
The Performance Impact of Advance

Reservation Meta-scheduling

Quinn Snell, Mark Clement, David Jackson, Chad Gregory

Computer Science Department

Brigham Young University

Provo, Utah 84602-6576

fsnell, clement, gregoryg@cs.byu.edu jacksond@mhpcc.edu

Abstract As supercomputing resources become more available, users will require resources man-

aged by several local schedulers. For example, a user may request 100 processors, a telescope,

network bandwidth and a graphics display in order to perform an experiment. In order to gain

access to all of these resources (some of which may be in di�erent geographical and administrative

domains), current systems require meta-jobs like this to run during locked down periods when the

resources are only available for meta job use. It is more convenient and eÆcient if the user is able

to make a reservation at the soonest time when all of these resources are available. Low utiliza-

tion during lock down periods can also be eliminated when meta-jobs are interleaved with existing

local usage. System administrators are reluctant to allow reservations external to locked down pe-

riods because of the impact reservations may have on utilization and the Quality of Service that

the center is able to provide to its normal users. This research quanti�es the impact of advance

reservations on supercomputing center metrics. It also outlines the algorithms that must be used to

schedule meta-jobs. The Maui scheduler is used to examine metascheduling using trace �les from

existing supercomputing centers. These results indicate that advance reservations can improve the

response time of supercomputing centers for meta-jobs, while not signi�cantly impacting overall sys-

tem performance. The appropriate balance between meta-jobs and local jobs is also speci�ed using

experimental results.

Keywords: Meta-computing, back�ll scheduling, Maui scheduler, deadlock, livelock, meta-scheduling

1 Introduction

Recently, there have been a number of research groups focusing their e�orts on utilizing the
combined resources of multiple supercomputing facilities [1, 2, 3, 4]. The motives for this
avenue of research are obvious. First, and perhaps foremost, is the belief that the proper
combination of resources and their aggregate processing power will yield a system that is
both scalable and potentially more eÆcient. A system such as the one proposed in this
paper would provide enhanced scheduling services for at least three kinds of jobs: those that
require more resources than are available at any one site, jobs that require a combination



of resources that are not available at any one site, and �nally, jobs from users that desire
a better overall response time than could be obtained by limiting their jobs to using the
resources found at any single site.
Regardless of the job type, using the combined resources of more than one site requires

cooperation that is not inherent in local resource scheduling systems. A system that co-
ordinates and works with the local schedulers is required. Such a system is often called a
metascheduler. The metascheduler makes this aggregation of resources available to what are
termed throughout this paper as 'metajobs'. Each metascheduler maintains a job queue to
which these metajobs are submitted by users where they are stored until they complete. A
metajob can be simply a normal batch job submitted to the meta scheduler or it may be
modi�ed to utilize special functionality that can only be found in a metascheduling environ-
ment. There are three key di�erences between a metajob and a standard batch job: 1) The
machine or local scheduler under which the metajob will run is not known at job submit
time. 2) The metajob may contain a utility function which instructs the metascheduler as
to what aspects of the resources are most important to it. These aspects may include cost,
machine speed, time until availability, etc. 3) The resources utilized by the metajob may
span more than one machine or local scheduler.
Some current metascheduling systems work by dedicating a set of local resources to be

used and scheduled by the metascheduler. With these metaschedulers, local management and
administration sta� determine both a maximum amount of resources allowed for metasched-
uled work and a set of timeframes during which these resources can be used. During each of
these timeframes, the metascheduler assumes full control of all allowed resources, preventing
their use by locally submitted jobs. These resources remain unavailable regardless of the
metascheduled workload. Supercomputer system managers have reported average utiliza-
tions ranging between 5% and 25% on those nodes that are dedicated for metacomputing
systems. Due to the fragmentation of resources, low utilizations occur even when there is a
backlog of local jobs. A metascheduling system based on this model clearly wastes valuable
resources, signi�cantly lowering the overall system utilization and increasing the average job
turnaround time for local jobs.
This dedicated resource metascheduler schedules resources as if it were a local scheduler,

