
Time-Sharing Parallel Jobs in the Presen
e ofMultiple Resour
e RequirementsFabrizio Petrini and Wu-
hun FengComputing, Information, & Communi
ations DivisionLos Alamos National Laboratory, NM 87544, USA,fabrizio�lanl.gov, feng�lanl.govAbstra
t. Bu�ered
os
heduling is a new methodology that
an sub-stantially in
rease resour
e utilization, improve response time, and sim-plify the development of the run-time support in a parallel ma
hine. Inthis paper, we provide an in-depth analysis of three important aspe
tsof the proposed methodology: the impa
t of the
ommuni
ation patternand type of syn
hronization, the impa
t of memory
onstraints, and thepro
essor utilization.The experimental results show that if jobs use non-blo
king or
olle
tive-
ommuni
ation patterns, the response time be
omes largely insensitiveto the job
ommuni
ation pattern. Using a simple job a

ess poli
y, wealso demonstrate the robustness of bu�ered
os
heduling in the presen
eof memory
onstraints. Overall, bu�ered
os
heduling generally outper-forms ba
k�lling and ba
k�lling gang s
heduling with respe
t to responsetime, wait time, run-time slowdown, and pro
essor utilization.Keywords: Parallel Job S
heduling, Distributed Operating Systems, Com-muni
ation Proto
ols, Performan
e Evaluation.1 Introdu
tionThe s
heduling of parallel jobs has long been an a
tive area of resear
h [8, 9℄. Itis a
hallenging problem be
ause the performan
e and appli
ability of parallels
heduling algorithms is highly dependent upon fa
tors at di�erent levels: theworkload, the parallel programming language, the operating system (OS), andthe ma
hine ar
hite
ture. The importan
e of job s
heduling strategies stemsfrom the impa
t that they
an have on the resour
e utilization and the responsetime of the system.Time-sharing s
heduling algorithms are parti
ularly attra
tive be
ause they
an provide good response time without migration or predi
tions on the exe
u-tion time of the parallel jobs. However, time-sharing has the drawba
k that
om-muni
ating pro
esses must be s
heduled simultaneously to a
hieve good perfor-man
e. With respe
t to performan
e, this is a
riti
al problem be
ause the soft-ware
ommuni
ation overhead and the s
heduling overhead to wake up a sleepingpro
ess dominate the
ommuni
ation time on most parallel ma
hines [14℄.

Over the years, resear
hers have developed parallel s
heduling algorithmsthat
an be loosely organized into three main
lasses, a

ording to the degreeof
oordination between pro
essors: gang s
heduling (GS), lo
al s
heduling (LS)and impli
it or dynami

os
heduling (DCS).On the one end of the spe
trum, GS [7℄ ensures that the s
heduling of
om-muni
ating jobs is
oordinated by
onstru
ting a stati
 global list of the order inwhi
h jobs should be s
heduled. A simultaneous
ontext-swit
h is then requireda
ross all pro
essors. Unfortunately, these straightforward implementations areneither s
alable nor reliable. Furthermore, GS requires that the s
hedule of
om-muni
ating pro
esses be pre
omputed, whi
h
ompli
ates the
os
heduling of
lient-server appli
ations and requires pessimisti
 assumptions about whi
h pro-
esses
ommuni
ate with one another. Finally, expli
it
os
heduling of paralleljobs intera
ts poorly with intera
tive jobs and jobs performing I/O [17℄.At the other end of the spe
trum is LS, where ea
h pro
essor independentlys
hedules its pro
esses. This is an attra
tive time-sharing option due to its easeof
onstru
tion. However, the performan
e of �ne-grained
ommuni
ation jobs
an be orders of magnitude worse than with GS be
ause the s
heduling is not
oordinated a
ross pro
essors [11℄.An intermediate approa
h developed at UC Berkeley and MIT is DCS [1℄[19℄ [4℄ [25℄. With DCS, ea
h lo
al s
heduler makes independent de
isions thatdynami
ally
oordinate the s
heduling a
tions of
ooperating pro
esses a
rosspro
essors. These a
tions are based on lo
al events that o

ur naturally within
ommuni
ating appli
ations. For example, on message arrival, a pro
essor spe
-ulatively assumes that the sender is a
tive and will probably send more messagesin the near future. The main drawba
ks of dynami

os
heduling in
lude the highoverhead of generating interrupts upon message arrival and the limited vision ofthe status of the system that is based on spe
ulative information. Some aspe
tsof these limitations are addressed in [18℄ with a te
hnique
alled Periodi
 Boost.Rather than sending an interrupt for ea
h in
oming message, the kernel period-i
ally examines the status of the network interfa
e, thus redu
ing the overheadfor
ommuni
ation-intensive workloads.We re
ently proposed a new approa
h to job multitasking,
alled bu�ered
os
heduling (BCS) [6℄. BCS shows promise in integrating the positive aspe
tsof GS, e.g., global
oordination of jobs, along with positive aspe
ts of DCS, e.g.,in
reased resour
e utilization obtained by overlapping
omputation and
om-muni
ation of di�erent jobs. The bene�ts of BCS in
lude higher throughput,dramati
 simpli�
ation of run-time support, redu
ed
ommuni
ation overhead,eÆ
ient global implementation of
ow-
ontrol strategies and fault-tolerant pro-to
ols, and a

urate performan
e modeling. Here, we fo
us on the performan
eof BCS in the presen
e of memory
onstraints.Like DCS, BCS must address a
ouple of important problems. A �rst prob-lem is the impa
t of the memory hierar
hy: All the bene�ts obtained with jobmultitasking
an be wiped out if the memory requirements of multiple jobs ex-
eed the physi
al memory available and over
ow in the swap spa
e. Se
ondarymemory
an be orders of magnitude slower. A se
ond problem is the impa
t of

the type of the job
ommuni
ation and syn
hronization on the overall through-put. This problem leads to another
losely related problem: the
hoi
e of thetime-sli
e length. While a long time-sli
e
an hide the overhead and in
rease thes
alability of BCS, it
an also in
rease the pro
essor idle time due to blo
king
ommuni
ation.In this paper, we analyze the above problems with a detailed simulationmodel driven by a real workload drawn from an a
tual super
omputing envi-ronment at Lawren
e Livermore National Labs. By
onsidering a simple job-s
heduling algorithm that limits the a

ess into the system of those jobs thatex
eed the memory requirements, we evaluate the system response time andutilization under various types of workloads and system parameters.The rest of the paper is organized as follows. Se
tion 2 brie
y reviews BCS.Se
tion 3 des
ribes the job a

