Time-Sharing Parallel Jobs in the Presence of
Multiple Resource Requirements

Fabrizio Petrini and Wu-chun Feng

Computing, Information, & Communications Division
Los Alamos National Laboratory, NM 87544, USA,
fabrizio@lanl.gov, feng@lanl.gov

Abstract. Buffered coscheduling is a new methodology that can sub-
stantially increase resource utilization, improve response time, and sim-
plify the development of the run-time support in a parallel machine. In
this paper, we provide an in-depth analysis of three important aspects
of the proposed methodology: the impact of the communication pattern
and type of synchronization, the impact of memory constraints, and the
processor utilization.

The experimental results show that if jobs use non-blocking or collective-
communication patterns, the response time becomes largely insensitive
to the job communication pattern. Using a simple job access policy, we
also demonstrate the robustness of buffered coscheduling in the presence
of memory constraints. Overall, buffered coscheduling generally outper-
forms backfilling and backfilling gang scheduling with respect to response
time, wait time, run-time slowdown, and processor utilization.

Keywords: Parallel Job Scheduling, Distributed Operating Systems, Com-
munication Protocols, Performance Evaluation.

1 Introduction

The scheduling of parallel jobs has long been an active area of research [8,9]. Tt
is a challenging problem because the performance and applicability of parallel
scheduling algorithms is highly dependent upon factors at different levels: the
workload, the parallel programming language, the operating system (OS), and
the machine architecture. The importance of job scheduling strategies stems
from the impact that they can have on the resource utilization and the response
time of the system.

Time-sharing scheduling algorithms are particularly attractive because they
can provide good response time without migration or predictions on the execu-
tion time of the parallel jobs. However, time-sharing has the drawback that com-
municating processes must be scheduled simultaneously to achieve good perfor-
mance. With respect to performance, this is a critical problem because the soft-
ware communication overhead and the scheduling overhead to wake up a sleeping
process dominate the communication time on most parallel machines [14].

Over the years, researchers have developed parallel scheduling algorithms
that can be loosely organized into three main classes, according to the degree
of coordination between processors: gang scheduling (GS), local scheduling (LS)
and implicit or dynamic coscheduling (DCS).

On the one end of the spectrum, GS [7] ensures that the scheduling of com-
municating jobs is coordinated by constructing a static global list of the order in
which jobs should be scheduled. A simultaneous context-switch is then required
across all processors. Unfortunately, these straightforward implementations are
neither scalable nor reliable. Furthermore, GS requires that the schedule of com-
municating processes be precomputed, which complicates the coscheduling of
client-server applications and requires pessimistic assumptions about which pro-
cesses communicate with one another. Finally, explicit coscheduling of parallel
jobs interacts poorly with interactive jobs and jobs performing I/0O [17].

At the other end of the spectrum is LS, where each processor independently
schedules its processes. This is an attractive time-sharing option due to its ease
of construction. However, the performance of fine-grained communication jobs
can be orders of magnitude worse than with GS because the scheduling is not
coordinated across processors [11].

An intermediate approach developed at UC Berkeley and MIT is DCS [1]
[19] [4] [25]. With DCS, each local scheduler makes independent decisions that
dynamically coordinate the scheduling actions of cooperating processes across
processors. These actions are based on local events that occur naturally within
communicating applications. For example, on message arrival, a processor spec-
ulatively assumes that the sender is active and will probably send more messages
in the near future. The main drawbacks of dynamic coscheduling include the high
overhead of generating interrupts upon message arrival and the limited vision of
the status of the system that is based on speculative information. Some aspects
of these limitations are addressed in [18] with a technique called Periodic Boost.
Rather than sending an interrupt for each incoming message, the kernel period-
ically examines the status of the network interface, thus reducing the overhead
for communication-intensive workloads.

We recently proposed a new approach to job multitasking, called buffered
coscheduling (BCS) [6]. BCS shows promise in integrating the positive aspects
of GS, e.g., global coordination of jobs, along with positive aspects of DCS, e.g.,
increased resource utilization obtained by overlapping computation and com-
munication of different jobs. The benefits of BCS include higher throughput,
dramatic simplification of run-time support, reduced communication overhead,
efficient global implementation of flow-control strategies and fault-tolerant pro-
tocols, and accurate performance modeling. Here, we focus on the performance
of BCS in the presence of memory constraints.

Like DCS, BCS must address a couple of important problems. A first prob-
lem is the impact of the memory hierarchy: All the benefits obtained with job
multitasking can be wiped out if the memory requirements of multiple jobs ex-
ceed the physical memory available and overflow in the swap space. Secondary
memory can be orders of magnitude slower. A second problem is the impact of

the type of the job communication and synchronization on the overall through-
put. This problem leads to another closely related problem: the choice of the
time-slice length. While a long time-slice can hide the overhead and increase the
scalability of BCS, it can also increase the processor idle time due to blocking
communication.

In this paper, we analyze the above problems with a detailed simulation
model driven by a real workload drawn from an actual supercomputing envi-
ronment at Lawrence Livermore National Labs. By considering a simple job-
scheduling algorithm that limits the access into the system of those jobs that
exceed the memory requirements, we evaluate the system response time and
utilization under various types of workloads and system parameters.

The rest of the paper is organized as follows. Section 2 briefly reviews BCS.
Section 3 describes the job access policy that takes into consideration the mem-
ory requirements, Section 4 the experimental framework and Section 5 the re-
sults of the simulations. Some considerations on the potential advantages on
the development of system-level and user-level software are listed in Section 6,
the relations between BCS and the Bulk-Synchronous Parallel model of parallel
computation are described in Section 7, followed by a conclusion in Section 8.

