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Abstract

Scheduling parallel applications on shared–memory
multiprocessors is a difficult task that requires a lot of tun-
ing from application programmers, as well as operating sys-
tem developers and system managers.

In this paper, we present the characteristics related to
kernel–level scheduling of theNANOS environment and
the results we are achieving. TheNANOS environment
is designed and tuned specifically to achieve high perfor-
mance in current shared–memory multiprocessors.

Taking advantage of the wide and efficient dialog estab-
lished between applications and theNANOS environment,
we are designing powerful scheduling policies. The infor-
mation exchanged ranges from simply communicating the
number of requested processors to providing information of
the current speedup achieved by the applications. We have
devised several scheduling policies that use this interface,
such as Equipartition, Variable Time Quantum DSS and Dy-
namic Performance Analysis.

The results we have obtained with these policies indicate
that there is a lot of work to do in the search for a “good”
scheduling policy, which can include characteristics like
sustainable execution times, fairness and throughput. For
instance, we show through several experiments that benefits
in execution time range from 15% to 100%, depending on
the policy used and the characteristics of the workload.

1 Introduction

Current multiprocessor machines are used by multi-
ple users to execute several parallel applications at a
time, which may share the available resources. Proces-

sor scheduling strategies on contemporary shared–memory
multiprocessors range between the two extremes of time–
sharing and space–sharing. Under time–sharing, applica-
tions share processors in time slices. The partitioning is
highly dynamic and processors are allowed to freely flow
among applications. On the other hand, under space–
sharing, partitions of the machine are established at the
starting of the execution and maintained for a long–term
period.

Time–sharing usually causes lots of synchronization in-
efficiencies to applications due to the uncontrolled move-
ments of processors. On the other side, space–sharing
looses processor power when applications do not use the
same number of processors along their execution (e.g. an
application that has significant sequential portions). As a re-
sult, the scheduling of parallel applications should take the
good characteristics of both environments to achieve good
performance from applications and processors.

Current machines, from low–end workstations to big
mainframes, provide execution environments that fit be-
tween the previous two extremes. Small shared–memory
multiprocessor machines are available from a great num-
ber of computer builders: Silicon Graphics, SUN Microsys-
tems, Compaq/DEC, Hewlett Packard, Intel, Sequent, Data
General, etc. Some of them also build big mainframes.
Examples of current shared–memory multiprocessor main-
frames are the Origin2000 [17] from Silicon Graphics, the
SUN Enterprise 10000 [6], the Digital AlphaServer [11],
etc. Small–scale SMP systems rely usually on variants of
time–sharing to support multidisciplinary workloads, while
large–scale servers provide both time–sharing and space–
sharing capabilities, usually realized through batch queue-
ing systems.

Experience on real systems shows that with contem-
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porary kernel schedulers, parallel applications suffer from
performance degradation when executed in an open mul-
tiprogrammed environment. As a consequence, interven-
tion from the system administrator is usually required, in
order to guarantee a minimum quality of service with re-
spect to the resources allocated to each parallel application
(CPU time, memory etc.). Although the use of sophisti-
cated queuing systems and system administration policies
may improve the execution conditions for parallel applica-
tions, the use of hard limits for the execution of parallel jobs
with queuing systems may jeopardize global system perfor-
mance in terms of utilization and fairness.

Even with convenient queueing systems and system ad-
ministrator’s policies, application and system performance
may still suffer because users are only able to provide very
coarse descriptions of the resource requirements of their
jobs (number of processors, CPU time, etc.). Fine–grain
events that happen at execution time (spawning parallelism,
sequential code, synchronizations, etc.), which are very im-
portant for performance, can only be handled at the level
of the runtime system, through an efficient communication
interface with the operating system.

In this paper, we present the work related to the previous
issues that we are doing in the context of the NANOS Esprit
Project. NANOS tackles medium to short–term scheduling
and pursues global utilization of the system at any time. The
NANOS execution environment consists of three main lev-
els of operation, namely application, user–level execution
environment and operating system. In the paper, we will
focus at the operating system level to provide high perfor-
mance to parallel applications.

Kernel–level scheduling solves the problem of having
a limited number of physical resources where to execute
the applications. Each application maps user–level threads
(nano–threads in our model) to the virtual processors of-
fered by the operating system. The operating system maps
the virtual processors to physical processors, allowing that
all applications execute in a shared environment.

Usually, each application assumes that the operating sys-
tem assigns a physical processor to each one of its virtual
processors. This is not always possible because the demand
for virtual processors in the system can exceed the number
of physical processors. The total current demand for virtual
processors is known as the load of the system.

The role of the operating system dealing with proces-
sor scheduling becomes important when the load of the ma-
chine is high, when physical processors must be shared by a
larger number of virtual processors. This work concentrates
in providing new techniques and mechanisms for support-
ing well–known and new scheduling policies.

Evaluating scheduling policies at kernel–level on real
systems usually requires kernel modifications and root priv-
ileges, which is very restrictive and limits the ability of

the kernel developers to experiment extensively and tune
their policies. We have developed a framework for develop-
ing and analyzing scheduling policies entirely at user–level,
based on a user–level process, the CPU MANAGER, which
interacts with the applications running under its control.

This framework not only serves as a tool for compar-
ing scheduling policies, but also as a tool for improving
throughput on an actual production system, since the per-
formance of some of the scheduling policies developed in
the CPU MANAGER is comparable or better to the perfor-
mance of native kernel schedulers such as that of IRIX.

The paper is organized as follows: Section 2 presents an
overview of the NANOS execution environment, and Sec-
tion 3 is centered on the kernel–level scheduling issues and
compares NANOS with related work. Section 4 presents
the characteristics of some of the policies implemented in-
side the CPU MANAGER. Section 5 sketches the imple-
mentation of the CPU MANAGER and Section 6 presents
the evaluation of the scheduling policies to demonstrate the
usefulness of the tool. Finally, Section 7 presents the con-
clusions of this paper and the work we have planned for the
future.

