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Obtaining maximum utilization of parallel systems continues to be an active area of re-
search and development. This article outlines a new benchmark, called theEffective System
Performance(ESP) test, designed to provide a utilization metric that istransferable between
systems and illuminate the effects of various scheduling parameters. Results with discus-
sion are presented for the Cray T3E and IBM SP systems together with insights obtained
from simulation.



1 Introduction

The overall value of a high performance computing system depends not only on the raw
computational speed but also on system management. System characteristics such as job
scheduling efficiency, reboot and recovery times and the level of process management are
important factors in the overall usability and effectiveness of the system. Common perfor-
mance metrics such as the LINPACK and NAS Parallel Benchmarks [1, 2] are useful for
measuring sustained computational performance, but give little or no insight into system-
level efficiency issues.

In this article, we describe a new benchmark, theEffective System Performance(ESP)
benchmark, which measures system utilization [3]. Our primary motivation in developing
this benchmark is to aid the evaluation of high performance systems. Additionally, it will
be used to monitor the impact of configuration changes and software upgrades in existing
systems. We also hope that this benchmark will provide a focal point for future research and
development activities in the high performance computing community. The emphasis in this
work is on scheduling and resource management and should be viewed as complementary
to performance benchmarks, such as NAS.

The ESP test extends the idea of a throughput benchmark with additional constraints
that encapsulate day-to-day operation. It yields an efficiency measurement based on the
ratio of the actual elapsed time relative to the theoreticalminimum time assuming perfect
efficiency. This ratio is independent of the computational rate and is also relatively inde-
pendent of the number of processors used, thus permitting comparisons between platforms.

The test was run on the Cray T3E and the IBM SP at NERSC. The T3E consists of
512 Alpha EV56 processors at 450 MHz with an aggregate peak of614 GFlop/s. The SP
consists of 512 Power3 processors at 200 MHz with an aggregate peak of 410 GFlop/s.
The SP exhibits higher sustained performance for most applications, however, the T3E has
better scalability for tightly-coupled parallel applications. With two systems of the same
size but different scheduling characteristics, NERSC is ina unique position to implement
and validate the ESP test.

2 Utilization and Scheduling

In this work, we are primarily concerned with parallel applications that require a static num-
ber of processors (or partition size). Scheduling several parallel applications concurrently
is particularly problematic since time and partition constraints must be satisfied while si-
multaneously the system utilization should be at a maximum.Utilization, in this sense, is
defined as the fraction of busy processors to available processors integrated over time. In
day-to-day operation, other constraints and requirementscreate a situation more complex
and subtle. For example, a scheduler may use abest-fit-first(BFF) strategy but at a cost
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of starvation of larger partition jobs. While this may reduce the elapsed time and achieve
higher utilization compared to afirst-come-first-serve(FCFS) strategy it does not address
the issues of turnaround, fairness and productivity.

One indirect measurement of utilization is the elapsed timerequired to process a work-
load consisting of a number of jobs. If the time for each job isconstant, irrespective of
whether it is run dedicated or concurrently with other jobs,then the variation in the elapsed
time for the workload depends only on the scheduling strategy and system overhead. For
a given workload with jobs of varying partition sizes and elapsed times, a utilization effi-
ciency,E, can be defined as, E = Pi pitiPT (1)

wherepi and ti are the partition size and elapsed time, respectively, for the i-th job, T
is the observed time for the workload andP is the number of available processors. In
the ideal limit of perfect packing with no overhead, the efficiency, E, approaches unity.
Here the numerator and denominator are in units of CPU-hours(or CPU-seconds), a unit of
that is useful for discussing parallel resources. Note, there is a distinction between perfect
packing and optimal scheduling. Some of the possible parameters include; preemption,
backfilling, variable deadlines, multiple resource requirements, scheduling dependencies
and job priorities. Not surprisingly this problem is NP-hard and many heuristic techniques
have been developed to approximate a good solution. Examples of recent work for non-
preemptive, preemptive and multiple resource schemes include [4, 5, 6, 7].

Particular scheduling strategies depend on the availability of certain key system func-
tionality. As shown in Table I, the systems examined in this work differ considerably in
available functionality.Checkpoint/restartis the ability to save to disk and subsequently re-
store a running job. System-initiated checkpointing of long-running jobs affords flexibility
in scheduling and maintenance. Without checkpointing, oneis faced with the undesirable
choice between waiting to idle the machine or the premature termination of jobs.Swapping
andgang-schedulingis the parallel analog of time-slicing on single processor machines
but usually with a course granularity. This allows oversubscription (multiple processes per
processor), increasing the apparent number of processors available and allowing greater
flexibility in scheduling.Job migration/compactionrefers to the capability to move a run-
ning job to a different set of processors. This aids in defragmentation and scheduling large
partitions.Priority preemptionis the ability to launch a higher priority job with the resulting
effect of swapping out lower priority jobs. This is useful toimprove turnaround and prevent
starvation of large partition jobs.Backfill is the insertion of smaller, shorter jobs ahead of
earlier jobs in the queue to fill empty slots. More sophisticated backfill algorithms exploit
a priori run time information such that jobs have a guaranteed launchtime but may be pro-
moted ahead to fill empty slots. Systems withdisjoint partitionsdo not require contiguous
(in a topological sense) parallel partitions on the interconnect and, therefore, fragmentation
is not an issue.
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Table I: System Functionality on T3E and SP

