
Improving Parallel Job S
heduling UsingRuntime MeasurementsFabri
io Alves Barbosa da Silva1, Isaa
 D. S
herson1;21 Universit�e Pierre et Marie Curie, Laboratoire ASIM, LIP6, Paris, Fran
e.fabri
io.silva�lip6.fr2 Information and Comp. S
ien
e, University of California, Irvine, CA 92717 U.S.A.isaa
�u
i.eduAbstra
t. We investigate in this paper the use of runtime measure-ments to improve job s
heduling on a parallel ma
hine. Emphasis is ongang s
heduling based strategies. With the information gathered at run-time, we de�ne a task
lassi�
ation s
heme that is used to provide betterservi
e to I/O bound and intera
tive jobs under gang s
heduling throughthe utilization of idle times due to idle slots and blo
ked tasks and alsoby
ontrolling the spinning time of a task as a fun
tion of the work-load on node. Simulation results are presented and show improvementsin both throughput and ma
hine utilization for a gang s
heduler usingruntime information
ompared with gang s
hedulers for whi
h this typeof information is not available.1 Introdu
tionIn this paper we analyze the utilization of runtime information in parallel jobs
heduling to improve throughput and utilization on a parallel
omputer. Ourobje
tive is to use information su
h as number of I/O
alls, duration of I/O
alls, number of messages arrived, number of messages sent, number of barriers,time spent in spinning while waiting for message/syn
hronization arrival andother information available as a fun
tion of the ar
hite
ture in order to asso
iatea spe
i�
 task in a given moment of time to one
lass belonging to a set ofprede�ned
lasses with the help of fuzzy sets and Bayesian estimators. Observethat the
lassi�
ation of a task may
hange over time, sin
e we
onsider, as in[2℄, that
hara
teristi
s of jobs may
hange during exe
ution.Some possible uses for the task
lassi�
ation information are, for instan
e,to de
ide whi
h task to s
hedule next, to de
ide what to do in the
ase of anidle slot in gang s
heduling, or to de�ne spinning time of a task as a fun
tionof the total workload on a pro
essor. One possible utilization of these
on
eptsis to give better servi
e to I/O bound jobs in gang s
heduling, by using task
lassi�
ation to identify I/O bound tasks in order to res
hedule them in idleslots or if a gang s
heduled task blo
ks itself. This approa
h is di�erent from theone proposed in Lee et al. [19℄ sin
e it does not interrupt running jobs.In this paper we will give emphasis to gang s
heduling based strategies.Gang s
heduling
an be de�ned as follows: Given a job
omposed of N tasks, in

gang s
heduling these N tasks
ompose a pro
ess working set[21℄, and all tasksbelonging to this pro
ess working set are s
heduled simultaneously in di�erentpro
essors, i.e., gang s
heduling is the
lass of algorithms that s
hedule on thebasis of whole pro
ess working sets. Gang s
heduling allows both the time sharingas well as the spa
e sharing of the ma
hine, and it was originally introdu
ed byOusterhout[21℄. Performan
e bene�ts of gang s
heduling the set of tasks of ajob has been extensively analyzed in [16, 10, 13, 29℄ Pa
king s
hemes for Gangs
heduling were analyzed in [9℄.In se
tion 2 we dis
uss some previous work in parallel/distributed job s
hedul-ing that
onsiders the use of runtime information to modify s
heduling-relatedparameters at runtime. Se
tion 3 presents the task
lassi�
ation me
hanismbased on runtime information we use in this paper. How to use this informa-tion to improve throughput and utilization in parallel job s
heduling through apriority
omputation me
hanism is dis
ussed at se
tion 4. Se
tion 5 dis
usses theutilization of task
lassi�
ation information to
ontrol spin time in order to givebetter servi
e to I/O bound and intera
tive jobs in gang s
heduling. Our exper-imental results are presented and dis
ussed in se
tion 6 and se
tion 7
ontainsour �nal remarks.2 Previous WorkIn [1℄, Arpa
i-Dusseau, Culler and Mainwaring use information available at runtime (in this
ase the number of in
oming messages) to de
ide if a task should
ontinue to spin or blo
k in the pairwise
ost bene�t analysis in the impli
it
osheduling algorithm.In [14℄, Feitelson and Rudolph used runtime information to identify a
tivityworking sets, i.e. the set of a
tivities (tasks) that should be s
heduled together,through the monitoring of the utilization pattern of
ommuni
ation obje
ts bythe a
tivities. Their work
an be
onsidered
omplementary to ours in the sensethat our obje
tive here is not to identify a
tivity working sets at runtime but toimprove throughput and utilization of parallel ma
hines for di�erent s
hedulingstrategies using su
h runtime information.In [19℄, Lee et al., along with an analysis of I/O impli
ations for gang s
hed-uled workloads, presented a method for runtime identi�
ation of gangedness,through the analysis of messaging statisti
s. It di�ers from our work in the sensethat our obje
tive is not to expli
itly identify gangedness, but to provide a task
lassi�
ation, whi
h may vary over time as a fun
tion of the appli
ation, whi
h
an also be used to verify the gangedness of an appli
ation in a given momentof time among other possibilities.This paper is an extension of some of our previous work [24, 25℄ where wedes
ribe the Con
urrent Gang s
heduling algorithm. In this work we present amore robust task
lassi�
ation s
heme, and we investigate new ways of providingbetter servi
e to I/O and intera
tive appli
ations in gang s
heduling, throughutilization of idle slots and idle time due to blo
ked tasks and by the variation

of the spinning time of a task, taking into a

ount the determination of the spintime information about other tasks.3 Task Classi�
ation using Runtime informationAs des
ribed in the introdu
tion, our obje
tive is the utilization of various run-time measurements, su
h as I/O a

