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t. Bu�ered 
os
heduling is a new methodology that 
an sub-stantially in
rease resour
e utilization, improve response time, and sim-plify the development of the run-time support in a parallel ma
hine. Inthis paper, we provide an in-depth analysis of three important aspe
tsof the proposed methodology: the impa
t of the 
ommuni
ation patternand type of syn
hronization, the impa
t of memory 
onstraints, and thepro
essor utilization.The experimental results show that if jobs use non-blo
king or 
olle
tive-
ommuni
ation patterns, the response time be
omes largely insensitiveto the job 
ommuni
ation pattern. Using a simple job a

ess poli
y, wealso demonstrate the robustness of bu�ered 
os
heduling in the presen
eof memory 
onstraints. Overall, bu�ered 
os
heduling generally outper-forms ba
k�lling and ba
k�lling gang s
heduling with respe
t to responsetime, wait time, run-time slowdown, and pro
essor utilization.Keywords: Parallel Job S
heduling, Distributed Operating Systems, Com-muni
ation Proto
ols, Performan
e Evaluation.1 Introdu
tionThe s
heduling of parallel jobs has long been an a
tive area of resear
h [8, 9℄. Itis a 
hallenging problem be
ause the performan
e and appli
ability of parallels
heduling algorithms is highly dependent upon fa
tors at di�erent levels: theworkload, the parallel programming language, the operating system (OS), andthe ma
hine ar
hite
ture. The importan
e of job s
heduling strategies stemsfrom the impa
t that they 
an have on the resour
e utilization and the responsetime of the system.Time-sharing s
heduling algorithms are parti
ularly attra
tive be
ause they
an provide good response time without migration or predi
tions on the exe
u-tion time of the parallel jobs. However, time-sharing has the drawba
k that 
om-muni
ating pro
esses must be s
heduled simultaneously to a
hieve good perfor-man
e. With respe
t to performan
e, this is a 
riti
al problem be
ause the soft-ware 
ommuni
ation overhead and the s
heduling overhead to wake up a sleepingpro
ess dominate the 
ommuni
ation time on most parallel ma
hines [14℄.



Over the years, resear
hers have developed parallel s
heduling algorithmsthat 
an be loosely organized into three main 
lasses, a

ording to the degreeof 
oordination between pro
essors: gang s
heduling (GS), lo
al s
heduling (LS)and impli
it or dynami
 
os
heduling (DCS).On the one end of the spe
trum, GS [7℄ ensures that the s
heduling of 
om-muni
ating jobs is 
oordinated by 
onstru
ting a stati
 global list of the order inwhi
h jobs should be s
heduled. A simultaneous 
ontext-swit
h is then requireda
ross all pro
essors. Unfortunately, these straightforward implementations areneither s
alable nor reliable. Furthermore, GS requires that the s
hedule of 
om-muni
ating pro
esses be pre
omputed, whi
h 
ompli
ates the 
os
heduling of
lient-server appli
ations and requires pessimisti
 assumptions about whi
h pro-
esses 
ommuni
ate with one another. Finally, expli
it 
os
heduling of paralleljobs intera
ts poorly with intera
tive jobs and jobs performing I/O [17℄.At the other end of the spe
trum is LS, where ea
h pro
essor independentlys
hedules its pro
esses. This is an attra
tive time-sharing option due to its easeof 
onstru
tion. However, the performan
e of �ne-grained 
ommuni
ation jobs
an be orders of magnitude worse than with GS be
ause the s
heduling is not
oordinated a
ross pro
essors [11℄.An intermediate approa
h developed at UC Berkeley and MIT is DCS [1℄[19℄ [4℄ [25℄. With DCS, ea
h lo
al s
heduler makes independent de
isions thatdynami
ally 
oordinate the s
heduling a
tions of 
ooperating pro
esses a
rosspro
essors. These a
tions are based on lo
al events that o

ur naturally within
ommuni
ating appli
ations. For example, on message arrival, a pro
essor spe
-ulatively assumes that the sender is a
tive and will probably send more messagesin the near future. The main drawba
ks of dynami
 
os
heduling in
lude the highoverhead of generating interrupts upon message arrival and the limited vision ofthe status of the system that is based on spe
ulative information. Some aspe
tsof these limitations are addressed in [18℄ with a te
hnique 
alled Periodi
 Boost.Rather than sending an interrupt for ea
h in
oming message, the kernel period-i
ally examines the status of the network interfa
e, thus redu
ing the overheadfor 
ommuni
ation-intensive workloads.We re
ently proposed a new approa
h to job multitasking, 
alled bu�ered
os
heduling (BCS) [6℄. BCS shows promise in integrating the positive aspe
tsof GS, e.g., global 
oordination of jobs, along with positive aspe
ts of DCS, e.g.,in
reased resour
e utilization obtained by overlapping 
omputation and 
om-muni
ation of di�erent jobs. The bene�ts of BCS in
lude higher throughput,dramati
 simpli�
ation of run-time support, redu
ed 
ommuni
ation overhead,eÆ
ient global implementation of 
ow-
ontrol strategies and fault-tolerant pro-to
ols, and a

urate performan
e modeling. Here, we fo
us on the performan
eof BCS in the presen
e of memory 
onstraints.Like DCS, BCS must address a 
ouple of important problems. A �rst prob-lem is the impa
t of the memory hierar
hy: All the bene�ts obtained with jobmultitasking 
an be wiped out if the memory requirements of multiple jobs ex-
eed the physi
al memory available and over
ow in the swap spa
e. Se
ondarymemory 
an be orders of magnitude slower. A se
ond problem is the impa
t of