2 Execution Environment

In the NANOS environment, OpenMP [26] applications
compete for the resources of the parallel machine. Ap-
plications are parallelized through the NANOSCOMPILER

[4, 2, 3] and the parallel code is executed on top of the NTH-
L IB [21, 20] threads library.

2.1 The nano-threads library (NTHL IB)

The Nano-threads Library, NTHL IB is a user–level
threads package specially designed for supporting parallel
applications. The role of NTHL IB is two–fold. On one
hand, NTHL IB provides the user–level execution environ-
ment in which applications execute. On the other hand,
NTHL IB cooperates with the operating system level. NTH-
L IB and the operating system cooperate by interchanging
significant fine–grain information on accurate machine state
and resource utilization, throughout the execution of the
parallel application.

When the load of the system is high, each application
should run as if executing in a smaller (dedicated) machine.
In this case, resource sharing is unavoidable and usually
prevents achieving a performance comparable to the indivi-
dual applications execution, due to conflicts in processors,
memory, etc.

Supplying accurate information to the operating system
about resource needs is a key aspect for getting a good com-
promise between time– and space–sharing. When the ap-
plication shrinks its parallelism, processors could become
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quickly available for other applications running in the sys-
tem, reducing idle time. On the other hand, when an ap-
plication needs more processors, it is guaranteed that the
request will be taken into account in a short enough amount
of time. Applications generated by the NANOSCOMPILER

are malleable [14] and adapt their structure of parallelism to
the available resources.

2.2 Application adaptability to the available re-
sources

The execution of a nano–threaded application is able to
adapt to changes in the number of processors assigned to
it. The adaptation is dynamic, at run–time, and includes
three important aspects: first, the amount of parallelism that
the application generates at any time is limited someway by
both the number of processors assigned to the application
and the current amount of work already pending to be exe-
cuted. Second, the application is able to request and release
processors at any time. And third, the application should
be able to adapt to processor preemptions and allocations
resulting from the operating-system allocation decisions.

With respect to the first aspect, the nano-thread starting
the execution of a parallel region takes the decision about
how many processors to use for spawning the parallelism.
The operating system has to provide some interface to al-
low the application to check which is the number of pro-
cessors available for spawning parallelism. By checking
the number just before spawning parallelism, the applica-
tion ensures that it is going to use the processors currently
allocated to it.

The second aspect, enabling the request for processors,
requires from the operating system interface to set the num-
ber of processors each application wants to run on. The
operating system should guarantee that the number of re-
quested processors from each application is considered as
soon as it distributes processors among applications.

The third aspect, applications being able to adapt to pro-
cessor preemptions, requires also some help from the oper-
ating system. The operating system moves processors from
one application to another following some scheduling pol-
icy (e.g., time–sharing). The requirement from the applica-
tion point of view is that preemptions must not occur. As
this is usually not possible, the run-time execution environ-
ment may help to provide such a feeling, by recovering pre-
emptions. A good solution from the operating system point
of view is, on one hand, to provide some mechanism to re-
duce preemptions at a minimum. And on the other hand, to
provide a complete interface for preemption recovery.

2.3 Operating system scheduling policies

Kernel–level scheduling consists of a set of policies
to distribute processors to applications. Several kernel–
level scheduling policies are already developed in order to
achieve good performance results in the NANOS environ-
ment.

At any time, there is a current active scheduling policy,
applied to all applications running in the system. The active
policy can be dynamically changed without incurring any
overhead to the running applications. Applications notice
only the performance differences obtained from the proces-
sor allocation decisions taken by the policy newly estab-
lished. Different application workloads can benefit from
different policies [10, 18].

The active scheduling policy is in charge of looking
at the requirements of all running applications and decide
which resources to allocate to each one. Each parallel ap-
plication is considered as a whole. This is the way space-
sharing is established in the NANOS environment. As long
as the policy decides to allocate a number of processors
to each application, a portion of the machine is effectively
given to that application and the application decides what
to do with the processors. The mechanism in charge of de-
termining the exact processors to be assigned to each appli-
cation ensures that the processors assigned to the applica-
tion are going to be the ones that more recently have been
running on it, if any, thus enforcing data locality. Specific
architectural characteristics, such as a NUMA memory sub-
system can also be taken into account at that point.

The benefit of looking at applications as a whole is that in
short term scheduling decisions, processors know where to
look first for work (the application where they are assigned
to). In case the application has no work to perform, its coop-
eration with the operating system makes it to release some
processors, which will search for work in other applications.
The scheduling policies implemented and evaluated in this
work are presented in Section 4.

3 Kernel–Level Scheduling inNANOS

In this section, we present the main characteristics of the
kernel–level scheduling in the NANOS environment, and
compare them with the related work.

3.1 Sharing information with the upper levels

Each application executing on the NANOS parallel ex-
ecution environment shares information with the operating
system. The information dynamically flows from the appli-
cation to the operating system and vice–versa.

The information includes, but is not limited to, the num-
ber of processors on which the application wants to run at
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any moment and the number of processors currently allo-
cated by the operating system to the application. From the
number of requested processors, the operating system de-
cides, in a first step, how many processors to allocate to each
application. Processors are moved, in a second step, from
one application to another. Each moved processor leaves a
virtual processor preempted in the source application. It is
possible that between the two steps, some time passes to al-
low the application to voluntarily release the processors to
be moved. This functionality is designed to avoid as much
as possible the preemption of running processes by the op-
erating system.

Along with the number of requested and allocated pro-
cessors, information about each one of the virtual pro-
cessors can be checked by the user–level execution envi-
ronment during synchronizations, and help the application
progress when the operating system decides to reallocate
processors to another application.

The amount and quality of the information shared be-
tween an application and the operating system is a sig-
nificant difference with other related work. Process Con-
trol [38] already proposed to share a counter of running
processes, but the amount of parallelism was not set by the
application, but deduced by the operating system (knowing
the number of processes created by the application).