ess rates and
ommuni
ation rates, to im-prove the utilization and throughput in parallel job s
heduling. This is a
hievedthrough a task
lassi�
ation s
heme using runtime information. In this se
tionwe detail the task
lassi�
ation made by the operating system based on run-time measurements using fuzzy logi
 theory. A dis
ussion of the utilization ofBayesian estimators to in
rease the robustness of the �rst s
heme based on fuzzylogi
 follows, and a \fuzzy" variation of the Bayesian estimator is presented.3.1 Task Classi�
ationWe will use the information gathered at runtime to allow ea
h PE to
lassify ea
hone of its allo
ated tasks into
lasses. Examples of su
h
lasses are: I/O intensive,
ommuni
ation intensive, and
omputation intensive. Ea
h one of these
lasses issimilar to a fuzzy set [30℄. A fuzzy set asso
iated with a
lass A is
hara
terized bya membership fun
tion fA(x) with asso
iates ea
h task T to a real number in theinterval [0,1℄, with the value of fA(T) representing the \grade of membership"of T in A. Thus, the nearer the value of FA(T) to unity, the higher the gradeof membership of T in A, that is, the degree to whi
h a task belongs to a given
lass. For instan
e,
onsider the
lass of I/O intensive tasks, with its respe
tive
hara
teristi
 fun
tion fIO(T). A value of fIO(T) = 1 indi
ates that the taskT belongs to the
lass I/O intensive with maximum degree 1, while a value offIO(x) = 0 indi
ates that the task T has exe
uted no I/O statement at all.Observe the deterministi
 nature of grade of membership asso
iations. It is alsoworth noting that the a
tual number of
lasses used on a system depends on thear
hite
ture of the ma
hine.The information related to a task is gathered during system
alls and
ontextswit
hes. Information that
an be used to
ompute the grade of membership arethe type, number and time spent on system
alls, number and destination ofmessages sent by a task, number and origin of re
eived messages, and othersystem dependent data. These informations
an be stored, for instan
e, by theoperating system on the internal data stru
ture related to the task.When applying fuzzy sets for task
lassi�
ation, the value of f(T) for a
lassis
omputed by the PE in a regular basis, at the preemption of the related task.As an example, let's
onsider the I/O intensive
lass. The exa
t way of
omputingbeing system dependent, one way of doing the
omputation is as follows: On ea
hI/O related system
all, the operating system will store information related tothe
all on the internal data stru
ture asso
iated to the task, and at the end ofthe time sli
e, the s
heduler
omputes the time spent on I/O
alls in the previoussli
e. One possible way of
omputing the grade of membership of a task based

on duration of system
alls to the
lass I/O intensive is to
onsider an average ofthe time spent in I/O is made over the last N times where the task was s
heduled(N
an be, for instan
e, 3). This average determines the grade of membershipof a parti
ular task to the
lass I/O intensive. As many jobs pro
eed in phases,the reason for using an average over the last N times a task was s
heduled isdete
tion of phase
hange. If a task
hanges from a I/O intensive phase to a
omputation intensive phase, this
hange should be dete
ted by the s
heduler.In general, the
omputation of the degree of membership of a task to the
lassI/O intensive will always be a fun
tion of the number and/or duration of the I/Osystem
alls made by the task. The same is valid for the
ommuni
ation intensive
lass; the number and/or duration of
ommuni
ation statements will de�ne thegrade of membership of a task to this
lass. For the
lass
omputing intensive,grade of membership will also be a fun
tion of system
alls and
ommuni
ationstatements, but in another sense: for a smaller the number of system
alls and
ommuni
ations there is a in
rease of the grade of membership of a given taskto the
lass
omputing intensive.In the next subse
tion we present a more robust way for
omputing the gradeof membership of a task related to a
lass than the average over N sli
es presentedin this subse
tion, through the use of Bayesian estimators.3.2 Task Classi�
ation using Bayesian EstimatorsThe obje
tive of this se
tion is to introdu
e a more robust task
lassi�
ationme
hanism than the one des
ribed in the last se
tion, whi
h is the average ofthe last N measurements, using elements of Bayesian de
ision theory. Bayesiande
ision theory is a formal mathemati
al stru
ture whi
h guides a de
ision makerin
hoosing a
ourse of a
tion in the fa
e of un
ertainty about the
onsequen
esof that
hoi
e[17℄. In parti
ular we will be interested in this se
tion in de�ninga task
lassi�er using a Bayesian estimator adapted to the fuzzy theory.A Bayesian model is a statisti
al des
ription of an estimation problem whi
hhas two main
omponents. The �rst
omponent, the prior model p(u) (this prob-ability fun
tion is also known as prior probability distribution) is a probabilisti
des
ription of the world or its properties before any sense data is
olle
ted.The se
ond
omponent, the sensor model p(dju), is a des
ription of the noisyor sto
hasti
 pro
ess that relate the original (unknown) state u to the sampledinput image or sensor values d. These two probabilisti
 models
an be
ombinedto obtain a posterior model, p(ujd) (posterior probability distribution), whi
h isthe probabilisti
 des
ription of the
urrent estimate of u given the data d. To
ompute the posterior model we use Bayes' rule:p(ujd) = p(dju)p(u)p(d) (1)where p(d) =Xu p(dju)p(u) (2)