according to its own private set of policies and priorities. It does not leverage the knowledge
or capabilities of the local scheduler. The local scheduler has, in reality, completely relin-
quished control of the resources that have been dedicated to the metascheduler. This brings
up more issues. First, lower utilization can be expected since the local compute resources are
now fragmented. Additionally, the resource fragments are exclusive of each other meaning
that those resources dedicated for metascheduled jobs cannot be used by locally submitted
jobs even if they are idle; the same holds true for metascheduled jobs and resources dedicated
for local workload. Also, under existing 'dedicated resource' metaschedulers, each resource
fragment is scheduled according to an independent, private set of policies. There is no co-
operation between the local schedulers and metaschedulers, and there is no knowledge of
each others policies, priorities, or workload. In consequence of these conditions, there is no
opportunity for cross-fragment scheduling optimizations such as back�ll or intelligent node
allocation.
Ursala, a metascheduler developed at Brigham Young University and used for the research

described in this paper, cooperates with the local schedulers and introduces metascheduled



jobs into the locally-produced workload. A system capable of doing this can achieve better
overall utilization of resources because full information and control are maintained at the local
scheduler level. Local scheduling optimizations such as back�ll can then occur. Instead of
dedicating the maximum block of resources allowed by the administrator, Ursala intelligently
reserves only those resources that are required for existing, queued metajobs.
Ursala operates by breaking up a metajob into a number of localized sub-jobs, each of

which is submitted to a di�erent local resource manager. With parallel jobs, it is impera-
tive that all resources required by the entire job be made available at job start time. The
metascheduler must be able to determine a time when all of the needed resources are avail-
able. Each local scheduler must also be able to guarantee the availability of the needed
resources for the corresponding sub-job at that determined time.
The guarantee of providing speci�c resources at a speci�c time is typically termed an

advance reservation. Foster et. al [5] report that currently there is \no widely deployed
resource management system for networks, computers, or other resources" that supports
advance reservations. This is no longer the case. The Maui scheduler[6, 7] has extensive
support for advance reservations and is the local scheduler used in this research.
Creating coinciding advance reservations on each of the needed systems is not as simple

as using a block of dedicated resources. However, the advantages of using such a system are
tremendous. First, there is no fragmentation and there are no resources sitting idle while
the metascheduled workload is low. The metascheduler only reserves the resources it needs
exactly when it needs them. Thus, the local scheduler is allowed to utilize these resources
at all other times and the overall utilization of the system is consequently higher. Each
local scheduler is also able to enforce its local policies for all jobs. There are still questions
which must be answered about a metascheduler that uses advance reservations to launch
jobs across multiple systems: \What e�ect does metascheduling using advance reservations
have on overall system utilization?", \What problems arise when trying to create coinciding
reservations?", and \What impact does this type of metascheduling have on both local and
metajob turn around time?"
This paper will deal with the issues listed above. Sections 2 and 3 discuss advance reser-

vations and metascheduling respectively. The issues that surround metascheduling based on
advance reservations are then discussed in Section 4. Finally, we present our metascheduling
system and the experimental results we have obtained to answer the questions posed above.

2 Advance Reservations

In the most general sense, an advance reservation is a scheduling object which reserves a
group of resources for a particular timeframe for access only by a speci�ed entity or group
of entities. These con�gurable aspects of an advance reservation can be set to support a
metajob. The settings required are listed below.

1. A reservation must reserve exactly the type and amount of resources requested by the
job.

2. A reservation must reserve these resources for use at the requested start time.



3. A reservation must reserve these resources for the wallclock limit of the metajob.

4. A reservation must reserve these resources for use only by the speci�ed metajob.

5. The local scheduler must guarantee that the metajob will only run in the job reservation
even if resources exist elsewhere which would allow the job to run earlier.

