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t. This note brie
y summarizes some results from two papers:[4℄ and [23℄. These papers pose the following question:Is it possible to redu
e the expe
ted response time of every re-quest at a web server, simply by 
hanging the order in whi
h wes
hedule the requests?In [4℄ we approa
h this question analyti
ally via an M/G/1 queue. In [23℄we approa
h the same question via implementation involving an Apa
heweb server running on Linux.1 Introdu
tionMotivation and goalsA 
lient a

essing a busy web server 
an expe
t a long wait. This delay is 
om-prised of several 
omponents: the propagation delay and transmission delay onthe path between the 
lient and the server; delays due to queueing at routers;delays 
aused by TCP due to loss, 
ongestion, and slow start; and �nally thedelay at the server itself. The aggregate of these delays, i.e. the time from whenthe 
lient makes a request until the entire �le arrives is de�ned to be the responsetime of the request.We fo
us on what we 
an do to improve the delay at the server. Resear
h hasshown that in situations where the server is re
eiving a high rate of requests,the delays at the server make up a signi�
ant portion of the response time [6℄,[5℄, [32℄.Our work will fo
us on stati
 requests only of the form \Get me a �le." Mea-surements [31℄ suggest that the request stream at most web servers is dominatedby stati
 requests. The question of how to servi
e stati
 requests qui
kly is thefo
us of many 
ompanies e.g., Akamai Te
hnologies, and mu
h ongoing resear
h.Our ideaOur idea is simple. For stati
 requests, the size of the request (i.e. the time re-quired to servi
e the request) is well-approximated by the size of the �le, whi
his well-known to the server. Thus far, no 
ompanies or resear
hers have madeuse of this information. Traditionally, requests at a web server are s
heduled



12independently of their size. The requests are time-shared, with ea
h request re-
eiving a fair share of the web server resour
es. We 
all this FAIR s
heduling(a.k.a. Pro
essor-Sharing s
heduling). We propose, instead, unfair s
heduling, inwhi
h priority is given to short requests, or those requests whi
h have short re-maining time, in a

ordan
e with the well-known s
heduling algorithm Shortest-Remaining-Pro
essing-Time-�rst (SRPT). The expe
tation is that using SRPTs
heduling of requests at the server will redu
e the queueing time at the server.The 
ontroversyIt has long been known that SRPT has the lowest mean response time of anys
heduling poli
y, for any arrival sequen
e and job sizes [41, 46℄. Despite this fa
t,appli
ations have shied away from using this poli
y for fear that SRPT \starves"big requests [9, 47, 48, 45℄. It is often stated that the huge average performan
eimprovements of SRPT over other poli
ies stem from the fa
t that SRPT unfairlypenalizes the large jobs in order to help the small jobs. It is often thought thatthe performan
e of small jobs 
annot be improved without hurting the large jobsand thus large jobs su�er unfairly under SRPT.2 Analysis of SRPT based on [4℄Relevant previous workIt has long been known that SRPT minimizes mean response time [41, 46℄. Ra-jaraman et al. showed further that the mean slowdown under SRPT is at mosttwi
e optimal, for any job sequen
e [19℄.S
hrage and Miller �rst derived the expressions for the response times in anM/G/1/SRPT queue [42℄. This was further generalized by Pe
hinkin et al. todis
iplines where the remaining times are divided into intervals [36℄. The steady-state appearan
e of the M/G/1/SRPT queue was obtained by S
hassberger [40℄.The mean response time for a job of size x in an M/G/1/SRPT server is givenbelow:E[T (x)℄SRPT = �(R x0 t2f(t)dt+ x2(1� F (x)))2(1� � R x0 tf(t)dt)2 + Z x0 dt1� � R t0 yf(y)dywhere � is the average arrival rate and f(t) is the p.d.f. of the job size distribu-tion.The above formula is diÆ
ult to evaluate numeri
ally, due to its 
omplexform (many nested integrals). Hen
e, the 
omparison of SRPT to other poli
ieswas long negle
ted. More re
ently, SRPT has been 
ompared with other poli
iesby plotting the mean response times for spe
i�
 job size distributions underspe
i�
 loads [39, 37, 43℄. These in
lude a 7-year long study at University ofAa
hen under S
hreiber et. al. These results are all plots for spe
i�
 job sizedistributions and loads. Hen
e it is not 
lear whether the 
on
lusions based onthese plots hold more generally.