The fuzzy version of equation 1 to
ompute the grade membership of a taskT to a
lass i as a fun
tion of measurement E
an be written as[18℄:SE(i) = Si(E)fi(T)Pk1 Sj(E)fj(T) (3)Where Sj(k) represents subsethood between two fuzzy sets j and k. In our
ase Si(E) is the subsethood between the two fuzzy sets represented by mea-surement E on task T and
lass i, that is, the grade of membership of task Trelative to
lass i
onsidering only the data gathered at measurement E. fi(T)is the grade of membership of task T relative to
lass i before measurement E.SE(i) in our
ase represents the grade of membership of task T relative to
lassi after the measurement E and be
omes fi(T) in the next interval
omputation.4 S
heduling Using Runtime measurementsIn this se
tion we will illustrate one possible use of task
lassi�
ation to improves
heduling in parallel ma
hines. Our emphasis here is to improve throughputand utilization of gang s
hedulers. Observe that the strategies des
ribed in thisse
tion
an be applied to a large number of gang s
heduler implementations,in
luding traditional gang s
hedulers[3, 15℄ and distributed hierar
hi
al
ontrols
hedulers [11, 12℄.We may
onsider two types of parallel tasks in a gang s
heduler: Those thatshould be s
heduled as a gang with other tasks in other pro
essors and thosefor whi
h gang s
heduling is not mandatory. Examples of the �rst
lass aretasks that
ompose a job with �ne grain syn
hronization intera
tions [13℄ and
ommuni
ation intensive jobs[8℄. Se
ond
lass task examples are lo
al tasks ortasks that
ompose an I/O bound parallel job, for instan
e. On the other handa traditional UNIX s
heduler does a good job in s
heduling I/O bound taskssin
e it gives high priority to I/O blo
ked tasks when data be
ome availablefrom disk. As those tasks typi
ally run for a small amount of time and thenblo
k again, giving them high priority means running the task that will takethe least amount of time before blo
king, whi
h is
oherent to the theory ofunipro
essors s
heduling where the best s
heduling strategy possible under thesum of
ompletion times is Shortest Job First [20℄(in [20℄ authors de�ne thesum of
ompletion times as total
ompletion time). Another example of jobswhere gang s
heduling is not mandatory are embarrassingly parallel jobs. Asthe number of iterations among tasks belonging to this
lass of jobs are small,the basi
 requirement for s
heduling an embarrassingly parallel job is to givethose jobs the greater possible fra
tion of CPU time, even in an un
oordinatedmanner.Di�erentiation among tasks that should be gang s
heduled and those forwhi
h a more
exible s
heduler is better is made using the grade of membershipinformation
omputed by ea
h PE (as explained in the last subse
tion) for ea
htask allo
ated to a pro
essor. The grade of membership of the task
urrently

s
heduled is
omputed at the next preemption of the task, and it is that in-formation that is used to de
ide if gang s
heduling is mandatory or not for aspe
i�
 task.When using task
lassi�
ation information, the lo
al task s
heduler on ea
hPE
omputes a priority for ea
h task allo
ated to the PE. This priority de�nesif a task T is a good
andidate for being res
heduled if another task blo
ks orin
ase of a idle slot. The priority of ea
h task is de�ned based on the grade ofmembership of a task to ea
h one of the major
lasses des
ribed before. As anexample of the
omputation of the priority of a task T in a PE we have:Pr(T) = max(� � fIO; fCOMP) (4)Where fIO; fCOMP are the grade for membership of task T to the
lassesI/O intensive and Computation intensive. The obje
tive of the parameter � isto give greater priority to I/O bound jobs (� > 1). The
hoi
es made in equation4 intend to give high priority to I/O intensive jobs and
omputation intensivejob, sin
e su
h jobs
an bene�t the most from un
oordinated s
heduling. Themultipli
ation fa
tor � for the
lass I/O intensive gives higher priority to I/Obound tasks over
omputation intensive tasks, sin
e those jobs have a greaterprobably to blo
k when s
heduled than
omputing bound tasks. By other side,
ommuni
ation and syn
hronization intensive jobs have low priority sin
e theyrequire
oordinated s
heduling to a
hieve eÆ
ient exe
ution and ma
hine uti-lization[13, 8℄. A
ommuni
ation intensive phase will re
e
t negatively over thegrade of membership of the
lass
omputation intensive, redu
ing the possibilityof a task be s
heduled by the lo
al task s
heduler. Among a set of tasks of thesame priority, the lo
al task s
heduler uses a round robin strategy. The lo
al tasks
heduler also de�nes a minimum priority �. If no parallel task has priority largerthan �, the lo
al task s
heduler
onsiders that all tasks in the PE do intensive
ommuni
ation and or syn
hronization, thus requiring
oordinated s
heduling.Observe that there is no starvation of
ommuni
ation intensive jobs, as they willbe s
heduled in a regular basis by the gang s
heduler itself, regardless of thede
isions made by the lo
al task s
hedulers.Observe that the parameters � and � de�ne the bounds of the variation ofthe priority of a task in order to it be
onsidered to res
heduling, as stated inthe next proposition.Proposition 1. � � Pr(T) � �, in order to a task be
onsidered for res
hedul-ing.Proof. � is the lower bound by de�nition. For the upper bound, observe thatfmaxIO = 1. So, as � > 1, the upper bound is �� 1 = �Simulations in [25℄ of a s
heduling algorithm (Con
urrent Gang) that usesa simpler version of the priority me
hanism/task
lassi�
ation des
ribed herehave shown that the priority
omputation has better performan
e than otheralgorithms that
an be used to
hoose the task that runs next, su
h as roundrobin.