Reservations which meet the above con�guration are termed a job reservation. While
local schedulers may support advance reservations with additional attributes and features,
the attributes listed above are the minimal set required to properly reserve resources for a
metajob.

a) no advance reservations

job to be 
 placed

Time

N
od

es

Time

N
od

es

job to be 
 placed

Advance

Reservation

b) with an advance reservation

Figure 1: Comparison of scheduling with and without advance reservations

Scheduling in the presence of advance reservations is signi�cantly more complex than
normal scheduling. Without advance reservations, a scheduler simply sets a policy of not
scheduling any job that will delay the start time of the highest priority job in the queue. As
long as that policy is maintained, the scheduler is free to take jobs from other parts of the
queue and back�ll the nodes. The scheduler need only consider if adequate resources exist
at the present time to start a given job and need not determine if a job will �t on a given
set of nodes in the time dimension.
Scheduling with advance reservations and guaranteed start time requires that the scheduler

be capable of not only �tting jobs into the node space dimension, but also �tting them into the
time dimension. This potentially involves analyzing resource dedication to other jobs both
before and after the time of interest. Figure 1 compares scheduling with and without advance
reservations. Note that without advance reservations, the future in the time dimension is
open. With only a single advance reservation in place, the scheduler must now consider if
a job will have enough resources available and if the resources will be available long enough
for the job to complete before the resources are required by the future reservation. This is
a much more complex decision.
Despite the added complexity, there are numerous advantages associated with advance

reservations. Once reservations are incorporated, a scheduler can perform reservation-based



deadline scheduling. The scheduler can guarantee the start time of a given job so that
job start time can be coordinated with data availability. Schedulers can back�ll around
reservations to minimize the impact of dedicating resources to jobs, users, or projects. These
functions yield a higher overall level of service to all users. This paper will show that while
advance reservations can be utilized by the local scheduler to provide a number of local
services, their greatest value may lie in their use in the metascheduling realm where they
can be built upon to provide a new and powerful class of metascheduling services.

3 Meta-scheduling

Meta-scheduling can be loosely de�ned as the act of locating and allocating resources for a
job on a metacomputer. Smarr and Catlett [8] de�ne a metacomputer as the collection of
resources that are transparently available to the user via the network. Thus a metascheduling
system should make a collection of resources transparently available to the user as if it were
a single large system. The key in this de�nition is that the user need not be aware of where
the resources are, who owns the resources, or who administers the resources in order to use
them. The scheduling issues that surround the creation of such a system is the focus of this
section.
From the point of view of the metascheduler, metajobs fall into two basic categories: those

that run on a single machine, and those that span multiple machines. The �rst category of
jobs require less e�ort on the part of the metascheduler. The metascheduler simply locates
which local scheduler can provide the greatest utility to the metajob and submits the metajob
into that local scheduler's workload queue. The local scheduler takes care of the rest. Meta
jobs that span multiple local schedulers introduce new issues that are not found in local
scheduling systems.
The �rst step in developing a metascheduling system is to de�ne the types of scheduling

that will be performed. The following three classi�cations can be applied to metajobs.

1. Speci�ed Co-Allocation: The user speci�es all resource requirements including exactly
which processors and resources are required. For example a user may specify that tele-
scope X, 512 IBM SP2 processing nodes from site Y, and an SGI graphics pipe from
site Z are needed. The metascheduler would then �nd a time when all of the resources
were available for the user's priority. In this case, all requests are for particular re-
sources and locations are de�ned by the user. Reservations are made for each required
resource at that time. This is the easiest kind of scheduling and little information
need be passed between the scheduler and the metascheduler. Job initialization and
resource management issues are all handled locally.

2. General Co-Allocation: This type of scheduling di�ers from speci�ed co-Allocation in
that the user does not specify where to run each part of the job. The user merely
speci�es the needed resource types and the metascheduler decides when and where the
best resources are located, reserves those resources at that time and runs the requested
job. For example, the user's speci�cation of a SGI graphics pipe could yield any SGI
graphics pipe known to the metascheduler.



3. Optimal Scheduling: The extreme case in scheduling is to determine the best location
for every resource in the job. Using knowledge about machine and network perfor-
mance, the metascheduler determines the placement that optimizes cost, performance,
response time, throughput, and other factors. This type of metascheduling requires
up to date performance knowledge from each part of the metacomputer as well as a
characterization of the application's network and CPU requirements. For example, if
a user simply requested 100 processors, the scheduler would determine the best 100
processors to use, even if that means fragmenting the job across supercomputer centers.