2 Buffered Coscheduling

To implement job multitasking, BCS relies on two techniques. First, the commu-
nication generated by each processor is buffered and performed at the end of regu-
lar intervals (or time-slices) in order to amortize the communication and schedul-
ing overhead. By delaying communication, we allow for the global scheduling of
the communication pattern. Second, a strobing mechanism performs a total ez-
change of control information at the end of each time-slice in order to move from
isolated scheduling algorithms [1] (where processors make decisions based solely
on their local status and a limited view of the remote status) to more outward-
looking or global scheduling algorithms. An important characteristic of BCS is
that, instead of overlapping computation with communication and I/O within a
single parallel program, all the communication and I/O which arises from a set
of parallel programs can be overlapped with the computations in those programs.

This approach represents a significant improvement over existing work re-
ported in the literature. It allows for the implementation of a global scheduling
policy, as done in GS, while maintaining the overlapping of computation and
communication provided by DCS.

2.1 Communication Buffering

Rather than incurring communication and scheduling overhead on a per-message
basis, BCS accumulates the messages generated by each process and tries to
amortize the overhead over a set of messages. Specifically, the cost of the system
calls necessary to access the kernel data structures for communication is amor-
tized over a set of system calls rather than being incurred on each individual

system call. This implies that BCS can be tolerant to the potentially high laten-
cies that can be introduced in a kernel call or in the initialization of the network
interface card (NIC) that can reside on a slow 1/O bus.

2.2 Strobing Heartbeats

Virtually all the existing research in parallel job scheduling use isolated algo-
rithms, which speculatively make scheduling decisions based on a limited knowl-
edge of the status of the machine, rather than algorithms which use non-isolated
(or even global) knowledge. In order to provide the above capability, we pro-
pose a strobing mechanism to support the scheduling of a set of parallel jobs
which share a parallel machine. Let us assume that each parallel job runs on
the entire set of p processors, i.e., jobs are time-sharing the whole machine. Our
goal is to synchronize the processors of the parallel machine at the end of a
time-slice in order to perform a total exchange of information regarding their
status. To amortize the overhead, all the communication operations are buffered
and executed at the end of the time-slice. The strobing mechanism performs
an optimized total-exchange of control information (which we call heartbeat or
strobe) and triggers the downloading of any buffered packets into the network.
At the start of the heartbeat, each processor downloads a personalized broadcast
into network. After downloading the heartbeat, the processor continues running
the currently active job. (This ensures computation is overlapped with com-
munication.) When p heartbeats arrive at a processor, the processor will enter
a phase where its kernel will download any buffered packets. Each heartbeat
contains information on which processes have packets ready for download and
which processes are asleep waiting to upload a packet from a particular proces-
sor. This information is characterized on a per-process basis, so that on reception
of the heartbeat, every processor will know which processes have data heading
for them, and which processes on that processor they are from.

Figure 1 shows how computation and communication can be scheduled over
a generic processor. At the beginning of the heartbeat, ¢y, the kernel downloads
control packets into the network for a total exchange. During the execution of
the heartbeat, another user process gains control of the processor; and at the end
of the heartbeat, the kernel schedules the pending communication, accumulated
in the previous time-slices (before #y), to be delivered in the current time-slice
[to, t2]. From the control information exchanged between ¢, and ¢, the processor
will know (at t;) the number of incoming packets that it is going to receive in
the communication time-slice as well as the sources of the packets and will start
the downloading of outgoing packets. It is worth noting that the potentially high
overhead of the strobing algorithm is simply removed from the critical path by
running another process. Thus, we can tolerate the latency of a global exchange
of information without experiencing performance degradation.

Computation

[= S S e | I

Communication e

K = kernel

TIME

Fig. 1. Scheduling Computation and Communication. Communication accumulated in
the time-slice up to to is downloaded into the network between t; and t» (after the
heart beat). § = length of a time-slice = t» — to.

3 Job Access Control

Scheduling parallel jobs by sharing processors not only spatially but also tem-
porally provides an extra degree of flexibility and a considerable performance
advantage. Unfortunately, this advantage can be limited by multiple resource
requirements, e.g., memory hierarchy requirements. If the jobs mapped on a
processing node exceed the physical memory available and use the virtual mem-
ory, the advantages of job multitasking can be nullified.

In order to avoid such problem we consider a very simple job access con-
trol policy, which allows jobs into the system only if their memory requirements
do not exceed the physical memory available. For instance, Figure 2 shows the
Ousterhout matrix of an 8-processor system with a multiprogramming level of
three and 512 MB of physical memory per processor P;. Job J5 requires 2 pro-
cessors and 256 MB of memory per processor. Thus, it can only be mapped onto
two of the four two-processor slots available due to memory constraints.

time-slice 0

time-slice1

time-slice 2

Fig. 2. Ousterhout Matrix of an 8-Processor System with 512-MB Memory/Processor
and Multiprogramming Level of 3.

In our experiments, we combine the above access control policy with an
aggressive backfill heuristic [24], which selects any job from the ready queue
that does not interfere with the expected start time of the first blocked job. As
shown in [27], this technique, when used with GS, can provide improvements
over a wide spectrum of performance criteria. However, this greedy method does
not look at the additional resource requirements of the jobs in the ready queue
or the current state of the system resource loads, thus leaving room for future
improvements.

GS can re-use some of the unused slots in the Ousterhout matrix if a job
assigned to a given time-slice can atomically fit into one or more empty slots in
another time-slice. This is the case of jobs J; and J3 in Figure 2, which can be
run on the two slots available in time-slice 1, as shown in Figure 3.

time-slice 0

time-slice1

time-slice 2

Fig. 3. Empty slot utilization with GS

While GS cannot fill in the two unused slots in the time-slices 0 and 2 with
job Jo, BCS can potentially use their processing time, because the grain size of
the resource allocation is the process and not the entire job. The communication
pattern of the jobs, the local process scheduling algorithms, and many other
factors can influence how the resources made available by the empty slots can
be used by different jobs.

4 Experimental Framework

Before presenting the experimental results, we provide details on our simulation
platform, the workloads used to drive the simulator, and the metrics of interest.