the type of the job 
ommuni
ation and syn
hronization on the overall through-put. This problem leads to another 
losely related problem: the 
hoi
e of thetime-sli
e length. While a long time-sli
e 
an hide the overhead and in
rease thes
alability of BCS, it 
an also in
rease the pro
essor idle time due to blo
king
ommuni
ation.In this paper, we analyze the above problems with a detailed simulationmodel driven by a real workload drawn from an a
tual super
omputing envi-ronment at Lawren
e Livermore National Labs. By 
onsidering a simple job-s
heduling algorithm that limits the a

ess into the system of those jobs thatex
eed the memory requirements, we evaluate the system response time andutilization under various types of workloads and system parameters.The rest of the paper is organized as follows. Se
tion 2 brie
y reviews BCS.Se
tion 3 des
ribes the job a

ess poli
y that takes into 
onsideration the mem-ory requirements, Se
tion 4 the experimental framework and Se
tion 5 the re-sults of the simulations. Some 
onsiderations on the potential advantages onthe development of system-level and user-level software are listed in Se
tion 6,the relations between BCS and the Bulk-Syn
hronous Parallel model of parallel
omputation are des
ribed in Se
tion 7, followed by a 
on
lusion in Se
tion 8.2 Bu�ered Cos
hedulingTo implement job multitasking, BCS relies on two te
hniques. First, the 
ommu-ni
ation generated by ea
h pro
essor is bu�ered and performed at the end of regu-lar intervals (or time-sli
es) in order to amortize the 
ommuni
ation and s
hedul-ing overhead. By delaying 
ommuni
ation, we allow for the global s
heduling ofthe 
ommuni
ation pattern. Se
ond, a strobing me
hanism performs a total ex-
hange of 
ontrol information at the end of ea
h time-sli
e in order to move fromisolated s
heduling algorithms [1℄ (where pro
essors make de
isions based solelyon their lo
al status and a limited view of the remote status) to more outward-looking or global s
heduling algorithms. An important 
hara
teristi
 of BCS isthat, instead of overlapping 
omputation with 
ommuni
ation and I/O within asingle parallel program, all the 
ommuni
ation and I/O whi
h arises from a setof parallel programs 
an be overlapped with the 
omputations in those programs.This approa
h represents a signi�
ant improvement over existing work re-ported in the literature. It allows for the implementation of a global s
hedulingpoli
y, as done in GS, while maintaining the overlapping of 
omputation and
ommuni
ation provided by DCS.2.1 Communi
ation Bu�eringRather than in
urring 
ommuni
ation and s
heduling overhead on a per-messagebasis, BCS a

umulates the messages generated by ea
h pro
ess and tries toamortize the overhead over a set of messages. Spe
i�
ally, the 
ost of the system
alls ne
essary to a

ess the kernel data stru
tures for 
ommuni
ation is amor-tized over a set of system 
alls rather than being in
urred on ea
h individual



system 
all. This implies that BCS 
an be tolerant to the potentially high laten-
ies that 
an be introdu
ed in a kernel 
all or in the initialization of the networkinterfa
e 
ard (NIC) that 
an reside on a slow I/O bus.2.2 Strobing HeartbeatsVirtually all the existing resear
h in parallel job s
heduling use isolated algo-rithms, whi
h spe
ulatively make s
heduling de
isions based on a limited knowl-edge of the status of the ma
hine, rather than algorithms whi
h use non-isolated(or even global) knowledge. In order to provide the above 
apability, we pro-pose a strobing me
hanism to support the s
heduling of a set of parallel jobswhi
h share a parallel ma
hine. Let us assume that ea
h parallel job runs onthe entire set of p pro
essors, i.e., jobs are time-sharing the whole ma
hine. Ourgoal is to syn
hronize the pro
essors of the parallel ma
hine at the end of atime-sli
e in order to perform a total ex
hange of information regarding theirstatus. To amortize the overhead, all the 
ommuni
ation operations are bu�eredand exe
uted at the end of the time-sli
e. The strobing me
hanism performsan optimized total-ex
hange of 
ontrol information (whi
h we 
all heartbeat orstrobe) and triggers the downloading of any bu�ered pa
kets into the network.At the start of the heartbeat, ea
h pro
essor downloads a personalized broad
astinto network. After downloading the heartbeat, the pro
essor 
ontinues runningthe 
urrently a
tive job. (This ensures 
omputation is overlapped with 
om-muni
ation.) When p heartbeats arrive at a pro
essor, the pro
essor will entera phase where its kernel will download any bu�ered pa
kets. Ea
h heartbeat
ontains information on whi
h pro
esses have pa
kets ready for download andwhi
h pro
esses are asleep waiting to upload a pa
ket from a parti
ular pro
es-sor. This information is 
hara
terized on a per-pro
ess basis, so that on re
eptionof the heartbeat, every pro
essor will know whi
h pro
esses have data headingfor them, and whi
h pro
esses on that pro
essor they are from.Figure 1 shows how 
omputation and 
ommuni
ation 
an be s
heduled overa generi
 pro
essor. At the beginning of the heartbeat, t0, the kernel downloads
ontrol pa
kets into the network for a total ex
hange. During the exe
ution ofthe heartbeat, another user pro
ess gains 
ontrol of the pro
essor; and at the endof the heartbeat, the kernel s
hedules the pending 
ommuni
ation, a