ess poli
y that takes into
onsideration the mem-ory requirements, Se
tion 4 the experimental framework and Se
tion 5 the re-sults of the simulations. Some
onsiderations on the potential advantages onthe development of system-level and user-level software are listed in Se
tion 6,the relations between BCS and the Bulk-Syn
hronous Parallel model of parallel
omputation are des
ribed in Se
tion 7, followed by a
on
lusion in Se
tion 8.2 Bu�ered Cos
hedulingTo implement job multitasking, BCS relies on two te
hniques. First, the
ommu-ni
ation generated by ea
h pro
essor is bu�ered and performed at the end of regu-lar intervals (or time-sli
es) in order to amortize the
ommuni
ation and s
hedul-ing overhead. By delaying
ommuni
ation, we allow for the global s
heduling ofthe
ommuni
ation pattern. Se
ond, a strobing me
hanism performs a total ex-
hange of
ontrol information at the end of ea
h time-sli
e in order to move fromisolated s
heduling algorithms [1℄ (where pro
essors make de
isions based solelyon their lo
al status and a limited view of the remote status) to more outward-looking or global s
heduling algorithms. An important
hara
teristi
 of BCS isthat, instead of overlapping
omputation with
ommuni
ation and I/O within asingle parallel program, all the
ommuni
ation and I/O whi
h arises from a setof parallel programs
an be overlapped with the
omputations in those programs.This approa
h represents a signi�
ant improvement over existing work re-ported in the literature. It allows for the implementation of a global s
hedulingpoli
y, as done in GS, while maintaining the overlapping of
omputation and
ommuni
ation provided by DCS.2.1 Communi
ation Bu�eringRather than in
urring
ommuni
ation and s
heduling overhead on a per-messagebasis, BCS a

umulates the messages generated by ea
h pro
ess and tries toamortize the overhead over a set of messages. Spe
i�
ally, the
ost of the system
alls ne
essary to a

ess the kernel data stru
tures for
ommuni
ation is amor-tized over a set of system
alls rather than being in
urred on ea
h individual

system
all. This implies that BCS
an be tolerant to the potentially high laten-
ies that
an be introdu
ed in a kernel
all or in the initialization of the networkinterfa
e
ard (NIC) that
an reside on a slow I/O bus.2.2 Strobing HeartbeatsVirtually all the existing resear
h in parallel job s
heduling use isolated algo-rithms, whi
h spe
ulatively make s
heduling de
isions based on a limited knowl-edge of the status of the ma
hine, rather than algorithms whi
h use non-isolated(or even global) knowledge. In order to provide the above
apability, we pro-pose a strobing me
hanism to support the s
heduling of a set of parallel jobswhi
h share a parallel ma
hine. Let us assume that ea
h parallel job runs onthe entire set of p pro
essors, i.e., jobs are time-sharing the whole ma
hine. Ourgoal is to syn
hronize the pro
essors of the parallel ma
hine at the end of atime-sli
e in order to perform a total ex
hange of information regarding theirstatus. To amortize the overhead, all the
ommuni
ation operations are bu�eredand exe
uted at the end of the time-sli
e. The strobing me
hanism performsan optimized total-ex
hange of
ontrol information (whi
h we
all heartbeat orstrobe) and triggers the downloading of any bu�ered pa
kets into the network.At the start of the heartbeat, ea
h pro
essor downloads a personalized broad
astinto network. After downloading the heartbeat, the pro
essor
ontinues runningthe
urrently a
tive job. (This ensures
omputation is overlapped with
om-muni
ation.) When p heartbeats arrive at a pro
essor, the pro
essor will entera phase where its kernel will download any bu�ered pa
kets. Ea
h heartbeat
ontains information on whi
h pro
esses have pa
kets ready for download andwhi
h pro
esses are asleep waiting to upload a pa
ket from a parti
ular pro
es-sor. This information is
hara
terized on a per-pro
ess basis, so that on re
eptionof the heartbeat, every pro
essor will know whi
h pro
esses have data headingfor them, and whi
h pro
esses on that pro
essor they are from.Figure 1 shows how
omputation and
ommuni
ation
an be s
heduled overa generi
 pro
essor. At the beginning of the heartbeat, t0, the kernel downloads
ontrol pa
kets into the network for a total ex
hange. During the exe
ution ofthe heartbeat, another user pro
ess gains
ontrol of the pro
essor; and at the endof the heartbeat, the kernel s
hedules the pending
ommuni
ation, a

umulatedin the previous time-sli
es (before t0), to be delivered in the
urrent time-sli
e[t0; t2℄. From the
ontrol information ex
hanged between t0 and t1, the pro
essorwill know (at t1) the number of in
oming pa
kets that it is going to re
eive inthe
ommuni
ation time-sli
e as well as the sour
es of the pa
kets and will startthe downloading of outgoing pa
kets. It is worth noting that the potentially highoverhead of the strobing algorithm is simply removed from the
riti
al path byrunning another pro
ess. Thus, we
an tolerate the laten
y of a global ex
hangeof information without experien
ing performan
e degradation.

t 0

δ

������
������
������

������
������
������

�������������������
�������������������
�������������������

�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������

�����
�����
�����

�����
�����
�����

STROBE

K

t t t1 2 3

STROBE

TIME

Computation

Communication

K

K = kernelFig. 1. S
heduling Computation and Communi
ation. Communi
ation a

umulated inthe time-sli
e up to t0 is downloaded into the network between t1 and t2 (after theheart beat). Æ � length of a time-sli
e = t2 � t0.3 Job A

ess ControlS
heduling parallel jobs by sharing pro
essors not only spatially but also tem-porally provides an extra degree of
exibility and a
onsiderable performan
eadvantage. Unfortunately, this advantage
an be limited by multiple resour
erequirements, e.g., memory hierar
hy requirements. If the jobs mapped on apro
essing node ex
eed the physi
al memory available and use the virtual mem-ory, the advantages of job multitasking
an be nulli�ed.In order to avoid su
h problem we
onsider a very simple job a

ess
on-trol poli
y, whi
h allows jobs into the system only if their memory requirementsdo not ex
eed the physi
al memory available. For instan
e, Figure 2 shows theOusterhout matrix of an 8-pro
essor system with a multiprogramming level ofthree and 512 MB of physi
al memory per pro
essor Pi. Job J5 requires 2 pro-
essors and 256 MB of memory per pro
essor. Thus, it
an only be mapped ontotwo of the four two-pro
essor slots available due to memory
onstraints.
P0

time-slice 0

time-slice 1

P P P P P P1 2 3 4 5 P6 7

time-slice 2

J 0 64MB

J 5 256MB

J 64MB

J

J

J

1

2

3 4

128MB

256MB128MBFig. 2. Ousterhout Matrix of an 8-Pro
essor System with 512-MB Memory/Pro
essorand Multiprogramming Level of 3.

