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Abstract. This note briefly summarizes some results from two papers:
[4] and [23]. These papers pose the following question:
Is it possible to reduce the expected response time of every re-
quest at a web server, simply by changing the order in which we
schedule the requests?
In [4] we approach this question analytically via an M/G/1 queue. In [23]
we approach the same question via implementation involving an Apache
web server running on Linux.

1 Introduction

Motivation and goals

A client accessing a busy web server can expect a long wait. This delay is com-
prised of several components: the propagation delay and transmission delay on
the path between the client and the server; delays due to queueing at routers;
delays caused by TCP due to loss, congestion, and slow start; and finally the
delay at the server itself. The aggregate of these delays, i.e. the time from when
the client makes a request until the entire file arrives is defined to be the response
time of the request.

We focus on what we can do to improve the delay at the server. Research has
shown that in situations where the server is receiving a high rate of requests,
the delays at the server make up a significant portion of the response time [6],
[5], [32].

Our work will focus on static requests only of the form “Get me a file.” Mea-
surements [31] suggest that the request stream at most web servers is dominated
by static requests. The question of how to service static requests quickly is the
focus of many companies e.g., Akamai Technologies, and much ongoing research.

Our idea

Our idea is simple. For static requests, the size of the request (i.e. the time re-
quired to service the request) is well-approximated by the size of the file, which
is well-known to the server. Thus far, no companies or researchers have made
use of this information. Traditionally, requests at a web server are scheduled
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independently of their size. The requests are time-shared, with each request re-
ceiving a fair share of the web server resources. We call this FAIR scheduling
(a.k.a. Processor-Sharing scheduling). We propose, instead, unfair scheduling, in
which priority is given to short requests, or those requests which have short re-
maining time, in accordance with the well-known scheduling algorithm Shortest-
Remaining-Processing-Time-first (SRPT). The expectation is that using SRPT
scheduling of requests at the server will reduce the queueing time at the server.

The controversy

It has long been known that SRPT has the lowest mean response time of any
scheduling policy, for any arrival sequence and job sizes [41,46]. Despite this fact,
applications have shied away from using this policy for fear that SRPT “starves”
big requests [9,47,48,45]. It is often stated that the huge average performance
improvements of SRPT over other policies stem from the fact that SRPT unfairly
penalizes the large jobs in order to help the small jobs. It is often thought that
the performance of small jobs cannot be improved without hurting the large jobs
and thus large jobs suffer unfairly under SRPT.

2 Analysis of SRPT based on [4]

Relevant previous work

It has long been known that SRPT minimizes mean response time [41,46]. Ra-
jaraman et al. showed further that the mean slowdown under SRPT is at most
twice optimal, for any job sequence [19].

Schrage and Miller first derived the expressions for the response times in an
M/G/1/SRPT queue [42]. This was further generalized by Pechinkin et al. to
disciplines where the remaining times are divided into intervals [36]. The steady-
state appearance of the M/G/1/SRPT queue was obtained by Schassberger [40].
The mean response time for a job of size z in an M/G/1/SRPT server is given
below:

E[T (x)]srpT =

A(Jfy 2 f(t)dt + (1 — F(x))) /w dt
2(1 = X [ tf(t)dt)> 0o 1-— )\fot yf(y)dy

where ) is the average arrival rate and f(t) is the p.d.f. of the job size distribu-
tion.

The above formula is difficult to evaluate numerically, due to its complex
form (many nested integrals). Hence, the comparison of SRPT to other policies
was long neglected. More recently, SRPT has been compared with other policies
by plotting the mean response times for specific job size distributions under
specific loads [39,37,43]. These include a 7-year long study at University of
Aachen under Schreiber et. al. These results are all plots for specific job size
distributions and loads. Hence it is not clear whether the conclusions based on
these plots hold more generally.
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It is often cited that SRPT may lead to starvation of large jobs [8,47,48,
45]. Usually, examples of adversarial request sequences are given to justify this.
However, such worst case examples do not reflect the behavior of SRPT on
average. The term “starvation” is also used by people to indicate the unfairness
of SRPT’s treatment of long jobs. The argument given is that if a scheduling
policy reduces the response time of small jobs, then the response times for the
large jobs would have to increase considerably in accordance with conservation
laws. This argument is true for scheduling policies which do not make use of size,
see the famous Kleinrock Conservation Law [28], [29, Page 197].

