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Abstract. We investigate in this paper the use of runtime measure-
ments to improve job scheduling on a parallel machine. Emphasis is on
gang scheduling based strategies. With the information gathered at run-
time, we define a task classification scheme that is used to provide better
service to I/O bound and interactive jobs under gang scheduling through
the utilization of idle times due to idle slots and blocked tasks and also
by controlling the spinning time of a task as a function of the work-
load on node. Simulation results are presented and show improvements
in both throughput and machine utilization for a gang scheduler using
runtime information compared with gang schedulers for which this type
of information is not available.

1 Introduction

In this paper we analyze the utilization of runtime information in parallel job
scheduling to improve throughput and utilization on a parallel computer. Our
objective is to use information such as number of I/O calls, duration of I/O
calls, number of messages arrived, number of messages sent, number of barriers,
time spent in spinning while waiting for message/synchronization arrival and
other information available as a function of the architecture in order to associate
a specific task in a given moment of time to one class belonging to a set of
predefined classes with the help of fuzzy sets and Bayesian estimators. Observe
that the classification of a task may change over time, since we consider, as in
[2], that characteristics of jobs may change during execution.

Some possible uses for the task classification information are, for instance,
to decide which task to schedule next, to decide what to do in the case of an
idle slot in gang scheduling, or to define spinning time of a task as a function
of the total workload on a processor. One possible utilization of these concepts
is to give better service to I/O bound jobs in gang scheduling, by using task
classification to identify I/O bound tasks in order to reschedule them in idle
slots or if a gang scheduled task blocks itself. This approach is different from the
one proposed in Lee et al. [19] since it does not interrupt running jobs.

In this paper we will give emphasis to gang scheduling based strategies.
Gang scheduling can be defined as follows: Given a job composed of N tasks, in



gang scheduling these N tasks compose a process working set[21], and all tasks
belonging to this process working set are scheduled simultaneously in different
processors, i.e., gang scheduling is the class of algorithms that schedule on the
basis of whole process working sets. Gang scheduling allows both the time sharing
as well as the space sharing of the machine, and it was originally introduced by
Ousterhout[21]. Performance benefits of gang scheduling the set of tasks of a
job has been extensively analyzed in [16,10,13,29] Packing schemes for Gang
scheduling were analyzed in [9].

In section 2 we discuss some previous work in parallel/distributed job schedul-
ing that considers the use of runtime information to modify scheduling-related
parameters at runtime. Section 3 presents the task classification mechanism
based on runtime information we use in this paper. How to use this informa-
tion to improve throughput and utilization in parallel job scheduling through a
priority computation mechanism is discussed at section 4. Section 5 discusses the
utilization of task classification information to control spin time in order to give
better service to I/O bound and interactive jobs in gang scheduling. Our exper-
imental results are presented and discussed in section 6 and section 7 contains
our final remarks.

2 Previous Work

In [1], Arpaci-Dusseau, Culler and Mainwaring use information available at run
time (in this case the number of incoming messages) to decide if a task should
continue to spin or block in the pairwise cost benefit analysis in the implicit
cosheduling algorithm.

In [14], Feitelson and Rudolph used runtime information to identify activity
working sets, i.e. the set of activities (tasks) that should be scheduled together,
through the monitoring of the utilization pattern of communication objects by
the activities. Their work can be considered complementary to ours in the sense
that our objective here is not to identify activity working sets at runtime but to
improve throughput and utilization of parallel machines for different scheduling
strategies using such runtime information.

In [19], Lee et al., along with an analysis of I/O implications for gang sched-
uled workloads, presented a method for runtime identification of gangedness,
through the analysis of messaging statistics. It differs from our work in the sense
that our objective is not to explicitly identify gangedness, but to provide a task
classification, which may vary over time as a function of the application, which
can also be used to verify the gangedness of an application in a given moment
of time among other possibilities.

This paper is an extension of some of our previous work [24,25] where we
describe the Concurrent Gang scheduling algorithm. In this work we present a
more robust task classification scheme, and we investigate new ways of providing
better service to I/O and interactive applications in gang scheduling, through
utilization of idle slots and idle time due to blocked tasks and by the variation



of the spinning time of a task, taking into account the determination of the spin
time information about other tasks.