13It is often 
ited that SRPT may lead to starvation of large jobs [8, 47, 48,45℄. Usually, examples of adversarial request sequen
es are given to justify this.However, su
h worst 
ase examples do not re
e
t the behavior of SRPT onaverage. The term \starvation" is also used by people to indi
ate the unfairnessof SRPT's treatment of long jobs. The argument given is that if a s
hedulingpoli
y redu
es the response time of small jobs, then the response times for thelarge jobs would have to in
rease 
onsiderably in a

ordan
e with 
onservationlaws. This argument is true for s
heduling poli
ies whi
h do not make use of size,see the famous Kleinro
k Conservation Law [28℄, [29, Page 197℄.Very little has been done to evaluate the problem of unfairness analyti
ally.Re
ently, Bender et al. 
onsider the metri
 max slowdown of a job, as indi
ationof unfairness [8℄. They show with an example that SRPT 
an have an arbitrarilylarge max slowdown. However, max slowdown may not be the best metri
 forunfairness. One large job may have an ex
eptionally long response time in some
ase, but it might do well most of the time. A more relevant metri
 is the maxmean slowdown.The question of how heavy-tailed workloads might a�e
t SRPT's perfor-man
e has not been examined.Our modelThroughout paper [4℄ we assume an M/G/1 queue where G is assumed to be a
ontinuous distribution with �nite mean and varian
e.It turns out that the job size distribution1 is important with respe
t to evalu-ating SRPT. We will therefore assume a general job size distribution. We will also
on
entrate on the spe
ial 
ase of distributions with the heavy-tailed prop-erty (HT property). We de�ne the HT property to say that the largest 1%of the jobs 
omprise at least half the load. This HT property appears in manyre
ent measurements of 
omputing system workloads, in
luding both sequentialjobs and parallel jobs [30, 24, 13, 26, 38, 44℄. In parti
ular the sizes of web �lesrequested and the sizes of web �les stored have been shown to follow a Paretodistribution whi
h possesses the HT property [7, 14, 16℄.Some results from [4℄In [4℄, we prove the following results, among others:{ Although it is well-known that SRPT s
heduling optimizes mean responsetime, it is not known how SRPT 
ompares with Pro
essor-Sharing s
heduling(a.k.a. FAIR s
heduling) with respe
t to mean slowdown. We prove thatSRPT s
heduling also outperforms Pro
essor-Sharing (PS) s
heduling withrespe
t to mean slowdown for all job size distributions.1 Note: By \the size of a job" we mean the servi
e requirement of the request. In the
ase of stati
 web requests, this is proportional to the number of bytes in the request.



14{ Given that SRPT improves performan
e over PS both with respe
t to meanresponse time and mean slowdown, we next investigate the magnitude ofthe improvement. We prove that for all job size distributions with the HTproperty the improvement is very signi�
ant under high loads. For example,for load 0:9, SRPT improves over PS with respe
t to mean slowdown by afa
tor of at least 4 for all distributions with the HT property. As the loadapproa
hes 1, we �nd that SRPT improves over PS with respe
t to meanslowdown by a fa
tor of 100 for all distributions with the HT property. Ingeneral we prove that for all job size distributions as the load approa
hesone, the mean response time under SRPT improves upon the mean responsetime under PS by at least a fa
tor of 2 and likewise for mean slowdown.{ The performan
e improvement of SRPT over PS does not usually 
ome atthe expense of the large jobs. In fa
t, we observe via example that for manyjob size distributions with the HT property every single job, in
luding ajob of the maximum possible size, prefers SRPT to PS (unless the load isextremely 
lose to 1).{ While the above result does not hold at all loads, we prove that no matterwhat the load, at least 99% of the jobs have a lower expe
ted responsetime under SRPT than under PS, for all job size distributions with the HTproperty. In fa
t, these 99% of the jobs do signi�
antly better. We show thatthese jobs have an average slowdown of at most 4, at any load � < 1, whereastheir performan
e 
ould be arbitrarily bad under PS as the load approa
hes1. Similar, but weaker results are shown for general distributions.{ While the previous result is 
on
erned only with 99% of the jobs, we alsoprove upper bounds on how mu
h worse any job 
ould fare under SRPT asopposed to PS for general distributions. Our bounds show that jobs neverdo too mu
h worse under SRPT than under PS. For example, for all job sizedistributions, the expe
ted response time under SRPT for any job is nevermore than 3 times that under PS, when the load is 0:8, and never morethan 5.5 times that under PS when the load is 0:9. In fa
t, if the load is lessthan half, then for every job size distribution, ea
h job has a lower expe
tedresponse time and slowdown under SRPT than under PS.{ The above results show an upper bound on how mu
h worse a job 
ould fareunder SRPT as opposed to PS for general job size distributions. We likewiseprove lower bounds on the performan
e of SRPT as 
ompared with PS forgeneral job size distributions.3 Implementation of SRPT based on [23℄Relevant previous systems workThere has been mu
h literature devoted to improving the response time of webrequests. Some of this literature fo
uses on redu
ing network laten
y, e.g. by
a
hing requests ([21℄, [11℄, [10℄) or improving the HTTP proto
ol ([18℄, [34℄).Other literature works on redu
ing the delays at a server, e.g. by building more