umulatedin the previous time-sli
es (before t0), to be delivered in the 
urrent time-sli
e[t0; t2℄. From the 
ontrol information ex
hanged between t0 and t1, the pro
essorwill know (at t1) the number of in
oming pa
kets that it is going to re
eive inthe 
ommuni
ation time-sli
e as well as the sour
es of the pa
kets and will startthe downloading of outgoing pa
kets. It is worth noting that the potentially highoverhead of the strobing algorithm is simply removed from the 
riti
al path byrunning another pro
ess. Thus, we 
an tolerate the laten
y of a global ex
hangeof information without experien
ing performan
e degradation.
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K = kernelFig. 1. S
heduling Computation and Communi
ation. Communi
ation a

umulated inthe time-sli
e up to t0 is downloaded into the network between t1 and t2 (after theheart beat). Æ � length of a time-sli
e = t2 � t0.3 Job A

ess ControlS
heduling parallel jobs by sharing pro
essors not only spatially but also tem-porally provides an extra degree of 
exibility and a 
onsiderable performan
eadvantage. Unfortunately, this advantage 
an be limited by multiple resour
erequirements, e.g., memory hierar
hy requirements. If the jobs mapped on apro
essing node ex
eed the physi
al memory available and use the virtual mem-ory, the advantages of job multitasking 
an be nulli�ed.In order to avoid su
h problem we 
onsider a very simple job a

ess 
on-trol poli
y, whi
h allows jobs into the system only if their memory requirementsdo not ex
eed the physi
al memory available. For instan
e, Figure 2 shows theOusterhout matrix of an 8-pro
essor system with a multiprogramming level ofthree and 512 MB of physi
al memory per pro
essor Pi. Job J5 requires 2 pro-
essors and 256 MB of memory per pro
essor. Thus, it 
an only be mapped ontotwo of the four two-pro
essor slots available due to memory 
onstraints.
P0

time-slice 0

time-slice 1

P P P P P P1 2 3 4 5 P6 7

time-slice 2

J 0 64MB

J 5 256MB

J 64MB

J

J

J

1

2

3 4

128MB

256MB128MBFig. 2. Ousterhout Matrix of an 8-Pro
essor System with 512-MB Memory/Pro
essorand Multiprogramming Level of 3.



In our experiments, we 
ombine the above a

ess 
ontrol poli
y with anaggressive ba
k�ll heuristi
 [24℄, whi
h sele
ts any job from the ready queuethat does not interfere with the expe
ted start time of the �rst blo
ked job. Asshown in [27℄, this te
hnique, when used with GS, 
an provide improvementsover a wide spe
trum of performan
e 
riteria. However, this greedy method doesnot look at the additional resour
e requirements of the jobs in the ready queueor the 
urrent state of the system resour
e loads, thus leaving room for futureimprovements.GS 
an re-use some of the unused slots in the Ousterhout matrix if a jobassigned to a given time-sli
e 
an atomi
ally �t into one or more empty slots inanother time-sli
e. This is the 
ase of jobs J1 and J3 in Figure 2, whi
h 
an berun on the two slots available in time-sli
e 1, as shown in Figure 3.
P0

time-slice 0

time-slice 1

P P P P P P1 2 3 4 5 P6 7

time-slice 2

J 0 64MB

J 64MB1

J 3 128MB

J

J 2

4

128MB

256MBFig. 3. Empty slot utilization with GSWhile GS 
annot �ll in the two unused slots in the time-sli
es 0 and 2 withjob J2, BCS 
an potentially use their pro
essing time, be
ause the grain size ofthe resour
e allo
ation is the pro
ess and not the entire job. The 
ommuni
ationpattern of the jobs, the lo
al pro
ess s
heduling algorithms, and many otherfa
tors 
an in
uen
e how the resour
es made available by the empty slots 
anbe used by di�erent jobs.4 Experimental FrameworkBefore presenting the experimental results, we provide details on our simulationplatform, the workloads used to drive the simulator, and the metri
s of interest.4.1 Simulation ModelIn order to eÆ
iently simulate and analyze di�erent job s
heduling strategiesfor parallel 
omputers in depth, we developed a novel simulator 
alled the JobS
heduling Simulator (JSS). With JSS, the user 
an explore the Cartesian prod-u
t generated by di�erent dimensions of the design spa
e. A �rst dimension isma
hine s
heduling: JSS provides spa
e sharing and two basi
 forms of timesharing | gang s
heduling (GS) and bu�ered 
os
heduling (BCS). A se
ond di-mension is the sele
tion algorithm of the ready-jobs queue. Jobs 
an be sele
ted



in FCFS (First Come First Served) order or ba
k�lled using a 
onservative oran aggressive poli
y. Conservative ba
k�lling sear
hes the ready queue for jobsthat 
an be s
heduled immediately, with the 
onstraints that these jobs 
annotinterfere with the expe
ted start time of the jobs whi
h 
ome before them inthe ready queue. Aggressive ba
k�lling is a weaker version of 
onservative ba
k-�lling, whi
h sele
ts any job from the queue whi
h does not interfere with theexpe
ted start time of the �rst job in the ready queue. Both 
onservative andaggressive ba
k�lling 
an dramati
ally improve the overall ma
hine utilizationand response time over FCFS but require a reasonably good estimate of the jobrun-time.Both GS and BCS 
an have a parametri
 multiprogramming level (MPL) andtimes-sli
e length and 
an use the job a

