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s.bu.edu1 Introdu
tionOver the last de
ade an important new dire
tion has developed in the perfor-man
e evaluation of 
omputer systems: the study of heavy-tailed distributions.Loosely speaking, these are distributions whose tails follow a power-law with lowexponent, in 
ontrast to traditional distributions (e.g., Gaussian, Exponential,Poisson) whose tails de
line exponentially (or faster). In the late '80s and early'90s experimental eviden
e began to a

umulate that some properties of 
om-puter systems and networks showed distributions with very long tails [7, 28, 29℄,and attention turned to heavy-tailed distributions in parti
ular in the mid '90s[3, 9, 23, 36, 44℄.To de�ne heavy tails more pre
isely, let X be a random variable with 
u-mulative distribution fun
tion F (x) = P [X � x℄ and its 
omplement �F (x) =1� F (x) = P [X > x℄. We say here that a distribution F (x) is heavy tailed if�F (x) � 
x�� 0 < � < 2 (1)for some positive 
onstant 
, where a(x) � b(x) means limx!1 a(x)=b(x) = 1:This de�nition restri
ts our attention somewhat narrowly to distributions withstri
tly polynomial tails; broader 
lasses su
h as the subexponential distributions[19℄ 
an be de�ned and most of the qualitative remarks we make here apply tosu
h broader 
lasses.Heavy tailed distributions behave quite differently from the distributionsmore 
ommonly used in performan
e evaluation (e.g., the Exponential). In par-ti
ular, when sampling random variables that follow heavy tailed distributions,the probability of very large observations o

urring is non-negligible. In fa
t,under our de�nition, heavy tailed distributions have in�nite varian
e, re
e
t-ing the extremely high variability that they 
apture; and when � � 1, thesedistributions have in�nite mean.? This is a revised version of a paper originally appearing in Le
ture Notes in ComputerS
ien
e 1786, pp. 1{9, Mar
h 2000.



22 Eviden
eThe eviden
e for heavy-tailed distributions in a number of aspe
ts of 
omputersystems is now quite strong. The broadest eviden
e 
on
erns the sizes of dataobje
ts stored in and transferred through 
omputer systems; in parti
ular, thereis eviden
e for heavy tails in the sizes of:{ Files stored on Web servers [3, 9℄;{ Data �les transferred through the Internet [9, 36℄;{ Files stored in general-purpose Unix �lesystems [25℄; and{ I/O tra
es of �lesystem, disk, and tape a
tivity [21, 38{40℄This eviden
e suggests that heavy-tailed distributions of data obje
ts arewidespread, and these heavy-tailed distributions have been impli
ated as anunderlying 
ause of self-similarity in network traÆ
 [9, 30, 35, 44℄.Next, measurements of job servi
e times or pro
ess exe
ution times ingeneral-purpose 
omputing environments have been found to exhibit heavy tails[17, 23, 28℄.A third area in whi
h heavy tails have re
ently been noted is in the distribu-tion of node degree of 
ertain graph stru
tures. Faloutsos et al. [14℄ show thatthe inter-domain stru
ture of the Internet, 
onsidered as a dire
ted graph, showsa heavy-tailed distribution in the outdegree of nodes. These studies have alreadyin
uen
ed the way that Internet-like graph topologies are 
reated for use in sim-ulation [32, 26℄. Another study shows that the same is true (with respe
t to bothindegree and outdegree) for 
ertain sets of World Wide Web pages whi
h forma graph due to their hyperlinked stru
ture [1℄; this result has been extended tothe Web as a whole in [6℄.Finally, a phenomenon related to heavy tails is the so-
alled Zipf 's Law [45℄.Zipf's Law relates the \popularity" of an obje
t to its lo
ation in a list sortedby popularity. More pre
isely, 
onsider a set of obje
ts (su
h as Web servers,or Web pages) to whi
h repeated referen
es are made. Over some time interval,
ount the number of referen
es made to ea
h obje
t, denoted by R. Now sortthe obje
ts in order of de
reasing number of referen
es made and let an obje
t'spla
e on this list be denoted by n. Then Zipf's Law states thatR = 
n��for some positive 
onstants 
 and �. In its original formulation, Zipf's Law set� = 1 so that popularity (R) and rank (n) are inversely proportional. In pra
ti
e,various values of � are found, with values often near to or less than 1. Eviden
efor Zipf's Law in 
omputing systems (espe
ially the Internet) is widespread [2,13, 18, 33℄; a good overview of su
h results is presented in [5℄.3 Impli
ations of Heavy TailsUnfortunately, although heavy-tailed distributions are prevalent and importantin 
omputer systems, their unusual nature presents a number of problems forperforman
e analysis.



