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Obtaining maximum utilization of parallel systems contsuo be an active area of re-
search and development. This article outlines a new berthicelled theEffective System
PerformancdESP) test, designed to provide a utilization metric thatssferable between
systems and illuminate the effects of various schedulingmaters. Results with discus-
sion are presented for the Cray T3E and IBM SP systems tageitieinsights obtained
from simulation.



1 Introduction

The overall value of a high performance computing systenedég not only on the raw
computational speed but also on system management. Syk@acteristics such as job
scheduling efficiency, reboot and recovery times and thel lefvprocess management are
important factors in the overall usability and effectiveg@f the system. Common perfor-
mance metrics such as the LINPACK and NAS Parallel Benchsndrk2] are useful for
measuring sustained computational performance, but ghleedr no insight into system-
level efficiency issues.

In this article, we describe a new benchmark, Hikective System PerformaneSP)
benchmark, which measures system utilization [3]. Our primmotivation in developing
this benchmark is to aid the evaluation of high performarystesns. Additionally, it will
be used to monitor the impact of configuration changes antvacé upgrades in existing
systems. We also hope that this benchmark will provide d fomiat for future research and
development activities in the high performance computomgmunity. The emphasis in this
work is on scheduling and resource management and shouligwed as complementary
to performance benchmarks, such as NAS.

The ESP test extends the idea of a throughput benchmark datiti@nal constraints
that encapsulate day-to-day operation. It yields an eff@yieneasurement based on the
ratio of the actual elapsed time relative to the theoretisaimum time assuming perfect
efficiency. This ratio is independent of the computatioa#trand is also relatively inde-
pendent of the number of processors used, thus permittimgadsons between platforms.

The test was run on the Cray T3E and the IBM SP at NERSC. The D8Eists of
512 Alpha EV56 processors at 450 MHz with an aggregate peéii 41GFlop/s. The SP
consists of 512 Power3 processors at 200 MHz with an aggrquesk of 410 GFlop/s.
The SP exhibits higher sustained performance for mostegtjns, however, the T3E has
better scalability for tightly-coupled parallel applicats. With two systems of the same
size but different scheduling characteristics, NERSC ia imique position to implement
and validate the ESP test.

2 Utilization and Scheduling

In this work, we are primarily concerned with parallel apptions that require a static num-
ber of processors (or partition size). Scheduling sevaglfel applications concurrently
is particularly problematic since time and partition coastts must be satisfied while si-
multaneously the system utilization should be at a maximuiilization, in this sense, is

defined as the fraction of busy processors to available psacs integrated over time. In
day-to-day operation, other constraints and requiremeneite a situation more complex
and subtle. For example, a scheduler may ubest-fit-first(BFF) strategy but at a cost



of starvation of larger partition jobs. While this may redube elapsed time and achieve
higher utilization compared to first-come-first-serv@~CFS) strategy it does not address
the issues of turnaround, fairness and productivity.

One indirect measurement of utilization is the elapsed te@ired to process a work-
load consisting of a number of jobs. If the time for each jolsasstant, irrespective of
whether it is run dedicated or concurrently with other jahen the variation in the elapsed
time for the workload depends only on the scheduling styategl system overhead. For
a given workload with jobs of varying partition sizes andpsiad times, a utilization effi-
ciency, F/, can be defined as, =

i piti
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wherep; andt; are the partition size and elapsed time, respectively,Herth job, T’
is the observed time for the workload atlis the number of available processors. In
the ideal limit of perfect packing with no overhead, the éfficy, F/, approaches unity.
Here the numerator and denominator are in units of CPU-houSPU-seconds), a unit of
that is useful for discussing parallel resources. Noteagtiea distinction between perfect
packing and optimal scheduling. Some of the possible pasménclude; preemption,
backfilling, variable deadlines, multiple resource reguoients, scheduling dependencies
and job priorities. Not surprisingly this problem is NP-th@nd many heuristic techniques
have been developed to approximate a good solution. Exanopleecent work for non-
preemptive, preemptive and multiple resource schemesdedH, 5, 6, 7].