Intera
tive tasks
an be regarded as a spe
ial type of I/O intensive task,where the task waits for a input from the user at regular intervals of time. Thesetasks also su�er under gang s
heduling, and should have priority as I/O intensivetasks.5 Adjusting Spinning Time as a fun
tion of the workloadAnother parameter that
an be adjusted in order to improve throughput of I/Obounds and intera
tive jobs in gang s
heduling is the spinning time of a task. Ourobje
tive is to make
hanges not only as a fun
tion of the runtime measurementsof the related job, but also
onsidering other jobs where tasks are allo
ated tothe same pro
essor. We
onsider that a typi
al workload will be
omposed ofa mix of jobs of di�erent types and it is important to a
hieve a
ompromise inorder to give a good response for all types of jobs.The anti
ipated blo
king of a job performing syn
hronization or
ommuni-
ation
an bene�t those jobs that do not need
oordinated s
heduling, su
h asI/O intensive and embarrassingly parallel. So the idea is to determine the spin-ning time of a task as a fun
tion of the workload allo
ated in a pro
essor. Forinstan
e, in a given moment of time if a pro
essor has many I/O intensive jobsallo
ated to it, this would have a negative impa
t in spinning time duration. Asdes
ribed in [1℄, a minimum spin time should be guaranteed in order to insurethat pro
esses stay
oordinated if already in su
h a state (baseline spin time).This minimum amount of time ensures the
ompletion of the
ommuni
ation op-eration when all involved pro
esses are s
heduled and there is no load imbalan
eamong tasks of the same job.Considering gang s
heduling the spinning time of a task may vary betweena baseline spin time and a spin only state with no blo
king. The main externalfa
tor that will have in
uen
e in the variation of the spin time is the numberof intera
tive and I/O bound tasks in the workload allo
ated to one pro
essor.A large number of these tasks would imply a smaller spinning time, in order touse the remaining time until the next global preemption to s
hedule those tasks,providing better servi
e to I/O bound and intera
tive tasks. The algorithm wepropose to set up the spinning time as a fun
tion of the workload on a given PEfor a gang s
heduling based algorithm is as follows: If there is one or more tasksin a PE
lassi�ed as I/O intensive or intera
tive, a task doing
ommuni
ationwill blo
k just after the baseline spin time if the two following
onditions aresatis�ed:{ At least one of the tasks
lassi�ed as intera
tive or I/O bound is ready{ There is a minimum amount of time Æ between the end of baseline and thenext
ontext swit
h epo
h.If any of the two
onditions are not satis�ed the task doing
ommuni
ationwill spin until re
eiving the waited response. The Æ time is a fun
tion of the
ontext swit
h time of the ma
hine. Given
, the
ontext swit
h time of thema
hine, it is
lear that Æ >
. We
an de�ne that Æ > 2�
, in order to give the

job at least the same amount of CPU time that the system will spend in
ontextswit
h. In our experiments we empiri
ally de�ne it as being 4 times the averageamount of time required for a
ontext swit
h.If both
onditions are satis�ed, the tasks will spin for a time
orrespondingto the baseline spin time, and if no message is re
eived the task blo
ks and theI/O bound or intera
tive task
an be s
heduled. The reason of minimizing thespinning time is the need of I/O and intera
tive tasks to re
eive better servi
e ingang s
heduling, and the fa
t that in gang s
heduling tasks are
oordinated dueto the s
heduling strategy itself; so an appli
ation with no load imbalan
es wouldneed only the time
orresponding the baseline to
omplete the
ommuni
ation.The
ontrol of spin time using task
lassi�
ation information is another me
h-anism available to the s
heduler to provide better servi
e to I/O bound and inter-a
tive jobs under gang s
heduling along with the priority
omputation des
ribedin the previous se
tion. Observe that the spin time
ontrol as a fun
tion of theworkload is always used in
onjun
tion with the priority me
hanism des
ribedin se
tion 4.6 Experimental ResultsIn this se
tion we present some simulation results that
ompares the performan
eof a gang s
heduler that uses the algorithms des
ribed in se
tions 4 and 5 withanother gang s
heduler without su
h me
hanisms, both of them using the samepa
king strategy (�rst �t). The implementation of gang s
heduler used in thisse
tion is a simple one; our obje
tive is to measure the bene�ts of using runtimemeasurements and task
lassi�
ation information by
omparing a given s
hedulerthat makes use of runtime information with another one that does not
onsider it.First we des
ribe our simulation methodology, and then we present and
ommentthe results obtained in our simulations.6.1 Simulation MethodologyTo perform the a
tual experiments we used a general purpose event driven sim-ulator being developed by our resear
h group for studying a variety of problems(e.g., dynami
 s
heduling, load balan
ing, et
). This simulation was �rst de-s
ribed in [23℄ and for the experiments of this se
tion we used an improvedversion that supports the
hange of the spinning time of a task during a simu-lation.We have modeled in our simulations a network of workstations
onne
ted bya network
hara
terized by LogP[6, 5℄ parameters. The LogP parameters
orre-sponds to those of a Myrinet network, and they were the similar to the ones usedin [1℄, with Laten
y being equal to 10 �s, and overhead to 8.75 �s. We de�nedthe baseline spin time as being equal to a request-response message pair, whi
hin the LogP model is equal to 2L+4o. Therefore, the baseline time is equal to55 �s. The number of pro
essors
onsidered were 8 and 16. I/O requests of ajob were dire
ted to the lo
al disk of ea
h workstation, and
onse
utive requests