3The fa
t that even low-order distributional moments 
an be in�nite meansthat many traditional system metri
s 
an be unde�ned. As a simple example,
onsider the mean queue length in an M=G=1 queue, whi
h (by the Polla
zek-Khin
hin formula) is proportional to the se
ond moment of servi
e time. Thus,when servi
e times are drawn from a heavy-tailed distribution, many propertiesof this queue (mean queue length, mean waiting time) are in�nite. Observationslike this one suggest that performan
e analysts dealing with heavy tails may needto turn their attention away from means and varian
es and toward understandingthe full distribution of relevant metri
s. Most early work in this dire
tion hasfo
used on the shape of the tail of su
h distributions (e.g., [34℄).Some heavy-tailed distributions apparently have no 
onvenient 
losed-formLapla
e transforms (e.g., the Pareto distribution), and even for those distribu-tions possessing Lapla
e transforms, simple systems like the the M=G=1 mustbe evaluated numeri
ally, and with 
onsiderable 
are [41℄.In pra
ti
e, random variables that follow heavy tailed distributions are 
har-a
terized as exhibiting many small observations mixed in with a few large ob-servations. In su
h datasets, most of the observations are small, but most of the
ontribution to the sample mean or varian
e 
omes from the rare, large obser-vations. This means that those sample statisti
s that are de�ned 
onverge veryslowly. This is parti
ularly problemati
 for simulations involving heavy tails,whi
h many be very slow to rea
h steady state [12℄.Finally, be
ause arbitrarily large observations 
an not be ruled out, issues ofs
ale should enter in to any dis
ussion of heavy tailed models. No real system
an experien
e arbitrarily large events, and generally one must pay attentionto the pra
ti
al upper limit on event size, whether determined by the times
aleof interest, the 
onstraints of storage or transmission 
apa
ity, or other system-de�ned limits. On the brighter side, a useful result is that it is often reasonableto substitute �nitely-supported distributions for the idealized heavy-tailed dis-tributions in analyti
 settings, as long as the approximation is a

urate over therange of s
ales of interest [16, 20, 22℄.4 Taking Advantage of Heavy TailsDespite the 
hallenges they present to performan
e analysis, heavy tailed distri-butions also exhibit properties that 
an be exploited in the design of 
omputersystems. Re
ent work has begun to explore how to take advantage of the presen
eof heavy tailed distributions to improve 
omputer systems' performan
e.4.1 Two Important PropertiesIn this regard, there are two properties of heavy tailed distributions that o�erparti
ular leverage in the design of 
omputer systems. The �rst property is re-lated to the fa
t that heavy tailed distributions show de
lining hazard rate, andis most 
on
isely 
aptured in terms of 
onditional expe
tation:E[X jX > k℄ � k