Very little has been done to evaluate the problem of unfairness analytically.
Recently, Bender et al. consider the metric maxz slowdown of a job, as indication
of unfairness [8]. They show with an example that SRPT can have an arbitrarily
large mazx slowdown. However, mazx slowdown may not be the best metric for
unfairness. One large job may have an exceptionally long response time in some
case, but it might do well most of the time. A more relevant metric is the maz
mean slowdown.

The question of how heavy-tailed workloads might affect SRPT’s perfor-
mance has not been examined.

Our model

Throughout paper [4] we assume an M/G/1 queue where G is assumed to be a
continuous distribution with finite mean and variance.

It turns out that the job size distribution! is important with respect to evalu-
ating SRPT. We will therefore assume a general job size distribution. We will also
concentrate on the special case of distributions with the heavy-tailed prop-
erty (HT property). We define the HT property to say that the largest 1%
of the jobs comprise at least half the load. This HT property appears in many
recent measurements of computing system workloads, including both sequential
jobs and parallel jobs [30,24,13,26,38,44]. In particular the sizes of web files
requested and the sizes of web files stored have been shown to follow a Pareto
distribution which possesses the HT property [7,14,16].

Some results from [4]

In [4], we prove the following results, among others:

— Although it is well-known that SRPT scheduling optimizes mean response
time, it is not known how SRPT compares with Processor-Sharing scheduling
(a.k.a. FAIR scheduling) with respect to mean slowdown. We prove that
SRPT scheduling also outperforms Processor-Sharing (PS) scheduling with
respect to mean slowdown for all job size distributions.

! Note: By “the size of a job” we mean the service requirement of the request. In the
case of static web requests, this is proportional to the number of bytes in the request.
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— Given that SRPT improves performance over PS both with respect to mean

3

response time and mean slowdown, we next investigate the magnitude of
the improvement. We prove that for all job size distributions with the HT
property the improvement is very significant under high loads. For example,
for load 0.9, SRPT improves over PS with respect to mean slowdown by a
factor of at least 4 for all distributions with the HT property. As the load
approaches 1, we find that SRPT improves over PS with respect to mean
slowdown by a factor of 100 for all distributions with the HT property. In
general we prove that for all job size distributions as the load approaches
one, the mean response time under SRPT improves upon the mean response
time under PS by at least a factor of 2 and likewise for mean slowdown.
The performance improvement of SRPT over PS does not usually come at
the expense of the large jobs. In fact, we observe via example that for many
job size distributions with the HT property every single job, including a
job of the maximum possible size, prefers SRPT to PS (unless the load is
extremely close to 1).

While the above result does not hold at all loads, we prove that no matter
what the load, at least 99% of the jobs have a lower expected response
time under SRPT than under PS, for all job size distributions with the HT
property. In fact, these 99% of the jobs do significantly better. We show that
these jobs have an average slowdown of at most 4, at any load p < 1, whereas
their performance could be arbitrarily bad under PS as the load approaches
1. Similar, but weaker results are shown for general distributions.

While the previous result is concerned only with 99% of the jobs, we also
prove upper bounds on how much worse any job could fare under SRPT as
opposed to PS for general distributions. Our bounds show that jobs never
do too much worse under SRPT than under PS. For example, for all job size
distributions, the expected response time under SRPT for any job is never
more than 3 times that under PS, when the load is 0.8, and never more
than 5.5 times that under PS when the load is 0.9. In fact, if the load is less
than half, then for every job size distribution, each job has a lower expected
response time and slowdown under SRPT than under PS.