4.1 Simulation Model

In order to efficiently simulate and analyze different job scheduling strategies
for parallel computers in depth, we developed a novel simulator called the Job
Scheduling Simulator (JSS). With JSS, the user can explore the Cartesian prod-
uct generated by different dimensions of the design space. A first dimension is
machine scheduling: JSS provides space sharing and two basic forms of time
sharing — gang scheduling (GS) and buffered coscheduling (BCS). A second di-
mension is the selection algorithm of the ready-jobs queue. Jobs can be selected

in FCFS (First Come First Served) order or backfilled using a conservative or
an aggressive policy. Conservative backfilling searches the ready queue for jobs
that can be scheduled immediately, with the constraints that these jobs cannot
interfere with the expected start time of the jobs which come before them in
the ready queue. Aggressive backfilling is a weaker version of conservative back-
filling, which selects any job from the queue which does not interfere with the
expected start time of the first job in the ready queue. Both conservative and
aggressive backfilling can dramatically improve the overall machine utilization
and response time over FCFS but require a reasonably good estimate of the job
run-time.

Both GS and BCS can have a parametric multiprogramming level (MPL) and
times-slice length and can use the job access control policy described in Section
3. With GS, the user can also set the delay associated with job context-switch
at the end of each time-slice.

In our BCS implementation, the user can define the system parameters as the
process context-switch penalty, communication bandwidth between processors,
and the algorithms to globally schedule the communication pattern. In order to
explore how the various aspects of computation and communication influence
the overall performance of BCS, JSS provides an API, composed of a limited
but representative subset of MPI, that includes blocking and non-blocking com-
munication primitives and synchronization primitives. The current implementa-
tion of JSS abstracts the main characteristics of each job using four parameters
(g9,v,comm, sync), where g represents the computational grain size, v the load
imbalance, comm the communication pattern, and sync the type of synchro-
nization. A parallel job consists of a group of P processes, and each process is
mapped on a processor throughout the execution. Processes alternate phases of
purely local computation with interprocess communication, as shown in Figure
4. Each process compute locally for a time uniformly selected in the interval
(9 — 5,9+ %). By adjusting g, we model parallel programs with different com-
putational granularities. By varying v, we change the degree of load-imbalance
across processors. The communication phase consists of an optional sequence of
communication events. The parameter comm defines one of the three commu-
nication patterns: Barrier, News and Transpose. Barrier does not perform any
communication and can be used to analyze how buffered coscheduling responds
to load imbalance. The other two patterns consist of a sequence of point-to-
point communications. The communication pattern generated by News is based
on a stencil with a grid where each process exchanges information with its four
neighbors. This pattern represents those applications that perform a domain de-
composition of the data set and limit their communication pattern to a fixed set
of partners. Transpose is a communication-intensive workload that emulates the
communication pattern generated by the FFT transpose algorithm [12], where
each process accesses data of all other processes. Finally, sync describes the type
of synchronization in a job: we can have either blocking communication (B),
where each point-to-point communication is implemented with blocking sends
and receives or non-blocking communication (N B), where the communication

primitives do not require an explicit handshake between sender and receiver and
are terminated by a global barrier synchronization.

time

local
computation computation

granularity ()

begin barrier (optional)

load
variation (v)

communication (optional)

end barrier (optional)

Fig. 4. Overlap of Computation and Communication

|| Parameter || Value ||
Processors 32
Main memory per processor 512 MB
Job context-switch (GS) 1 ms
Process context-switch (BCS) 100 ps
Message size (BCS) 4KB
Communication Bandwidth (BCS)||100 MB/s

Table 1. Experimental System Parameters and Values.

Table 1 describes some of the system parameters used during the experi-
mental evaluation. We consider an architecture with 32 processors where each
processor is equipped with 512 MB of main memory.

4.2 Workloads

A crucial aspect in the performance evaluation of job scheduling strategies is
the availability of realistic workloads that can be represented with a compact
mathematical formulation. Parallel workloads are often dispersive: job inter-
arrival time distribution and job execution time distribution have a coefficient
of variation that is greater than one, i.e., they are long tailed. These distributions
can be fitted adequately with Hyper Erlang Distributions of Common Order [13].
Our experiments use a workload directly extracted from a real supercomputing

environment, ASCI Blue-Pacific at Lawrence Livermore National Laboratory.
Our modeling procedure involves the following steps.

1. The jobs are first grouped into classes, based on the number of processors
they require. Each class is a bin in which the upper boundary is a power of
two.

2. The original workload contains jobs varying in size from one to 256 proces-
sors. However, due to the large amount of details involved in the simulation
of buffered coscheduling, we have limited ourselves to 32 processors, select-
ing jobs that fall within this limit. The resulting workload is a subset of the
original workload and contains all the jobs that request up to 32 processors.
It is worth noting that such a workload is extremely demanding, when run
on a machine with only 32 processors.

3. We then model the inter-arrival time and the execution time distributions
for each class through Hyper Erlang Distributions of Common Order.

4. Next we generate various synthetic workloads from the observed workload
by multiplying the average job execution time by a load factor from 0.1 to
1.6 in steps of 0.1. For a fixed inter-arrival time, increasing job execution
time typically increases resource utilization, until the system saturates. The
load factor 1.0 identifies the observed workload.

5. Each job requires an amount of main memory which is exponentially dis-
tributed around a given mean value, which represents the maximum memory
requirements over all processes belonging to a job.

When simulating buffered coscheduling, we need an extra degree of detail
to characterize how computation, communication and synchronization are per-
formed inside each job. Thus, the modeling procedure requires some extra steps.

1. Based on the workload characterization, we pick a job template for each job
in a workload.

2. Based on the job template, we determine the computation and communica-
tion patterns of the job.

Table 2 outlines the five workload characterizations used in the experiments:
each one is composed of three job templates, described using the notation defined
in Section 5. Jobs in a workload can be assigned one of the three templates
with equal probability. These characterizations display different communication
and synchronization patterns. In the first one (workload 0) all the jobs perform
an intensive communication pattern (Transpose) using blocking communication.
The second workload uses the same communication pattern together with non-
blocking communication. The same characteristics distinguish workloads 2 and
3. They use the same communication pattern, News, but a different type of
synchronization. In the fifth workload, jobs do not perform any communication:
the goal of this workload is to identify the impact of load imbalance.