These three types of scheduling are ordered according to the level of intelligence that is
required of the metascheduler. Speci�ed Co-Allocation requires only that the metascheduler
optimize in the time dimension, whereas the other categories require that the metascheduler
make intelligent decisions in both time and space. Category 2 and category 3 scheduling
can be performed by allowing the user to specify a utility function. The metascheduler
then locates resources for the job such that the utility function is maximized. This type of
scheduling will not be considered here, but is part of ongoing research.
Because all three categories of metascheduling are dependent upon advance reservations,

it is critical to determine the impact of these reservations on local workload and their ef-
fectiveness in coordinating metajob components. The remainder of this paper will discuss
Speci�ed Co-Allocation using advance reservations and their e�ect on local and metasched-
uler performance.

3.1 Meta-scheduling using Advance Reservations

As stated above, the goal of metascheduling is to reserve groups of resources from di�erent
resource management systems. To accomplish this goal, a metascheduler must create multi-
ple, coinciding advance reservations. Creating these advance reservations can be reduced to
the resource allocation problem in distributed algorithms research [9]. It is well known that
such problems introduce possibilities of deadlock and livelock. Before discussing these issues,
we consider the steps that a metascheduler must take to create coinciding reservations.

1. Determine available resources at each site.

2. Select the resources and time frame.

3. Create the advance reservations at each site.

4. Stage the appropriate job components to each local scheduler.

Determination of the available resources can be performed in many di�erent ways. In
the simplest sense, a query is performed on the local scheduler asking if resource set X is
available at time Y. A much more exible metascheduling system may be created if the
metascheduler can ask 'what resources are available for job X in the time range A to B?'
and the local scheduler responds with all ranges of acceptable times and resource sets that
can be made available while still meeting local scheduler policies. For example, '8 nodes
available from now until 8 hours out and 16 nodes available from 8 hours out until 24 hours



out'. For metajobs which must span local schedulers, the metascheduler must perform an
intersection of the returned start time ranges to determine the possible start times. The
metascheduler could then automatically select the optimal metajob start time using the
job's utility function or present the possibilities to the submitting user for a �nal decision.
For example, perhaps a scientist would like to allocate resources at three sites during

working hours for interactive use. Referring to Figure 2, if the local schedulers can only
answer yes or no to a proposed start time, the metascheduler must then propose a new
start time if no appropriate times are available. This is shown in the �rst column of the
�gure. Flexibility is added when resource availability time ranges are returned as shown
in the second column. Now the metascheduler can �nd the intersecting time ranges and
present that to the scientist. However, there may be no appropriate intersecting time, thus
forcing the scientist to propose a new start time. If a list of start time ranges is returned,
the scientist may see that although there are no appropriate times today, there is a time the
next day. This eliminates the need for the scientist to begin the process over again with a
new proposed start time.

System 1

System 2

System 3

yes

no

yes

Result no

yes/no Range Range List

Time Time

Figure 2: Comparison of possible query results returned from local schedulers.

Deadlock and livelock issues are introduced because the metascheduler must gather re-
source information and make reservations on several local schedulers. The metascheduler
receives available time ranges, then determines the appropriate start time and resources for
the job before making the reservations. Because there is a brief delay between collecting the
resource availability information and making the reservations, it is possible that the availabil-
ity of the resources under the control of each local scheduler has changed. This could be due
to local scheduling or due to reservations created by a competing metascheduler attempting
to create advance reservations in the same time frame.
The potential for deadlock is brought about because all of the four deadlock conditions

exist [10]. Eliminating one of the four conditions eliminates deadlock. Perhaps the easiest
condition to eliminate is Hold and Wait. In a metascheduling environment, this means that
as advance reservations are created, if any reservation cannot be made due to recent resource
availability changes, all existing reservations for that job must be cancelled. This policy is
logical in the case of metascheduling since the local reservations are for a speci�c time and
the job must start on all resources at the same time. Thus deadlock situations are eliminated
by forbidding Hold and Wait.



Scheduler

Resource
Manager

Scheduler

Resource
Manager

Metascheduler A Metascheduler B

Site A Site B

Figure 3: Livelock scenrio. Metaschedulers A and B are competing for resources at sites A
and B.