In our experiments, we
ombine the above a

ess
ontrol poli
y with anaggressive ba
k�ll heuristi
 [24℄, whi
h sele
ts any job from the ready queuethat does not interfere with the expe
ted start time of the �rst blo
ked job. Asshown in [27℄, this te
hnique, when used with GS,
an provide improvementsover a wide spe
trum of performan
e
riteria. However, this greedy method doesnot look at the additional resour
e requirements of the jobs in the ready queueor the
urrent state of the system resour
e loads, thus leaving room for futureimprovements.GS
an re-use some of the unused slots in the Ousterhout matrix if a jobassigned to a given time-sli
e
an atomi
ally �t into one or more empty slots inanother time-sli
e. This is the
ase of jobs J1 and J3 in Figure 2, whi
h
an berun on the two slots available in time-sli
e 1, as shown in Figure 3.
P0

time-slice 0

time-slice 1

P P P P P P1 2 3 4 5 P6 7

time-slice 2

J 0 64MB

J 64MB1

J 3 128MB

J

J 2

4

128MB

256MBFig. 3. Empty slot utilization with GSWhile GS
annot �ll in the two unused slots in the time-sli
es 0 and 2 withjob J2, BCS
an potentially use their pro
essing time, be
ause the grain size ofthe resour
e allo
ation is the pro
ess and not the entire job. The
ommuni
ationpattern of the jobs, the lo
al pro
ess s
heduling algorithms, and many otherfa
tors
an in
uen
e how the resour
es made available by the empty slots
anbe used by di�erent jobs.4 Experimental FrameworkBefore presenting the experimental results, we provide details on our simulationplatform, the workloads used to drive the simulator, and the metri
s of interest.4.1 Simulation ModelIn order to eÆ
iently simulate and analyze di�erent job s
heduling strategiesfor parallel
omputers in depth, we developed a novel simulator
alled the JobS
heduling Simulator (JSS). With JSS, the user
an explore the Cartesian prod-u
t generated by di�erent dimensions of the design spa
e. A �rst dimension isma
hine s
heduling: JSS provides spa
e sharing and two basi
 forms of timesharing | gang s
heduling (GS) and bu�ered
os
heduling (BCS). A se
ond di-mension is the sele
tion algorithm of the ready-jobs queue. Jobs
an be sele
ted

in FCFS (First Come First Served) order or ba
k�lled using a
onservative oran aggressive poli
y. Conservative ba
k�lling sear
hes the ready queue for jobsthat
an be s
heduled immediately, with the
onstraints that these jobs
annotinterfere with the expe
ted start time of the jobs whi
h
ome before them inthe ready queue. Aggressive ba
k�lling is a weaker version of
onservative ba
k-�lling, whi
h sele
ts any job from the queue whi
h does not interfere with theexpe
ted start time of the �rst job in the ready queue. Both
onservative andaggressive ba
k�lling
an dramati
ally improve the overall ma
hine utilizationand response time over FCFS but require a reasonably good estimate of the jobrun-time.Both GS and BCS
an have a parametri
 multiprogramming level (MPL) andtimes-sli
e length and
an use the job a

ess
ontrol poli
y des
ribed in Se
tion3. With GS, the user
an also set the delay asso
iated with job
ontext-swit
hat the end of ea
h time-sli
e.In our BCS implementation, the user
an de�ne the system parameters as thepro
ess
ontext-swit
h penalty,
ommuni
ation bandwidth between pro
essors,and the algorithms to globally s
hedule the
ommuni
ation pattern. In order toexplore how the various aspe
ts of
omputation and
ommuni
ation in
uen
ethe overall performan
e of BCS, JSS provides an API,
omposed of a limitedbut representative subset of MPI, that in
ludes blo
king and non-blo
king
om-muni
ation primitives and syn
hronization primitives. The
urrent implementa-tion of JSS abstra
ts the main
hara
teristi
s of ea
h job using four parametershg; v;
omm; syn
i, where g represents the
omputational grain size, v the loadimbalan
e,
omm the
ommuni
ation pattern, and syn
 the type of syn
hro-nization. A parallel job
onsists of a group of P pro
esses, and ea
h pro
ess ismapped on a pro
essor throughout the exe
ution. Pro
esses alternate phases ofpurely lo
al
omputation with interpro
ess
ommuni
ation, as shown in Figure4. Ea
h pro
ess
ompute lo
ally for a time uniformly sele
ted in the interval(g � v2 ; g + v2). By adjusting g, we model parallel programs with di�erent
om-putational granularities. By varying v, we
hange the degree of load-imbalan
ea
ross pro
essors. The
ommuni
ation phase
onsists of an optional sequen
e of
ommuni
ation events. The parameter
omm de�nes one of the three
ommu-ni
ation patterns: Barrier, News and Transpose. Barrier does not perform any
ommuni
ation and
an be used to analyze how bu�ered
os
heduling respondsto load imbalan
e. The other two patterns
onsist of a sequen
e of point-to-point
ommuni
ations. The
ommuni
ation pattern generated by News is basedon a sten
il with a grid where ea
h pro
ess ex
hanges information with its fourneighbors. This pattern represents those appli
ations that perform a domain de-
omposition of the data set and limit their
ommuni
ation pattern to a �xed setof partners. Transpose is a
ommuni
ation-intensive workload that emulates the
ommuni
ation pattern generated by the FFT transpose algorithm [12℄, whereea
h pro
ess a

esses data of all other pro
esses. Finally, syn
 des
ribes the typeof syn
hronization in a job: we
an have either blo
king
ommuni
ation (B),where ea
h point-to-point
ommuni
ation is implemented with blo
king sendsand re
eives or non-blo
king
ommuni
ation (NB), where the
ommuni
ation

primitives do not require an expli
it handshake between sender and re
eiver andare terminated by a global barrier syn
hronization.
local

computation

communication (optional)

begin barrier (optional)

end barrier (optional)

computation
granularity (g)

load
variation (v)

time processes

Fig. 4. Overlap of Computation and Communi
ation
Parameter ValuePro
essors 32Main memory per pro
essor 512 MBJob
ontext-swit
h (GS) 1 msPro
ess
ontext-swit
h (BCS) 100 �sMessage size (BCS) 4KBCommuni
ation Bandwidth (BCS) 100 MB/sTable 1. Experimental System Parameters and Values.Table 1 des
ribes some of the system parameters used during the experi-mental evaluation. We
onsider an ar
hite
ture with 32 pro
essors where ea
hpro
essor is equipped with 512 MB of main memory.4.2 WorkloadsA
ru
ial aspe
t in the performan
e evaluation of job s
heduling strategies isthe availability of realisti
 workloads that
an be represented with a
ompa
tmathemati
al formulation. Parallel workloads are often dispersive: job inter-arrival time distribution and job exe
ution time distribution have a
oeÆ
ientof variation that is greater than one, i.e., they are long tailed. These distributions
an be �tted adequately with Hyper Erlang Distributions of Common Order [13℄.Our experiments use a workload dire
tly extra
ted from a real super
omputing