4.3 Metrics

The experimental evaluation considers metrics that are important from both the
system’s and user’s perspectives.

||Workload|| Job Template 0 | Job Template 1 | Job Template 2 ||
0 (50,25, Tra, B) (100, 50, T'ra, B) (200,100, T'ra, B)

1 (50,25, Tra, NBYy | (100,50, Tra, NB) | (200,100, Tra, NB)

2 (50,25, News, B) (100, 50, News, B) (100, 100, News, B)

3 (50,25, News, NB) | (100,50, News, NB) | (200,100, News, NB)
4 (50, 25, Barrier, NB)|(100, 50, Barrier, N B)|(200, 100, Barrier, N B)

Table 2. Five Workloads: Each with an equal mix of three job classes. The job gran-
ularity and skew are expressed in ms.

— Wait Time: The time spent by a job waiting in the ready queue before it is
scheduled.

— FExecution Time: The actual job run time.

— Response Time: The sum between wait and execution time.

— System Utilization: The system utilization identifies the machine utilization
at the job allocation level. Intuitively, the system utilization is the fraction
of the scheduling matrix that is filled with jobs.

— Processor Utilization: The processor utilization is the fraction of time CPU
spent is useful computation. It is worth noting that, in the general case, the
processor utilization is always smaller than the system utilization, because
the processors can be idle during the job execution.

— Execution Time Slowdown: The execution time slowdown is the ratio be-
tween the execution time and the job run time in a dedicated environment.
The execution time slowdown is 1.0 with space sharing and a number larger
than 1.0 in a time shared environment.

5 Experimental Results

The experimental results try to provide insight into three important aspects
of buffered coscheduling: (1) the impact of the communication pattern and the
time-slice length on the response time, (2) the impact of memory constraints
with the job access control policy outlined in section 3 and the (3) the processor
utilization. In all three cases we compare buffered coscheduling with aggressive
backfilling (BF), a scheduling policy that can obtain excellent performance re-
sults with space sharing [24], and with backfilling gang scheduling (BGS), the
extension of this technique to gang scheduling, recently proposed in [27].

5.1 Impact of Communication, Synchronization and Time-slice
Length

The choice of the time-slice for BCS is the result of a compromise between com-
peting factors. On the one hand, a large time-slice could easily hide the overhead
associated with the strobing algorithm and the process context-switches, thus al-
lowing the scalability of BCS to architectures with a large number of processors.

Response time vs load, timeslice 5 ms

10000 T T T T T T T f——
9000 | .
8000 - 1

S 7000 F 1
R
@ 6000 - 1
E
% 5000 - 1
2
S 4000 - 1
2
@
& 3000 | 4
—— workload 0
2000 - workload 1 -
= workload 2
1000 - workload 3
o ---=-- workload 4
a) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Load Factor

Response time vs load, timeslice 50 ms

Response time (sec)

—+— workload 0
- workload 1 q
*-- workload 2
@~ workload 3 1
--=~- workload 4

Load Factor

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

Response time (sec)

Response time vs load, timeslice 10 ms

workload 0
- workload 1+
workload 2
workload 3
workload 4

0
b) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Response time (sec)
@
3
3
3

Load Factor

Response time vs load, timeslice 100 ms

workload 0
- workload 1
*—- workload 2
o-- workload 3 1
--=~- workload 4

d) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Load Factor

Fig. 5. Response time for various time-slices, communication and synchronization pat-

terns. In all graphs the MPL is 3.

Response time vs load, Multiprogramming level 2

10000 T T T T T 7
—— buffered, 0 MB
9000 - -~ buffered, 64 MB a q
x— buffered, 128 MB

8000 - ——=a— buffered, 256 MB 4
—_ --=-- gang, 0 MB
S 7000 | --o-- gang, 64 MB 1
2 +-- gang, 128 MB
@ 6000 [--a- gang, 256 i
E backfilling
3 5000 1
2
S 4000 q
2
3
£ 3000 1

2000 1

1000 1

0
0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
Load factor
Response time vs load, Multiprogramming level 4
10000

—— buffered, 0 MB

9000 - - buffered, 64 MB

= buffered, 128 MB

buffered, 256 MB
B

--=-- gang, 0

7000 |- --o-- gang. 64 MB 1
- gang, 128 MB

6000 [--a-- gang, 256 MB B

backfilling

Response time (sec)
a
3
3
38

Load factor

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

Response time (sec)

Response time vs load, Multiprogramming level 3

——— buffered, 0 MB Fi
- buffered, 64 MB
x— buffered, 128 MB
buffered, 256 MB

backfiling

]
b) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Response time (sec)
@
3
3
3

Load factor

Response time vs load, Multiprogramming level 8

—— buffered, 0 MB

-~ gang, 0

r -- gang, 64 MB
- gang, 128 MB

[-+ gang, 256 MB

backfilling

d) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Load factor

Fig. 6. Response time versus load for various MPLs. The graphs compare BCS with

BF and BGS.

On the other hand, it increases the likelihood of having idle processors, due to
blocking communication and global synchronization, thus limiting the potential
increase in resource utilization.

Figure 5 shows how the response time is influenced by increasing the time-
slice from 5 ms to 100 ms. All the experiments use a MPL equal to three. From
the graphs, we can clearly see that workloads with a large amount of blocking
communication (templates 0 and 2) can be efficiently supported only with small
time-slices. This is particularly true for workload 0 which is extremely sensitive
to the increase in the time-slice because it is communication intensive.