Function T3E SP
Checkpoint/restart X
Swapping/Gang-scheduling X
Job migration/compaction X
Priority preemption X
Backfill X X
Disjoint partitions X

The first four functions mentioned, namely, checkpoint/restart, swapping, migration
and preemption, all depend on the fundamental kernel operation of preemptively changing
process images between run and idle states and moving them tomemory and disk. Unfor-
tunately, this is either not implemented in stock operatingsystems or is not exposed to the
global scheduling/queuing software.

The Cray T3E at NERSC has demonstrated high utilization due to system management
and the availability of checkpoint/restart and priority preemption [8, 9].Scheduling on the
T3E comprises two interacting subsystems; a batch queue (NQS) and theglobal resource
manager(GRM). NQS schedules at a coarse grain and launches jobs fromqueues based on
site policies. Multiple NQS queues for different partitionsizes are used. The number of re-
leased jobs for each queue may be limited by the NQS configuration. Therefore, the profile
of jobs launched may be adjusted according to the time of the day. For example, at night,
larger partition jobs are preferentially launched by limiting small partition jobs. Dynamic
management of currently launched jobs is implemented by GRMusing swapping, priority
preemption and compaction. Two priority rankings are recognized by GRM; normal and
prime. The prime rank is used to preemptively insert jobs to run immediately with the effect
of swapping out running jobs. Within each priority rank, there maybe more processors sub-
scribed than physically available, in which case, GRM can either gang-schedule between
jobs or hold jobs pending a suitable partition. GRM uses a BFFstrategy to launch held
jobs. To prevent starvation of larger jobs, NQS must be appropriately configured and prime
rankings judiciously assigned to larger jobs.

Loadleveller is used on the SP for schedulingbatch jobs. In general, each job is assigned
dedicated processors and runs to completion without swapping. Different jobclasseswith
varying requirements and priorities may be defined within Loadleveller. Loadleveller uses
an overall FCFS strategy with backfill to launch jobs from thequeue. The ordering of jobs
considered for launch maybe adjusted using system and/or user assigned priorities. Efficient
backfill requiresa priori estimated run times.
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3 Benchmark Design

A throughput benchmark was the initial starting point for the design of the ESP test. It
consists of a set of jobs of varying partition sizes and timeswith the objective of obtaining
the shortest elapsed run time. By reporting the utilizationefficiency,E, instead of the
absolute time, the ESP test is independent of the computational rate. A theoretical minimum
elapsed time of 4 hours (or 4� 512 CPU-hours) on the T3E was chosen for the benchmark.
This choice was a compromise between a longer simulation more representative of actual
production and a shorter time more amenable to benchmarking.

The turnaround of larger partition jobs has always been a concern. In order to encap-
sulate this problem, the test includes two jobs with partition sizes equal to the number of
available processors (full configurationjobs). The test stipulates that upon submission, the
full configuration jobs must be run before any further jobs are launched. The first full con-
figuration job can only be submitted after 10% of the theoretical minimum time has elapsed
such that it is non-trivial to schedule. Similarly, the second full configuration job must com-
plete within 90% of the test and is not simply the last job to belaunched. The requirement
to run these two full configuration jobs is a difficult test fora scheduler but it is, nonetheless,
a common scenario in production environments.

Outages, both scheduled and unscheduled, are common in these systems and the time
to shutdown and reboot has a significant impact on utilization over the lifetime of a system.
The ESP test includes a shutdown with reboot which is required to start immediately after
the completion of the first full configuration job. In practice, the shutdown and reboot cycle
is difficult to implement without manual intervention during the test. If the shutdown/reboot
time, S, is known in advance then the operation need not be performed. The utilization
efficiency with shutdown/reboot is simply,E = Pi pitiP (T + S) (2)

The jobs are grouped into three blocks and the order of submission is determined from
a reproducible pseudo-random sequence. The total number ofCPUs requested in the first
block is at least twice the available processors and the number of CPUs in the second block
at least equal to the available processors. The remaining jobs constitute the third block. The
first block is submitted at the start with the second and thirdblocks submitted 10 and 20
minutes thereafter, respectively. This structure was designed to forestall artificially config-
ured queues specific to this test and, at the same time, provide sufficient queued work to
allow flexibility in scheduling. No manual intervention is allowed once the test is initiated.