Process Control, Scheduler Activations [1] and First–
Class Threads [19] use signals or upcalls to inform the user–
level about preemptions. The best mechanism for this is
shared memory, which is asynchronous and does not disturb
further the execution of the application. The application
does not need to know about preemptions till it reaches a
synchronization point, where it can check the shared mem-
ory.

Our approach is similar to the kernel–level NanoTh-
reads [9], which provides a per-application shared memory
area containing register save areas (RSA’s) to save/restore
the user–level threads state at blocking and preemption
points.

The SGI–MP LIBRARY shipped with IRIX 6.4/6.5 in-
corporates a user–level mechanism [34] for detecting situ-
ations in which the load of the system is high and the ap-
plication performs bad and tries to correct this situation by
reducing the number of active processes. This solution has
the problem that the view of the status of the system ob-
tained by each application can be different and nothing en-
sures that the response given by the individual applications
can help to solve the global problem of the system. A simi-
lar mechanism was also proposed in [32].

3.2 Synchronization and processor preemptions

Each time an application needs to do some operation
which depends on the number of running processors, it

uses the number of processors allocated provided by the
NANOS kernel interface [29]. This ensures that, at least
during a short amount of time, such processors are avail-
able (in average, during half a scheduling period or quan-
tum). This means that most of the times, threads are not
going to lose a synchronization point, so they are not going
to delay the whole application execution.

In these situations, the behavior of the application de-
pends, during a certain amount of time, on the number of
processors allocated. Typically, this happens when the ap-
plication spawns parallelism, checking the number of pro-
cessors allocated to know how many processors are going
to participate in the parallelism. From that point to the next
synchronization point, in a barrier, or while joining the par-
allelism, the processors should remain assigned to the ap-
plication, avoiding that a delay in the synchronization slows
down the execution of the application. If the operating sys-
tem decides to reallocate some processors during the ex-
ecution of the parallelism, some of the virtual processors
will be preempted. This can occur, and the NANOS user–
level execution environment will be always informed, thus
detecting the preemptions when reaching the next synchro-
nization point. No time will be lost waiting for a synchro-
nization with a preempted processor.

Also, when a preemption is detected, any processor of
the application (usually the one that detects the preemption)
can be directly transferred to execute the preempted work,
recovering the application progress.

3.3 The application as the scheduling target

The NANOS operating system environment distributes
processors among the running applications, having into ac-
count the applications as a whole and their exact requests.
Looking at the requests of all the running applications,
along with their priorities, the operating system can figure
out which is the load of the machine, which applications
have more priority to be executed and it can distribute pro-
cessors accordingly.

To minimize movements of processors between applica-
tions, a processor allocated to an application searches for
work in that application first. In case there is no ready vir-
tual processor to run in its application, the processor is al-
lowed to automatically assign itself to another application
and get work from it. Usually, the scheduling policy ap-
plied at each quantum prepares a list of applications which
have been given less processors than requested. Those ap-
plications are the candidates to receive the processors that
become free due to some application termination.

The scheduling policies implemented on the NANOS
environment range from the well–known equipartition,
batch or round–robin policies to other kind of policies that
can make more use of the information provided by the ap-
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plications. They are described in section 4.
Sometimes, operating systems offer Gang Schedul-

ing [27], combined with two–level synchronization meth-
ods at user–level [15, 39, 14]. This solution is not general
enough to perform well in all situations. For instance, in
current versions of IRIX, it is not recommended to run ap-
plications using Gang Scheduling. We have observed that
even with Gang Scheduling is very hard that processes re-
main assigned as a whole to an application. A process doing
I/O or taking a page fault may motivate a context switch in
its physical processor, which can take off all the processors
of the application, causing cascades of movements across
the system and degrading performance.

Another drawback of gang scheduling is that it often
compromises the memory performance of parallel applica-
tions. When multiple programs are gang-scheduled on the
same processors, their working sets interfere in the caches,
thus incurring the cost of cache reloads. Parallel applica-
tions running on multiprogrammed shared-memory mul-
tiprocessors and particularly on NUMA systems, are ex-
tremely sensitive to this form of interferences [15].

3.4 Processor affinity

Processor affinity is an important issue to consider in
kernel–level scheduling because of the different access la-
tencies to cached, local and remote memory locations.
Cache memory is always of importance, both in SMP and
CC-NUMA machines [37, 24, 36]. When a processor runs
inside an application, the processor caches are filled with
data which is usually accessed several times. Moving pro-
cessors from one application to another causes a total or
partial cache corruption. Processor affinity is useful to take
advantage of the data remaining in the cache when the pro-
cessor is allocated again to the same application.

In CC-NUMA machines, local and remote memory ac-
cesses are also important to consider due to the different
access times, which can range from 0.3 to 2 microseconds.
Usually, in NUMA machines, the operating system places
data near the processor that has accessed it for the very first
time. This means that other application threads accessing
the same data can benefit of being scheduled on the same
processor. The benefits in this case will be greater, if the
data already is in the cache of the processor. Otherwise,
at least the cost accessing local memory will be lower than
accessing remote memory.

Scheduling at the operating system level in the NANOS
execution environment uses two levels of affinity. In a first
step, a processor is assigned to an application on which it
has run before. In a second step, inside an application, a
processor is assigned to a virtual processor on which it run
before, if any.

4 Kernel–Level Scheduling Policies

In this paper, we are using the environment presented to
test several policies and compare them with existing operat-
ing system scheduling policies. The policies proposed have
been already explained in more detail in [29, 30, 7]. We
summarize here their characteristics.

4.1 Equipartition (Equip)

Equipartition [23, 14, 22] is the simplest policy included
in the NANOS environment. This policy divides the num-
ber of physical processors by the number of running appli-
cations, and assigns the resulting number of processors to
each application. When an application requests less proces-
sors than the result of the division, the processors exceed-
ing that number are not assigned to any application. In case
there are more applications than processors, only the first P
applications are executed, assuming there are P processors.