were exe
uted on a �rst
ome �rst serve basis. Quantum size is �xed as beingequal to 200 ms and
ontext swit
h time equal to 200 �s.The values of the � and � parameters used for simulations were � = 2 and� = 0:3. As stated in proposition 1 the priority should vary inside the boundsde�ned by � and � in order to a task be
onsidered to res
hedule.For de�ning job inter arrival, time, job size and job duration we used astatisti
al model proposed in [7℄. This is model of the workload observed on a 322-node partition of the Cornell Theory Center's IBM SP2 from June 25, 1996 toSeptember 12,1996. The model is based on �nding Hyper-Erlang distributions of
ommon order that mat
h the �rst three moments of the observed distributions.As the
hara
teristi
s of jobs with di�erent degrees of parallelism di�er, the fullrange of degrees of parallelism is �rst divided into subranges. This is done basedon powers of two. A separate model of the inter arrival times and the servi
etimes (runtimes) is found for ea
h range. The de�ned ranges are 1, 2, 3-4, 5-8,9-16, 17-32, 33-64, 65-128, 129-256 and 257-322. For the simulations for a 16pro
essors ma
hine we used 5 ranges, and for a 8 pro
essors ma
hine 4 ranges.The time unit of the parameters found in [7℄ was se
onds, and the duration ofall simulations was de�ned as being equal to 50000 se
onds. A number of jobsare submitted during this period in fun
tion of the inter arrival time, but notne
essarily all submitted jobs are
ompleted by the end of simulation. A longtime was
hosen in order to minimize the in
uen
e of start-up e�e
ts.In order to avoid the saturation of the ma
hine, we limited the number oftasks that
an be allo
ated to a node at a given moment of time to 10. If a jobarrives and there is no set of pro
essors available with less than 10 tasks allo
atedto them, the task waits until the required number of pro
essors be
ome available.We use a mix of four types of syntheti
 appli
ations in our experiments:{ I/O - This job type is
omposed of bursts of lo
al
omputations followed bybursts of I/O
ommands, as represented in �gure 1. This pattern re
e
ts theI/O properties of many parallel programs, where exe
ution behavior
an benaturally partitioned into disjoint intervals, ea
h of whi
h
onsist of a singleburst of I/O with a minimal amount of
omputation followed by a singleburst of
omputation with a minimal amount of I/O [22℄. The interval
om-posed of a
omputation burst followed by an I/O burst are know as phases,and a sequen
e of
onse
utive phases that are statisti
ally identi
al are de-�ned as a working set. The exe
ution behavior of an I/O bound program istherefore
omprised as a sequen
e of I/O working sets. This general model ofprogram behavior is
onsistent with results from measurement studies [26,27℄. The time duration of the I/O burst was equal to 100 ms in average. Theratio of the I/O working set used in simulations was 1/1, that is, for a burstof 100 ms of I/O there was a burst of 100 ms of
omputation in average.Observe that I/O requests from di�erent jobs to the same disk are queuedand served by arrival order.{ Embarrassingly parallel - In this kind of appli
ation
onstituent pro
esseswork independently with a small amount or no
ommuni
ation at all a-

mong them. Embarrassingly parallel appli
ations require fair s
heduling ofthe
onstituent pro
esses, with no need for expli
it
oordinated s
heduling.{ Msg - In this type of syntheti
 appli
ation we model message passing job-s, where messages are ex
hanged between two pro
esses
hosen at random.Ea
h pro
ess sends or re
eives a message every 10 ms in average. The
om-muni
ation semanti
s used here were the same of the PVM system[4℄, that is,asyn
hronous sends and blo
king re
eives. For the modi�ed version of gangs
heduler, the one that in
orporates spin
ontrol and priority
omputation,the spinning time of the re
eive
all will be de�ned by the spin
ontrol me
h-anism des
ribed in se
tion 5. The pure gang s
heduler only implements thespin only me
hanism, sin
e the original gang s
hedulers do not know whatto do if a task blo
ks.{ BSP - This type of appli
ation models Bulk Syn
hronous Parallel (BSP)style jobs[28℄, where there is a sequen
e of supersteps, ea
h superstep be-ing
omposed of a mix of
omputation/
ommuni
ation statements, with allpro
esses being syn
hronized between two supersteps. In this type of appli-
ations, there is a syn
hronization
all every 50 ms (in average) and all
om-muni
ation/
omputation generated previous to the barrier
all is
ompletedbefore the job pro
eeds in the next
omputation/
ommuni
ation superstep.Again, there is a spin time asso
iated with the barrier and
ommuni
ation
alls.
Processors

Time (ms)200 500 800 1100

I/O Bursts

Computation Bursts

Fig. 1. I/O bound job with one I/O working setIn all simulations, the same sequen
e of jobs were submitted to both a Gangs
heduler with the priority
omputation and spin time
ontrol me
hanisms de-s
ribed in se
tion 4 and 5 and another gang s
heduler without su
h me
hanisms.A di�erent sequen
e is generated for ea
h experiment. The pa
king strategy was�rst �t without thread migration. Ea
h workload was
omposed of a mix of the4 types of jobs previously de�ned:

{ IO- This workload was
omposed of I/O bound jobs only. As I/O boundjobs su�er under gang s
heduling, this workload was simulated in order toevaluate the performan
e impa
t of the modi�ed gang s
heduler if
omparedto a traditional gang s
heduler.{ IO/Msg - This workload was
omposed of a mix of IO and Msg jobs. At ea
hjob arrival, the job type was
hosen a