Livelock on the other hand is much more complex. Two separate metascheduling systems
can mutually interfere and cause changes in the state of the local schedulers such that each
metascheduler is never able to create coinciding reservations on the local machines. For
example, consider the scenario depicted in Figure 3. Both metaschedulers need resources at
sites A and B. If either site grants the needed resources to one of the metaschedulers, the
needed resources will not be available for the other metascheduler. The resource query and
reservation allocation are separate steps. If the metaschedulers proceed through the steps
by approaching the local schedulers in opposing order, they will mutually interfere. Both
metaschedulers will see that the needed resources are available, and will request reservations
from their corresponding sites. However, when the metaschedulers request from opposing
sites, they will both fail and release their other reservations. The process will then begin
again. If the metaschedulers continue to request, they will most likely get out of sync
eventually and one will succeed, thus breaking the livelock. The metaschedulers may go
through many of these iterations though.
There are many research areas that have similar livelock characteristics. In particular, the

Ethernet [11] CSMA/CD networking protocol has a random exponential backo� policy for
dealing with collisions on a shared network. When utilization on the network is high, much
of the network bandwidth is spent in collision detection and backo�, resulting in degraded
performance. One major di�erence, however, is that the Ethernet possess only a single
shared resource while the metascheduling problem has multiple shared resources, increasing
the problem's complexity.



The main cause of the livelock problem is that the local system can change state between
the metascheduler's resource query and reservation phases. The state changes can come
from two sources, new resource manager information (i.e. a node going down) and new
reservations created by competing metaschedulers. While nothing can be done to control
actual resource state changes, steps can be taken to eliminate the possibility of resource
state due to other metaschedulers. One solution is to have the resource query lock the
reservation state of the local scheduler for a period of time preventing other metaschedulers
from creating reservations during this time. The locked time would be just long enough to
allow the locking metascheduler to process the resource information and make all needed
reservations. This locking of reservation state is one form of a courtesy reservation. A
timeout can be imposed to eliminate the case of a courtesy reservation locking out the entire
machine for long periods of time. If the reservation is not made before the timeout, there is
no guarantee that the resources will still be available. However, these courtesy reservations
introduce several problems into local scheduling algorithms. It is hard to determine the
potential e�ects of courtesy reservations on scheduler performance. Further research is being
conducted to examine the tradeo�s between courtesy reservations and stateless reservations
combined with a backo� policy.

3.2 The Maui Scheduler

The Maui scheduler is currently in use at many supercomputing facilities and is ideal for this
research. The Maui scheduler supports advance reservations in the form previously described
allowing the scheduler to guarantee a job's start time. A metascheduling interface allows
very exible resource availability queries to be performed. The metascheduler may specify
the job in great detail or it may simply specify the number of resources and the amount
of time required. Replies to these queries are returned as a list of start time ranges and
associated resource sets. As discussed previously, this yields great exibility in determining
when and where to start a given metajob.
Perhaps the most important feature of the Maui scheduler with respect to this research

is its ability to run in simulation mode. Given a trace �le of an actual workload, the
Maui scheduler can simulate the scheduling of the workload, allowing the administrator
to experiment with di�erent parameters and attempt to improve scheduler eÆciency. The
scheduler steps forward in discrete amounts of time. It can be told to single step through
these discrete time blocks or to advance through a number of them. Another unique feature
valuable to this research is the ability to externally insert new jobs and reservations into the
simulated workload as the simulation is running.

3.3 Brigham Young University Meta-scheduler (Ursala)

At Brigham Young University, we have created Ursala, a metascheduling system which
creates coinciding advance reservations on participating local schedulers. The metascheduler
communicates with each local scheduler, for this research, Maui, using the following steps:

1. Ursala contacts each Maui scheduler requesting resource availability and cost informa-
tion for a speci�c job and time frame.



2. Each Maui scheduler incorporates existing reservation, resource, policy, and priority
information to determine when resources could be made available for the speci�ed job.

3. Each Maui scheduler reports its �nding to Ursala as a list of start time ranges, costs,
and resource sets.

4. Ursala receives the lists of start time ranges from each Maui scheduler, computes
the intersection of the range lists and determines a best start time and collection of
resources.