ess 
ontrol poli
y des
ribed in Se
tion3. With GS, the user 
an also set the delay asso
iated with job 
ontext-swit
hat the end of ea
h time-sli
e.In our BCS implementation, the user 
an de�ne the system parameters as thepro
ess 
ontext-swit
h penalty, 
ommuni
ation bandwidth between pro
essors,and the algorithms to globally s
hedule the 
ommuni
ation pattern. In order toexplore how the various aspe
ts of 
omputation and 
ommuni
ation in
uen
ethe overall performan
e of BCS, JSS provides an API, 
omposed of a limitedbut representative subset of MPI, that in
ludes blo
king and non-blo
king 
om-muni
ation primitives and syn
hronization primitives. The 
urrent implementa-tion of JSS abstra
ts the main 
hara
teristi
s of ea
h job using four parametershg; v; 
omm; syn
i, where g represents the 
omputational grain size, v the loadimbalan
e, 
omm the 
ommuni
ation pattern, and syn
 the type of syn
hro-nization. A parallel job 
onsists of a group of P pro
esses, and ea
h pro
ess ismapped on a pro
essor throughout the exe
ution. Pro
esses alternate phases ofpurely lo
al 
omputation with interpro
ess 
ommuni
ation, as shown in Figure4. Ea
h pro
ess 
ompute lo
ally for a time uniformly sele
ted in the interval(g � v2 ; g + v2 ). By adjusting g, we model parallel programs with di�erent 
om-putational granularities. By varying v, we 
hange the degree of load-imbalan
ea
ross pro
essors. The 
ommuni
ation phase 
onsists of an optional sequen
e of
ommuni
ation events. The parameter 
omm de�nes one of the three 
ommu-ni
ation patterns: Barrier, News and Transpose. Barrier does not perform any
ommuni
ation and 
an be used to analyze how bu�ered 
os
heduling respondsto load imbalan
e. The other two patterns 
onsist of a sequen
e of point-to-point 
ommuni
ations. The 
ommuni
ation pattern generated by News is basedon a sten
il with a grid where ea
h pro
ess ex
hanges information with its fourneighbors. This pattern represents those appli
ations that perform a domain de-
omposition of the data set and limit their 
ommuni
ation pattern to a �xed setof partners. Transpose is a 
ommuni
ation-intensive workload that emulates the
ommuni
ation pattern generated by the FFT transpose algorithm [12℄, whereea
h pro
ess a

esses data of all other pro
esses. Finally, syn
 des
ribes the typeof syn
hronization in a job: we 
an have either blo
king 
ommuni
ation (B),where ea
h point-to-point 
ommuni
ation is implemented with blo
king sendsand re
eives or non-blo
king 
ommuni
ation (NB), where the 
ommuni
ation



primitives do not require an expli
it handshake between sender and re
eiver andare terminated by a global barrier syn
hronization.
local 

computation

communication  (optional)

begin barrier (optional)

end barrier (optional)

computation
granularity (g)

load
variation (v)

time processes

Fig. 4. Overlap of Computation and Communi
ation
Parameter ValuePro
essors 32Main memory per pro
essor 512 MBJob 
ontext-swit
h (GS) 1 msPro
ess 
ontext-swit
h (BCS) 100 �sMessage size (BCS) 4KBCommuni
ation Bandwidth (BCS) 100 MB/sTable 1. Experimental System Parameters and Values.Table 1 des
ribes some of the system parameters used during the experi-mental evaluation. We 
onsider an ar
hite
ture with 32 pro
essors where ea
hpro
essor is equipped with 512 MB of main memory.4.2 WorkloadsA 
ru
ial aspe
t in the performan
e evaluation of job s
heduling strategies isthe availability of realisti
 workloads that 
an be represented with a 
ompa
tmathemati
al formulation. Parallel workloads are often dispersive: job inter-arrival time distribution and job exe
ution time distribution have a 
oeÆ
ientof variation that is greater than one, i.e., they are long tailed. These distributions
an be �tted adequately with Hyper Erlang Distributions of Common Order [13℄.Our experiments use a workload dire
tly extra
ted from a real super
omputing