Some processors can remain unallocated when using this
policy, depending on the amount of applications and the re-
quests of each application. Equipartition is implemented to
obtain a reference, given by such a simple policy, to which
the behavior of the other policies could be compared.

4.2 Processor Clustering (Cluster)

The Processor Clustering policy allocates processors in
clusters of four processors. The reasons for selecting this
number are to achieve good locality in systems with phys-
ically distributed shared–memory. Allocating four pro-
cessors at a time allows the CPU Manager to better se-
lect four neightbour processors, which will improve per-
formance due to smaller memory latencies, assuming first–
touch placement. In addition, our experience indicates that
applications usually request a number of processors which
is a multiple of four. Also, applications usually get better
performance when running on an even number of proces-
sors.

In a first step, this policy allocates a cluster of four pro-
cessors to all running applications. If some applications are
not receiving processors because there is a large number of
applications in the system, they are candidates to receive
any processor released from the applications selected to run
during the next quantum. In case a number of processors re-
main unallocated, this policy starts a second step, allocating
again in clusters of four. And so on, till all the processors
have been allocated or all the requests have been satisfied.
When less than four processors remain to be allocated, some
applications can receive two or even one processor to main-
tain working all processors available in the machine.
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4.3 Dynamic Space Sharing (DSS)

Dynamic Space Sharing (DSS) [30, 29] is a two–level
scheduling policy. The high level space–shares the machine
resources among the applications running in the system.
The low level improves the memory performance of each
program by enforcing the affinity of kernel threads to spe-
cific physical processors.

DSS distributes processors as evenly as possible among
applications taking into account the full workload of the
system and the number of processors requested by each ap-
plication. Each application receives a number of processors
which is proportional to its request and inversely propor-
tional to the total workload of the system, expressed as the
sum of processor requests of all jobs in the system.

Time–sharing is then applied to DSS to obtain several
derived policies, which are explained in the following sub-
sections.

4.3.1 Sliding Window DSS (SW–DSS)

Sliding Window DSS partitions all applications on execu-
tion in groups of applications calledgangs. A gang is de-
fined as a group of applications requesting a number of pro-
cessors which is not more thankP, where P is the number of
processors andk is a tunable parameter of the policy.

Each gang is submitted for execution during a constant
time quantum (usually of 100 ms.) After the expiration of
the quantum, the next neighbouring gang of applications
is scheduled and so on. The view of these gangs passing
through execution is as a moving window sliding across the
workload.

Each gang is usually evolving during the execution of the
workload. Each time a new application starts, an application
finishes, or an application changes its requests, the gang ac-
commodates more or less applications to fit the condition of
having less thankP processors requested.

4.3.2 Step Sliding Window DSS (SSW–DSS)

The Step Sliding Window DSS policy is designed to get
the benefits of DSS, the time–sharing provided by SW–DSS
and improve cache performance. In SSW–DSS the schedul-
ing step is not a discrete new window, like in SW-DSS. In-
stead, it is the same window as in the previous quantum
leaving out the first process and filling the gang with none,
one or more processes to satisfy that the total requests does
not exceedkP.

With the support of DSS, this policy ensures that in each
scheduling step, all but the first applications will be exe-
cuted again, and most of the processors will reuse the foot-
prints in their cache memories.

4.3.3 Variable Time Quantum DSS (VTQ–DSS)

The Variable Time Quantum DSS policy searches for equal-
izing the CPU time received by all the applications in the
workload. This means that applications executed on more
processors are going to receive such processors during a
smaller amount of time than applications requesting less
processors. The time quantum is different for each appli-
cation.

In this policy, applications in the workload are again or-
ganized in gangs, which are executed like in the previous
policies with the restriction of requesting less thankP pro-
cessors. In VTQ, the applications at the end of the ready
queue that do not compose a gang are enqueued in a repos-
itory queue.

When an application starts, it is assigned an initial quan-
tum of 100ms. After execution, the quantum is updated to
try to equalize the amount of CPU time received by all the
applications in the gang. As a result, when the time quan-
tum of an application expires, the application is stopped and
another application from the repository queue is taken to use
the processors up to the end of the gang. The same mecha-
nism is used when an application finishes, leaving a hole in
its gang.

4.4 Dynamic Speedup Analysis

From the production point of view, it is interesting to
ensure that applications getting a higher speedup should
receive benefits compared to applications with poor per-
formance. We propose thePerformance–Driven Proces-
sor Allocation(PDPA) policy, which takes into account the
speedup achieved at run–time in parallel regions. This fea-
ture avoids the assignment of physical processors to appli-
cations that are not able to take advantage of them. These
processors can then be reassigned to other applications.

Traditionally, the speedup obtained by a parallel appli-
cation has been computed doing several executions with 1
to P processors and the results have been provided to the
scheduler.

We propose to dynamically compute the speedup and
provide it to the scheduler in the same way the applica-
tion informs about the number of requested processors. The
speedup of an application is computed through the SelfAn-
alyzer library [7] which informs the CPU Manager at run–
time. A similar approach is also used in [25] to compute the
efficiency achieved by the applications.

The associated scheduling policy (PDPA) implements
the state diagram presented in Figure 1. The state diagram is
a search procedure, applied to each application and param-
eterized through three arguments: the number of processors
assigned when the application starts (BASE), the increment
/ decrement on the number of processors applied when the
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application is performing well / bad (STEP), and the de-
sired minimum efficiency level based on the performance
got by the application with the current number of proces-
sors (MIN EFFICIENCY). The definition of efficiency is
taken from [12].

state=NO_REF

New Appl

Speedup (current)>Speedup (current) <

alloc=BASE

state=P_DEC

alloc=current-STEP

state=P_INC

alloc=current+STEP

state=P_STABLE

alloc=last_alloc*

Speedup (current) <Speedup (current) >
(MIN_EFFICIENCY * current)

(MIN_EFFICIENCY*current)(MIN_EFFICIENCY*current)

state=P_TEST

alloc=current+2

Free processors

Speedup (current) <
last_speedup

(MIN_EFFICIENCY*current)

last_alloc* means the recorded

was over the minimum
allocation where the efficiency

Figure 1. State diagram used in the PDPApol-
icy

An application can be found in five different states:
speedup unknown (NOREF), increasing the number of
processors (PINC), decreasing the number of processors
(P DEC), stationary (PSTABLE) and trying to improve the
speedup due to free processors (PTEST). When the appli-
cation informs about the speedup achieved with BASE pro-
cessors, thePDPApolicy decides to increment or decrement
the number of processors allocated to the application.