5. Ursala attempts to create needed reservations for this job on each Maui scheduler. If
any reservation attempt fails, Ursala releases all existing reservations for this job, and
after a 'backo�' time, returns to step 1. If all reservations succeed, Ursala advances to
step 6.

6. With all reservations made, Ursala submits the proper job components to each local
resource manager.

The current design implements a reservation release and backo� algorithm to handle the
livelock possibility described earlier. Figure 4 is a representation of the basic architecture.
Ursala communicates with the local scheduler to obtain resource state information and to
create advance reservations. It also interfaces to the local resource management systems
for submitting metajob components. Ursala currently supports three scheduling modes de-
scribed earlier: Speci�ed Co-Allocation, General Co-Allocation, and Optimal Scheduling.

User
Meta-scheduler

Scheduler

Resource
Manager

Scheduler

Resource
Manager

Scheduler

Resource
Manager

Figure 4: Meta-scheduler architecture.



4 Experimental Results

The goal of this research is to determine what e�ects advance reservations have on local
scheduling performance and system utilization. To accomplish this, a series of experiments
were designed. In this section, we present the experimental environment and results.
In each experiment, the Maui scheduler was used in simulation mode as the local scheduler.

Simulation traces were provided to simulate a 192 node IBM SP system with memory sizes
ranging from 128 to 512 MB per node. Workload traces representing several weeks of actual
workload were used for each simulation run. Each workload trace contains every scheduling
aspect relevant to a job, including submit time, submitting user and group, resource require-
ments, wallclock limit, and actual run time. Using this information, the Maui scheduler is
able to introduce the job into the queue at the recorded queue time as the submitting user
allowing local scheduler throttling policies to be enforced (e.g. Max Jobs Per User).
The job traces used for this experiment contained a mix of jobs requesting between 1 and

128 nodes and requiring between 2 minutes and 36 hours to run. The trace represents a
period of 2 weeks at the Maui High Performance Computing Center. See [7] for more details
about the job trace used. For each experiment, a simulation time period of 10 days was run
and analyzed. Since every scheduling-relevant aspect of node resources and jobs is captured
in the traces, di�erences between simulated and actual 'real world' runs are minimal.
To represent the metajobs, a random set of batch jobs were extracted from the simulation

job traces. This yeilds a sampling of actual jobs rather than creating a hypothetical set of
jobs for metajob submission. The remaining jobs were then run in the simulation mode of
Maui to get baseline utilization and XFactor statistics. A coordinator process was created to
read the metajob trace �le and advance simulated time for both Ursala and the participating
Maui schedulers. At the appropriate times, this coordinator process submitted jobs from
the metajob trace �le into Ursala's queue. Because Ursala only sees its metajob queue and
information returned via its interfaces to the local schedulers, it cannot tell that it is running
in a simulated environment and behaves exactly as it would if run in 'production' mode. As
the simulation is advanced, statistics from each Maui scheduler are collected and analyzed
to determine performance impact of the introduced metascheduled workload.
The �rst experiment is a detailed examination of the e�ects of advance reservations. Ur-

sala was used to insert metajobs requiring advance reservations into the Maui simulation.
Initially, no metajobs were inserted, the entire simulation was run to completion, and statis-
tics were gathered. The simulation was then run repeatedly, increasing the percentages of
metajobs inserted into the workload mix in each run. Figure 5 shows the resulting system
utilization graph for this experiment. Note that, as the percentage of metajobs increases, the
overall system utilization declines. This is expected due to the added constraint of a guar-
anteed start time for each metajob. As a general rule, every added constraint will decrease
scheduling exibility and thus decrease resource utilization. This constraint is no exception.
Jobs requiring a dedicated start time fragment the scheduler's time space as well as its node
space making it more diÆcult for the scheduler to utilize idle resources. In addition, due
to inaccuracies in user's wallclock limit estimations, most jobs will complete early. While
normal workload can take advantage of the now available resources by being started earlier
than originally planned, metajob components cannot since doing so would cause this com-
ponent to start before the metajob's other components. Consequently, these resources may



Figure 5: The e�ect of advance reservations on system utilization.