environment, ASCI Blue-Pa
i�
 at Lawren
e Livermore National Laboratory.Our modeling pro
edure involves the following steps.1. The jobs are �rst grouped into
lasses, based on the number of pro
essorsthey require. Ea
h
lass is a bin in whi
h the upper boundary is a power oftwo.2. The original workload
ontains jobs varying in size from one to 256 pro
es-sors. However, due to the large amount of details involved in the simulationof bu�ered
os
heduling, we have limited ourselves to 32 pro
essors, sele
t-ing jobs that fall within this limit. The resulting workload is a subset of theoriginal workload and
ontains all the jobs that request up to 32 pro
essors.It is worth noting that su
h a workload is extremely demanding, when runon a ma
hine with only 32 pro
essors.3. We then model the inter-arrival time and the exe
ution time distributionsfor ea
h
lass through Hyper Erlang Distributions of Common Order.4. Next we generate various syntheti
 workloads from the observed workloadby multiplying the average job exe
ution time by a load fa
tor from 0:1 to1:6 in steps of 0:1. For a �xed inter-arrival time, in
reasing job exe
utiontime typi
ally in
reases resour
e utilization, until the system saturates. Theload fa
tor 1:0 identi�es the observed workload.5. Ea
h job requires an amount of main memory whi
h is exponentially dis-tributed around a given mean value, whi
h represents the maximum memoryrequirements over all pro
esses belonging to a job.When simulating bu�ered
os
heduling, we need an extra degree of detailto
hara
terize how
omputation,
ommuni
ation and syn
hronization are per-formed inside ea
h job. Thus, the modeling pro
edure requires some extra steps.1. Based on the workload
hara
terization, we pi
k a job template for ea
h jobin a workload.2. Based on the job template, we determine the
omputation and
ommuni
a-tion patterns of the job.Table 2 outlines the �ve workload
hara
terizations used in the experiments:ea
h one is
omposed of three job templates, des
ribed using the notation de�nedin Se
tion 5. Jobs in a workload
an be assigned one of the three templateswith equal probability. These
hara
terizations display di�erent
ommuni
ationand syn
hronization patterns. In the �rst one (workload 0) all the jobs performan intensive
ommuni
ation pattern (Transpose) using blo
king
ommuni
ation.The se
ond workload uses the same
ommuni
ation pattern together with non-blo
king
ommuni
ation. The same
hara
teristi
s distinguish workloads 2 and3. They use the same
ommuni
ation pattern, News, but a di�erent type ofsyn
hronization. In the �fth workload, jobs do not perform any
ommuni
ation:the goal of this workload is to identify the impa
t of load imbalan
e.4.3 Metri
sThe experimental evaluation
onsiders metri
s that are important from both thesystem's and user's perspe
tives.

Workload Job Template 0 Job Template 1 Job Template 20 h50; 25; T ra;Bi h100; 50; T ra;Bi h200; 100; T ra;Bi1 h50; 25; T ra;NBi h100; 50; T ra;NBi h200; 100; T ra;NBi2 h50; 25; News;Bi h100; 50; News;Bi h100; 100; News;Bi3 h50; 25; News;NBi h100; 50; News;NBi h200; 100; News;NBi4 h50; 25; Barrier;NBi h100; 50; Barrier;NBi h200; 100; Barrier;NBiTable 2. Five Workloads: Ea
h with an equal mix of three job
lasses. The job gran-ularity and skew are expressed in ms.{ Wait Time: The time spent by a job waiting in the ready queue before it iss
heduled.{ Exe
ution Time: The a
tual job run time.{ Response Time: The sum between wait and exe
ution time.{ System Utilization: The system utilization identi�es the ma
hine utilizationat the job allo
ation level. Intuitively, the system utilization is the fra
tionof the s
heduling matrix that is �lled with jobs.{ Pro
essor Utilization: The pro
essor utilization is the fra
tion of time CPUspent is useful
omputation. It is worth noting that, in the general
ase, thepro
essor utilization is always smaller than the system utilization, be
ausethe pro
essors
an be idle during the job exe
ution.{ Exe
ution Time Slowdown: The exe
ution time slowdown is the ratio be-tween the exe
ution time and the job run time in a dedi
ated environment.The exe
ution time slowdown is 1:0 with spa
e sharing and a number largerthan 1:0 in a time shared environment.5 Experimental ResultsThe experimental results try to provide insight into three important aspe
tsof bu�ered
os
heduling: (1) the impa
t of the
ommuni
ation pattern and thetime-sli
e length on the response time, (2) the impa
t of memory
onstraintswith the job a

ess
ontrol poli
y outlined in se
tion 3 and the (3) the pro
essorutilization. In all three
ases we
ompare bu�ered
os
heduling with aggressiveba
k�lling (BF), a s
heduling poli
y that
an obtain ex
ellent performan
e re-sults with spa
e sharing [24℄, and with ba
k�lling gang s
heduling (BGS), theextension of this te
hnique to gang s
heduling, re
ently proposed in [27℄.5.1 Impa
t of Communi
ation, Syn
hronization and Time-sli
eLengthThe
hoi
e of the time-sli
e for BCS is the result of a
ompromise between
om-peting fa
tors. On the one hand, a large time-sli
e
ould easily hide the overheadasso
iated with the strobing algorithm and the pro
ess
ontext-swit
hes, thus al-lowing the s
alability of BCS to ar
hite
tures with a large number of pro
essors.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
es

po
ns

e
tim

e
(s

ec
)

Load Factor

Response time vs load, timeslice 10 ms

workload 0
workload 1
workload 2
workload 3
workload 4

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
es

po
ns

e
tim

e
(s

ec
)

Load Factor

Response time vs load, timeslice 5 ms

workload 0
workload 1
workload 2
workload 3
workload 4

b)a)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
es

po
ns

e
tim

e
(s

ec
)

Load Factor

Response time vs load, timeslice 50 ms

workload 0
workload 1
workload 2
workload 3
workload 4

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
es

po
ns

e
tim

e
(s

ec
)

Load Factor

Response time vs load, timeslice 100 ms

workload 0
workload 1
workload 2
workload 3
workload 4

c) d)Fig. 5. Response time for various time-sli
es,
ommuni
ation and syn
hronization pat-terns. In all graphs the MPL is 3.
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
es

po
ns

e
tim

e
(s

ec
)

Load factor

Response time vs load, Multiprogramming level 3

buffered, 0 MB
buffered, 64 MB
buffered, 128 MB
buffered, 256 MB
gang, 0 MB
gang, 64 MB
gang, 128 MB
gang, 256 MB
backfilling

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
es

po
ns

e
tim

e
(s

ec
)

Load factor

Response time vs load, Multiprogramming level 2

buffered, 0 MB
buffered, 64 MB
buffered, 128 MB
buffered, 256 MB
gang, 0 MB
gang, 64 MB
gang, 128 MB
gang, 256 MB
backfilling

b)a)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
es

po
ns

e
tim

e
(s

ec
)

Load factor

Response time vs load, Multiprogramming level 4

buffered, 0 MB
buffered, 64 MB
buffered, 128 MB
buffered, 256 MB
gang, 0 MB
gang, 64 MB
gang, 128 MB
gang, 256 MB
backfilling

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
es

po
ns

e
tim

e
(s

ec
)

Load factor

Response time vs load, Multiprogramming level 8

buffered, 0 MB
buffered, 64 MB
buffered, 128 MB
buffered, 256 MB
gang, 0 MB
gang, 64 MB
gang, 128 MB
gang, 256 MB
backfilling

c) d)Fig. 6. Response time versus load for various MPLs. The graphs
ompare BCS withBF and BGS.