environment, ASCI Blue-Pa
i�
 at Lawren
e Livermore National Laboratory.Our modeling pro
edure involves the following steps.1. The jobs are �rst grouped into 
lasses, based on the number of pro
essorsthey require. Ea
h 
lass is a bin in whi
h the upper boundary is a power oftwo.2. The original workload 
ontains jobs varying in size from one to 256 pro
es-sors. However, due to the large amount of details involved in the simulationof bu�ered 
os
heduling, we have limited ourselves to 32 pro
essors, sele
t-ing jobs that fall within this limit. The resulting workload is a subset of theoriginal workload and 
ontains all the jobs that request up to 32 pro
essors.It is worth noting that su
h a workload is extremely demanding, when runon a ma
hine with only 32 pro
essors.3. We then model the inter-arrival time and the exe
ution time distributionsfor ea
h 
lass through Hyper Erlang Distributions of Common Order.4. Next we generate various syntheti
 workloads from the observed workloadby multiplying the average job exe
ution time by a load fa
tor from 0:1 to1:6 in steps of 0:1. For a �xed inter-arrival time, in
reasing job exe
utiontime typi
ally in
reases resour
e utilization, until the system saturates. Theload fa
tor 1:0 identi�es the observed workload.5. Ea
h job requires an amount of main memory whi
h is exponentially dis-tributed around a given mean value, whi
h represents the maximum memoryrequirements over all pro
esses belonging to a job.When simulating bu�ered 
os
heduling, we need an extra degree of detailto 
hara
terize how 
omputation, 
ommuni
ation and syn
hronization are per-formed inside ea
h job. Thus, the modeling pro
edure requires some extra steps.1. Based on the workload 
hara
terization, we pi
k a job template for ea
h jobin a workload.2. Based on the job template, we determine the 
omputation and 
ommuni
a-tion patterns of the job.Table 2 outlines the �ve workload 
hara
terizations used in the experiments:ea
h one is 
omposed of three job templates, des
ribed using the notation de�nedin Se
tion 5. Jobs in a workload 
an be assigned one of the three templateswith equal probability. These 
hara
terizations display di�erent 
ommuni
ationand syn
hronization patterns. In the �rst one (workload 0) all the jobs performan intensive 
ommuni
ation pattern (Transpose) using blo
king 
ommuni
ation.The se
ond workload uses the same 
ommuni
ation pattern together with non-blo
king 
ommuni
ation. The same 
hara
teristi
s distinguish workloads 2 and3. They use the same 
ommuni
ation pattern, News, but a di�erent type ofsyn
hronization. In the �fth workload, jobs do not perform any 
ommuni
ation:the goal of this workload is to identify the impa
t of load imbalan
e.4.3 Metri
sThe experimental evaluation 
onsiders metri
s that are important from both thesystem's and user's perspe
tives.



Workload Job Template 0 Job Template 1 Job Template 20 h50; 25; T ra;Bi h100; 50; T ra;Bi h200; 100; T ra;Bi1 h50; 25; T ra;NBi h100; 50; T ra;NBi h200; 100; T ra;NBi2 h50; 25; News;Bi h100; 50; News;Bi h100; 100; News;Bi3 h50; 25; News;NBi h100; 50; News;NBi h200; 100; News;NBi4 h50; 25; Barrier;NBi h100; 50; Barrier;NBi h200; 100; Barrier;NBiTable 2. Five Workloads: Ea
h with an equal mix of three job 
lasses. The job gran-ularity and skew are expressed in ms.{ Wait Time: The time spent by a job waiting in the ready queue before it iss
heduled.{ Exe
ution Time: The a
tual job run time.{ Response Time: The sum between wait and exe
ution time.{ System Utilization: The system utilization identi�es the ma
hine utilizationat the job allo
ation level. Intuitively, the system utilization is the fra
tionof the s
heduling matrix that is �lled with jobs.{ Pro
essor Utilization: The pro
essor utilization is the fra
tion of time CPUspent is useful 
omputation. It is worth noting that, in the general 
ase, thepro
essor utilization is always smaller than the system utilization, be
ausethe pro
essors 
an be idle during the job exe
ution.{ Exe
ution Time Slowdown: The exe
ution time slowdown is the ratio be-tween the exe
ution time and the job run time in a dedi
ated environment.The exe
ution time slowdown is 1:0 with spa
e sharing and a number largerthan 1:0 in a time shared environment.5 Experimental ResultsThe experimental results try to provide insight into three important aspe
tsof bu�ered 
os
heduling: (1) the impa
t of the 
ommuni
ation pattern and thetime-sli
e length on the response time, (2) the impa
t of memory 
onstraintswith the job a

ess 
ontrol poli
y outlined in se
tion 3 and the (3) the pro
essorutilization. In all three 
ases we 
ompare bu�ered 
os
heduling with aggressiveba
k�lling (BF), a s
heduling poli
y that 
an obtain ex
ellent performan
e re-sults with spa
e sharing [24℄, and with ba
k�lling gang s
heduling (BGS), theextension of this te
hnique to gang s
heduling, re
ently proposed in [27℄.5.1 Impa
t of Communi
ation, Syn
hronization and Time-sli
eLengthThe 
hoi
e of the time-sli
e for BCS is the result of a 
ompromise between 
om-peting fa
tors. On the one hand, a large time-sli
e 
ould easily hide the overheadasso
iated with the strobing algorithm and the pro
ess 
ontext-swit
hes, thus al-lowing the s
alability of BCS to ar
hite
tures with a large number of pro
essors.
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c) d)Fig. 5. Response time for various time-sli
es, 
ommuni
ation and syn
hronization pat-terns. In all graphs the MPL is 3.
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c) d)Fig. 6. Response time versus load for various MPLs. The graphs 
ompare BCS withBF and BGS.