go unused.
As previously shown in Figure 1, when advance reservations are added to the workload

mix, the scheduler must �t jobs into a two-dimensional mapping. The optimal placement of
jobs into this mapping can be reduced to a two-dimensional bin packing problem which is
NP-complete[12]. As more advance reservations are added to the mix, placing back�ll jobs
into the map becomes more diÆcult. Thus, holes are created and the system utilization goes
down. If the accuracy of job run-time estimates were improved, back�ll job placement would
also be more accurate and somewhat alleviate this e�ect, but not eliminate it.
The average job expansion factor was also recorded in this experiment, and the resulting

graph is shown in Figure 6. The expansion factor is a measure of job turnaround time.
While the canonical de�nition of expansion factor is (1 + (QueueTime/WallClockLimit)),
Maui scheduler uses a modi�ed version of this to incorporate the a�ect of wallclock limit
inaccuracies, namely, (QueueTime + RunTime)/WallClockLimit. Regardless, the expansion
factor calculation scales the job's actual turnaround time by the job's requested length. Since
metajobs increase the number of holes in the two-dimensional node-time map, it becomes
harder to back�ll. This decreases utilization and increases the average expansion factor, as
is reected in the graph. As the percentage of metascheduled jobs increases, the average
expansion factor also increases because QueueTime is increased.
Experiment two is a direct comparison between advance reservation and dedicated re-

source based strategies for metascheduling. As described before, current 'dedicated resource'
metascheduling systems lock down a set of resources to be used by the metascheduler for a
speci�ed time frame each day. The �ndings of this research suggest that scheduling advance
reservations for metajobs is more eÆcient than the blocked dedicated resource approach. The
graph in Figure 7 shows the system utilizations of the two approaches. In this experiment,
the system in question controlled 192 nodes. For the locked down node metascheduling strat-



Figure 6: The e�ect of advance reservations on expansion factor.

egy, 48 of the nodes were blocked out for 8 hours each day for the metascheduled jobs. This
was compared to a system using Ursala to schedule advance reservations for the same jobs.
The number of metascheduled jobs increased in each simulation such that 1% metascheduled
jobs corresponds roughly to 10% utilization of the dedicated nodes. Since we are using 25%
of the nodes for 1/3 of each day, 8.3% metascheduled load would be roughly 100% utiliza-
tion of the locked down nodes. With a small percentage of metajobs, advance reservation
metascheduling yields much higher utilization. Larger percentages of metascheduled jobs
bring the two curves closer together, and �nally, the dedicated node strategy will result in
slightly higher overall utilization. However, it should be noted that the utilization assigned
to the block of dedicated metascheduler resources was assigned arbitrarily in this experiment,
i.e. the utilization on the blocked nodes was increased rather than attempting to schedule
an increased metascheduling workload onto these resources. This removed the issues of frag-
mentation and packing metascheduled workload. In reality, since both the local workload
and the metascheduled workload contained a similar mix of jobs, but the metascheduled
resources were relatively smaller, the metascheduler would be able to obtain a system uti-
lization which approached but did not exceed that obtained by the local scheduler. Also,
since average system utilization is generally proportional to (average job size) / (total re-
sources available), neither the local scheduler nor the metascheduler would be able to obtain
the level of utilization obtained when the resources were not fragmented.
The �nal experiment is set up to show the bene�ts of metascheduling using the resources at

multiple sites. In this case, Ursala was connected to multiple Maui schedulers; each running
a di�erent simulation trace �le. Ursala processed a job trace using a simple 'ASAP' utility
function. Each metajob in this experiment only required resources at a single site. This
allowed Ursala to minimize queue time for each metajob and showcase the bene�ts of such



Figure 7: Comparison of metascheduling based on advance reservations vs. locking down
the resources.

an approach.
The graph in Figure 8 shows the average queue time for the metajobs as more local systems

are added to the simulated metacomputer. It is clear that as more systems are added, the
probability of �nding an earlier start time for a metascheduled job increases even though
each local system maintains a high local system utilization. This is due to the fact that there
is a greater probability of �nding an appropriate sized hole for the metascheduled job earlier
on one of the local systems. Thus the queue time for the metajobs decreases.