On the other hand, it in
reases the likelihood of having idle pro
essors, due toblo
king
ommuni
ation and global syn
hronization, thus limiting the potentialin
rease in resour
e utilization.Figure 5 shows how the response time is in
uen
ed by in
reasing the time-sli
e from 5 ms to 100 ms. All the experiments use a MPL equal to three. Fromthe graphs, we
an
learly see that workloads with a large amount of blo
king
ommuni
ation (templates 0 and 2)
an be eÆ
iently supported only with smalltime-sli
es. This is parti
ularly true for workload 0 whi
h is extremely sensitiveto the in
rease in the time-sli
e be
ause it is
ommuni
ation intensive.Looking at the graphs generated by templates 1 and 3 we
an see that theyalmost overlap with all time-sli
es. These workloads share the same form of syn-
hronization, obtained with a global barrier, though they have fairly di�erent
ommuni
ation patterns. We explored this aspe
t in depth using many other
ommuni
ation patterns, workloads templates, number of pro
essors, and ar
hi-te
tural
hara
teristi
s (not shown here for brevity), and we have found out thatthis is a strong property of BCS. With BCS, the overall performan
e is relativelyinsensitive to the
ommuni
ation pattern when the
ommuni
ation is performedwith non-blo
king
alls or, more generally, with a
olle
tive
ommuni
ation pat-tern. The rationale behind this property is related to the fa
t that the run-timesupport
annot eÆ
iently s
hedule blo
king
ommuni
ation, while it
an rear-range non-blo
king primitives. This leads to a nearly optimal overlap between
omputation and
ommuni
ation when we use relative large MPLs. Also, thereis an extra advantage in using
olle
tive
ommuni
ation patterns (e.g., broad-
asts, s
atter & gather, multi
asts) be
ause the information provided by the
ommuni
ation pattern
an be dire
tly passed to the run-time support, whi
h
an thus perform e�e
tive global optimizations. This is not true in the general
ase; in fa
t, many parallel appli
ations possess a well de�ned
ommuni
ationstru
ture that is lost in the
ompilation pro
ess (e.g., be
ause it is mapped inan unstru
tured
ommuni
ation graph of blo
king
alls).5.2 Impa
t of Memory ConstraintsThis se
tion analyzes the ma
hine response time, the wait time, and exe
utiontime slowdown in
onjun
tion with the memory-aware job s
heduling poli
y de-s
ribed in Se
tion 3. In all experiments we use the workload template number 3and we
onsider workloads with in
reasing average memory requirements, rang-ing from 0 MB (i.e., no memory
onstraints), to 256 MB, half the size of physi
almemory available on ea
h pro
essor.From Figure 6 we
an draw the following
onsiderations:{ BCS outperforms GS in all
on�gurations. This is more pronoun
ed at higherloads, be
ause BCS
an overlap
omputation with
ommuni
ation and
anre-use
omputing resour
es at the pro
ess-level granularity rather than atthe job level, as shown in Se
tion 3.{ There is no penalty in using an arbitrarily large MPL with BCS. For a givenaverage memory requirement, the system
onverges to a given state and does

not experien
e any degradation when we further in
rease the MPL. Thatstate is mainly determined by the ratio between the job average memoryrequirements and the a
tual physi
al memory available.{ When the memory requirements are high (e.g. 256 MB), BCS
onverges toba
k�lled spa
e-sharing (BF). Intuitively, when the memory
onstraints donot allow job multitasking, the system
onverges to spa
e sharing. This isnot true for GS as it experien
es sharp degradation in response-time perfor-man
e, as shown if Figure 6 d) with 128 and 256 MB.
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ai

t t
im

e
(s

ec
)

Load factor

Wait time vs load, Multiprogramming level 3

buffered, 0 MB
buffered, 64 MB
buffered, 128 MB
buffered, 256 MB
gang, 0 MB
gang, 64 MB
gang, 128 MB
gang, 256 MB
backfilling

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ai

t t
im

e
(s

ec
)

Load factor

Wait time vs load, Multiprogramming level 2

buffered, 0 MB
buffered, 64 MB
buffered, 128 MB
buffered, 256 MB
gang, 0 MB
gang, 64 MB
gang, 128 MB
gang, 256 MB
backfilling

b)a)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ai

t t
im

e
(s

ec
)

Load factor

Wait time vs load, Multiprogramming level 4

buffered, 0 MB
buffered, 64 MB
buffered, 128 MB
buffered, 256 MB
gang, 0 MB
gang, 64 MB
gang, 128 MB
gang, 256 MB
backfilling

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ai

t t
im

e
(s

ec
)

Load factor

Wait time vs load, Multiprogramming level 8

buffered, 0 MB
buffered, 64 MB
buffered, 128 MB
buffered, 256 MB
gang, 0 MB
gang, 64 MB
gang, 128 MB
gang, 256 MB
backfilling

c) d)Fig. 7. Wait Time versus Load for Various MPLs.Figure 7 provides insight on the wait time for the same set of experiments ofFigure 6. The graphs
learly show how time sharing
an dramati
ally redu
e thewait time over spa
e sharing. BCS redu
es the wait time further over ba
k�lledgang s
heduling (BGS), in parti
ular with high MPLs.The redu
tion of the wait time obtained in
reasing the MPL, usually impliesan in
rease of the job exe
ution time. In the worst
ase, the slowdown
an be ashigh as the MPL. In Figure 8 we
an see that BCS limits the slowdown whenwe in
rease the MPL and outperforms BGS in all
on�gurations, again thanksto the re-use of empty slots in the s
heduling matrix at the pro
ess level ratherthan the job level.