The four transitions showed in the figure are followed
when the associated condition becomes true. An application
performing badly in the NOREF state, goes to the PDEC
state. Otherwise, if it performs well, it goes to the PINC
state. In both states, when the application reaches a sus-
tained speedup, it goes to the PSTABLE state, where it
remains for some time. In this state, the number of assigned
processors remains constant.

At some point, for instance when there are free proces-
sors, the scheduler can decide to provide more processors to
an application, testing several times whether the application
is able to improve its efficiency. In the current implementa-
tion, this test is done three times.

By tuning the BASE, STEP, and MINEFFICIENCY pa-
rameters, it is possible to establish the aggressiveness of the
policy. Sometimes it is also useful to consider two different
levels of efficiency, one for increasing the number of pro-
cessors and another one for decreasing it.

It is interesting to note that this policy can influence the
long–term scheduler by changing the degree of multipro-
gramming at a given point. The policy can detect whether
there are several idle processors because the actual applica-
tions can not take advantage of them. In this situation, the

degree of multiprogramming can be increased to accommo-
date more applications. When the efficiency of applications
increases, the policy can indicate to the long–term scheduler
to reduce the degree of multiprogramming.

5 Implementation

This sections describes the current implementation of the
CPU MANAGER [8].

5.1 The user–levelCPU MANAGER

The user–level CPU MANAGER implements the inter-
face between the applications and the kernel, establishing
the cooperation between the user–level execution environ-
ment provided by NTHL IB and the kernel level.

The CPU MANAGER is implemented by a server pro-
cess and a portion of NTHL IB. The server establishes a
shared memory area between itself and the applications.
This area is used to implement the interface between the
kernel and the applications, efficiently and with minimal
overhead. The shared–memory area contains one slot for
each application under the control of the CPU MANAGER.
At initialization time, the CPU MANAGER starts the sched-
uler thread. Its mission is to apply any of the user–selectable
scheduling policies to the application workload, forcing the
application threads selected to run on a specific physical
processor. It also communicates all its decisions to the ap-
plications.

5.2 Implementation of the kernel–level scheduling
framework

As it has been stated in Section 3, the NANOS kernel–
level scheduling is application–oriented and takes applica-
tions as the scheduling target. As it is shown in figure 2,
the knowledge of the applications is the central point in the
design of the CPU MANAGER. All data structures and al-
gorithms are oriented to manage applications as a whole
through the interface implemented in shared memory.

The kernel–level scheduling framework consists of two
main data structures: the application slots shared with the
applications and the work–list.

The left portion of the figure represents several appli-
cations attached to the shared–memory area. This area is
divided in application slots, one slot for each application.
The shared memory is readable and writable both from the
applications and the CPU MANAGER. The information
available in this area includes, inside each application slot,
the number of processors requested, the number of proces-
sors assigned by the CPU MANAGER, whether the CPU
MANAGER has preempted any thread of the application and
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Figure 2. CPU MANAGER environment

other information useful for the scheduling policy, like the
speedup obtained by the parallel application.

The right part of the figure represents the scheduler
thread and the work–list structure. The scheduler thread
is in charge of distributing processors every time quantum
(100 ms.) The work–list is a list containing a reference to
the applications which are requesting more processors than
those allocated to them. It is used to maintain working dur-
ing the current quantum all processors released by other ap-
plications running in the system due to some reasons (e.g.,
lack of parallel work inside the application). Processors,
when released, go immediately to visit the work–list to find
a new application where they can go to execute a ready vir-
tual processor.

In this framework, physical processors are first assigned
to an application, and then they choose a virtual processor
belonging to that application for execution.

Figure 2 also presents the algorithm to apply the current
scheduling policy. The scheduler thread starts executing the
algorithm by collecting all the information about processor
requests supplied by the applications (stepI, in the figure).
Then, the current scheduling policy decides how many pro-
cessors each application is going to receive for the next time
quantum (stepII ).

Next, the allocation results are communicated to the ap-
plications (stepIII ), including the number of processors al-
located and which virtual processors have been preempted,
if any. Finally, the work list structure is used to indicate
applications that want to receive more processors when any
becomes available (stepIV ).

Applying the previous algorithm, some applications are
going to loose processors. Physical processors that have to
move, get from the work–list a new application and assign
to it. Figure 3 details the algorithm by which a processor
is assigned to an applicationallocatecpu. Theapplication
parameter contains a descriptor for each virtual processor
from the application point of view. The algorithm searches
first for an unallocated virtual processor in which to assign
the physical processor. If one is found, the virtual processor

(thread) in this descriptor is bound to the physical processor,
and unblocked (woken up), while updating the information
shared with the application. In case there is no virtual pro-
cessor available, this means that another free processor has
filled the last one available, so the current processor remains
unallocated and continues searching for work in the work–
list.

In order to avoid that the IRIX operating system can dis-
rupt the processor assignments, the CPU MANAGER uses
system calls to block / unblock virtual processors and bind
/ unbind them to run on physical processors. Finally, the
CPU MANAGER internal structure representing physical
processors is updated accordingly.