ording with a uniform distribution,with a probability of 0.5 to both jobs{ IO/BSP - As in the previous workload, both job types had the same prob-ability of being
hosen at ea
h job arrival.{ IO/Msg/Embarrassingly - Sin
e the priority me
hanisms intends to give bet-ter servi
e to I/O bound and Compute intensive bounds, we in
luded theEmbarrassingly parallel type in the IO/Msg workload, to verify is there isany improvements in throughput due to the in
lusion of
omputing intensivejobs.{ IO/BSP/Embarrassingly - Same
ase for the IO/BSP workload. As in pre-vious
ases, at ea
h job arrival all three job types have equal probability tobe
hosen.{ Emb/Msg and Emb/BSP - These workloads were added to evaluate theimpa
t of the priority me
hanism over workloads that do not in
lude I/Obound jobs. They are
omposed of Embarrassingly parallel jobs with Msgand BSP job types respe
tively. In this
ase the spin
ontrol is not a
tivatedsin
e it is
on
eived to provide better servi
e to I/O bound and intera
tivetasks only, as these are the type of jobs that have poor performan
e undergang s
heduling.A se
ond set of experiments were performed using the workloads IO/BSPand IO/Msg to
ompare the performan
e of a gang s
heduler with both thepriority
omputation and spin
ontrol me
hanisms with another gang s
hedulerhaving only the priority
ontrol me
hanism in order to evaluate the impa
t ofthe spin
ontrol in the results presented.6.2 Simulation ResultsSimulations results for the IO workload are shown in �gure 2. In the utilization
olumn, the ma
hine utilization (
omputed as a fun
tion of the total idle time ofthe ma
hine on ea
h simulation) of the modi�ed gang s
heduler was divided bythe ma
hine utilization of the non-modi�ed version of the gang s
heduler. In thethroughput
olumn, the throughput of the modi�ed gang s
heduler (The numberof jobs
ompleted until the end of the simulation, 50000 se
onds) is divided by thethroughput in the original gang. We
an see a very signi�
ant improvement of themodi�ed gang over the original gang s
heduler, due to the priority me
hanism.To explain the reason of su
h improvement, tables 1 and 2 show the a
tualresults of simulations for 8 and 16 pro
essors ma
hines under the I/O boundworkload. In [22℄ , Rosti et al. suggest that that the overlapping of the I/Odemands of some jobs with the
omputational demands of other jobs may o�era potential improvement in performan
e. The improvement shown in �gure 2 is

due to this overlapping. The dete
tion of I/O intensive tasks and the immediates
heduling of one of these tasks when another task doing I/O blo
ks results in amore eÆ
ient utilization of both disk and CPU resour
es. As we
onsider an I/Oworking set
omposed by a burst of 100 ms of
omputation followed by anotherburst of 100 ms of I/O, the s
heduler implementing the priority me
hanismalways tries to overlap the I/O phase of a job with the
omputation phase ofanother, whi
h explains the results obtained. In the ideal
ase, the s
hedulingstrategy will be able to interleave the exe
ution of appli
ations su
h that the ratioof the per-phase
omputation and I/O requirements is maintained very
lose to1, thus a
hieving a total overlapping of
omputation and I/O. For this workload,sin
e the utilization of the ma
hine is doubled by using runtime information, we
an
on
lude that the overlap of I/O phase is almost 100%, sin
e the durationof the I/O phase is in average equal to the duration of the
omputation phaseand the utilization obtained for the gang s
heduler without runtime informationis due only to the
omputation phase. The di�eren
es between throughput andutilization are due to long-running jobs that have not yet
ompleted by theend of the simulation (50000 se
onds). Another interesting point is that, in bothma
hines, about half of the
ompleted jobs were 1 task jobs, sin
e a large amountof jobs generated by the workload model were 1 task jobs.

Utilization Throughput
00

0,25

0,5

0,75

11

1,25

1,5

1,75

22

8 Processors

16 Processors

Fig. 2. I/O bound workload with one I/O working setTable 1. Experimental results - I/O intensive workload - 8 Pro
essors8 Pro
essors Jobs Completed Utilization (%)With Runtime Information. 60 84Without Runtime Information 40 42

Table 2. Experimental results - I/O intensive workload - 16 Pro
essors16 Pro
essors Jobs Completed Utilization (%)With Runtime Information. 55 84Without Runtime Information 36 43For the IO/Msg workload, results are shown in �gure 3. Again, the mod-i�ed gang a
hieved better results for both throughput and utilization. Sin
eGang s
hedulers have good performan
e for
ommuni
ation bound jobs, the im-provement due the utilization of runtime measurements and task
lassi�
ation issmaller if
ompared to the results obtained for the IO workload, as the ma
hineutilization of the gang s
heduler without runtime information is better in this
ase if
ompared to the results related to the previous workload. Tables 3 and4 show the absolute ma
hine utilization for the experiments using the IO/Msgworkload. As the ma
hine utilization for the regular gang s
heduler is around60%, an improvement in utilization as observed with the IO workload is no longerpossible.

Utilization Throughput
00

0,2

0,4

0,6

0,8

11

1,2

1,4

8 Processors

16 Processors

Fig. 3. IO/Msg workloadTable 3. Experimental results - IO/Msg workload - 8 Pro
essors8 Pro
essors Jobs Completed Utilization (%)With Runtime Information. 50 82Without Runtime Information 43 63Results for the IO/Msg/Emb workload are shown in �gure 4. The greater
exibility of the modi�ed gang algorithm to deal with I/O intensive and embar-

Table 4. Experimental results - IO/Msg workload - 16 Pro
essors16 Pro
essors Jobs Completed Utilization (%)With Runtime Information. 53 79Without Runtime Information 40 62