Looking at the graphs generated by templates 1 and 3 we can see that they
almost overlap with all time-slices. These workloads share the same form of syn-
chronization, obtained with a global barrier, though they have fairly different
communication patterns. We explored this aspect in depth using many other
communication patterns, workloads templates, number of processors, and archi-
tectural characteristics (not shown here for brevity), and we have found out that
this is a strong property of BCS. With BCS, the overall performance is relatively
insensitive to the communication pattern when the communication is performed
with non-blocking calls or, more generally, with a collective communication pat-
tern. The rationale behind this property is related to the fact that the run-time
support cannot efficiently schedule blocking communication, while it can rear-
range non-blocking primitives. This leads to a nearly optimal overlap between
computation and communication when we use relative large MPLs. Also, there
is an extra advantage in using collective communication patterns (e.g., broad-
casts, scatter & gather, multicasts) because the information provided by the
communication pattern can be directly passed to the run-time support, which
can thus perform effective global optimizations. This is not true in the general
case; in fact, many parallel applications possess a well defined communication
structure that is lost in the compilation process (e.g., because it is mapped in
an unstructured communication graph of blocking calls).

5.2 Impact of Memory Constraints

This section analyzes the machine response time, the wait time, and execution
time slowdown in conjunction with the memory-aware job scheduling policy de-
scribed in Section 3. In all experiments we use the workload template number 3
and we consider workloads with increasing average memory requirements, rang-
ing from 0 MB (i.e., no memory constraints), to 256 MB, half the size of physical
memory available on each processor.

From Figure 6 we can draw the following considerations:

— BCS outperforms GS in all configurations. This is more pronounced at higher
loads, because BCS can overlap computation with communication and can
re-use computing resources at the process-level granularity rather than at
the job level, as shown in Section 3.

— There is no penalty in using an arbitrarily large MPL with BCS. For a given
average memory requirement, the system converges to a given state and does

not experience any degradation when we further increase the MPL. That
state is mainly determined by the ratio between the job average memory
requirements and the actual physical memory available.

— When the memory requirements are high (e.g. 256 MB), BCS converges to
backfilled space-sharing (BF). Intuitively, when the memory constraints do
not allow job multitasking, the system converges to space sharing. This is
not true for GS as it experiences sharp degradation in response-time perfor-
mance, as shown if Figure 6 d) with 128 and 256 MB.

Wait time vs load, Multiprogramming level 2 Wait time vs load, Multiprogramming level 3
10000 T T T T T T 10000 T T T T T
—— buffered, 0 MB —— buffered, 0 MB
9000 - - buffered, 64 MB £ 4 9000 - - buffered, 64 MB 4
*— buffered, 128 MB x— buffered, 128 MB
8000 - ~—=— buffered, 286 MB q 8000 - = buffered, 266 MB q
———— gang, @ --=-- gang,
7000 | --o-- gang, 64'MB 1 7000 | --o--- gang, 64'MB
g +-- gang, 128 MB g -+~ gang, 128 MB
& 6000 |- s gang, 256 MB 1 & 6000 |- s gang, 256 MB
Py ~ backfilling Py -~ backfilling
£ 5000 | ¥ B £ 5000 | ¥ B
§ 4000 - q § 4000 1
= =
3000 - . 1 3000 - 1
2000 |] 2000 L]
1000 Y 4 1000 - 4
g 7 BT
0 0
a) 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1 b) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Load factor Load factor
Wait time vs load, Multiprogramming level 4 Wait time vs load, Multiprogramming level 8
10000 ES T 10000 -
—+— buffered, 0 MB i i —+— buffered, 0 MB
9000 - - buffered, 64 MB S 9000 - - buffered, 64 MB
= buffered, 128 MB ; = buffered, 128 MB
8000 - ~—&-- buffered, 286 MB ! 8000 - ~—&-- buffered, 266 MB
-+-- gang, 0 MB --=-- gang, 0 MB
7000 | --o-- gang, 64'MB 1 7000 - ----- gang, 64'MB
g +-- gang, 128 MB ; g «-- gang, 128 MB
8§ 6000 [s gang, 256 MB i b $ 6000 [s gang, 256 MB
Py ~— backfiling / Py ~— backfiling
£ 5000 N y £ 5000 N
& 4000 [T 4000 -
= =
3000 - 3000 - .
2000 | . 2000 - .
x &
1000 e 1000 e
i = — - x
0 L 0
C) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 d) 0.1 0.2 0.3 0.4 0.5
Load factor Load factor

Fig. 7. Wait Time versus Load for Various MPLs.

Figure 7 provides insight on the wait time for the same set of experiments of
Figure 6. The graphs clearly show how time sharing can dramatically reduce the
wait time over space sharing. BCS reduces the wait time further over backfilled
gang scheduling (BGS), in particular with high MPLs.

The reduction of the wait time obtained increasing the MPL, usually implies
an increase of the job execution time. In the worst case, the slowdown can be as
high as the MPL. In Figure 8 we can see that BCS limits the slowdown when
we increase the MPL and outperforms BGS in all configurations, again thanks
to the re-use of empty slots in the scheduling matrix at the process level rather
than the job level.

level 3

vs load,

Run time slowdown vs load, Multiprogramming level 8

0.5 0.6
Load factor

0.7 0.8 0.9

Run time vs load, level 2 Run time
2 2.8
—— buffered, 0 MB —+— buffered, 0 MB
26 | -~ buffered, 64 MB
= buffered, 128 MB
24 buffered; 256 MB
< <
H H
E E
o o
@ ®
o o
£ E
= c
5 1
@ @
1
0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1 0.3 0.4
3 Load factr b)
Run time vs load, level 4
7
i p——— YT ' ' ' ' —— buffered, 0 MB
% buffered. 64 MB - buffered, 64 MB
3.5 *- buffered, 128 MB -1 6 | ~* buffered, 128 MB
= buffered, 256 MB - a buﬂer%dMZBEG MB
- --=-- gang, 0 MB - e 9::& 8aMB
S 5| o gang64mB Es| o gnocame
3 «-- gang, 128 MB g gang,
H - gang, 256 MB H - gang, 256 MB
© 25 - 1 v 4
s 2 s 1 é 3
15 1 2
1 1 & " .
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.1 0.2 03 0.4
C) Load factor d)

05 0.6
Load factor

Fig. 8. Execution Time Slowdown versus Load for Various MPLs.