4when X is a heavy tailed random variable and k is large enough to be \in thetail." We refer to this as the expe
tation paradox, after [31, p. 343℄; it says thatif we are making observations of heavy-tailed interarrivals, then the longer wehave waited, the longer we should expe
t to wait. (The expe
tation is unde�nedwhen � � 1, but the general idea still holds.) This should be 
ontrasted withthe 
ase when the underlying distribution has exponential tails or has boundedsupport above (as in the uniform distribution); in these 
ases, eventually onealways gets to the point where the longer one waits, the less time one shouldexpe
t to 
ontinue waiting.The se
ond useful property of heavy tailed distributions we will 
all themass-
ount disparity. This property 
an be stated formally as [19℄:limx!1 P [X1 + :::+Xn > x℄P [max(X1; :::; Xn) > x℄ = 1 for all n � 2whi
h is the 
ase when the Xi are i.i.d. positive random variables drawn from aheavy-tailed distribution. This property states that when 
onsidering 
olle
tionsof observations of a heavy-tailed random variable, the aggregated mass 
ontainedin the small observations is negligible 
ompared to the largest observation indetermining the likelihood of large values of the sum.In pra
ti
e this means that the majority of the mass in a set of observationsis 
on
entrated in a very small subset of the observations. This 
an be visualizedas a box into whi
h one has put a few boulders, and then �lled the rest of theway with sand. This mass-
ount disparity means that one must be 
areful in\optimizing the 
ommon 
ase" [27℄. The typi
al observation is small; the typi
alunit of work is 
ontained in a large observation.This disparity 
an be studied by de�ning the mass-weighted distributionfun
tion: Fw(x) = R x�1 u dF (u)R1�1 v dF (v) (2)and 
omparing Fw(x) with F (x). Varying x over its valid range yields a plot ofthe fra
tion of total mass that is 
ontained in the fra
tion of observations lessthan x: An example of this 
omparison is shown in Figure 1. This �gure showsFw(x) vs. F (x) for the Exponential distribution, and for a parti
ular heavy-taileddistribution. The heavy-tailed distribution is 
hosen to 
orrespond to empiri
almeasurements of �le sizes in the World Wide Web [4℄; it has � = 1:0. Sin
ethe denominator in (2) is in�nite for heavy tailed distributions with � � 1, thea
tual distribution used has been trun
ated to span six orders of magnitude |whi
h is reasonable for �le size distributions (whi
h 
an range in size from bytesto megabytes).The �gure shows that for the Exponential distribution, the amount of mass
ontained in small observations is roughly 
ommensurate with the fra
tion oftotal observations 
onsidered; i.e., the 
urve is not too far from the line y = x.On the other hand, for the heavy tailed distribution, the amount of mass is notat all 
ommensurate with the fra
tion of observations 
onsidered; about 60% ofthe mass is 
ontained in the upper 1% of the observations! This is 
onsistent
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Fig. 1. Total Mass as a Fun
tion of Smallest Observationswith results in [37℄ showing that 50-80% of the bytes in FTP transfers are dueto the largest 2% of all transfers.4.2 Exploiting The Heavy Tail PropertiesOn
e these properties are understood, they 
an be exploited in a number of waysto improve system performan
e. This se
tion summarizes some (though not all)re
ent attempts to do this.Load Balan
ing in Distributed Systems In some distributed systems, tasks 
anbe pre-empted and moved from one node to another, whi
h 
an improve loadbalan
e. However, the 
ost of migration is not trivial and 
an outweigh perfor-man
e gains from improved load balan
e if not used 
arefully. In [23℄, the authorsshow that previous assessments of the potential for pre-emptive migration hadmainly used exponential tasks size assumptions and 
on
luded that the potentialgains from task migration were small. However, on
e the task size distributionis understood to be heavy-tailed, two bene�ts emerge: 1) the mass-
ount dis-parity means that relative few tasks need to be migrated to radi
ally improveload balan
e; and 2) the expe
tation paradox means that a task's lifetime todate is a good predi
tor of its expe
ted future lifetime. Taken together, thesetwo bene�ts form the foundation for a enlightened load balan
ing poli
y that
an signi�
antly improve the performan
e of a wide 
lass of distributed systems.When pre-emption is not an option, understanding of heavy tailed distribu-tions 
an still inform load balan
ing poli
ies. The question in these systems is\whi
h queue should an arriving task join?" In the 
ase when servi
e at the nodesis FCFS, and knowledge is available about the size of the arriving task, the bestpoli
y is 
ommonly assumed to be joining the queue with the shortest expe
ted