1

1.5

2

2.5

3

3.5

4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
un

 ti
m

e
sl

ow
do

w
n

Load factor

Run time slowdown vs load, Multiprogramming level 4

buffered, 0 MB
buffered, 64 MB
buffered, 128 MB
buffered, 256 MB
gang, 0 MB
gang, 64 MB
gang, 128 MB
gang, 256 MB

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
un

 ti
m

e
sl

ow
do

w
n

Load factor

Run time slowdown vs load, Multiprogramming level 2

buffered, 0 MB
buffered, 64 MB
buffered, 128 MB
buffered, 256 MB
gang, 0 MB
gang, 64 MB
gang, 128 MB
gang, 256 MB

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
un

 ti
m

e
sl

ow
do

w
n

Load factor

Run time slowdown vs load, Multiprogramming level 3

buffered, 0 MB
buffered, 64 MB
buffered, 128 MB
buffered, 256 MB
gang, 0 MB
gang, 64 MB
gang, 128 MB
gang, 256 MB

1

2

3

4

5

6

7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
un

 ti
m

e
sl

ow
do

w
n

Load factor

Run time slowdown vs load, Multiprogramming level 8

buffered, 0 MB
buffered, 64 MB
buffered, 128 MB
buffered, 256 MB
gang, 0 MB
gang, 64 MB
gang, 128 MB
gang, 256 MB

c) d)

b)a)

Fig. 8. Exe
ution Time Slowdown versus Load for Various MPLs.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

F
ra

ct
io

n
of

 ti
m

e

Load factor

Processor utilization vs load, Multiprogramming level 8

buffered, 0 MB
buffered, 64 MB
buffered, 128 MB
buffered, 256 MB
gang, 0 MB
gang, 64 MB
gang, 128 MB
gang, 256 MB
backfilling

Fig. 9. Pro
essor Utilization versus Load for BCS and BGS.

5.3 Pro
essor UtilizationMost results on job s
heduling strategies fo
us on system utilization rather thanpro
essor utilization and show that both BF and BGS
an get more than 90%under many workloads. Figure 9 extends these results by analyzing the pro
essorutilization obtained by BF, BGS and BCS.We observe the following:{ Though BGS improves response time over BF, it does not improve systemand pro
essor utilization. The slight de
rease in performan
e is due to thejob
ontext-swit
hing overhead.{ With BCS, we
an get a pro
essor utilization that asymptoti
ally rea
h 85%,while BGS and BF approa
h 60%. This is one of the main advantages of BCSover BGS and BF.{ Pro
essor utilization is sensitive to a job's average memory request when weuse time sharing: the higher the memory request, the lower the pro
essorutilization.{ The results address the overlapping of
omputation and
ommuni
ation only.We expe
t that the resour
e utilization gap between BF, BGS and BCS willin
rease further in the presen
e of I/O.6 Dis
ussionThe potential te
hni
al impa
t of BCS is signi�
ant for a large
lass of parallelma
hines and distributed systems, ranging from Linux
lusters to the larger andmore sophisti
ated massively parallel ma
hines. To the best of our knowledge,this is the �rst methodologi
al attempt to globally optimize the resour
es of aparallel ma
hine rather than using the limited lo
al knowledge available on ea
hpro
essor.While BCS enhan
es overall system performan
e, parti
ularly with respe
tto pro
essor utilization and response time, BCS also naturally provides system-level and user-level advantages whi
h we dis
uss in this se
tion.6.1 System-Level AdvantagesFirst, the
ommuni
ation is optimized in several ways. The
ost of the system
alls ne
essary to a

ess the kernel data stru
tures is amortized over a set ofuser
alls. This implies that the methodology is tolerant to the potential highlaten
ies that
an be introdu
ed in a kernel
all. BCS
an obtain
omparableperforman
e to user-level network interfa
es (e.g., FM [16℄ or ST [22℄) withoutusing spe
ialized hardware.Se
ond, the global knowledge of the
ommuni
ation pattern provided by thetotal ex
hange allows for the implementation of eÆ
ient
ow-
ontrol strategies.For example it is possible to avoid
ongestion inside the network by
arefullys
heduling the
ommuni
ation pattern and limit the negative e�e
ts of hot spotsby damping the maximum amount of information addressed to ea
h pro
essor

during a time sli
e. The same information
an be used at kernel level to providefault toleran
e in the
ommuni
ation. For example the knowledge of the numberof in
oming pa
kets greatly simpli�es the implementation of re
eiver-initiatedre
overy proto
ols. By globally s
heduling a
ommuni
ation pattern, it is alsopossible to obtain an a

urate estimate of the
ommuni
ation time with simpleanalyti
al models. By knowing the maximum amount of information that
anbe delivered in a time-sli
e, it is possible to minimize the size of the
ommuni-
ation bu�ers in ea
h network interfa
e. This is a
ru
ial problem in a massivelyparallel ar
hite
ture. Let's
onsider, for example, a ma
hine with 10000 pro
es-sors - the approximate number of pro
essors expe
ted to be in the next ASCIsuper
omputers. Given that ea
h pro
essor
an potentially re
eive a messagefrom all the remaining 9999 pro
essors, it must reserve a proportional amountof network interfa
e memory (typi
ally few MB for ea
h potential partner). Thisis infeasible with
urrent network te
hnology and poses a serious limit to theeÆ
ient implementation of large s
ale parallel ma
hines.Third, be
ause
ommuni
ation is bu�ered and delayed to the beginning ofthe next time-sli
e, we
an always implement zero- (or low-, if we desire faulttolerant
ommuni
ation)
opy
ommuni
ation. Fault toleran
e in general
analso be enhan
ed by exploiting the syn
hronization point at the end of ea
htime sli
e to in
rementally take a snapshot of the status of the ma
hine.Fourth, an important advantage of time-sharing parallel jobs is a better uti-lization of the resour
es. When we
onsider I/O, there
an be several orders ofmagnitude of di�eren
e between the
omputational grain of the parallel appli
a-tion and the a

ess time of se
ondary storage. The usual approa
h of overlapping
omputation with I/O, for example using user-level threads,
an only providea limited return in the presen
e of a single parallel job. By overlapping the a
-tivities of multiple parallel jobs we
an potentially hide most of the laten
y.The same argument
an be applied to hide the non-uniform laten
ies of large
lusters of SMPs. The higher laten
y of the inter-
luster
ommuni
ation
an beoverlapped with the exe
ution of another parallel job.Fifth, by time-sharing parallel jobs it is possible to obtain better responsetime and quality of servi
e for
riti
al appli
ations. Time-sli
ing
an be used togive good average
ompletion times for dynami
ally
hanging workloads, whileretaining fast response times for intera
tive jobs.Sixth, be
ause of the deep pipelines and wide out-of-order supers
alar ar
hi-te
tures of
ontemporary pro
essors, an interrupt may need to nullify a largenumber of in-
ight instru
tions [15℄. Larger register �les require existing systemsoftware to save and restore a substantial amount of pro
ess state. The redu
-tion of the interrupt frequen
y provided by BCS
an substantially improve theperforman
e on these pro
essors.Seventh, BCS
an also eÆ
iently support future pro
essor ar
hite
tures, su
has Simultaneous Multi-threading (SMT) [3℄ [5℄, that time-share multiple pro-
esses at hardware level.