Particular scheduling strategies depend on the avaifglbificertain key system func-
tionality. As shown in Table I, the systems examined in thagkudiffer considerably in
available functionalityCheckpoint/restatis the ability to save to disk and subsequently re-
store a running job. System-initiated checkpointing ofgauanning jobs affords flexibility
in scheduling and maintenance. Without checkpointing,isriaced with the undesirable
choice between waiting to idle the machine or the premagarraihation of jobsSwapping
and gang-schedulings the parallel analog of time-slicing on single processachines
but usually with a course granularity. This allows oversuipgion (multiple processes per
processor), increasing the apparent number of processailalde and allowing greater
flexibility in scheduling.Job migration/compactiorefers to the capability to move a run-
ning job to a different set of processors. This aids in defragtation and scheduling large
partitions.Priority preemptioris the ability to launch a higher priority job with the resot
effect of swapping out lower priority jobs. This is usefuitgprove turnaround and prevent
starvation of large partition job8Backfillis the insertion of smaller, shorter jobs ahead of
earlier jobs in the queue to fill empty slots. More sophiggdaackfill algorithms exploit
a priori run time information such that jobs have a guaranteed latimehbut may be pro-
moted ahead to fill empty slots. Systems wdthjoint partitionsdo not require contiguous
(in a topological sense) parallel partitions on the intareect and, therefore, fragmentation
is not an issue.
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Table I: System Functionality on T3E and SP

Function T3E SP
Checkpoint/restart X
Swapping/Gang-scheduling X

Job migration/compaction X
Priority preemption X
Backfill X X
Disjoint partitions X

The first four functions mentioned, namely, checkpointhgs swapping, migration
and preemption, all depend on the fundamental kernel dparat preemptively changing
process images between run and idle states and moving theranmry and disk. Unfor-
tunately, this is either not implemented in stock operatipgtems or is not exposed to the
global scheduling/queuing software.

The Cray T3E at NERSC has demonstrated high utilization dgggtem management
and the availability of checkpoint/restart and prioritgemption [8, 9].Scheduling on the
T3E comprises two interacting subsystems; a batch queu&)M@d theglobal resource
managef(GRM). NQS schedules at a coarse grain and launches jobgjfnennes based on
site policies. Multiple NQS queues for different partitisizes are used. The number of re-
leased jobs for each queue may be limited by the NQS configatatherefore, the profile
of jobs launched may be adjusted according to the time of &ye lHor example, at night,
larger partition jobs are preferentially launched by lingtsmall partition jobs. Dynamic
management of currently launched jobs is implemented by GRiMg swapping, priority
preemption and compaction. Two priority rankings are reéioed by GRM; normal and
prime. The prime rank is used to preemptively insert jobsitoimmediately with the effect
of swapping out running jobs. Within each priority rank,rénenaybe more processors sub-
scribed than physically available, in which case, GRM cdhegigang-schedule between
jobs or hold jobs pending a suitable partition. GRM uses a Bf&tegy to launch held
jobs. To prevent starvation of larger jobs, NQS must be gmuyately configured and prime
rankings judiciously assigned to larger jobs.

Loadlevelleris used on the SP for scheduling batch jobsehegal, each job is assigned
dedicated processors and runs to completion without swgplifferent jobclasseswith
varying requirements and priorities may be defined withiadleveller. Loadleveller uses
an overall FCFS strategy with backfill to launch jobs from ¢ueue. The ordering of jobs
considered for launch maybe adjusted using system and?oassigned priorities. Efficient
backfill requiresa priori estimated run times.