We consider it important that the job mix be representative of the user workload. Ac-
counting records for three months from the T3E were distilled into a workload profile. User
jobs were sorted into classes defined by run time and partition size. Table II shows the
workload profile expressed as a percentage of the available CPU-hours. Using the 4 hour
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Table II: Workload Profile on the T3E at NERSC (%)

Size (procs) 8 16 32 64 128 256
Time(s)
300- 900 0.5 0.7 1.9 4.5 0.5 1.3
1000-3600 0.5 1.4 3.4 10.2 2.8 4.0
3700-9600 2.0 4.2 7.6 35.1 17.3 2.4

elapsed time (2048 CPU-hours) for the test, Table II allows one to calculate the amount of
CPU-hours for each class. For example, the class of jobs witha partition size of 64 and
taking 1000-3600 seconds, represents 209 CPU-hours ( = 209/64 hours). It is important to
note that while the profile reflects the application and problem-size constraints of users (for
example, a minimum of aggregate memory), there is also a secondary effect of the schedul-
ing policy enforced on the system. That is, the users will naturally adapt their pattern of
usage to maximize their productivity for a given queue structure.

The applications in the job mix originate from our user community and are used in
production computing. Furthermore, the job mix profile was designed to span the diverse
scientific areas of research amongst our users. Attention was also paid to diversify compu-
tational characteristics such as the amount of disk I/O and memory usage. For each class, an
application and problem set was selected to satisfy the timeand partition size constraints.
The number of instances (Count) of each application/problem was adjusted such that ag-
gregate CPU-hours reflected the workload profile. Table III lists the final job mix for the
ESP benchmark with the elapsed times for each job on the T3E and SP.

4 Results and Discussion

Two test runs were completed on the T3E. In both cases, a separate queue was created for
full configuration jobs and was marked to preempt running jobs. The full configuration
jobs can thus be launched immediately on submission independent of the queue of general
jobs. Process migration/compaction was also enabled for both runs. In the first run, labeled
Swap, the system was oversubscribed by two and gang-scheduled with a time-slice of 20
minutes. A single NQS queue was used for the general job mix. In the second run, labeled
NoSwap, the system was not oversubscribed. Each job ran uninterrupted until completion.
Six queues for different maximum partition sizes; 256, 128,64, 32, 16, with decreasing
priority were used.

On the SP, two classes (queues) were created in Loadleveller; a general class for all
jobs and a special high priority class for the full configuration jobs. It is not possible to
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Table III: ESP Application Job Mix

Application Discipline Size Count Time(s)
T3E SP

gfft Large FFT 512 2 30.5 255.6
md Biology 8 4 1208.0 1144.9
md 24 3 602.7 583.3
nqclarge Chemistry 8 2 8788.0 5274.9
nqclarge 16 5 5879.6 2870.8
paratec Material Science 256 1 746.9 1371.0
qcdsmall Nuclear Physics 128 1 1155.0 503.3
qcdsmall 256 1 591.0 342.4
scf Chemistry 32 7 3461.1 1136.2
scf 64 10 1751.9 646.4
scfdirect Chemistry 64 7 5768.9 1811.7
scfdirect 81 2 4578.0 1589.1
superlu Linear Algebra 8 15 288.3 361.2
tlbebig Fusion 16 2 2684.5 2058.8
tlbebig 32 6 1358.3 1027.0
tlbebig 49 5 912.9 729.4
tlbebig 64 8 685.8 568.7
tlbebig 128 1 350.0 350.7
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selectivelybackfill with Loadleveller. Our preliminary runs showed that backfill would
defer launching of the full configuration job until the end ofthe test. This would clearly
violate the intent of the test. Backfill was implicitly disabled by assigning large wallclock
times (several times greater than the complete test) to all jobs. Thus Loadleveller was
reduced to a strictly FCFS strategy.

The results of the ESP test for the T3E and the SP are summarized in Table IV. Two effi-
ciency measurements, with and without the shutdown/reboottime factored in, are reported.
Figures I, II and III show the details of the three runs where the instantaneous utilization is
plotted against time and the time axis has been rescaled by the theoretical minimum time.
Additionally, the start time for each job is indicated by an impulse where the height equals
the partition size.

The obvious point is the significantly higher utilization efficiency of the T3E compared
to the SP. This is due to the lack of a suitable mechanism to immediately launch full config-
uration jobs on the SP. On submission of the full configuration jobs, a considerable amount
of time was spent waiting for running jobs to complete. This is evident in Figure III which
shows two large regions where the instantaneous utilization drops very low. Without this
drawback, it is likely the utilization on the SP would be comparable to the T3E. The time
lag to run preferential jobs is indicative of the difficulty in changing modes of operation on
the SP. This is important for sites that routinely change system characteristics, for example,
between interactive and batch or between small and large partitions. The most desirable
remedy would be to either checkpoint or dynamically swap outrunning jobs. It is notewor-
thy that the SP completed the test in less time due to its higher computational rate.