Fraction of time

0.9
0.8

0.7 +

0.6
0.5
0.4
0.3
0.2
0.1

Processor utilization vs load, Multiprogramming level 8

—— hbuffered, 0 MB
L - buffered, 64 MB
= buffered, 128 MB
= buffered, 256 MB
--=-- gang, 0 MB
--e-- gang, 64 MB
gang, 128 MB
gang, 256 MB
+- backfilling

0.8
Load factor

1 12 14 16

Fig. 9. Processor Utilization versus Load for BCS and BGS.

5.3 Processor Utilization

Most results on job scheduling strategies focus on system utilization rather than
processor utilization and show that both BF and BGS can get more than 90%
under many workloads. Figure 9 extends these results by analyzing the processor
utilization obtained by BF, BGS and BCS.

We observe the following:

— Though BGS improves response time over BF, it does not improve system
and processor utilization. The slight decrease in performance is due to the
job context-switching overhead.

— With BCS, we can get a processor utilization that asymptotically reach 85%,
while BGS and BF approach 60%. This is one of the main advantages of BCS
over BGS and BF.

— Processor utilization is sensitive to a job’s average memory request when we
use time sharing: the higher the memory request, the lower the processor
utilization.

— The results address the overlapping of computation and communication only.
We expect that the resource utilization gap between BF, BGS and BCS will
increase further in the presence of I/0.

6 Discussion

The potential technical impact of BCS is significant for a large class of parallel
machines and distributed systems, ranging from Linux clusters to the larger and
more sophisticated massively parallel machines. To the best of our knowledge,
this is the first methodological attempt to globally optimize the resources of a
parallel machine rather than using the limited local knowledge available on each
processor.

While BCS enhances overall system performance, particularly with respect
to processor utilization and response time, BCS also naturally provides system-
level and user-level advantages which we discuss in this section.

6.1 System-Level Advantages

First, the communication is optimized in several ways. The cost of the system
calls necessary to access the kernel data structures is amortized over a set of
user calls. This implies that the methodology is tolerant to the potential high
latencies that can be introduced in a kernel call. BCS can obtain comparable
performance to user-level network interfaces (e.g., FM [16] or ST [22]) without
using specialized hardware.

Second, the global knowledge of the communication pattern provided by the
total exchange allows for the implementation of efficient flow-control strategies.
For example it is possible to avoid congestion inside the network by carefully
scheduling the communication pattern and limit the negative effects of hot spots
by damping the maximum amount of information addressed to each processor

during a time slice. The same information can be used at kernel level to provide
fault tolerance in the communication. For example the knowledge of the number
of incoming packets greatly simplifies the implementation of receiver-initiated
recovery protocols. By globally scheduling a communication pattern, it is also
possible to obtain an accurate estimate of the communication time with simple
analytical models. By knowing the maximum amount of information that can
be delivered in a time-slice, it is possible to minimize the size of the communi-
cation buffers in each network interface. This is a crucial problem in a massively
parallel architecture. Let’s consider, for example, a machine with 10000 proces-
sors - the approximate number of processors expected to be in the next ASCI
supercomputers. Given that each processor can potentially receive a message
from all the remaining 9999 processors, it must reserve a proportional amount
of network interface memory (typically few MB for each potential partner). This
is infeasible with current network technology and poses a serious limit to the
efficient implementation of large scale parallel machines.

Third, because communication is buffered and delayed to the beginning of
the next time-slice, we can always implement zero- (or low-, if we desire fault
tolerant communication) copy communication. Fault tolerance in general can
also be enhanced by exploiting the synchronization point at the end of each
time slice to incrementally take a snapshot of the status of the machine.

Fourth, an important advantage of time-sharing parallel jobs is a better uti-
lization of the resources. When we consider I/0O, there can be several orders of
magnitude of difference between the computational grain of the parallel applica-
tion and the access time of secondary storage. The usual approach of overlapping
computation with I/0, for example using user-level threads, can only provide
a limited return in the presence of a single parallel job. By overlapping the ac-
tivities of multiple parallel jobs we can potentially hide most of the latency.
The same argument can be applied to hide the non-uniform latencies of large
clusters of SMPs. The higher latency of the inter-cluster communication can be
overlapped with the execution of another parallel job.

Fifth, by time-sharing parallel jobs it is possible to obtain better response
time and quality of service for critical applications. Time-slicing can be used to
give good average completion times for dynamically changing workloads, while
retaining fast response times for interactive jobs.

Sixth, because of the deep pipelines and wide out-of-order superscalar archi-
tectures of contemporary processors, an interrupt may need to nullify a large
number of in-flight instructions [15]. Larger register files require existing system
software to save and restore a substantial amount of process state. The reduc-
tion of the interrupt frequency provided by BCS can substantially improve the
performance on these processors.

Seventh, BCS can also efficiently support future processor architectures, such
as Simultaneous Multi-threading (SMT) [3] [5], that time-share multiple pro-
cesses at hardware level.

6.2 User-Level Advantages

The typical approach to developing parallel software is by using low-level pro-
gramming models such as MPI. At that level the user is exposed to a large
number of details. The user must identify the form of parallelism in the ap-
plication and decompose it in a set of parallel threads, partition the data set
among these threads, map the threads and the data set on a parallel archi-
tecture, define communication and synchronization between these threads. This
development process is typically specific to a particular application or class of
user applications.

As a consequence, it is extremely difficult and very expensive to build software
using such programming models. Because both correctness and performance can
only be achieved by attention to many details, writing optimized MPI programs
is a lengthy process, and the result is often machine-dependent®.