5 Conclusion

An advance reservation based metascheduling system provides signi�cant advantages over
a metascheduler based on blocked resources dedicated to metajob usage. Such a system
allows metajobs to run at any time and not be limited to dedicated resource blocks and time
frames. The 'integrated' approach of allowing the local scheduler to determine when and
which resources are available for metajobs, allows the local scheduler opportunities to fully
enforce local policies and to fully optimize scheduling and resource allocation. This results
both in more local control over local resources and also better utilization of these resources.
These advantages make it likely that a reservation based metascheduling system will become
the standard in the future. The architecture outlined in this paper promises to minimize
the negative impact of a metascheduled workload. However, due to past experience, there
is still resistance to any metascheduling system at many sites. This paper focused on the
performance impacts on local workload of the reservation based metascheduler. This impact
was quanti�ed across a range of loads and demonstrated to be much lower than that found



Figure 8: Meta-scheduled job queue time comparison using a single local scheduler vs. using
multiple local schedulers.

under a blocked resource metascheduler. This information will allow local management
and administrators to make informed decisions regarding whether or not the bene�ts of
the metascheduling system justi�es the cost. The research here also yields the information
needed for intelligent setting of metajob throttling policies which would bring this impact
to a tolerable level.
The Grid Forum[13] has recently been formed to examine issues related to establishing a

nationwide computational power grid. This group is attempting to create an architecture
that will allow users to submit jobs to the grid without needing to know the exact location
where their jobs will run. Advance reservations are an important component of the overall
grid system. The infrastructure created for this research will enable investigators to answer
questions about several design decisions that must be made in creating the grid. This paper
indicates how varying metascheduled workloads a�ect the quality of service delivered to
local jobs thus allowing scheduler administrators and management to determine acceptable
impacts and set appropriate policies to throttle such external workload.
Future research will compare stateless reservation creation vs. courtesy reservations. Ad-

ditional research will also be conducted in the area of 'Optimal' job scheduling and in ways
of utilizing current performance information in deciding optimal metajob fragmentation and
resource allocation. Answering these questions in a quantitative way is important as a step
towards validating the feasibility of a wide-spread metascheduling environment. Such re-
search is vital in the e�ort to persuade local system administrators to make their systems
available for use by metajobs and demonstrate that an advance reservation metascheduler
will increase the utility and availability of computational resources in the supercomputing
and cluster community.



References

[1] P. Chandra et. al. Darwin: Resource management for value-added customizable network
service. In Sixth IEEE International Conference on Network Protocols, 1998.

[2] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and S. Tuecke.
A resource management architecture for metacomputing systems. In The 4th Workshop
on Job Scheduling Strategies for Parallel Processing, 1998.

[3] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. IJSA,
11(2):115{128, 1997.

[4] Andrew S. Grimshaw and William A. Wulf. The legion vision of a worldwide virtual
computer. Communications of the ACM, 40(1), 1997.

[5] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and A. Roy. A distributed
resource management architecture that supports advance reservations and co-allocation.
In International Workshop on Quality of Service, 1999.

[6] Maui High Performance Computing Center. The maui scheduler. In
http://www.mhpcc.edu/maui/, 1999.

[7] Mark Clement, Quinn Snell, David Jackson, and David Ashton. High performance
scheduling for windows nt. In Proceedings of the 1999 International Conference on
Parallel and Distributed Techniques and Applications, pages 525{531, 1999.

[8] Larry Smarr and Charles E. Catlett. Metacomputing. Communications of the ACM,
35:45{52, June 1992.

[9] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., 1996.

[10] Abraham Silberschatz and Peter Baer Galvin. Operating System Concepts. Addison-
Wesley, 1998.

[11] R. Metcalf and D. Boggs. Ethernet: Distributed packet switching for local computer
networks. Communications of the ACM, 19(7):395{403, 1976.

[12] M. R. Garey and D. S. Johnson. Computers and Intractability { A Guide to the Theory
of NP-completeness. W.H. Freeman, 1979.

[13] The Grid Forum. The grid forum. In http://www.gridforum.org/, 1999.