The above results show an upper bound on how much worse a job could fare
under SRPT as opposed to PS for general job size distributions. We likewise
prove lower bounds on the performance of SRPT as compared with PS for
general job size distributions.

Implementation of SRPT based on [23]

Relevant previous systems work

There has been much literature devoted to improving the response time of web
requests. Some of this literature focuses on reducing network latency, e.g. by
caching requests ([21], [11], [10]) or improving the HTTP protocol ([18], [34]).

Other literature works on reducing the delays at a server, e.g. by building more
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efficient HTTP servers ([20], [35]) or improving the server’s OS ([17], [3], [27],
33])-

The solution we propose is different from the above in that we only want to
change the order in which requests are scheduled. In the remainder of this section
we discuss only work on priority-based or size-based scheduling of requests.

Almeida et. al. [1] use both a user-level approach and a kernel-level implemen-
tation to prioritizing HTTP requests at a web server. The user-level approach
in [1] involves modifying the Apache web server to include a Scheduler process
which determines the order in which requests are fed to the web server. The
kernel-level approach in [1] simply sets the priority of the process which handles
a request in accordance with the priority of the request. Observe that setting the
priority of a process only allows very coarse-grained control over the scheduling
of the process, as pointed out in the paper. The user-level and kernel-level ap-
proaches in this paper are good starting points, but the results show that more
fine-grained implementation work is needed. For example, in their experiments,
the high-priority requests only benefit by up to 20% and the low priority requests
suffer by up to 200%.

Another attempt at priority scheduling of HT'TP requests which deals specif-
ically with SRPT scheduling at web servers is our own earlier work [15]. This
implementation does not involve any modification of the kernel. We experiment
with connection scheduling at the application level only. We are able to improve
mean response time by a factor of close to 4, for some ranges of load, but the
improvement comes at a price: a drop in throughput by a factor of almost 2.
The problem is that scheduling at the application level does not provide fine
enough control over the order in which packets enter the network. In order to
obtain enough control over scheduling, we are forced to limit the throughput of
requests.

Our approach

It’s not immediately clear what SRPT means in the context of a web server. A
web server is not a single-resource system. It is not obvious which of the web
server’s resources need to be scheduled. As one would expect, it turns out that
scheduling is only important at the bottleneck resource. Frequently this bottle-
neck resource is the bandwidth on the access link out of the web server. “On a
site consisting primarily of static content, network bandwidth is the most likely
source of a performance bottleneck. Even a fairly modest server can completely
saturate a T3 connection or 100Mbps Fast Ethernet connection.” [25] (also cor-
roborated by [12], [2]). There’s another reason why the bottleneck resource tends
to be the bandwidth on the access link out of the web site: Access links to web
sites (T3, OC3, etc.) cost thousands of dollars per month, whereas CPU is cheap
in comparison. Likewise disk utilization remains low since most files end up in
the cache. It is important to note that although we concentrate on the case where
the network bandwidth is the bottleneck resource, all the ideas in this paper can
also be applied to the case where the CPU is the bottleneck — in which case
SRPT scheduling is applied to the CPU.
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Since the network is the bottleneck resource, we try to apply the SRPT al-
gorithm at the level of the network. Our idea is to control the order in which the
server’s socket buffers are drained. Recall that for each (non-persistent) request
a connection is established between the client and the web server. Correspond-
ing to each connection, there is a socket buffer on the web server end into which
the web server writes the contents of the requested file. Traditionally, the differ-
ent socket buffers are drained in Round-Robin Order, each getting a fair share
of the bandwidth of the outgoing link. We instead propose to give priority to
those sockets corresponding to connections for small file requests or where the
remaining data required by the request is small. Throughout, we use the Linux
OS.

Figure 1 shows data flow in standard Linux, which employs FAIR scheduling.
Data streaming into each socket buffer is encapsulated into packets which obtain
TCP headers and IP headers. Finally, there is a single> “priority queue” (transmit
queue), into which all streams feed. This single “priority queue,” can get as long
as 100 packets.