15eÆ
ient HTTP servers ([20℄, [35℄) or improving the server's OS ([17℄, [3℄, [27℄,[33℄).The solution we propose is di�erent from the above in that we only want to
hange the order in whi
h requests are s
heduled. In the remainder of this se
tionwe dis
uss only work on priority-based or size-based s
heduling of requests.Almeida et. al. [1℄ use both a user-level approa
h and a kernel-level implemen-tation to prioritizing HTTP requests at a web server. The user-level approa
hin [1℄ involves modifying the Apa
he web server to in
lude a S
heduler pro
esswhi
h determines the order in whi
h requests are fed to the web server. Thekernel-level approa
h in [1℄ simply sets the priority of the pro
ess whi
h handlesa request in a

ordan
e with the priority of the request. Observe that setting thepriority of a pro
ess only allows very 
oarse-grained 
ontrol over the s
hedulingof the pro
ess, as pointed out in the paper. The user-level and kernel-level ap-proa
hes in this paper are good starting points, but the results show that more�ne-grained implementation work is needed. For example, in their experiments,the high-priority requests only bene�t by up to 20% and the low priority requestssu�er by up to 200%.Another attempt at priority s
heduling of HTTP requests whi
h deals spe
if-i
ally with SRPT s
heduling at web servers is our own earlier work [15℄. Thisimplementation does not involve any modi�
ation of the kernel. We experimentwith 
onne
tion s
heduling at the appli
ation level only. We are able to improvemean response time by a fa
tor of 
lose to 4, for some ranges of load, but theimprovement 
omes at a pri
e: a drop in throughput by a fa
tor of almost 2.The problem is that s
heduling at the appli
ation level does not provide �neenough 
ontrol over the order in whi
h pa
kets enter the network. In order toobtain enough 
ontrol over s
heduling, we are for
ed to limit the throughput ofrequests.Our approa
hIt's not immediately 
lear what SRPT means in the 
ontext of a web server. Aweb server is not a single-resour
e system. It is not obvious whi
h of the webserver's resour
es need to be s
heduled. As one would expe
t, it turns out thats
heduling is only important at the bottlene
k resour
e. Frequently this bottle-ne
k resour
e is the bandwidth on the a

ess link out of the web server. \On asite 
onsisting primarily of stati
 
ontent, network bandwidth is the most likelysour
e of a performan
e bottlene
k. Even a fairly modest server 
an 
ompletelysaturate a T3 
onne
tion or 100Mbps Fast Ethernet 
onne
tion."[25℄ (also 
or-roborated by [12℄, [2℄). There's another reason why the bottlene
k resour
e tendsto be the bandwidth on the a

ess link out of the web site: A

ess links to websites (T3, OC3, et
.) 
ost thousands of dollars per month, whereas CPU is 
heapin 
omparison. Likewise disk utilization remains low sin
e most �les end up inthe 
a
he. It is important to note that although we 
on
entrate on the 
ase wherethe network bandwidth is the bottlene
k resour
e, all the ideas in this paper 
analso be applied to the 
ase where the CPU is the bottlene
k | in whi
h 
aseSRPT s
heduling is applied to the CPU.