Utilization Throughput
00

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

11

1,1

1,2

8 Processors

16 Processors

Fig. 4. IO/Msg/Emb workloadrassingly parallel jobs results in an in
rease in throughput and utilization. It isworth noting, however, that the in
uen
e of idle time due to I/O bound jobs isredu
ed, with the regular gang s
heduler having even better ma
hine utilizationif
ompared to results for the IO/Msg workload, as shown in tables 5 and 6.Table 5. Experimental results - I0/Msg/Emb workload - 8 Pro
essors8 Pro
essors Jobs Completed Utilization (%)With Runtime Information. 47 83Without Runtime Information 40 72When we substitute the Msg workload for the BSP workload in the previ-ous experiments, results are similar in both relative and absolute values. Thereason is that both types of jobs are
ommuni
ation/syn
hronization inten-sive, taking advantage of the gang s
heduling strategy. Results for IO/BSP andIO/BSP/Emb workloads are shown in �gures 5 and 6 respe
tively. As in pre-vious
ases, there is improvement over the gang s
heduler without the priority
omputation and spin
ontrol me
hanisms in both utilization and throughput.Again, the
ombination of the priority and spin
ontrol me
hanisms explains thebetter results obtained by the s
heduler using runtime measurements for bothworkloads.To evaluate the impa
t of the spin
ontrol me
hanism in the total perfor-man
e of the modi�ed gang s
heduler, we
ompared the performan
e between

Utilization Throughput
00

0,2

0,4

0,6

0,8

11

1,2

1,4

8 Processors

16 Processors

Fig. 5. IO/BSP workload

Utilization Throughput
00

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

11

1,1

1,2

8 Processors

16 Processors

Fig. 6. IO/BSP/Emb workload

Utilization Throughput
00

0,2

0,4

0,6

0,8

11

1,2

1,4

8 Processors

16 Processors

Fig. 7. Evaluation of the spin
ontrol me
hanism - IO/BSP workload

Table 6. Experimental results - IO/Msg/Emb workload - 16 Pro
essors16 Pro
essors Jobs Completed Utilization (%)With Runtime Information. 61 81Without Runtime Information 51 70a modi�ed gang with both the priority and spin
ontrol me
hanisms and otherversion of the modi�ed gang where only the priority
omputation was a
tive.Results for workloads IO/Bsp and IO/Msg are shown in �gures 7 and 8 respe
-tively. In �gures 7 and 8 the performan
e of the s
heduler with spin
ontrol andpriority me
hanism is divided by the performan
e of the gang s
heduler with thepriority
omputation only. The gain in throughput is due to the better servi
eprovided to I/O bound jobs, while in utilization gang s
heduling with only thepriority me
hanism has slightly better performan
e. This
an be explained bythe fa
t the I/O bound jobs run for some time and then blo
k again, while BSPand Msg jobs keep spinning and runs again after re
eiving the message. As saidbefore, the obje
tive of the spin
ontrol me
hanism is to a
hieve a
ompromise inorder to have a better performan
e for I/O intensive tasks, be
ause these taskssu�er under gang s
heduling. In gang s
heduling with spin
ontrol and priority,this
ompromise is a
hieved by given a better a servi
e to I/O bound jobs, havingas
onsequen
e a redu
tion in the spin time of syn
hronization/
ommuni
ationintensive tasks.

Utilization Throughput
00

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

11

1,1

8 Processors

16 Processors

Fig. 8. Evaluation of the spin
ontrol me
hanism - IO/Msg WorkloadTo evaluate the performan
e impa
t for workloads with no I/O intensive jobs,we have simulated two workloads
omposed of embarrassingly parallel jobs withMsg and BSP jobs respe
tively. Comparative results are displayed in �gures 9and 10. Sin
e gang s
heduling has a good performan
e for both syn
hronizationand
ommuni
ation intensive jobs, the improvement is redu
ed if
ompared to

the previous workloads. Observe that the performan
es of both the regular gangs
heduler and the gang s
heduler using runtime information are quite similar.The main improvement in these
ases is in utilization and its due mainly to thes
heduling of tasks belonging to embarrassingly parallel jobs on idle slots in theOusterhout matrix[21℄, that is, those time sli
es where a pro
essor do not has aparallel task to s
hedule.

Utilization Throughput
00

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

11

1,1

1,2

8 Processors

16 Processors

Fig. 9. Emb/Msg workload

Utilization Throughput
00

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

11

1,1

1,2

8 Processors

16 Processors

Fig. 10. Emb/BSP workload7 Con
lusionIn this paper we present some possible uses of runtime measurements for im-proving throughput and utilization in parallel job s
heduling. We believe that

in
orporating su
h information in parallel s
hedulers is a step in the right di-re
tion, sin
e with more information available about running jobs in a givenmoment of time a s
heduler will be able to do a intelligent
hoi
e about manyevents in parallel task s
heduling, su
h as what task should have higher priorityas a fun
tion of the base s
heduling algorithm used, how to
hange operatingsystems parameters in order to improve ma
hine utilization, et
. The in
rease inthroughput and utilization is
on�rmed by the experimental results we obtained.However, there a number of possibilities not explored in this paper thatare subje
t of our
urrent and future resear
h. For instan
e, questions that weare investigating are the use of runtime information and task
lassi�
ation toimprove parallel/distributed s
heduling without expli
it
oordination, the e�e
tsof the utilization of runtime measurements on other implementations of gangs
heduling su
h as the distributed hierar
hi
al
ontrol algorithm, the utilizationof task
lassi�
ation to identify gangedness of an appli
ation, and other ways ofusing task
lassi�
ation information to improve parallel job s
heduling.A
knowledgments The �rst author is supported by Capes, Brazilian Governmen-t, grant number 1897/95-11. The se
ond author is supported in part by the IrvineResear
h Unit in Advan
ed Computing and NASA under grant #NAG5-3692.Referen
es1. A. C. Arpa
i-Dusseau, D. E. Culler, and A. M. Mainwaring. S
heduling withImpli
it Information in Distributed Systems. In Pro
eedings of ACM SIGMET-RICS'98, pages 233{243, 1998.2. J. Edmonds, D.D. Chinn, T. Bre
ht, and X. Deng. Non-Clairvoyant Multipro
essorS
heduling of Jobs with Changing Exe
ution Chara
teristi
s (extended abstra
t).In Pro
eedings of the 1997 ACM Symposium of Theory of Computing, pages 120{129, 1997.3. A. Hori et al. Implementation of Gang S
heduling on Workstation Cluster. JobS
heduling Strategies for Parallel Pro
essing, LNCS 1162:126{139, 1996.4. Al Geist et al. PVM : Parallel Virtual Ma
hine - A User's guide and tutorial fornetworked parallel
omputing. The MIT Press, 1994.5. D. Culler et al. LogP: Towards a Realisti
 Model of Parallel Computation. In Pro-
eedings of 4th ACM SIGPLAN Symposium on Prin
iples an Pra
ti
e of ParallelProgramming, pages 1{12, 1993.6. D. Culler et al. A Pra
ti
al Model of Parallel Computation. Communi
ation ofthe ACM, 93(11):78{85, 1996.7. J. Jann et al. Modeling of Workloads in MPP. Job S
heduling Strategies forParallel Pro
essing, LNCS 1291:95{116, 1997.8. Patri
k G. Solbalvarro et al. Dynami
 Cos
heduling on Workstation Clusters. JobS
heduling Strategies for Parallel Pro
essing, LNCS 1459:231{256, 1998.9. D. Feitelson. Pa
king S
hemes for Gang S
heduling. Job S
heduling Strategies forParallel Pro
essing, LNCS 1162:89{110, 1996.10. D. Feitelson and M. A.Jette. Improved Utilization and Responsiveness with GangS
heduling. Job S
heduling Strategies for Parallel Pro
essing, LNCS 1291:238{261,1997.