This algorithm can be executed either by the CPU MAN-
AGER to initially assign free processors to a running appli-
cation or by NTHL IB, as part of the scheduler to transfer an
application processor directly to another application.

int allocate_cpu (int cpu,
struct appl_info * application)

{
int vp;

/* Search for a virtual processor (vp) giving
priority to (in this order) the vp used last
time, a stolen vp, and any unallocated vp */

vp = search_for_unallocated_vp (application);

if (vp<application->n_cpus_requested) {
/* Vp is valid, decrement number of preempted

processors, when needed */
if (application->cpu_info[vp].stat == CPU_STOLEN)

--application->n_cpus_preempted;

/* Assign thread/sproc to cpu through the OS */
sys_bind_thread (

application->cpu_info[vp].kthread, cpu);

/* Assign cpu to the virtual processor vp and
mark the vp running */

application->cpu_info[vp].sys_sim_id = cpu;
application->cpu_info[vp].stat = CPU_RUNNING;

/* Unblock the associated thread/sproc */
sys_unblock_thread (

application->cpu_info[vp].kthread);

/* Update current number of processors */
++application->n_cpus_current;

/* Update the processor structure */
phys_cpus[cpu].status = CPU_ALLOCATED;
phys_cpus[cpu].curr_appl = application->appl_no;

/* Return succesfully */
return 0;

}
/* Return indicating processor unallocated */
return -1;

}

Figure 3. Algorithm for allocating processors
to applications

Applications detect at user–level, through the shared–
memory area, that some processors have been stolen and
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recover the work themselves using other processors already
allocated. To implement this feature, the user–level idle
loop of NTHL IB is slightly more complex than that of
the other thread packages. Figure 4 shows how the idle
code is responsible of freeing processors that are not go-
ing to be used by the application (through the primitive
cpusreleaseself).

After that, the idle code also checks whether the CPU
MANAGER has preempted a virtual processor, and recovers
the work stopped by transferring to it the current physical
processor (throughcpusprocessorhandoff). This is imple-
mented through the bind operating system primitive.

Finally, the idle code searches for work in the ready
queues and executes it, if found.

struct nth_desc * nth_getwork (int vp)
{

struct nth_desc * next;

/* Dequeues work from the local ready queue */
next = nth_lrq_dequeue (vp);

if (next==NULL)
/* The local queue is empty, tries to dequeue

work from the global queue */
next = nth_rq_dequeue ();

return next;
}

void nth_idle (int vpid)
{

struct nth_desc * next;
work_t work;

while (1) {
if (cpus_asked_for ()) {

/* The processor detects that the CPU
Manager reclaims some processors
and stops itself */

cpus_release_self ();
/* The processor returns here in case it is

reassigned later */
}
else if (cpus_preempted_work () > 0) {

/* Recovering preempted work (go & back) */
work = cpus_get_preempted_work ();
if (work!=NO_WORK) {

cpus_processor_handoff (work);
/* The processor returns here in case it is

reassigned later */
}

}
/* Gets work from the ready queues */
next = nth_getwork (vpid);
/* Executes the work in the processor */
if (next!=NULL) schedule (next);

}
}

Figure 4. Idle loop in the nano–threads envi-
ronment

The current implementation of the NANOS CPU MAN-
AGER is equivalent in functionality with a pure kernel
implementation. In this implementation, both the CPU
MANAGER and NTHL IB participate in implementing the

scheduling mechanisms. For this reason, the information
shared among the applications and the CPU MANAGER is
read/write for all the participating processors. This allows
NTHL IB to transfer a physical processor to another applica-
tion, when the CPU MANAGER requests to do so.

We have also implemented a different version of the
CPU MANAGER, the MP CPU MANAGER, in which the
design of the shared–memory areas enforces protection by
using a different area for each application. This solution
does not allow the transfer of a processor from an applica-
tion directly to another one, and the CPU MANAGER itself
has to intervene in each movement. The MP CPU MAN-
AGER deals with IRIX application binaries running on top
of the SGI–MP LIBRARY without neither recompiling nor
relinking the source code.

6 Evaluation

This section presents the evaluation of the scheduling
framework developed for the NANOS environment. The
environment is also evaluated in [29, 30].

6.1 Experimentation platform

The design and implementation of the NANOS CPU
MANAGER has been carried on a Silicon Graphics Ori-
gin2000 machine [17, 33], running the IRIX 6.5.5 operating
system. The machine is located at the European Center for
Parallelism of Barcelona (CEPBA [13]). It has sixty-four
R10000 MIPS processors [16] running at 250 Mhz (chip re-
vision 3.4). Each processor has separated 32 Kb. primary
instruction and data caches and a common 4 Mb. secondary
cache.

All benchmarks and applications used for the evalua-
tion presented in this section have been compiled to run on
both the native SGI–MP and NANOS environments. Input
source programs were previously annotated with standard
OpenMP directives. NANOS binaries have been obtained
by preprocessing the applications through the NANOSCOM-
PILER [4].

The benchmarks are taken either from the NAS Bench-
marks [5] or the SPEC95FP Benchmarks [35]. We have
modified two of them to obtain two evolving benchmarks:
EPD and ltomcatv. The EPD benchmark derives from EP
(Embarrassingly Parallel) and consists of an external loop
containing EP. At every iteration, the EPD benchmark re-
quests a different number of processors, following the se-
ries: 2, 4, ... MAX-2, MAX, MAX, MAX-2, ...2, in order to
give a variable (diamond shape) parallelism. The ltomcatv
is a variation of the tomcatv from the SPEC95FP Bench-
marks. In ltomcatv the main loop of the application is per-
formed several times, generating a sequence of sequential
and parallel regions. It requests one processor for the first
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I/O portion of the external loop and then it requests MAX
processors for the parallel portion.

The NAS Benchmarks scale well up to 32 processors
on a dedicated machine. The tomcatv, ltomcatv and swim
SPEC95FP benchmarks scale also well, even achieving
super–linear speedup with some number of processors. The
turb3d scales well up to 16–20 processors. Its speedup de-
creases with more processors. And finally, the SPEC95FP
apsi does not scale at all. The proportion of parallel code is
very small and by the Amdhal’s Law the speedup that it can
achieve is less than two. Even more, when increasing the
number of processors, apsi does not suffer an slowdown. It
simply does not take advantage of the processors.

