue long jobs tolimit the number of long ones time-sharing the sameprocessors and to allow short ones to be executed im-mediately without any delay. The method to classifyjobs into classes and treat them di�erently is not newat all. However, it has not been studied systemat-ically in the context of gang scheduling. We believethat the performance of gang scheduling can be signi�-cantly improved by taking the priority scheduling into

consideration. Since the computing power is limited,to give one class of jobs a special treatment will nodoubt a�ect the performance of jobs in other classes.A hard question is how to design scheduling strategiessuch that the performance of jobs in one class can beimproved without severely punishing the others.To solve the problem of memory pressure we needto consider scheduling and memory management si-multaneously. Another advantage of dividing jobs intoclasses is that we are able to choose a particular typeof jobs for paging and swapping to alleviate the mem-ory pressure without signi�cantly degrade the overalljob performance. Therefore, in our future work, thatis, the third stage of our project we will consider tocombine memory management with gang schedulingto directly solve the problem of memory pressure.In this paper we shall present some simulation re-sults from our second stage research, to show that,by properly classifying jobs (which are generate froma particular workload model) and choosing di�erentscheduling strategies to di�erent classes of jobs, weare able to improve the overall performance withoutseverely degrading the performance of long jobs.The paper is organised as follows: In Section 2we brie
y describe the gang scheduling system imple-mented for our experiments. A workload model usedin our experiments is discussed in Section 3. Exper-imental results and discussions are presented in Sec-tions 4. Finally the conclusions are given in Section 5.2 Our Experimental SystemThe gang scheduling system implemented for ourexperiments is mainly based on a job re-packing allo-cation strategy which is introduced for enhancing bothresource utilisation and job performance [10, 11].Conventional resource allocation strategies for gangscheduling only consider processor allocation withinthe same time slot and the allocation in one time slotis independent of the allocation in other time slots.One major disadvantage of this kind of allocation isthe problem of fragmentation. Because processor al-location is considered independently in di�erent timeslots, freed processors due to job termination in onetime slot may remain idle for a long time even thoughthey are able to be re-allocated to existing jobs run-ning in other time slots.One way to alleviate the problem is to allow jobs torun in multiple time slots [3, 8]. When jobs are allowedto run in multiple time slots, the buddy based allo-cation strategy will perform much better than many



other existing allocation schemes in terms of averageslowdown [3].Another method to alleviate the problem of frag-mentation is job re-packing. In this scheme we tryto rearrange the order of job execution on the origi-nally allocated processors so that small fragments ofidle processors from di�erent time slots can be com-bined together to form a larger and more useful one ina single time slot. Therefore, processors in the systemcan be utilised more e�ciently. When this scheme isincorporated into the buddy based system, we can setup a workload tree to record the workload conditions ofeach subset of processors. With this workload tree weare able to simplify the search procedure for availableprocessors, to balance the workload across the proces-sors and to quickly determine when a job can run inmultiple time slots and when the number of time slotsin the system can be reduced.With a combination of job re-packing, running jobsin multiple time slots, minimising time slots in thesystem, and applying buddy based scheme to allocateprocessors in each time slot we are able to achieve highe�ciency in processor utilisation and a great improve-ment in job performance [11].Our experimental system is based on the gangscheduling system described above. In this experimen-tal system, however, jobs are classi�ed and limits areset to impose restriction on how many jobs are allowedto run simultaneously on the same processors.To classify jobs we introduce two parameters. As-sume the execution time of the longest job is te. Ajob will be considered \long" in each test if its exe-cution time is longer than �lte for 0:0 � �l � 1:0.A job is considered \medium" if its execution time islonger than �mte, but shorter than or equal to �lte for0:0 � �m � �l. Otherwise, the job will be considered\short". By varying these two parameters we are ableto make di�erent job classi�cations and to see howdi�erent classi�cations a�ect the system performance.We introduce a waiting queue for medium and longjobs in our coscheduling system. To alleviate theblockade problem the back�lling technique is adopted.Because the back�lling technique is applied, a long jobin front of the queue will not block the subsequentmedium sized jobs from entering the system. There-fore, one queue is enough for both classes of jobs. Amajor advantage of using a single queue for two classesof jobs is that the jobs will be easily kept in a properorder based on their arriving times. Note that in ourexperimental system short jobs can be executed im-mediately on their arrivals without any delay.To conduct our experiments we further set two