On the other hand, it in
reases the likelihood of having idle pro
essors, due toblo
king 
ommuni
ation and global syn
hronization, thus limiting the potentialin
rease in resour
e utilization.Figure 5 shows how the response time is in
uen
ed by in
reasing the time-sli
e from 5 ms to 100 ms. All the experiments use a MPL equal to three. Fromthe graphs, we 
an 
learly see that workloads with a large amount of blo
king
ommuni
ation (templates 0 and 2) 
an be eÆ
iently supported only with smalltime-sli
es. This is parti
ularly true for workload 0 whi
h is extremely sensitiveto the in
rease in the time-sli
e be
ause it is 
ommuni
ation intensive.Looking at the graphs generated by templates 1 and 3 we 
an see that theyalmost overlap with all time-sli
es. These workloads share the same form of syn-
hronization, obtained with a global barrier, though they have fairly di�erent
ommuni
ation patterns. We explored this aspe
t in depth using many other
ommuni
ation patterns, workloads templates, number of pro
essors, and ar
hi-te
tural 
hara
teristi
s (not shown here for brevity), and we have found out thatthis is a strong property of BCS. With BCS, the overall performan
e is relativelyinsensitive to the 
ommuni
ation pattern when the 
ommuni
ation is performedwith non-blo
king 
alls or, more generally, with a 
olle
tive 
ommuni
ation pat-tern. The rationale behind this property is related to the fa
t that the run-timesupport 
annot eÆ
iently s
hedule blo
king 
ommuni
ation, while it 
an rear-range non-blo
king primitives. This leads to a nearly optimal overlap between
omputation and 
ommuni
ation when we use relative large MPLs. Also, thereis an extra advantage in using 
olle
tive 
ommuni
ation patterns (e.g., broad-
asts, s
atter & gather, multi
asts) be
ause the information provided by the
ommuni
ation pattern 
an be dire
tly passed to the run-time support, whi
h
an thus perform e�e
tive global optimizations. This is not true in the general
ase; in fa
t, many parallel appli
ations possess a well de�ned 
ommuni
ationstru
ture that is lost in the 
ompilation pro
ess (e.g., be
ause it is mapped inan unstru
tured 
ommuni
ation graph of blo
king 
alls).5.2 Impa
t of Memory ConstraintsThis se
tion analyzes the ma
hine response time, the wait time, and exe
utiontime slowdown in 
onjun
tion with the memory-aware job s
heduling poli
y de-s
ribed in Se
tion 3. In all experiments we use the workload template number 3and we 
onsider workloads with in
reasing average memory requirements, rang-ing from 0 MB (i.e., no memory 
onstraints), to 256 MB, half the size of physi
almemory available on ea
h pro
essor.From Figure 6 we 
an draw the following 
onsiderations:{ BCS outperforms GS in all 
on�gurations. This is more pronoun
ed at higherloads, be
ause BCS 
an overlap 
omputation with 
ommuni
ation and 
anre-use 
omputing resour
es at the pro
ess-level granularity rather than atthe job level, as shown in Se
tion 3.{ There is no penalty in using an arbitrarily large MPL with BCS. For a givenaverage memory requirement, the system 
onverges to a given state and does



not experien
e any degradation when we further in
rease the MPL. Thatstate is mainly determined by the ratio between the job average memoryrequirements and the a
tual physi
al memory available.{ When the memory requirements are high (e.g. 256 MB), BCS 
onverges toba
k�lled spa
e-sharing (BF). Intuitively, when the memory 
onstraints donot allow job multitasking, the system 
onverges to spa
e sharing. This isnot true for GS as it experien
es sharp degradation in response-time perfor-man
e, as shown if Figure 6 d) with 128 and 256 MB.
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c) d)Fig. 7. Wait Time versus Load for Various MPLs.Figure 7 provides insight on the wait time for the same set of experiments ofFigure 6. The graphs 
learly show how time sharing 
an dramati
ally redu
e thewait time over spa
e sharing. BCS redu
es the wait time further over ba
k�lledgang s
heduling (BGS), in parti
ular with high MPLs.The redu
tion of the wait time obtained in
reasing the MPL, usually impliesan in
rease of the job exe
ution time. In the worst 
ase, the slowdown 
an be ashigh as the MPL. In Figure 8 we 
an see that BCS limits the slowdown whenwe in
rease the MPL and outperforms BGS in all 
on�gurations, again thanksto the re-use of empty slots in the s
heduling matrix at the pro
ess level ratherthan the job level.
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Fig. 8. Exe
ution Time Slowdown versus Load for Various MPLs.
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Fig. 9. Pro
essor Utilization versus Load for BCS and BGS.



5.3 Pro
essor UtilizationMost results on job s
heduling strategies fo
us on system utilization rather thanpro
essor utilization and show that both BF and BGS 
an get more than 90%under many workloads. Figure 9 extends these results by analyzing the pro
essorutilization obtained by BF, BGS and BCS.We observe the following:{ Though BGS improves response time over BF, it does not improve systemand pro
essor utilization. The slight de
rease in performan
e is due to thejob 
ontext-swit
hing overhead.{ With BCS, we 
an get a pro
essor utilization that asymptoti
ally rea
h 85%,while BGS and BF approa
h 60%. This is one of the main advantages of BCSover BGS and BF.{ Pro
essor utilization is sensitive to a job's average memory request when weuse time sharing: the higher the memory request, the lower the pro
essorutilization.{ The results address the overlapping of 
omputation and 
ommuni
ation only.We expe
t that the resour
e utilization gap between BF, BGS and BCS willin
rease further in the presen
e of I/O.6 Dis
ussionThe potential te
hni
al impa
t of BCS is signi�
ant for a large 
lass of parallelma
hines and distributed systems, ranging from Linux 
lusters to the larger andmore sophisti
ated massively parallel ma
hines. To the best of our knowledge,this is the �rst methodologi
al attempt to globally optimize the resour
es of aparallel ma
hine rather than using the limited lo
al knowledge available on ea
hpro
essor.While BCS enhan
es overall system performan
e, parti
ularly with respe
tto pro
essor utilization and response time, BCS also naturally provides system-level and user-level advantages whi
h we dis
uss in this se
tion.6.1 System-Level AdvantagesFirst, the 
ommuni
ation is optimized in several ways. The 
ost of the system
alls ne
essary to a