3 Task Classification using Runtime information

As described in the introduction, our objective is the utilization of various run-
time measurements, such as I/O access rates and communication rates, to im-
prove the utilization and throughput in parallel job scheduling. This is achieved
through a task classification scheme using runtime information. In this section
we detail the task classification made by the operating system based on run-
time measurements using fuzzy logic theory. A discussion of the utilization of
Bayesian estimators to increase the robustness of the first scheme based on fuzzy
logic follows, and a “fuzzy” variation of the Bayesian estimator is presented.

3.1 Task Classification

We will use the information gathered at runtime to allow each PE to classify each
one of its allocated tasks into classes. Examples of such classes are: I/O intensive,
communication intensive, and computation intensive. Each one of these classes is
similar to a fuzzy set [30]. A fuzzy set associated with a class A is characterized by
a membership function f4(z) with associates each task T to a real number in the
interval [0,1], with the value of f4(T) representing the “grade of membership”
of T in A. Thus, the nearer the value of F4(T') to unity, the higher the grade
of membership of T in A, that is, the degree to which a task belongs to a given
class. For instance, consider the class of I/O intensive tasks, with its respective
characteristic function f;o(T). A value of fio(T) = 1 indicates that the task
T belongs to the class I/O intensive with maximum degree 1, while a value of
fro(z) = 0 indicates that the task T has executed no I/O statement at all.
Observe the deterministic nature of grade of membership associations. It is also
worth noting that the actual number of classes used on a system depends on the
architecture of the machine.

The information related to a task is gathered during system calls and context
switches. Information that can be used to compute the grade of membership are
the type, number and time spent on system calls, number and destination of
messages sent by a task, number and origin of received messages, and other
system dependent data. These informations can be stored, for instance, by the
operating system on the internal data structure related to the task.

When applying fuzzy sets for task classification, the value of f(T') for a class
is computed by the PE in a regular basis, at the preemption of the related task.
As an example, let’s consider the I/O intensive class. The exact way of computing
being system dependent, one way of doing the computation is as follows: On each
I/0O related system call, the operating system will store information related to
the call on the internal data structure associated to the task, and at the end of
the time slice, the scheduler computes the time spent on I/O calls in the previous
slice. One possible way of computing the grade of membership of a task based



on duration of system calls to the class I/O intensive is to consider an average of
the time spent in I/O is made over the last N times where the task was scheduled
(N can be, for instance, 3). This average determines the grade of membership
of a particular task to the class I/O intensive. As many jobs proceed in phases,
the reason for using an average over the last N times a task was scheduled is
detection of phase change. If a task changes from a I/O intensive phase to a
computation intensive phase, this change should be detected by the scheduler.
In general, the computation of the degree of membership of a task to the class
I/0 intensive will always be a function of the number and/or duration of the I/O
system calls made by the task. The same is valid for the communication intensive
class; the number and/or duration of communication statements will define the
grade of membership of a task to this class. For the class computing intensive,
grade of membership will also be a function of system calls and communication
statements, but in another sense: for a smaller the number of system calls and
communications there is a increase of the grade of membership of a given task
to the class computing intensive.

In the next subsection we present a more robust way for computing the grade
of membership of a task related to a class than the average over N slices presented
in this subsection, through the use of Bayesian estimators.

3.2 Task Classification using Bayesian Estimators

The objective of this section is to introduce a more robust task classification
mechanism than the one described in the last section, which is the average of
the last N measurements, using elements of Bayesian decision theory. Bayesian
decision theory is a formal mathematical structure which guides a decision maker
in choosing a course of action in the face of uncertainty about the consequences
of that choice[17]. In particular we will be interested in this section in defining
a task classifier using a Bayesian estimator adapted to the fuzzy theory.