6.2 User-Level AdvantagesThe typi
al approa
h to developing parallel software is by using low-level pro-gramming models su
h as MPI. At that level the user is exposed to a largenumber of details. The user must identify the form of parallelism in the ap-pli
ation and de
ompose it in a set of parallel threads, partition the data setamong these threads, map the threads and the data set on a parallel ar
hi-te
ture, de�ne
ommuni
ation and syn
hronization between these threads. Thisdevelopment pro
ess is typi
ally spe
i�
 to a parti
ular appli
ation or
lass ofuser appli
ations.As a
onsequen
e, it is extremely diÆ
ult and very expensive to build softwareusing su
h programming models. Be
ause both
orre
tness and performan
e
anonly be a
hieved by attention to many details, writing optimized MPI programsis a lengthy pro
ess, and the result is often ma
hine-dependent1.The alternative of using high level programming models, for example au-tomati
 parallelization of lega
y Fortran
odes, is not mature yet and musttrade generality in the parallelization pro
ess with eÆ
ien
y, making
onserva-tive
hoi
es. BCS has the potential of solving this tradeo� between high devel-opment
osts and high eÆ
ien
y vs. low development
ost and low eÆ
ien
y bytolerating several types of ineÆ
ien
ies related to the parallelization pro
ess.In a bu�ered
os
heduled system, time-sli
ing a
olle
tion of bad programs(i.e., unbalan
ed
omputation or
ommuni
ation) may give the same behavioras a single well-behaved program. Therefore, programs running on a parallel ma-
hine need not be
arefully balan
ed by the user to a
hieve good performan
e.Multiprogramming
an provide opportunities for �lling in the \spare
ommuni-
ation,
omputation and I/O
y
les" when user programs are sparse, by merging,for example, many sparse
ommuni
ation patterns together to produ
e a denser
ommuni
ation pattern.This
an have a huge impa
t on the parallelization of existing lega
y
odes. Ifsu

essful, the implementation of BCS
ould provide a dramati
 redu
tion in thedevelopment times and
osts of parallel software. Also, the proposed methodologyis valid in general, and not spe
i�
 to any parti
ular
lass of appli
ations (e.g.,mole
ular dynami
s, linear solvers, simulations et
.), nor to a parti
ular ma
hinear
hite
ture (e.g., Cray T3E, SGI, IBM SP).Finally BCS greatly simpli�es the performan
e evaluation of a parallel ap-pli
ation. With BCS the amount of work done by all pro
essors, a metri
 very
lose to the sequential
omplexity of an algorithm, be
omes as important as the
riti
al path of the
omputation.7 BCS vs BSPOne of the goals of BCS is to transform a
olle
tion of unstru
tured parallel jobsin a single, well-behaved Bulk-Syn
hronous Parallel (BSP)
omputation [26℄ [23℄.1 Though portable to other ma
hines, MPI programs need to go through a non trivialre-optimization pro
ess, when moved from one parallel ma
hine to another.

A BSP
omputation
onsists of a sequen
e of parallel supersteps. During asuperstep, ea
h pro
essor
an perform a number of
omputation steps on valuesheld lo
ally at the beginning of the superstep and
an issue various remote readand write requests that are bu�ered and delivered at the end of the superstep.This implies that
ommuni
ation is
learly separated from syn
hronization, i.e.it
an be performed in any order, provided that the information is deliveredat the beginning of the following superstep. However, while the supersteps inthe original BSP model
an be variable in length, BCS generates
omputationand
ommuni
ation slots whi
h are �xed in length and are determined by thetime-sli
e.One important bene�t of the BSP model is the ability to a

urately predi
tthe exe
ution time requirements of parallel algorithms and programs. This isa
hieved by
onstru
ting analyti
al formulae that are parameterized by a few
onstants whi
h
apture the
omputation,
ommuni
ation, and syn
hronizationperforman
e of a p-pro
essor system. These results are based on the experi-mental eviden
e that the generi

olle
tive
ommuni
ation pattern generatedby a superstep
alled h-relation2
an be routed with predi
table time [10℄ [21℄.This implies that the maximum amount of information sent or re
eived by ea
hpro
essor during a
ommuni
ation time-sli
e
an be stati
ally determined andenfor
ed at run time by a global
ommuni
ation s
heduling algorithm. For ex-ample, if the duration of the time-sli
e is Æ and the permeability of the network(i.e., the inverse of the aggregate network bandwidth) is g, the upper boundhmax of information, expressed in bytes, that
an be sent or re
eived by a singlepro
essor is hmax = Tg :Furthermore, by globally s
heduling a
ommuni
ation pattern, as des
ribed inSe
tion 2, we
an derive an a

urate estimate of the
ommuni
ation time withsimple analyti
al models already developed for the BSP model [21℄ [2℄ [20℄.Unfortunately, BSP
omputations are overly restri
tive, and many importantappli
ations
annot be eÆ
iently expressed using this model. With BCS, we
aninherit the ni
e mathemati
al framework of BSP, without for
ing the user towrite BSP programs.8 Con
lusion and Future WorkIn this paper, we presented bu�ered
os
heduling (BCS), a new methodology formultitasking jobs in parallel and distributed systems. By leveraging the positiveaspe
ts of gang s
heduling and dynami

os
heduling, this methodology
ansigni�
antly improve resour
e utilization as well as redu
e response and waittimes of parallel jobs.2 h denotes the maximum amount of information sent or re
eived by any pro
essduring the superstep.

Using our Job S
heduling Simulator in the presen
e of memory
onstraints,we illustrated that ba
k�lling in
ombination with spa
e sharing or time shar-ing improves overall system performan
e. Furthermore, we showed that BCSgenerally outperformed ba
k�lled gang s
heduling and ba
k�lled spa
e sharing.We also examined how BCS performed with respe
t to three parameters: typeof job
ommuni
ation and syn
hronization, memory
onstraints, and pro
essorutilization. We were pleasantly surprised to �nd that the performan
e of BCSwas relatively insensitive to the
ommuni
ation pattern when the
ommuni
ationwas non-blo
king
ommuni
ation or, more generally, a
olle
tive-
ommuni
ationpattern. In addition, what we originally thought to be a weakness in BCS [6℄, i.e.,memory
onstraints imposed by BCS, only results in the performan
e of BCSdegrading to being
omparable to BF and not signi�
antly worse as with BGS.Finally, the pro
essor utilization with BCS ex
eeds ba
k�lling gang s
heduling(BGS) and BF by as mu
h as 40%.Referen
es1. Andrea C. Arpa
i-Dusseau, David Culler, and Alan M. Mainwaring. S
hedulingwith Impli
it Information in Distributed Systems. In Pro
eedings of the 1998 ACMSigmetri
s International Conferen
e on Measurement and Modeling of ComputerSystems, Madison, WI, June 1998.2. Douglas C. Burger and David A. Wood. A