3 Benchmark Design

A throughput benchmark was the initial starting point foe tthesign of the ESP test. It
consists of a set of jobs of varying partition sizes and timigk the objective of obtaining
the shortest elapsed run time. By reporting the utilizagffitiency, F/, instead of the
absolute time, the ESP test is independent of the compotdtiate. A theoretical minimum
elapsed time of 4 hours (or:4 512 CPU-hours) on the T3E was chosen for the benchmark.
This choice was a compromise between a longer simulatior megpresentative of actual
production and a shorter time more amenable to benchmarking

The turnaround of larger partition jobs has always been @e&wn In order to encap-
sulate this problem, the test includes two jobs with pantiizes equal to the number of
available processorfJl configurationjobs). The test stipulates that upon submission, the
full configuration jobs must be run before any further joleslaunched. The first full con-
figuration job can only be submitted after 10% of the theogtininimum time has elapsed
such that it is non-trivial to schedule. Similarly, the seddull configuration job must com-
plete within 90% of the test and is not simply the last job tdéhached. The requirement
to run these two full configuration jobs is a difficult test éoscheduler but it is, nonetheless,
a common scenario in production environments.

Outages, both scheduled and unscheduled, are common enghstems and the time
to shutdown and reboot has a significantimpact on utilirediger the lifetime of a system.
The ESP test includes a shutdown with reboot which is reduoestart immediately after
the completion of the first full configuration job. In praaijdhe shutdown and reboot cycle
is difficult to implement without manual intervention dugithe test. If the shutdown/reboot
time, S, is known in advance then the operation need not be perfarrmed utilization
efficiency with shutdown/reboot is simply,

o 2piti

- P(T+S) @

The jobs are grouped into three blocks and the order of sughoniss determined from
a reproducible pseudo-random sequence. The total numi&Pdé requested in the first
block is at least twice the available processors and the ruoftCPUs in the second block
at least equal to the available processors. The remainbsggonstitute the third block. The
first block is submitted at the start with the second and thicdtks submitted 10 and 20
minutes thereafter, respectively. This structure wasghesl to forestall artificially config-
ured queues specific to this test and, at the same time, greufficient queued work to
allow flexibility in scheduling. No manual intervention iBaved once the test is initiated.

We consider it important that the job mix be representativihe user workload. Ac-
counting records for three months from the T3E were distili¢o a workload profile. User
jobs were sorted into classes defined by run time and partiize. Table Il shows the
workload profile expressed as a percentage of the availd®lélaurs. Using the 4 hour
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Table II: Workload Profile on the T3E at NERSC (%)

Size (procs) 8 16 32 64 128 256

Time(s)

300- 900 05 07 19 45 05 13
1000-3600 05 14 34 102 28 40
3700-9600 2.0 4.2 76 351 17.3 24

elapsed time (2048 CPU-hours) for the test, Table Il allome tw calculate the amount of
CPU-hours for each class. For example, the class of jobsavartition size of 64 and
taking 1000-3600 seconds, represents 209 CPU-hours ( $208urs). It is important to
note that while the profile reflects the application and pgobkize constraints of users (for
example, a minimum of aggregate memory), there is also anslacy effect of the schedul-
ing policy enforced on the system. That is, the users williredly adapt their pattern of
usage to maximize their productivity for a given queue strie

The applications in the job mix originate from our user comityand are used in
production computing. Furthermore, the job mix profile wasigned to span the diverse
scientific areas of research amongst our users. Attentisraiga paid to diversify compu-
tational characteristics such as the amount of disk I/O ahony usage. For each class, an
application and problem set was selected to satisfy the dimtepartition size constraints.
The number of instances (Count) of each application/probas adjusted such that ag-
gregate CPU-hours reflected the workload profile. Tableidtklthe final job mix for the
ESP benchmark with the elapsed times for each job on the TBESEBN

4 Resaultsand Discussion

Two test runs were completed on the T3E. In both cases, aaeppreue was created for
full configuration jobs and was marked to preempt runningjohe full configuration
jobs can thus be launched immediately on submission indkgetiof the queue of general
jobs. Process migration/compaction was also enabled thrroms. In the first run, labeled
Swap the system was oversubscribed by two and gang-schedutledavime-slice of 20
minutes. A single NQS queue was used for the general job mithd second run, labeled
NoSwapthe system was not oversubscribed. Each job ran unintedawmtil completion.
Six queues for different maximum partition sizes; 256, 1@8, 32, 16, with decreasing
priority were used.