A Bayesian model is a statistical description of an estimation problem which
has two main components. The first component, the prior model p(u) (this prob-
ability function is also known as prior probability distribution) is a probabilistic
description of the world or its properties before any sense data is collected.
The second component, the sensor model p(d|u), is a description of the noisy
or stochastic process that relate the original (unknown) state u to the sampled
input image or sensor values d. These two probabilistic models can be combined
to obtain a posterior model, p(u|d) (posterior probability distribution), which is
the probabilistic description of the current estimate of u given the data d. To
compute the posterior model we use Bayes’ rule:

pdu)p(u)

plul) = P

(1)

where

p(d) = p(dlu)p(u) (2)



The fuzzy version of equation 1 to compute the grade membership of a task
T to a class i as a function of measurement E can be written as[18]:

_ SiBE)(TD)
¥ SH(E)f;(T)

Where S;(k) represents subsethood between two fuzzy sets j and k. In our
case S;(E) is the subsethood between the two fuzzy sets represented by mea-
surement E on task T and class i, that is, the grade of membership of task T
relative to class i considering only the data gathered at measurement E. f;(T)
is the grade of membership of task T relative to class i before measurement F.
Sg(i) in our case represents the grade of membership of task T relative to class
i after the measurement E and becomes f;(T') in the next interval computation.

Sk(i) (3)

4 Scheduling Using Runtime measurements

In this section we will illustrate one possible use of task classification to improve
scheduling in parallel machines. Our emphasis here is to improve throughput
and utilization of gang schedulers. Observe that the strategies described in this
section can be applied to a large number of gang scheduler implementations,
including traditional gang schedulers[3,15] and distributed hierarchical control
schedulers [11,12].

We may consider two types of parallel tasks in a gang scheduler: Those that
should be scheduled as a gang with other tasks in other processors and those
for which gang scheduling is not mandatory. Examples of the first class are
tasks that compose a job with fine grain synchronization interactions [13] and
communication intensive jobs[8]. Second class task examples are local tasks or
tasks that compose an I/O bound parallel job, for instance. On the other hand
a traditional UNIX scheduler does a good job in scheduling I/O bound tasks
since it gives high priority to I/O blocked tasks when data become available
from disk. As those tasks typically run for a small amount of time and then
block again, giving them high priority means running the task that will take
the least amount of time before blocking, which is coherent to the theory of
uniprocessors scheduling where the best scheduling strategy possible under the
sum of completion times is Shortest Job First [20]( in [20] authors define the
sum of completion times as total completion time). Another example of jobs
where gang scheduling is not mandatory are embarrassingly parallel jobs. As
the number of iterations among tasks belonging to this class of jobs are small,
the basic requirement for scheduling an embarrassingly parallel job is to give
those jobs the greater possible fraction of CPU time, even in an uncoordinated
manner.

Differentiation among tasks that should be gang scheduled and those for
which a more flexible scheduler is better is made using the grade of membership
information computed by each PE (as explained in the last subsection) for each
task allocated to a processor. The grade of membership of the task currently



scheduled is computed at the next preemption of the task, and it is that in-
formation that is used to decide if gang scheduling is mandatory or not for a
specific task.

When using task classification information, the local task scheduler on each
PE computes a priority for each task allocated to the PE. This priority defines
if a task T is a good candidate for being rescheduled if another task blocks or
in case of a idle slot. The priority of each task is defined based on the grade of
membership of a task to each one of the major classes described before. As an
example of the computation of the priority of a task T in a PE we have:

Pr(T) = max(a X fro, fcomp) (4)

Where fro, fcomp are the grade for membership of task T to the classes
I/0O intensive and Computation intensive. The objective of the parameter « is
to give greater priority to I/O bound jobs (a > 1). The choices made in equation
4 intend to give high priority to I/O intensive jobs and computation intensive
job, since such jobs can benefit the most from uncoordinated scheduling. The
multiplication factor « for the class I/O intensive gives higher priority to I/0
bound tasks over computation intensive tasks, since those jobs have a greater
probably to block when scheduled than computing bound tasks. By other side,
communication and synchronization intensive jobs have low priority since they
require coordinated scheduling to achieve efficient execution and machine uti-
lization[13,8]. A communication intensive phase will reflect negatively over the
grade of membership of the class computation intensive, reducing the possibility
of a task be scheduled by the local task scheduler. Among a set of tasks of the
same priority, the local task scheduler uses a round robin strategy. The local task
scheduler also defines a minimum priority 5. If no parallel task has priority larger
than 3, the local task scheduler considers that all tasks in the PE do intensive
communication and or synchronization, thus requiring coordinated scheduling.
Observe that there is no starvation of communication intensive jobs, as they will
be scheduled in a regular basis by the gang scheduler itself, regardless of the
decisions made by the local task schedulers.