other parameters. One parameter km is the limit forthe number of both medium and long jobs to be al-lowed to time-share the same processors. If the limit isreached, the incoming medium and long jobs have tobe queued. The other parameter kl is the limit for thenumber of long jobs to be allowed to run simultane-ously on the same processors. If that limit is reached,the incoming long jobs have to be queued. By varyingthese two parameters we are able to see how the addedqueue a�ects the system performance.3 The Workload ModelIn our experiment we adopted one workload modelproposed in [2]. Both job runtimes and sizes (thenumber of processors required) in this model are dis-tributed uniformly in log space (or uniform-log dis-tributed), while the interarrival times are exponen-tially distributed. This model was constructed basedon observations from the Intel Paragon at the SanDiego Supercomputer Center and the IBM SP2 at theCornell Theory Center and has been used by manyresearchers to evaluate their parallel job schedulingalgorithms.Since the model was originally built to evaluatebatch scheduling policies, we made a few minor mod-i�cations in our simulation for gang scheduling. Inmany real systems jobs are classi�ed into two classes,that is, interactive and batch jobs. A batch job is onewhich tends to run much longer and often requiresa larger number of processors than interactive ones.Usually batch queues are enabled for execution onlyduring the night. In our experiments we only considerinteractive jobs. Job runtimes will have a reasonablywide distribution, with many short jobs but a few rel-atively long ones and they are rounded to the numberof time slots within a range between 1 and 240.In following sections we present some experimentalresults. We assume that there are 128 processors inthe system. In each experiment we measure the av-erage slowdown and the average number of time slotswhich are de�ned as follows:Assume the execution time and the turnaroundtime for job i are tei and tri , respectively. The slow-down for job i is si = tri =tei . The average slowdown sis then s =Pmi=0 si=m for m being the total numberof jobs.If ti is the total time when there are i time slotsin the system, the average number of time slots inthe system during the operation can be de�ned asn =Pli=0 iti=Pli=0 ti where l is the largest number of
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Figure 1: Average slowdown when �m = 0:0 and �l =1:0.time slots encountered in the system during the com-putation.For each estimated system workload, 10 di�erentsets of 10000 jobs were generated using the workloadmodel described above and the �nal result is the av-erage of these 10 runs.4 Experimental ResultsWe conducted four di�erent experiments. Some ofour experimental results are presented in the followingsubsections.4.1 Experiment oneIn our �rst experiment �m and �l are �xed, thatis, �m = 0:0 and �l = 1:0. With this setting alljobs are treated as equal and they may have to enterthe queue before being executed if km is not set toin�nity. The number of jobs to be allowed to time-share the same processor is determined by km. Thusthe system performance will be a�ected by varyingthis parameter. Some experimental results for averageslowdown are given in Fig. 1.When km = 1, it is just a simple FCFS schedulingsystem with back�lling. It can be seen from this �g-ure that the slowdown is very dramatically increasedafter workload becomes greater than 0.4. Therefore,exclusively space-sharing scheduling can only performwell under light workload. When the system workloadbecomes heavy, time sharing should be considered.When km is increased, the performance is improvedas indicated in the �gure. After km reaches certain
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(c)Figure 2: (a) Average slowdown, (b) average numberof time slots and (c) maximum number of time slots,when �m = 0:8 and �l = 1:0.