Compilation of all benchmarks in both environments has
been done using the same command line options to generate
machine code with the native MIPSpro F77 compiler: –64
–MIPS4 –R10000 –O3 –LNO:PREFETCHAHEAD=1.

The following subsections present the results obtained
through the execution of several workloads and policies.

6.2 Workload on 32 processors (cpuset32)

This section presents the evaluation of a workload con-
sisting of several NAS applications running on 32 proces-
sors. For this workload, the W class of each application is
used. The EPD application is class S because class W is
too large compared with the other applications. This work-
load was run inside acpusetpartition of 32 processors in
our machine of 64 processors, while the other half of the
processors in the machine were in production mode execut-
ing applications belonging to other users. Table 1 shows
the applications participating in the workload, the number
of processors requested by each one, and the total and sys-
tem execution times of each application. Execution times
are the arithmetic mean of the execution times obtained by
the different instances of each application.

This workload shows the different behaviour between
the SGI–MP environment and the NANOS Cluster pol-
icy. The largest difference is in CG. This is because CG
requests 16 processors. Running in the SGI–MP environ-
ment, it tries to use as many processors as possible, but the
SGI–MP LIBRARY does not detect that the application per-
forms bad. As a result the time spent in system mode for the
CG application raises up to 2.48 seconds per thread. In the
Cluster policy, the CG application receives only 4 proces-
sors (one cluster), and performs highly better without shar-
ing processors with other applications.

EPD performs better in SGI–MP than using the Cluster
policy because it is a dynamic application. In the SGI–
MP LIBRARY environment, dynamic applications create
and destroy processes at every request. It seems that this
mechanism benefits execution time because new processes
are created with their dynamic priority high in IRIX. We

Figure 5. Workload execution on 32 proces-
sors

have to perform more experiments in this line to confirm
this result.

SP and BT benchmarks are clearly better when using the
NANOS Cluster Policy. And FT behaves the same, receiv-
ing only 4 processors with the Cluster Policy (given by the
output trace generated by the CPU MANAGER) and up to 8
in the SGI–MP environment.

Figure 5 shows graphically the execution of 80 seconds
of the workload using the PARAVER tool [28], recorded dur-
ing the real execution. These plots present time in theX axis
and applications in theY axis. The names of the applica-
tions are displayed on the left-hand side of the figure, along
with the number of processors that they are requesting (en-
closed in parenthesis). For each application, an horizontal
line is displayed. For each instance of an application, a dif-
ferent color is used to fill the horizontal line. Different col-
ors represent, thus, the execution of the different instances
of the corresponding application. Also, a flag is displayed
when an application starts. The reader can observe how the
NANOS environment (bottom plot) manages better the ex-
ecution of parallel applications and more instances of each
one are executed in the same amount of time.

6.3 Workload on 64 processors using Dynamic
Space Sharing

In this subsection, we present a workload running on
64 processors, with the machine in dedicated mode. Ta-
ble 2 presents the workload, consisting of six class A
NAS benchmarks, plus the class W EPD benchmark, and
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Table 1. Workload on cpuset 32
Benchmark CPUS Mean execution time (in s.) Mean system time per thread (in s.)

SGI–MP LIBRARY NANOS Cluster SGI–MP LIBRARY NANOS Cluster
sp.W 8 34.7 26.7 1.26 0.04
bt.W 12 18.8 7.51 2.01 0.01
epd.S 2-16 1.37 1.92 0.17 0.02
ft.W 8 1.03 1.04 0.10 0.03
cg.W 16 21.1 1.67 2.48 0.01

Figure 6. Workload execution on 64 proces-
sors ( SGI–MP LIBRARY)

its results for three different policies (SGI–MP LIBRARY,
NANOS SSWDSS and NANOS VTQ).

We want to highlight that the benchmark requesting
more processors (SP, 32 processors) suffers a lot of per-
formance problems in the SGI–MP LIBRARY environment
due to resource sharing and preemptions. On the other hand,
in the NANOS environment, all policies provide better re-
sponse time for the SP benchmark. The differences in per-
formance shown in the NANOS environment depend on the
policy applied during execution.

FT and MG applications obtain also better performance
in the NANOS environment, in general. CG and BT per-
form nearly the same and EPD is better in the SGI–MP
environment.

The reasons for the better performance exposed by the
NANOS environment are the better coordination between
the user and kernel levels, solving synchronization prob-
lems earlier and allowing applications to work with a more
stable number of processors.

Figures 6 and 7 show graphically the behaviour of
the workload on the SGI–MP environment and under the
VTQDSS policy. Up to four complete instances of the SP
application are executed using the VTQDSS policy, com-
pared with only two in the SGI–MP environment. This is a
very good result that can be usually applied to applications
with good scalability running in the NANOS environment

Figure 7. Workload execution on 64 proces-
sors ( NANOS VTQ POLICY)

and requesting a large number of processors.

6.4 Workloads on 64 processors using Dynamic
Speedup Analysis

In order to evaluate the performance of thePDPApolicy
we have prepared three different parallel workloads, trying
to highlight different situations to see how the policy adapts
the environment to them.

All along the workloads, the applications request 32 pro-
cessors in a 64–processor machine. We have selected this
number for two reasons: first, usually the policy of super-
computing centers is to limit the number of processors that
can be used by an application. The second reason is that
even when there are no limits established, the users guess
that applications will not scale well up to the maximum
number of processors and limit themselves to execute in a
smaller number of processors.

We have executed the three workloads in dedicated mode
and under two scheduling policies: the standard SGI–
MP environment and thePDPA policy. This policy was
setup with the following parameters: the BASE number
of processors is set to 4, the STEP is set to 2 and the
MIN EFFICIENCY is set to 0.7. These arguments were
determined through experimentation.