ess the kernel data stru
tures is amortized over a set ofuser 
alls. This implies that the methodology is tolerant to the potential highlaten
ies that 
an be introdu
ed in a kernel 
all. BCS 
an obtain 
omparableperforman
e to user-level network interfa
es (e.g., FM [16℄ or ST [22℄) withoutusing spe
ialized hardware.Se
ond, the global knowledge of the 
ommuni
ation pattern provided by thetotal ex
hange allows for the implementation of eÆ
ient 
ow-
ontrol strategies.For example it is possible to avoid 
ongestion inside the network by 
arefullys
heduling the 
ommuni
ation pattern and limit the negative e�e
ts of hot spotsby damping the maximum amount of information addressed to ea
h pro
essor



during a time sli
e. The same information 
an be used at kernel level to providefault toleran
e in the 
ommuni
ation. For example the knowledge of the numberof in
oming pa
kets greatly simpli�es the implementation of re
eiver-initiatedre
overy proto
ols. By globally s
heduling a 
ommuni
ation pattern, it is alsopossible to obtain an a

urate estimate of the 
ommuni
ation time with simpleanalyti
al models. By knowing the maximum amount of information that 
anbe delivered in a time-sli
e, it is possible to minimize the size of the 
ommuni-
ation bu�ers in ea
h network interfa
e. This is a 
ru
ial problem in a massivelyparallel ar
hite
ture. Let's 
onsider, for example, a ma
hine with 10000 pro
es-sors - the approximate number of pro
essors expe
ted to be in the next ASCIsuper
omputers. Given that ea
h pro
essor 
an potentially re
eive a messagefrom all the remaining 9999 pro
essors, it must reserve a proportional amountof network interfa
e memory (typi
ally few MB for ea
h potential partner). Thisis infeasible with 
urrent network te
hnology and poses a serious limit to theeÆ
ient implementation of large s
ale parallel ma
hines.Third, be
ause 
ommuni
ation is bu�ered and delayed to the beginning ofthe next time-sli
e, we 
an always implement zero- (or low-, if we desire faulttolerant 
ommuni
ation) 
opy 
ommuni
ation. Fault toleran
e in general 
analso be enhan
ed by exploiting the syn
hronization point at the end of ea
htime sli
e to in
rementally take a snapshot of the status of the ma
hine.Fourth, an important advantage of time-sharing parallel jobs is a better uti-lization of the resour
es. When we 
onsider I/O, there 
an be several orders ofmagnitude of di�eren
e between the 
omputational grain of the parallel appli
a-tion and the a

ess time of se
ondary storage. The usual approa
h of overlapping
omputation with I/O, for example using user-level threads, 
an only providea limited return in the presen
e of a single parallel job. By overlapping the a
-tivities of multiple parallel jobs we 
an potentially hide most of the laten
y.The same argument 
an be applied to hide the non-uniform laten
ies of large
lusters of SMPs. The higher laten
y of the inter-
luster 
ommuni
ation 
an beoverlapped with the exe
ution of another parallel job.Fifth, by time-sharing parallel jobs it is possible to obtain better responsetime and quality of servi
e for 
riti
al appli
ations. Time-sli
ing 
an be used togive good average 
ompletion times for dynami
ally 
hanging workloads, whileretaining fast response times for intera
tive jobs.Sixth, be
ause of the deep pipelines and wide out-of-order supers
alar ar
hi-te
tures of 
ontemporary pro
essors, an interrupt may need to nullify a largenumber of in-
ight instru
tions [15℄. Larger register �les require existing systemsoftware to save and restore a substantial amount of pro
ess state. The redu
-tion of the interrupt frequen
y provided by BCS 
an substantially improve theperforman
e on these pro
essors.Seventh, BCS 
an also eÆ
iently support future pro
essor ar
hite
tures, su
has Simultaneous Multi-threading (SMT) [3℄ [5℄, that time-share multiple pro-
esses at hardware level.



6.2 User-Level AdvantagesThe typi
al approa
h to developing parallel software is by using low-level pro-gramming models su
h as MPI. At that level the user is exposed to a largenumber of details. The user must identify the form of parallelism in the ap-pli
ation and de
ompose it in a set of parallel threads, partition the data setamong these threads, map the threads and the data set on a parallel ar
hi-te
ture, de�ne 
ommuni
ation and syn
hronization between these threads. Thisdevelopment pro
ess is typi
ally spe
i�
 to a parti
ular appli
ation or 
lass ofuser appli
ations.As a 
onsequen
e, it is extremely diÆ
ult and very expensive to build softwareusing su
h programming models. Be
ause both 
orre
tness and performan
e 
anonly be a
hieved by attention to many details, writing optimized MPI programsis a lengthy pro
ess, and the result is often ma
hine-dependent1.The alternative of using high level programming models, for example au-tomati
 parallelization of lega
y Fortran 
odes, is not mature yet and musttrade generality in the parallelization pro
ess with eÆ
ien
y, making 
onserva-tive 
hoi
es. BCS has the potential of solving this tradeo� between high devel-opment 
osts and high eÆ
ien
y vs. low development 
ost and low eÆ
ien
y bytolerating several types of ineÆ
ien
ies related to the parallelization pro
ess.In a bu�ered 
os
heduled system, time-sli
ing a 
olle
tion of bad programs(i.e., unbalan
ed 
omputation or 
ommuni
ation) may give the same behavioras a single well-behaved program. Therefore, programs running on a parallel ma-
hine need not be 
arefully balan
ed by the user to a
hieve good performan
e.Multiprogramming 
an provide opportunities for �lling in the \spare 
ommuni-
ation, 
omputation and I/O 
y
les" when user programs are sparse, by merging,for example, many sparse 
ommuni
ation patterns together to produ
e a denser
ommuni
ation pattern.This 
an have a huge impa
t on the parallelization of existing lega
y 
odes. Ifsu