value, however, further increase in km will not leadto a great increase in performance. An interestingpoint is that the simple gang scheduling system (bysetting km =1) will not perform as well as one withkm = 30 when the system workload becomes heavy.This is because the computing power of a given sys-tem is limited. If too many jobs time-share the sameset of processors, each job can only obtain a very smallportion of processor utilisation and no job can com-plete quickly. Thus the system performance will bedegraded.4.2 Experiment twoIn our �rst experiment jobs are not distinguishedbased on their execution times. Though the perfor-mance is improved by increasing km, the maximumnumber of jobs which are allowed to time-share thesame processors, the improvement is not that signi�-cant.As mentioned in Section 1, the simple round robinscheduling strategy will not perform well when a num-ber of long jobs are running simultaneously on thesame processors. To demonstrate this in our secondexperiment we set �m = 0:8 and �l = 1, which meansjobs are divided into two classes, that is, \long" jobswhose execution time is longer than 0:8te for te theexecution time of the longest job, and \short" jobswhose execution time is shorter than or equal to 0:8te.By varying km we can determine how many long jobscan run simultaneously on the same processors.Some experimental results are depicted in Fig. 2.We can see in the �gure that the average slowdown,the average number of slots and the maximum slotnumber (i.e. the maximum number of jobs which arerunning simultaneously on the same processors duringthe computation) are all reduced when km decreases.It is a clear indication that limiting the number of longjobs to run simultaneously on the same processors canindeed improve overall system performance.Comparing Fig. 2(a) with Fig. 1, we see that amuch smaller average slowdown can be obtained byonly queueing long jobs, but allowing other jobs to runimmediately on their arrivals. As depicted in Fig. 1,for example, the average slowdown will become greaterthan 150 when the workload is 0.9. However, it is avery good result when the method of combining thegang scheduling with back�lling is applied. By queue-ing only long jobs, the average slowdown can be evenlower than 20 with km = 1 (or km = 2), which is asigni�cant improvement.It can also been seen from Fig. 2(b) that for km =1 the average number of slots is only about 5 when

the system workload is 0.9. thus queueing long jobscan also decrease the average number of time slots incontrast with the conventional gang scheduling.4.3 Experiment threeAlthough the average slowdown is signi�cantly de-creased by queueing long jobs in gang scheduling, themaximum slot number encountered during the com-putation is relatively high in contrast to the strategywhich queues every incoming job once a hard limit forthe number of time slots is reached. The question isif we can produce similar performance with reducedmaximum slot number.In our third experiment we �rst set �m = 0:0,km = 6 and kl = 1, that is, we set a limit for maxi-mum number of time slots to 6 and another limit forlong jobs which can time-share the same processors to1. Thus the maximum slot number will never exceed 6during the computation. By varying �l we can deter-mine what jobs should be considered as long such thata good performance can be obtained by blocking themfrom running simultaneously on the same processors.Some experimental results are depicted in Fig. 3(a).When �l = 1:0, no jobs will be treated as long.This is the same as that in our �rst experiment bycombining the gang scheduling with back�lling andthen setting km = 6. The performance is �rst im-proved with �l decreased starting from 1.0. However,further decreasing �l will cause an increase in averageslowdown. We can see from the �gure that the bestperformance is obtained when �l = 0:8.Next we set �m = 0:0, km = 6 and �l = 0:8. Wewant to see how the system performs by varying kl.Some experimental results are depicted in Fig. 3(b)and (c). It is clearly shown in the �gures that to allowmore long jobs to time-share the same processors canonly degrade the performance.4.4 Experiment fourThe results obtained from the third experiment isnot desirable, that is, these results are not as good asthose obtained by only queueing long jobs in the sec-ond experiment. In contrast with the results obtainedby using the combination of the gang scheduling andback�lling in our �rst experiment, however, both theaverage slowdown and the average number of slots arereduced if we set limits both for all jobs and for longjobs to run simultaneously on the same processors.In our fourth experiment we still set �l = 0:8,km = 6 and kl = 1, that is, the same set of longjobs will be limited to time-share the same processors
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(c)Figure 3: (a) Average slowdown when �m = 0:0, km =6 and kl = 1, (b) average slowdown and (c) averagenumber of slots when �m = 0:0 and �l = 0:8 andkm = 6.