On the SP, two classes (queues) were created in Loadleveligeneral class for all
jobs and a special high priority class for the full configioatjobs. It is not possible to



Table 11l: ESP Application Job Mix

Application Discipline Size Count Time(s)
T3E SP

gfft Large FFT 512 2 30.5 255.6
md Biology 8 4 1208.0 1144.9
md 24 3 602.7 583.3
nqclarge Chemistry 8 2 8788.0 5274.9
nqclarge 16 5 5879.6 2870.8
paratec Material Science 256 1 746.9 1371.0
gcdsmall Nuclear Physics 128 1 1155.0 503.3
gcdsmall 256 1 591.0 342.4
scf Chemistry 32 7 3461.1 1136.2
scf 64 10 1751.9 646.4
scfdirect Chemistry 64 7 5768.9 1811.7
scfdirect 81 2 4578.0 1589.1
superlu Linear Algebra 8 15 288.3 361.2
tibebig Fusion 16 2 2684.5 2058.8
tibebig 32 6 1358.3 1027.0
tibebig 49 5 912.9 729.4
tibebig 64 8 685.8 568.7
tibebig 128 1 350.0 350.7




selectivelybackfill with Loadleveller. Our preliminary runs showed thmackfill would
defer launching of the full configuration job until the endtbé test. This would clearly
violate the intent of the test. Backfill was implicitly didal by assigning large wallclock
times (several times greater than the complete test) tawhf.j Thus Loadleveller was
reduced to a strictly FCFS strategy.

The results of the ESP test for the T3E and the SP are summaniZable 1V. Two effi-
ciency measurements, with and without the shutdown/reioetfactored in, are reported.
Figures I, Il and Il show the details of the three runs whéeeihstantaneous utilization is
plotted against time and the time axis has been rescaledelthéloretical minimum time.
Additionally, the start time for each job is indicated by ampulse where the height equals
the partition size.

The obvious pointis the significantly higher utilizatiofiefency of the T3E compared
to the SP. This is due to the lack of a suitable mechanism tceidiately launch full config-
uration jobs on the SP. On submission of the full configurejtids, a considerable amount
of time was spent waiting for running jobs to complete. Thisvident in Figure Il which
shows two large regions where the instantaneous utilizatiops very low. Without this
drawback, it is likely the utilization on the SP would be cargble to the T3E. The time
lag to run preferential jobs is indicative of the difficulty changing modes of operation on
the SP. This is important for sites that routinely changeéesyscharacteristics, for example,
between interactive and batch or between small and largéipas. The most desirable
remedy would be to either checkpoint or dynamically swapronhing jobs. It is notewor-
thy that the SP completed the test in less time due to its highraputational rate.

As seenin Figure |, the BFF mechanism on the T3E deferred [zagition jobs® 128)
until the end. Consequently, at the end of the test there laege gaps that could not be
filled by small jobs. On the SP, a FCFS strategy was indiregtfgrced which can be seen
illustrated in Figure Il where the distribution of job stéimes is unrelated to partition size.
It is evident from Figures | and Il that a significant loss dieéncy on the T3E is incurred
at the tail end of the test. In an operational setting, howetere are usually more jobs
to launch. That is, the fact the ESP test is finite poses a gnolsince we are interested
in a continual utilization given a hypothetical infinite nber of queued jobs. Suggested
solutionsto this dilemma have proven to be awkward and reqoanual intervention. How
the test should be terminated and post-analyzed will beareied in the next design of
the ESP test.