The alternative of using high level programming models, for example au-
tomatic parallelization of legacy Fortran codes, is not mature yet and must
trade generality in the parallelization process with efficiency, making conserva-
tive choices. BCS has the potential of solving this tradeoff between high devel-
opment costs and high efficiency vs. low development cost and low efficiency by
tolerating several types of inefficiencies related to the parallelization process.

In a buffered coscheduled system, time-slicing a collection of bad programs
(i.e., unbalanced computation or communication) may give the same behavior
as a single well-behaved program. Therefore, programs running on a parallel ma-
chine need not be carefully balanced by the user to achieve good performance.
Multiprogramming can provide opportunities for filling in the “spare communi-
cation, computation and I/O cycles” when user programs are sparse, by merging,
for example, many sparse communication patterns together to produce a denser
communication pattern.

This can have a huge impact on the parallelization of existing legacy codes. If
successful, the implementation of BCS could provide a dramatic reduction in the
development times and costs of parallel software. Also, the proposed methodology
is valid in general, and not specific to any particular class of applications (e.g.,
molecular dynamics, linear solvers, simulations etc.), nor to a particular machine
architecture (e.g., Cray T3E, SGI, IBM SP).

Finally BCS greatly simplifies the performance evaluation of a parallel ap-
plication. With BCS the amount of work done by all processors, a metric very
close to the sequential complexity of an algorithm, becomes as important as the
critical path of the computation.

7 BCS vs BSP

One of the goals of BCS is to transform a collection of unstructured parallel jobs
in a single, well-behaved Bulk-Synchronous Parallel (BSP) computation [26] [23].

! Though portable to other machines, MPI programs need to go through a non trivial
re-optimization process, when moved from one parallel machine to another.

A BSP computation consists of a sequence of parallel supersteps. During a
superstep, each processor can perform a number of computation steps on values
held locally at the beginning of the superstep and can issue various remote read
and write requests that are buffered and delivered at the end of the superstep.
This implies that communication is clearly separated from synchronization, i.e.
it can be performed in any order, provided that the information is delivered
at the beginning of the following superstep. However, while the supersteps in
the original BSP model can be variable in length, BCS generates computation
and communication slots which are fixed in length and are determined by the
time-slice.

One important benefit of the BSP model is the ability to accurately predict
the execution time requirements of parallel algorithms and programs. This is
achieved by constructing analytical formulae that are parameterized by a few
constants which capture the computation, communication, and synchronization
performance of a p-processor system. These results are based on the experi-
mental evidence that the generic collective communication pattern generated
by a superstep called h-relation? can be routed with predictable time [10] [21].
This implies that the maximum amount of information sent or received by each
processor during a communication time-slice can be statically determined and
enforced at run time by a global communication scheduling algorithm. For ex-
ample, if the duration of the time-slice is § and the permeability of the network
(i.e., the inverse of the aggregate network bandwidth) is g, the upper bound
himae Of information, expressed in bytes, that can be sent or received by a single
processor is

T

g

hmam -

Furthermore, by globally scheduling a communication pattern, as described in
Section 2, we can derive an accurate estimate of the communication time with
simple analytical models already developed for the BSP model [21] [2] [20].

Unfortunately, BSP computations are overly restrictive, and many important
applications cannot be efficiently expressed using this model. With BCS, we can
inherit the nice mathematical framework of BSP, without forcing the user to
write BSP programs.

8 Conclusion and Future Work

In this paper, we presented buffered coscheduling (BCS), a new methodology for
multitasking jobs in parallel and distributed systems. By leveraging the positive
aspects of gang scheduling and dynamic coscheduling, this methodology can
significantly improve resource utilization as well as reduce response and wait
times of parallel jobs.

2 h denotes the maximum amount of information sent or received by any process
during the superstep.

Using our Job Scheduling Simulator in the presence of memory constraints,
we illustrated that backfilling in combination with space sharing or time shar-
ing improves overall system performance. Furthermore, we showed that BCS
generally outperformed backfilled gang scheduling and backfilled space sharing.

We also examined how BCS performed with respect to three parameters: type
of job communication and synchronization, memory constraints, and processor
utilization. We were pleasantly surprised to find that the performance of BCS
was relatively insensitive to the communication pattern when the communication
was non-blocking communication or, more generally, a collective-communication
pattern. In addition, what we originally thought to be a weakness in BCS [6], i.e.,
memory constraints imposed by BCS, only results in the performance of BCS
degrading to being comparable to BF and not significantly worse as with BGS.
Finally, the processor utilization with BCS exceeds backfilling gang scheduling
(BGS) and BF by as much as 40%.

References

1. Andrea C. Arpaci-Dusseau, David Culler, and Alan M. Mainwaring. Scheduling
with Implicit Information in Distributed Systems. In Proceedings of the 1998 ACM
Sigmetrics International Conference on Measurement and Modeling of Computer
Systems, Madison, WI, June 1998.

2. Douglas C. Burger and David A. Wood. Accuracy vs. Performance in Parallel
Simulation of Interconnection Networks. In Proceedings of the 9th International
Parallel Processing Symposium, IPPS’95, Santa Barbara, CA, April 1995.

3. Keith Diefendorff. Compaq Chooses SMT for Alpha: Simultaneous Multithreading
Exploits Instruction- and Thread-Level Parallelism. Microprocessor Report, 13(16),
December 1999.

4. Andrea C. Dusseau, Remzi H. Arpaci, and David E. Culler. Effective Distributed
Scheduling of Parallel Workloads. In Proceedings of the 1996 ACM Sigmetrics
International Conference on Measurement and Modeling of Computer Systems,
Philadelphia, PA, May 1996.

5. Susan J. Eggers, Henry M. Levy, and Jack L. Lo. Multithreading: A Platform for
Next-Generation Processors. IEEE Micro, 17(5), September/October 1997.