02468
1012141618
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

slowdown workload
new

3 3 3 3 3 3 3 3 33old
+ + + + + + + + ++

(a)
0123
456
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

slots
workload

new
3 3 3 3 3 3 3 3 33old
+ + + + + + + + ++

(b)
051015
202530
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

slots
workload

new
3 3 3 3 3 3 3 3 33old
+ + + + + + + + ++

(c)Figure 4: Comparison of the new results (new) withthe best results (old) obtained from experiment two.(a) average slowdown, (b) average number of slots and(c) maximum number of slots.
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Figure 5: Comparison of the two strategies (old andnew) in average slowdown for long jobsas that in the third experiment. However, we allowa (small) number of real short jobs to run immedi-ately on their arrivals by setting �m = 0:15. In thisway we hope that the number of time slots will notbe increased greatly during the computation and atthe same time the average slowdown will signi�cantlybe reduced. Some experimental results (new) are de-picted in Fig. 4. In order to provide a clearer viewabout the performance, the best results (old) obtainedby setting �m = 0:8 and km = 1 in our second exper-iment, are also presented in the �gure. We can seethat the two strategies (old and new) are comparablein terms of average slowdown. Under heavy systemworkload, however, a smaller average number of timeslots and a much smaller maximum number of timeslots is obtained in our fourth (or new) experiment.Since a number of short jobs are allowed to run im-mediately without delay, the performance of long jobsmight be severely degraded. As depicted in Fig. 5,however, we �nd that no serious performance degra-dation for long jobs in terms of slowdown occurs in ourexperiment. To allow short jobs to run immediatelymay enhance the system utilisation. This may be themain reason why the overall system performance isenhanced in our fourth experiment.5 ConclusionsIt is known that exclusively space-sharing schedul-ing can cause blockade problem under heavy workloadand that this problem can be alleviated by applyingthe gang scheduling strategy. Using gang schedulingto simply allow jobs to run simultaneously on the sameprocessors, however, may introduce a large number of

time slots in the system. In consequence the cost ofcontext switches will be greatly increased, and eachrunning job can only obtain a small portion of re-sources including memory space and processor utilisa-tion and so no jobs can complete quickly. Therefore,the number of jobs allowed to run in the system shouldbe limited. The question is what kind of jobs shouldbe queued so that the overall performance can be im-proved, or at least will not be signi�cantly degradedin comparison with the conventional gang scheduling.In this paper we presented some results obtained fromour experiments to show that to properly divide jobsinto di�erent classes and to apply di�erent schedulingstrategies to jobs of di�erent classes can greatly re-duce the average number of time slots in the systemand signi�cantly improve the performance in terms ofaverage slowdown.In our experiments we showed that a good overallsystem performance can be obtained by �rst classify-ing jobs into short, medium and long and then usingconventional gang scheduling for short, the combina-tion of the gang and back�lling for medium and thecombination of the FCFS and back�lling for long jobs.Although the average number of time slots is signif-icantly reduced, which may greatly alleviate memorypressure, our method can only be considered as anindirect method for the problem of memory pressurebecause it does not directly take memory requirementsinto consideration. In our future research in the de-velopment of an e�cient and practical coschedulingsystem we shall combine memory management withscheduling to directly solve the problem of memorypressure.References[1] A. Batat and D. G. Feitelson, Gang schedulingwith memory considerations, Proceedings of 14thInternational Parallel and Distributed ProcessingSymposium, Cancun, May 2000, pp.109-114.[2] A. B. Downey, A parallel workload model and itsimplications for processor allocation, Proceedingsof 6th International Symposium on High Perfor-mance Distributed Computing, Aug 1997.[3] D. G. Feitelson, Packing schemes for gangscheduling, In Job Scheduling Strategies for Par-allel Processing, D. G. Feitelson and L. Rudolph(eds.), Lecture Notes Computer Science, Vol.1162, Springer-Verlag, 1996, pp.89-110.
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