As seen in Figure I, the BFF mechanism on the T3E deferred large partition jobs (� 128)
until the end. Consequently, at the end of the test there werelarge gaps that could not be
filled by small jobs. On the SP, a FCFS strategy was indirectlyenforced which can be seen
illustrated in Figure III where the distributionof job start times is unrelated to partition size.
It is evident from Figures I and II that a significant loss of efficiency on the T3E is incurred
at the tail end of the test. In an operational setting, however, there are usually more jobs
to launch. That is, the fact the ESP test is finite poses a problem since we are interested
in a continual utilization given a hypothetical infinite number of queued jobs. Suggested
solutions to this dilemma have proven to be awkward and require manual intervention. How
the test should be terminated and post-analyzed will be reexamined in the next design of
the ESP test.

The distribution of start times is qualitatively similar between the Swap and NoSwap
runs on the T3E although the queue set up was different. In thesecond run, we deliberately
assigned increasingly higher priorities to larger partition queues in an attempt to mitigate
starvation. However, shortly after the start, it is unlikely that a large pool of idle processors
would become coincidently available. In this scenario, thepattern of job submission reverts
back to BFF and the queue set up has little impact. On the otherhand, there is considerable
difference in efficiency between the two T3E runs. This is attributed to the overhead of
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Table IV: ESP Results

T3E SP
Swap NoSwap

Available processors 512 512 512
Jobmix work (CPU-seconds) 7437860 7437860 3715861
Elapsed Time (seconds) 20736 17327 14999
Shutdown/reboot (seconds) 2100 2100 5400
Efficiency 0.64 0.75 0.36
Efficiency (w/o reboot) 0.70 0.84 0.48

Table V: Observed and Simulation Results on the T3E

Efficiency
Observed (NoSwap) 0.84
Simulation
+ w/o preemption 0.49
+ with preemption 0.84
+ gang-scheduling 0.86

swapping which is significant when the oversubscribed processes cannot simultaneously fit
in memory and process images must be written to disk.

To aid the evaluation of the performance and sensitivity of the ESP test, a simulator
was developed to predict the runtime of this workload using various scheduling schemes.
Several simple scheduling algorithms, such as FCFS and BFF were implemented together
with the option of using backfill schemes and priority preemption. The simulator was used
in the definition of the ESP test in order to ensure that the test did not exhibit pathological
behavior. We have also used the simulator to estimate results of the ESP test on various
system configurations and compared them to observed results.

Table V compares observed efficiency against various simulator efficiencies without
shutdown/reboot. The simulated efficiencies are somewhat optimistic since they do not ac-
count for system overhead such as I/O contention, swapping and processor fragmentation.
A gang-scheduled simulation of the ESP test with a 1000 second time-slice and oversub-
scription of two achieved a utilization efficiency of 0.86. However, this is overly optimistic
as the observed efficiency of 0.70 from the Swap run indicate that there is a significant over-
head incurred with gang-scheduling. Furthermore, this is only a slight increase compared
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to the preemption simulation with an efficiency of 0.84 without the use of gang-scheduling.
The most noticeable result obtained from the simulations has been the assessment of the
preemption functionality. The simulated efficiency of the ESP test using a BFF algorithm
increased from 0.49 to 0.84 when preemption was employed. These results indicate that
preemption can have a very significant impact on system utilization in a real operational
setting which agrees with the conclusion from the SP run.

5 Conclusion

In this work we described a new utilization benchmark that wesuccessfully ran on two
parallel computer systems. It has provided quantitative data on utilization and schedul-
ing efficacy of these resources and useful insights on how to manage these systems. The
most important conclusion is that certain system functionality; including checkpoint/restart,
swapping and migration, are critical for efficient scheduling strategies. Unfortunately, the
scheduling of parallel systems has received little attention from operating system kernel
developers wherein such functionality must originate.

Future work will also include testing other parallel platforms with different scheduling
and system functionality. We are interested in quantifyingthe effects of different schedulers
with Loadleveller and particularly interested in utilizing the backfill capability. We also
plan to introduce variations on the ESP test, for example, providing a priori runtimes to
schedulers that may exploit such information. The scalability of the test at larger number of
processors and the difficulty with the tail end of the test will have to addressed. Finally we
intend to conduct a theoretical analysis of the ESP test in the context of multiple resource
requirements. At some point, we hope to make the test freely available. We hope that this
test will be of use to other sites and spur both industry and research to improve system
utilization.
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