Socket 1

i i~
processing processing ¢
Socket 2 ! Single Priority Queue Ethernet Card

_» TCP _ 5 IP

. L ——
processing processing” M B — ]] — Network
/ e

Socket 3 (transmit queue)
—» TCP _5 IP S
processing processing FEED
FAIRLY,
TAKING
TURNS

Fig. 1. Data flow in Standard Linuz — FAIR scheduling.

Figure 2 shows the flow of data in Linux after our modifications: Instead
of a single priority queue (transmit queue), there are multiple priority queues.
Priority queue i is only allowed to flow if priority queues 0 through ¢ — 1 are all
empty. We used 6 priority queues in our experiments.

After modifying the Linux kernel, we next had to modify the Apache web
server to assign priorities in accordance with SRPT. Our modified Apache de-
termines the size of a request and then sets the priority of the corresponding
socket by calling setsockopt. As Apache sends the file, the remaining size of
the request decreases. When the remaining size falls below the threshold for the
current priority class, Apache updates the socket priority.

Lastly, we had to come up with an algorithm for partitioning the requests
into priority classes which work well with the heavy-tailed web workload.

2 The queue actually consists of 3 priority queues, a.k.a. bands. By default, however,
all packets are queued to the same band.
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Fig. 2. Flow of data in Linuz with priority queueing (2 priorities shown,)

The combination of (i) the modifications to Linux, (ii) the modifications to
the Apache web server, and (iii) the priority algorithm allows us to implement
SRPT scheduling. Details on each of these three components are provided in
[23].

A very simple experimental architecture is used to run our tests. It involves
only two machines each with an Intel Pentium ITT 700 MHz processor and 256 MB
RAM, running Linux 2.2.16, and connected by a 10Mb/sec full-duplex Ethernet
connection. The Apache web server is run on one of the machines. The other
machine (referred to as the “client machine”) hosts 200 or so (simulated) client
entities which send requests to the web server.

The client’s requests are taken from a 1-day trace from the Soccer World
Cup 1998, from the Internet Traffic Archive [22]. The 1-day trace contains 4.5
million HTTP requests, virtually all of which are static. The trace exhibits a
strong heavy-tailed property with the largest < 3% of the requests making up
> 50% of the total load.

This request sequence is controlled so that the same experiment can be re-
peated at many different server loads. The server load is the load at the bot-
tleneck device — in this case the network link out of the web server. The load
thus represents the fraction of bandwidth used on the network link out of the
web server (for example if the requests require 8Mb/sec of bandwidth, and the
available bandwidth on the link if 10Mb/sec, then the network load is 0.8).

Some results from [23]
Our experiments yield the following results:

— SRPT-based scheduling decreases mean response time in our LAN setup by
a factor of 3 — 8 for loads greater than 0.5.

— SRPT-based scheduling helps small requests a lot, while negligibly penalizing
large requests. Under a load of 0.8, 80% of the requests improve by a factor of
10 under SRPT-based scheduling. Only the largest 0.1% of requests suffer an
increase in mean response time under SRPT-based scheduling (by a factor
of only 1.2).

— The variance in the response time is far lower under SRPT as compared with
FAIR, in fact two orders of magnitude lower for most requests.
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— There is no negative effect on byte throughput, request throughput, or CPU
utilization from using SRPT as compared with FAIR.

For more details see [23].

4 Conclusion

We have shown both analytically and experimentally that SRPT scheduling of
requests is very powerful under workloads with a heavy-tail property, such as web
workloads. Under such workloads, 99% of requests see significant improvement in
mean response time under SRPT scheduling as compared with the traditionally-
used FAIR scheduling. Furthermore, even the very largest requests have lower
expected response time under SRPT than under FAIR scheduling in theory.
Experimentally, the largest requests may perform negligibly worse under SRPT
scheduling as compared with FAIR scheduling. We believe this is simply due to
the coarseness of the implementation.
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