6delay [43℄ although this is known to be best only for task size distributions within
reasing failure rate. In [24℄, the authors show a better poli
y for the 
ase inwhi
h task sizes have a heavy-tailed distribution, whi
h they 
all SITA-E. Theidea is to assign an in
oming task to a queue based on the in
oming task's size.Ea
h queue handles tasks whose sizes lie in a 
ontiguous range, and ranges are
hosen so as to equalize load in expe
tation. This poli
y is shown to signi�
antlyoutperform shortest-expe
t-delay assignment, when 1 < � � 2. The bene�tsof the poli
y a

rue primarily from the the mass-
ount disparity in task sizes:grouping like tasks together means that the vast majority of tasks are sent toonly a few queues; at these queues, task size variability is dramati
ally redu
edand so FCFS servi
e is very eÆ
ient.Finally, in another paper [8, 11℄, the authors show that in the same setting(distributed system of FCFS servers, task sizes are heavy tailed, and in
omingtask sizes are known) the expe
ted slowdown metri
 is optimized by poli
ies thatdo not balan
e load. (Slowdown is de�ned as a job's waiting time in queue dividedby its servi
e demand.) This is possible be
ause of the mass-
ount disparity; whenmost tasks are sent to only a few queues, redu
ing the load at those queuesde
reases the slowdown experien
ed at those queues. In this 
ase, most tasksexperien
e de
reased slowdown, while the relatively few large tasks experien
eonly slightly in
reased slowdown. In expe
tation, slowdown is de
reased.S
heduling in Web Servers In single-node systems, attention has been given tothe s
heduling issue. Most systems use a variant of timesharing to s
hedule tasks,possibly in
orporating multilevel feedba
k; this is e�e
tive when task sizes areunknown. In [22℄, the authors argue that Web servers are in a unusual position;they 
an estimate task size upon task arrival be
ause, for stati
 Web pages,the �le size is known at request time. As a result, they argue for the use ofshortest-remaining-pro
essing-time (SRPT) s
heduling within Web servers. Onesigni�
ant drawba
k of SRPT is that it improves the response time of small tasksat the expense of large tasks; however the authors argue that this is a

eptablewhen tasks follow heavy-tailed distributions su
h as are en
ountered in the Web.The reason is that the mass-
ount disparity means that under SRPT, althoughlarge tasks are interrupted by small tasks, the small tasks represent only a minorfra
tion of total system load. Thus the great majority of tasks have their responsetime improved, while the relatively few large tasks are not seriously punished. In[10℄ the authors des
ribe an a
tual Web server implemented to use this s
hedulingpoli
y. The paper shows eviden
e that the new server exhibits mean responsetimes 4-5 times lower than a popularly deployed server (Apa
he); and that theperforman
e impa
ts on large tasks are relatively mild.Routing and Swit
hing in the Internet In Internet traÆ
 management, a numberof improved approa
hes to routing and swit
hing have been proposed, based onthe observation that the lengths of bulk data 
ows in the Internet exhibit heavytails.One promising routing te
hnique is to use swit
hing hardware, by 
reatingshort
uts (temporary 
ir
uits) for long sequen
es of pa
kets that share a 
ommon



7sour
e and destination. Short
uts provide the bene�ts of fast swit
h-based rout-ing, at the expense of network and swit
h overhead for their setup. The authorsin [15℄ argue that Web traÆ
 
an be eÆ
iently routed using this te
hnique. Theirresults rely on the mass-
ount disparity, showing that the majority of the bytes
an be routed by 
reating short
uts for only a small fra
tion of all data 
ows.They show that in some settings, a setup threshold of 25 pa
kets (the numberof same-path pa
kets to observe before 
reating a swit
hed 
onne
tion) is suf-�
ient to eliminate 90% of the setup 
osts while routing more than 50% of thebytes over swit
hed 
ir
uits. The 
hoi
e of threshold impli
itly makes use of theexpe
tation paradox: longer thresholds 
an be used to o�set larger setup 
osts,sin
e longer thresholds identify 
ows whose expe
ted future length is longer aswell.Another proposed routing te
hnique is load-sensitive routing. Load sensitiverouting attempts to route traÆ
 around points of 
ongestion in the network;
urrent Internet routing only makes use of link state (up or down). Unfortunately,load-sensitive routing 
an be expensive and potentially unstable if applied toevery routing de
ision. However, the authors in [42℄ show that if applied onlyto the long-lived 
ows, it 
an be eÆ
ient and 
onsiderably more stable. Thesu

ess of this te
hnique relies on the heavy tailed distribution of Internet 
ows:the mass-
ount disparity means that a large fra
tion of bytes 
an be routed byrerouting only a small fra
tion of the 
ows; and the expe
tation paradox allowsthe poli
y to observe a 
ow for some period of time to 
lassify it as a long 
ow.A
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