ura
y vs. Performan
e in ParallelSimulation of Inter
onne
tion Networks. In Pro
eedings of the 9th InternationalParallel Pro
essing Symposium, IPPS'95, Santa Barbara, CA, April 1995.3. Keith Diefendor�. Compaq Chooses SMT for Alpha: Simultaneous MultithreadingExploits Instru
tion- and Thread-Level Parallelism. Mi
ropro
essor Report, 13(16),De
ember 1999.4. Andrea C. Dusseau, Remzi H. Arpa
i, and David E. Culler. E�e
tive DistributedS
heduling of Parallel Workloads. In Pro
eedings of the 1996 ACM Sigmetri
sInternational Conferen
e on Measurement and Modeling of Computer Systems,Philadelphia, PA, May 1996.5. Susan J. Eggers, Henry M. Levy, and Ja
k L. Lo. Multithreading: A Platform forNext-Generation Pro
essors. IEEE Mi
ro, 17(5), September/O
tober 1997.6. Fabrizio Petrini and Wu-
hun Feng. Bu�ered Cos
heduling: A New Methodol-ogy for Multitasking Parallel Jobs on Distributed Systems. In Pro
eedings of theInternational Parallel and Distributed Pro
essing Symposium 2000, IPDPS2000,Can
un, MX, May 2000.7. Dror G. Feitelson and Morris A. Jette. Improved Utilization and Responsive-ness with Gang S
heduling. In Dror G. Feitelson and Larry Rudolph, editors,Job S
heduling Strategies for Parallel Pro
essing, volume 1291 of Le
ture Notes inComputer S
ien
e. Springer-Verlag, 1997.8. Dror G. Feitelson and Larry Rudolph. Parallel Job S
heduling: Issues and Ap-proa
hes. In Dror G. Feitelson and Larry Rudolph, editors, Job S
heduling Strate-gies for Parallel Pro
essing, volume 949 of Le
ture Notes in Computer S
ien
e.Springer-Verlag, 1995.9. Dror G. Feitelson and Larry Rudolph. Toward Convergen
e in Job S
hedulersfor Parallel Super
omputers. In Dror G. Feitelson and Larry Rudolph, editors,Job S
heduling Strategies for Parallel Pro
essing, volume 1162 of Le
ture Notes inComputer S
ien
e. Springer-Verlag, 1996.

10. Alex Gerbessiotis and Fabrizio Petrini. Network Performan
e Assessment underthe BSP Model. In International Workshop on Constru
tive Methods for ParallelProgramming, CMPP'98, Marstrand, Sweden, June 1998.11. A. Gupta, A. Tu
ker, and S. Urushibara. The Impa
t of Operating System S
hedul-ing Poli
ies and Syn
hronization Methods on the Performan
e of Parallel Appli
a-tions. In Pro
eedings of the 1991 ACM SIGMETRICS Conferen
e, pages 120{132,May 1991.12. Anshul Gupta and Vipin Kumar. The S
alability of FFT on Parallel Comput-ers. IEEE Transa
tions on Parallel and Distributed Systems, 4(8):922{932, August1993.13. Joefon Jann, Pratap Pattnaik, Hubertus Franke, Fang Wang, Joseph Skovira, andJoseph Riordan. Modeling of Workload in MPPs. In Dror G. Feitelson and LarryRudolph, editors, Job S
heduling Strategies for Parallel Pro
essing, volume 1291of Le
ture Notes in Computer S
ien
e, pages 95{116. Springer-Verlag, 1997.14. Vijay Karam
heti and Andrew A. Chien. Do Faster Routers Imply Faster Com-muni
ation? In First International Workshop, PCRCW'94, volume 853 of LNCS,pages 1{15, Seattle, Washington, USA, May 1994.15. Stephen W. Ke
kler, Andrew Chang, Whay S. Lee, Sandeep Chatterje, andWilliam J. Dally. Con
urrent Event Handling through Multithreading. IEEETransa
tions on Computers, 48(9):903{916, September 1999.16. Mario Lauria and Andrew Chien. High-Performan
e Messaging on Workstations:Illinois Fast Messages (FM) for Myrinet. In Pro
eedings of Super
omputing '95,November 1995.17. Walter Lee, Matthew Frank, Vi
tor Lee, Kenneth Ma
kenzie, and Larry Rudolph.Impli
ations of I/O for Gang S
heduled Workloads. In Dror G. Feitelson and LarryRudolph, editors, Job S
heduling Strategies for Parallel Pro
essing, volume 1291of Le
ture Notes in Computer S
ien
e. Springer-Verlag, 1997.18. Shailabh Nagar, Ajit Banerjee, Anand Sivasubramaniam, and Chita R. Das. ACloser Look At Cos
heduling Approa
hes for a Network of Workstations. InEleventh ACM Symposium on Parallel Algorithms and Ar
hite
tures, SPAA'99,Saint-Malo, Fran
e, June 1999.19. William E. Weihl Patri
k Sobalvarro, S
ott Pakin and Andrew A. Chien. Dynami
Cos
heduling on Workstation Clusters. In Dror G. Feitelson and Larry Rudolph,editors, Job S
heduling Strategies for Parallel Pro
essing, volume 1459 of Le
tureNotes in Computer S
ien
e, pages 231{256. Springer-Verlag, 1998.20. Fabrizio Petrini. Total-Ex
hange on Wormhole k-ary n-
ubes with Adaptive Rout-ing. In Pro
eedings of the 12th International Parallel Pro
essing Symposium,IPPS'98, Orlando, FL, Mar
h 1998.21. Fabrizio Petrini and Mar
o Vannes
hi. EÆ
ient Personalized Communi
ation onWormhole Networks. In The 1997 International Conferen
e on Parallel Ar
hite
-tures and Compilation Te
hniques, PACT'97, San Fran
is
o, CA, November 1997.22. Ian R. Philp and Y. Liong. The S
heduled Transfer (ST) Proto
ol. In Pro
eedingsof Workshop on Communi
ation, Ar
hite
ture, and Appli
ations for Network-basedParallel Computing, January 1999.23. D. B. Skilli
orn, Jonathan M. D. Hill, and W. F. M
Coll. Questions and Answersabout BSP. Journal of S
ienti�
 Programming, 1998.24. Joseph Skovira, Waiman Chan, Honbo Zhou, and David Lifka. The EASY-LoadLeveler API Proje
t. In Dror G. Feitelson and Larry Rudolph, editors, JobS
heduling Strategies for Parallel Pro
essing, volume 1162 of Le
ture Notes in Com-puter S
ien
e, pages 41{47. Springer-Verlag, 1996.

25. Patri
k Sobalvarro and William E. Weihl. Demand-Based Cos
heduling of ParallelJobs on Multiprogrammed Multipro
essors. In Pro
eedings of the 9th InternationalParallel Pro
essing Symposium, IPPS'95, Santa Barbara, CA, April 1995.26. Leslie G. Valiant. A Bridging Model for Parallel Computation. Communi
ationsof the ACM, 33(8):103{111, August 1990.27. Yanyong Zhang, Hubertus Franke, Jos�e Moreira, and Anand Sivasubramaniam.Improving Parallel Job S
heduling by Combining Gang S
heduling and Ba
k�llingTe
hniques. In Pro
eedings of the International Parallel and Distributed Pro
essingSymposium 2000, IPDPS2000, Can
un, MX, May 2000.