16 Sin
e the network is the bottlene
k resour
e, we try to apply the SRPT al-gorithm at the level of the network. Our idea is to 
ontrol the order in whi
h theserver's so
ket bu�ers are drained. Re
all that for ea
h (non-persistent) requesta 
onne
tion is established between the 
lient and the web server. Correspond-ing to ea
h 
onne
tion, there is a so
ket bu�er on the web server end into whi
hthe web server writes the 
ontents of the requested �le. Traditionally, the di�er-ent so
ket bu�ers are drained in Round-Robin Order, ea
h getting a fair shareof the bandwidth of the outgoing link. We instead propose to give priority tothose so
kets 
orresponding to 
onne
tions for small �le requests or where theremaining data required by the request is small. Throughout, we use the LinuxOS.Figure 1 shows data 
ow in standard Linux, whi
h employs FAIR s
heduling.Data streaming into ea
h so
ket bu�er is en
apsulated into pa
kets whi
h obtainTCP headers and IP headers. Finally, there is a single2 \priority queue" (transmitqueue), into whi
h all streams feed. This single \priority queue," 
an get as longas 100 pa
kets.
TCP
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(transmit queue)

Fig. 1. Data 
ow in Standard Linux | FAIR s
heduling.Figure 2 shows the 
ow of data in Linux after our modi�
ations: Insteadof a single priority queue (transmit queue), there are multiple priority queues.Priority queue i is only allowed to 
ow if priority queues 0 through i� 1 are allempty. We used 6 priority queues in our experiments.After modifying the Linux kernel, we next had to modify the Apa
he webserver to assign priorities in a

ordan
e with SRPT. Our modi�ed Apa
he de-termines the size of a request and then sets the priority of the 
orrespondingso
ket by 
alling setso
kopt. As Apa
he sends the �le, the remaining size ofthe request de
reases. When the remaining size falls below the threshold for the
urrent priority 
lass, Apa
he updates the so
ket priority.Lastly, we had to 
ome up with an algorithm for partitioning the requestsinto priority 
lasses whi
h work well with the heavy-tailed web workload.2 The queue a
tually 
onsists of 3 priority queues, a.k.a. bands. By default, however,all pa
kets are queued to the same band.
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ombination of (i) the modi�
ations to Linux, (ii) the modi�
ations tothe Apa
he web server, and (iii) the priority algorithm allows us to implementSRPT s
heduling. Details on ea
h of these three 
omponents are provided in[23℄.A very simple experimental ar
hite
ture is used to run our tests. It involvesonly two ma
hines ea
h with an Intel Pentium III 700MHz pro
essor and 256MBRAM, running Linux 2.2.16, and 
onne
ted by a 10Mb/se
 full-duplex Ethernet
onne
tion. The Apa
he web server is run on one of the ma
hines. The otherma
hine (referred to as the \
lient ma
hine") hosts 200 or so (simulated) 
liententities whi
h send requests to the web server.The 
lient's requests are taken from a 1-day tra
e from the So

er WorldCup 1998, from the Internet TraÆ
 Ar
hive [22℄. The 1-day tra
e 
ontains 4.5million HTTP requests, virtually all of whi
h are stati
. The tra
e exhibits astrong heavy-tailed property with the largest < 3% of the requests making up> 50% of the total load.This request sequen
e is 
ontrolled so that the same experiment 
an be re-peated at many di�erent server loads. The server load is the load at the bot-tlene
k devi
e { in this 
ase the network link out of the web server. The loadthus represents the fra
tion of bandwidth used on the network link out of theweb server (for example if the requests require 8Mb/se
 of bandwidth, and theavailable bandwidth on the link if 10Mb/se
, then the network load is 0:8).Some results from [23℄Our experiments yield the following results:{ SRPT-based s
heduling de
reases mean response time in our LAN setup bya fa
tor of 3 { 8 for loads greater than 0:5.{ SRPT-based s
heduling helps small requests a lot, while negligibly penalizinglarge requests. Under a load of 0:8, 80% of the requests improve by a fa
tor of10 under SRPT-based s
heduling. Only the largest 0:1% of requests su�er anin
rease in mean response time under SRPT-based s
heduling (by a fa
torof only 1.2).{ The varian
e in the response time is far lower under SRPT as 
ompared withFAIR, in fa
t two orders of magnitude lower for most requests.



18{ There is no negative e�e
t on byte throughput, request throughput, or CPUutilization from using SRPT as 
ompared with FAIR.For more details see [23℄.4 Con
lusionWe have shown both analyti
ally and experimentally that SRPT s
heduling ofrequests is very powerful under workloads with a heavy-tail property, su
h as webworkloads. Under su
h workloads, 99% of requests see signi�
ant improvement inmean response time under SRPT s
heduling as 
ompared with the traditionally-used FAIR s
heduling. Furthermore, even the very largest requests have lowerexpe
ted response time under SRPT than under FAIR s
heduling in theory.Experimentally, the largest requests may perform negligibly worse under SRPTs
heduling as 
ompared with FAIR s
heduling. We believe this is simply due tothe 
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