The distribution of start times is qualitatively similartbeen the Swap and NoSwap
runs on the T3E although the queue set up was different. lagbend run, we deliberately
assigned increasingly higher priorities to larger pantitqueues in an attempt to mitigate
starvation. However, shortly after the start, it is unlikélat a large pool of idle processors
would become coincidently available. In this scenario ghttern of job submission reverts
back to BFF and the queue set up has little impact. On the btred, there is considerable
difference in efficiency between the two T3E runs. This isilaited to the overhead of
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Table IV: ESP Results

T3E SP
Swap NoSwap

Available processors 512 512 512
Jobmix work (CPU-seconds) 7437860 7437860 3715861
Elapsed Time (seconds) 20736 17327 14999
Shutdown/reboot (seconds) 2100 2100 5400
Efficiency 0.64 0.75 0.36
Efficiency (w/o reboot) 0.70 0.84 0.48

Table V: Observed and Simulation Results on the T3E

Efficiency
Observed (NoSwap) 0.84
Simulation
+ w/o preemption 0.49
+ with preemption 0.84
+ gang-scheduling 0.86

swapping which is significant when the oversubscribed E®ee cannot simultaneously fit
in memory and process images must be written to disk.

To aid the evaluation of the performance and sensitivityhef ESP test, a simulator
was developed to predict the runtime of this workload usiagous scheduling schemes.
Several simple scheduling algorithms, such as FCFS and Bif€ implemented together
with the option of using backfill schemes and priority preéiom The simulator was used
in the definition of the ESP test in order to ensure that thiedielsnot exhibit pathological
behavior. We have also used the simulator to estimate sestithe ESP test on various
system configurations and compared them to observed results

Table V compares observed efficiency against various shmuétficiencies without
shutdown/reboot. The simulated efficiencies are somewgtanhistic since they do not ac-
count for system overhead such as 1/O contention, swappidgeocessor fragmentation.
A gang-scheduled simulation of the ESP test with a 1000 sktiore-slice and oversub-
scription of two achieved a utilization efficiency of 0.86owever, this is overly optimistic
as the observed efficiency of 0.70 from the Swap run inditetethere is a significant over-
head incurred with gang-scheduling. Furthermore, thislyg a slight increase compared



to the preemption simulation with an efficiency of 0.84 withthe use of gang-scheduling.
The most noticeable result obtained from the simulatiorsstie®en the assessment of the
preemption functionality. The simulated efficiency of th®HEtest using a BFF algorithm
increased from 0.49 to 0.84 when preemption was employe@sd hesults indicate that
preemption can have a very significant impact on systeneatibn in a real operational
setting which agrees with the conclusion from the SP run.

5 Conclusion

In this work we described a new utilization benchmark thatswecessfully ran on two
parallel computer systems. It has provided quantitatia da utilization and schedul-
ing efficacy of these resources and useful insights on howasage these systems. The
most important conclusion is that certain system functignancluding checkpoint/restart,
swapping and migration, are critical for efficient schedglstrategies. Unfortunately, the
scheduling of parallel systems has received little atbentiom operating system kernel
developers wherein such functionality must originate.

Future work will also include testing other parallel platfes with different scheduling
and system functionality. We are interested in quantifyivegeffects of different schedulers
with Loadleveller and particularly interested in utiliginhe backfill capability. We also
plan to introduce variations on the ESP test, for exampleyiging a priori runtimes to
schedulers that may exploit such information. The scatgtuf the test at larger number of
processors and the difficulty with the tail end of the test halve to addressed. Finally we
intend to conduct a theoretical analysis of the ESP testarctimtext of multiple resource
requirements. At some point, we hope to make the test fraeliyadle. We hope that this
test will be of use to other sites and spur both industry asdarch to improve system
utilization.
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Figure I

T3E Swap : Utilization Chronology

97IS uonied

[o0] o (q\] <t (o] [o0]
O < — [e0] Lo (q\]
M~ O Ke} ™ N — o
| | | | |
o
P
mmmmam o
I
|||||||| _i B
I
I
e
I
! -
I
I
-
|
r_||l
5
i
=i
=
i
[P
] -
[
L_\l —]
)
4 —+
= —
; —
_“ ]
I_ -
o
| | | | |
11 o o o o o o
m (o0] O < (V]

(%) uonezinn

2.25

0.5 0.75 1.25 15 1.75
Normalized Time

0.25



Figure Il: T3E NoSwap :

Utilization Chronology
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Figure lll: SP : Utilization Chronology
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