In these experiments, the NANOS environment controls
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Table 2. Execution times (in s.) in 64 processors
Benchmark CPUS SGI–MP LIBRARY NANOS SSWDSS NANOS VTQ

sp.A 32 236.6 98.5 101.1
bt.A 24 120.0 113.5 133.1

epd.W 2–8 70.8 128.7 110.2
cg.A 8 14.7 19.1 18.9
ft.A 8 65.2 35.9 37.1

mg.A 8 63.6 35.5 38.2
cg.A 8 14.7 18.6 18.1

also the amount of applications that should be executed in
parallel (the multiprogramming level). The CPU MAN-
AGER is in charge of increasing the multiprogramming level
when it detects that the current applications are not obtain-
ing a good efficiency from the system. In this case, the
CPU MANAGER can reduce the number of processors allo-
cated to the applications and allow more applications to en-
ter the system. Alternatively, when an application finishes,
the CPU MANAGER can either test the performance of the
remaining applications with more processors, thus decreas-
ing the multiprogramming level, or allow another applica-
tion to enter the system and maintain the multiprogramming
level.

The first workload consists of five ltomcatv benchmarks.
The degree of multiprogramming is set to five. Each in-
stance of the ltomcatv is executed three times. The goal of
this workload is to analyze what happens when the applica-
tions are highly dynamic. Table 3 shows the results.

This workload has the characteristic that the number of
requested processors has a high variability since the appli-
cations change from sequential to parallel phases several
times. ThePDPAoutperforms the SGI–MP policy. Several
reasons can be given to this behaviour: first, since the appli-
cations enter the PSTABLE phase, their allocation does not
change, even when other applications execute the I/O por-
tion and release their processors. Second, in the SGI–MP
environment, the MP LIBRARY is not able to track the dif-
ferent phases of the ltomcatv benchmark and this motivates
synchronization problems. Although the speedup obtained
by this benchmark can be quite good, the stable allocation
with less processors avoids resource sharing and this im-
proves overall performance.

The second workload is composed by three instances of
the tomcatv and three of the turb3d, both from the SPECFP
95. In that case the multiprogramming level has been set to
four, and each application is executed three times. The goal
here is to show what happens when all the applications in
the workload have good scalability up to 16–20 processors.
Results are presented in Table 4. They show that the search
procedure to determine the number of processors to achieve
good efficiency is not introducing a noticeable overhead, al-

though it is executed in several of the very first iterations of
each application. The execution times obtained are compet-
itive compared with the results obtained from the SGI–MP
environment.

And finally, the last workload consists of three swim and
three apsi, showing what happens when several applications
do not scale at all and are sharing the machine with others
that scale well. This scenario reproduces one of the situa-
tions where thePDPApolicy can extract more benefits since
the speedups achieved by the applications are very different.
In this case the multiprogramming level has been set to four,
and each application is executed three times. Table 5 shows
the results.

As we expected, thePDPApolicy outperforms the SGI–
MP policy. PDPA is able to detect that all apsi benchmarks
obtain a very poor speedup and re–assigns their processors
to swim benchmarks. The overall speedup achieved by the
PDPA with respect to the SGI–MP environment reaches
4.5.

7 Conclusions and Future Work

In this paper, we have presented an execution environ-
ment to efficiently execute parallel applications in shared–
memory multiprocessors, the NANOS environment. This
paper has focused in the design and implementation of
kernel–level scheduling inside the NANOS environment.
A user–level scheduler has been presented, the CPU MAN-
AGER, which efficiently cooperates with the applications.
This tool has proven to be very powerful and useful to com-
municate the information the scheduler needs to distribute
processors among the applications.

The CPU MANAGER also provides a good environment
to implement and evaluate scheduling policies. In this pa-
per, we have described a set of scheduling policies imple-
mented in the CPU MANAGER, trying to cover a wide range
of the possibilities that it offers. One of the major benefits
of the CPU MANAGER is that it provides a real execution
environment, and parallel applications can be executed on
an actual system. This characteristic and the total control of
the processor allocation provided by the CPU MANAGER,
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Table 3. Results of the ltomcatv workload using Speedup Anal ysis
Policy Mean execution time (in s.) Total Applications

Ltomcatv Total Speedup
SGI–MP LIBRARY 165.9 606 1.0 15
Speedup Analysis 47.0 132 4.59 15

Table 4. Results of the tomcatv/turb3d workload using Speed up Analysis
Policy Mean execution time (in s.) Total Applications

Tomcatv Turb3d Total Speedup
SGI–MP LIBRARY 33.36 48.69 251 1.0 18
Speedup Analysis 15.63 42.71 148 1.7 18

allows us a more accurate and realistic evaluation of the
scheduling policies.

The scheduling policies have been evaluated compar-
ing its performance with the SGI–MP LIBRARY. Results
show that the NANOS environment is solid and flexible.
Moreover, all the scheduling policies evaluated have outper-
formed the standard SGI–MP environment. When we com-
pare the results achieved in individual applications, we see
that some scheduling policies have outperformed the SGI–
MP by a factor of more than two. And, when we compare
the total execution times of some workloads, the NANOS
environment achieves an speedup of 4 for some experimen-
tal workloads.

We are now working on porting this technology to run
with native IRIX OpenMP applications. This means that
we are developing an MP CPU MANAGER to deal with
IRIX application binaries running on top of the SGI–MP
L IBRARY without recompiling or relinking the source code.
The high flexibility and tuning options offered by the SGI–
MP environment allows to do that. The preliminary results
indicate that the performance of these applications can also
be improved through increasing the cooperation with the
operating system scheduler represented by the MP CPU
MANAGER.

We are also considering the design and implementation
of some alternative kernel–level scheduling policies with
memory locality considerations.
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[2] E. Ayguadé, X. Martorell, J. Labarta, M. Gonzàlez
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versitat Politècnica de Catalunya, Technical Report:
UPC-DAC-1998-48, November 1998.
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