6. Fabrizio Petrini and Wu-chun Feng. Buffered Coscheduling: A New Methodol-
ogy for Multitasking Parallel Jobs on Distributed Systems. In Proceedings of the
International Parallel and Distributed Processing Symposium 2000, IPDPS2000,
Cancun, MX, May 2000.

7. Dror G. Feitelson and Morris A. Jette. Improved Utilization and Responsive-
ness with Gang Scheduling. In Dror G. Feitelson and Larry Rudolph, editors,
Job Scheduling Strategies for Parallel Processing, volume 1291 of Lecture Notes in
Computer Science. Springer-Verlag, 1997.

8. Dror G. Feitelson and Larry Rudolph. Parallel Job Scheduling: Issues and Ap-
proaches. In Dror G. Feitelson and Larry Rudolph, editors, Job Scheduling Strate-
gies for Parallel Processing, volume 949 of Lecture Notes in Computer Science.
Springer-Verlag, 1995.

9. Dror G. Feitelson and Larry Rudolph. Toward Convergence in Job Schedulers
for Parallel Supercomputers. In Dror G. Feitelson and Larry Rudolph, editors,
Job Scheduling Strategies for Parallel Processing, volume 1162 of Lecture Notes in
Computer Science. Springer-Verlag, 1996.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Alex Gerbessiotis and Fabrizio Petrini. Network Performance Assessment under
the BSP Model. In International Workshop on Constructive Methods for Parallel
Programming, CMPP’98, Marstrand, Sweden, June 1998.

A. Gupta, A. Tucker, and S. Urushibara. The Impact of Operating System Schedul-
ing Policies and Synchronization Methods on the Performance of Parallel Applica-
tions. In Proceedings of the 1991 ACM SIGMETRICS Conference, pages 120-132,
May 1991.

Anshul Gupta and Vipin Kumar. The Scalability of FFT on Parallel Comput-
ers. IEEE Transactions on Parallel and Distributed Systems, 4(8):922-932, August
1993.

Joefon Jann, Pratap Pattnaik, Hubertus Franke, Fang Wang, Joseph Skovira, and
Joseph Riordan. Modeling of Workload in MPPs. In Dror G. Feitelson and Larry
Rudolph, editors, Job Scheduling Strategies for Parallel Processing, volume 1291
of Lecture Notes in Computer Science, pages 95-116. Springer-Verlag, 1997.
Vijay Karamcheti and Andrew A. Chien. Do Faster Routers Imply Faster Com-
munication? In First International Workshop, PCRCW’94, volume 853 of LNCS,
pages 1-15, Seattle, Washington, USA, May 1994.

Stephen W. Keckler, Andrew Chang, Whay S. Lee, Sandeep Chatterje, and
William J. Dally. Concurrent Event Handling through Multithreading. IEEFE
Transactions on Computers, 48(9):903-916, September 1999.

Mario Lauria and Andrew Chien. High-Performance Messaging on Workstations:
Illinois Fast Messages (FM) for Myrinet. In Proceedings of Supercomputing 95,
November 1995.

Walter Lee, Matthew Frank, Victor Lee, Kenneth Mackenzie, and Larry Rudolph.
Implications of I/O for Gang Scheduled Workloads. In Dror G. Feitelson and Larry
Rudolph, editors, Job Scheduling Strategies for Parallel Processing, volume 1291
of Lecture Notes in Computer Science. Springer-Verlag, 1997.

Shailabh Nagar, Ajit Banerjee, Anand Sivasubramaniam, and Chita R. Das. A
Closer Look At Coscheduling Approaches for a Network of Workstations. In
Eleventh ACM Symposium on Parallel Algorithms and Architectures, SPAA’99,
Saint-Malo, France, June 1999.

William E. Weihl Patrick Sobalvarro, Scott Pakin and Andrew A. Chien. Dynamic
Coscheduling on Workstation Clusters. In Dror G. Feitelson and Larry Rudolph,
editors, Job Scheduling Strategies for Parallel Processing, volume 1459 of Lecture
Notes in Computer Science, pages 231-256. Springer-Verlag, 1998.

Fabrizio Petrini. Total-Exchange on Wormhole k-ary n-cubes with Adaptive Rout-
ing. In Proceedings of the 12th International Parallel Processing Symposium,
IPPS’98, Orlando, FL, March 1998.

Fabrizio Petrini and Marco Vanneschi. Efficient Personalized Communication on
Wormbhole Networks. In The 1997 International Conference on Parallel Architec-
tures and Compilation Techniques, PACT’97, San Francisco, CA, November 1997.
Ian R. Philp and Y. Liong. The Scheduled Transfer (ST) Protocol. In Proceedings
of Workshop on Communication, Architecture, and Applications for Network-based
Parallel Computing, January 1999.

D. B. Skillicorn, Jonathan M. D. Hill, and W. F. McColl. Questions and Answers
about BSP. Journal of Scientific Programming, 1998.

Joseph Skovira, Waiman Chan, Honbo Zhou, and David Lifka. The EASY-
LoadLeveler API Project. In Dror G. Feitelson and Larry Rudolph, editors, Job
Scheduling Strategies for Parallel Processing, volume 1162 of Lecture Notes in Com-
puter Science, pages 41-47. Springer-Verlag, 1996.

25. Patrick Sobalvarro and William E. Weihl. Demand-Based Coscheduling of Parallel
Jobs on Multiprogrammed Multiprocessors. In Proceedings of the 9th International
Parallel Processing Symposium, IPPS’95, Santa Barbara, CA, April 1995.

26. Leslie G. Valiant. A Bridging Model for Parallel Computation. Communications
of the ACM, 33(8):103-111, August 1990.

27. Yanyong Zhang, Hubertus Franke, José Moreira, and Anand Sivasubramaniam.
Improving Parallel Job Scheduling by Combining Gang Scheduling and Backfilling
Techniques. In Proceedings of the International Parallel and Distributed Processing
Symposium 2000, IPDPS2000, Cancun, MX, May 2000.