11. D. Feitelson and L. Rudolph. Distributed Hierar
hi
al Control for Parallel Pro-
essing. IEEE Computer, pages 65{77, May 1990.12. D Feitelson and L. Rudolph. Mapping and S
heduling in a Shared Parallel Envi-ronment Using Distributed Hiear
hi
al Control. In Pro
eedings of the 1990 Inter-national Conferen
e on Parallel Pro
essing, 1990.13. D. Feitelson and L. Rudolph. Gang S
heduling Performan
e Bene�ts for Fine-GrainSyn
hronization. Journal of Parallel and Distributed Computing, 16:306{318, 1992.14. D. Feitelson and L. Rudolph. Cos
heduling Based on Runtime Identi�
ation ofA
tivity Working Sets. International Journal of Parallel Programming, 23(2):135{160, 1995.15. A. Hori, H. Tezuka, and Y. Ishikawa. Overhead Analysis of Preemptive GangS
heduling. Job S
heduling Strategies for Parallel Pro
essing, LNCS 1459:217{230,1998.16. M. A. Jette. Performan
e Chara
teristi
s of Gang S
heduling In MultiprogrammedEnvironments. In Pro
eedings of SC'97, 1997.17. J.J.Martin. Bayesian De
ison Problems and Markov Chains. John Wiley and SonsIn
., New York, N.Y., 1967.18. B. Kosko. Neural Networks and Fuzzy Systems: A Dynami
al Systems Approa
hfor Ma
hine Intelligen
e. Prenti
e Hall, In
., 1992.19. W. Lee, M. Frank, V. Lee, K. Ma
kenzie, and L. Rudolph. Impli
ations of I/Ofor Gang S
heduled Workloads. Job S
heduling Strategies for Parallel Pro
essing,LNCS 1291:215{237, 1997.20. R. Motwani, S. Phillips, and E. Torng. Non-
lairvoyant s
heduling. Theoreti
alComputer S
ien
e, 130(1):17{47, 1994.21. J.K. Ousterhout. S
heduling Te
hniques for Con
urrent Systems. In Pro
eedingsof the 3rd International Conferen
e on Distributed Comp. Systems, pages 22{30,1982.22. E. Rosti, G. Serazzi, E. Smirni, and X. M. S. Squillante. The Impa
t of I/O on Pro-gram Behavior and Parallel S
heduling. In Pro
eedings of ACM SIGMETRICS'98,pages 56{64, 1998.23. F.A.B. Silva, L.M. Campos, and I.D. S
herson. A Lower Bound for Dynami
S
heduling of Data Parallel Programs. In Pro
eedings EUROPAR'98, 1998.24. F.A.B. Silva and I.D. S
herson. Towards Flexibility and S
alability in ParallelJob S
heduling. In Pro
eedings of the 1999 IASTED Conferen
e on Parallel andDistributed Computing Systems, 1999.25. F.A.B. Silva and I.D. S
herson. Improving Throughput and Utilization on ParallelMa
hines Through Con
urrent Gang. In Pro
eedings of the IEEE InternationalParallel and Distributed Pro
essing Symposium 2000, 2000.26. E. Smirni, R. A. Aydt, A. A. Chien, and D. A. Reed. I/O Requirements of s
i-enti�
 apli
ations: an evolutionary view. In Pro
eedings of the IEEE internationalSymposium of High Performan
e Distributed Computing, pages 49{59, 1996.27. E. Smirni and D. A. Reed. Lessons from
hara
terizing the input/output behaviorof parallel s
ienti�
 appli
ations. Performan
e Evaluation, 33:27{44, 1998.28. L. G. Valiant. A bridging model for parallel
omputations. Communi
ations ofthe ACM, 33(8):103 { 111, 1990.29. F. Wang, M. Papaefthymiou, and M. S. Squillante. Performan
e Evaluation ofGang S
heduling for Parallel and Distributed Multiprogramming. Job S
hedulingStrategies for Parallel Pro
essing, LNCS 1291:277{298, 1997.30. L. A. Zadeh. Fuzzy Sets. Information and Control, 8:338{353, 1965.