essful, the implementation of BCS 
ould provide a dramati
 redu
tion in thedevelopment times and 
osts of parallel software. Also, the proposed methodologyis valid in general, and not spe
i�
 to any parti
ular 
lass of appli
ations (e.g.,mole
ular dynami
s, linear solvers, simulations et
.), nor to a parti
ular ma
hinear
hite
ture (e.g., Cray T3E, SGI, IBM SP).Finally BCS greatly simpli�es the performan
e evaluation of a parallel ap-pli
ation. With BCS the amount of work done by all pro
essors, a metri
 very
lose to the sequential 
omplexity of an algorithm, be
omes as important as the
riti
al path of the 
omputation.7 BCS vs BSPOne of the goals of BCS is to transform a 
olle
tion of unstru
tured parallel jobsin a single, well-behaved Bulk-Syn
hronous Parallel (BSP) 
omputation [26℄ [23℄.1 Though portable to other ma
hines, MPI programs need to go through a non trivialre-optimization pro
ess, when moved from one parallel ma
hine to another.



A BSP 
omputation 
onsists of a sequen
e of parallel supersteps. During asuperstep, ea
h pro
essor 
an perform a number of 
omputation steps on valuesheld lo
ally at the beginning of the superstep and 
an issue various remote readand write requests that are bu�ered and delivered at the end of the superstep.This implies that 
ommuni
ation is 
learly separated from syn
hronization, i.e.it 
an be performed in any order, provided that the information is deliveredat the beginning of the following superstep. However, while the supersteps inthe original BSP model 
an be variable in length, BCS generates 
omputationand 
ommuni
ation slots whi
h are �xed in length and are determined by thetime-sli
e.One important bene�t of the BSP model is the ability to a

urately predi
tthe exe
ution time requirements of parallel algorithms and programs. This isa
hieved by 
onstru
ting analyti
al formulae that are parameterized by a few
onstants whi
h 
apture the 
omputation, 
ommuni
ation, and syn
hronizationperforman
e of a p-pro
essor system. These results are based on the experi-mental eviden
e that the generi
 
olle
tive 
ommuni
ation pattern generatedby a superstep 
alled h-relation2 
an be routed with predi
table time [10℄ [21℄.This implies that the maximum amount of information sent or re
eived by ea
hpro
essor during a 
ommuni
ation time-sli
e 
an be stati
ally determined andenfor
ed at run time by a global 
ommuni
ation s
heduling algorithm. For ex-ample, if the duration of the time-sli
e is Æ and the permeability of the network(i.e., the inverse of the aggregate network bandwidth) is g, the upper boundhmax of information, expressed in bytes, that 
an be sent or re
eived by a singlepro
essor is hmax = Tg :Furthermore, by globally s
heduling a 
ommuni
ation pattern, as des
ribed inSe
tion 2, we 
an derive an a

urate estimate of the 
ommuni
ation time withsimple analyti
al models already developed for the BSP model [21℄ [2℄ [20℄.Unfortunately, BSP 
omputations are overly restri
tive, and many importantappli
ations 
annot be eÆ
iently expressed using this model. With BCS, we 
aninherit the ni
e mathemati
al framework of BSP, without for
ing the user towrite BSP programs.8 Con
lusion and Future WorkIn this paper, we presented bu�ered 
os
heduling (BCS), a new methodology formultitasking jobs in parallel and distributed systems. By leveraging the positiveaspe
ts of gang s
heduling and dynami
 
os
heduling, this methodology 
ansigni�
antly improve resour
e utilization as well as redu
e response and waittimes of parallel jobs.2 h denotes the maximum amount of information sent or re
eived by any pro
essduring the superstep.



Using our Job S
heduling Simulator in the presen
e of memory 
onstraints,we illustrated that ba
k�lling in 
ombination with spa
e sharing or time shar-ing improves overall system performan
e. Furthermore, we showed that BCSgenerally outperformed ba
k�lled gang s
heduling and ba
k�lled spa
e sharing.We also examined how BCS performed with respe
t to three parameters: typeof job 
ommuni
ation and syn
hronization, memory 
onstraints, and pro
essorutilization. We were pleasantly surprised to �nd that the performan
e of BCSwas relatively insensitive to the 
ommuni
ation pattern when the 
ommuni
ationwas non-blo
king 
ommuni
ation or, more generally, a 
olle
tive-
ommuni
ationpattern. In addition, what we originally thought to be a weakness in BCS [6℄, i.e.,memory 
onstraints imposed by BCS, only results in the performan
e of BCSdegrading to being 
omparable to BF and not signi�
antly worse as with BGS.Finally, the pro
essor utilization with BCS ex
eeds ba
k�lling gang s
heduling(BGS) and BF by as mu
h as 40%.Referen
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