Observe that the parameters o and § define the bounds of the variation of
the priority of a task in order to it be considered to rescheduling, as stated in
the next proposition.

Proposition 1. a < Pr(T) < 8, in order to a task be considered for reschedul-
ng.

Proof. 8 is the lower bound by definition. For the upper bound, observe that
757 = 1. So, as a > 1, the upper bound is & x 1 = «

Simulations in [25] of a scheduling algorithm (Concurrent Gang) that uses

a simpler version of the priority mechanism/task classification described here

have shown that the priority computation has better performance than other

algorithms that can be used to choose the task that runs next, such as round

robin.



Interactive tasks can be regarded as a special type of I/O intensive task,
where the task waits for a input from the user at regular intervals of time. These
tasks also suffer under gang scheduling, and should have priority as I/O intensive
tasks.

5 Adjusting Spinning Time as a function of the workload

Another parameter that can be adjusted in order to improve throughput of I/0
bounds and interactive jobs in gang scheduling is the spinning time of a task. Our
objective is to make changes not only as a function of the runtime measurements
of the related job, but also considering other jobs where tasks are allocated to
the same processor. We consider that a typical workload will be composed of
a mix of jobs of different types and it is important to achieve a compromise in
order to give a good response for all types of jobs.

The anticipated blocking of a job performing synchronization or communi-
cation can benefit those jobs that do not need coordinated scheduling, such as
I/0O intensive and embarrassingly parallel. So the idea is to determine the spin-
ning time of a task as a function of the workload allocated in a processor. For
instance, in a given moment of time if a processor has many I/0 intensive jobs
allocated to it, this would have a negative impact in spinning time duration. As
described in [1], a minimum spin time should be guaranteed in order to insure
that processes stay coordinated if already in such a state (baseline spin time).
This minimum amount of time ensures the completion of the communication op-
eration when all involved processes are scheduled and there is no load imbalance
among tasks of the same job.

Considering gang scheduling the spinning time of a task may vary between
a baseline spin time and a spin only state with no blocking. The main external
factor that will have influence in the variation of the spin time is the number
of interactive and I/O bound tasks in the workload allocated to one processor.
A large number of these tasks would imply a smaller spinning time, in order to
use the remaining time until the next global preemption to schedule those tasks,
providing better service to I/O bound and interactive tasks. The algorithm we
propose to set up the spinning time as a function of the workload on a given PE
for a gang scheduling based algorithm is as follows: If there is one or more tasks
in a PE classified as I/O intensive or interactive, a task doing communication
will block just after the baseline spin time if the two following conditions are
satisfied:

— At least one of the tasks classified as interactive or I/O bound is ready
— There is a minimum amount of time § between the end of baseline and the
next context switch epoch.

If any of the two conditions are not satisfied the task doing communication
will spin until receiving the waited response. The § time is a function of the
context switch time of the machine. Given 7, the context switch time of the
machine, it is clear that § > . We can define that § > 2 x v, in order to give the



job at least the same amount of CPU time that the system will spend in context
switch. In our experiments we empirically define it as being 4 times the average
amount of time required for a context switch.

If both conditions are satisfied, the tasks will spin for a time corresponding
to the baseline spin time, and if no message is received the task blocks and the
I/O bound or interactive task can be scheduled. The reason of minimizing the
spinning time is the need of I/O and interactive tasks to receive better service in
gang scheduling, and the fact that in gang scheduling tasks are coordinated due
to the scheduling strategy itself; so an application with no load imbalances would
need only the time corresponding the baseline to complete the communication.

The control of spin time using task classification information is another mech-
anism available to the scheduler to provide better service to I/O bound and inter-
active jobs under gang scheduling along with the priority computation described
in the previous section. Observe that the spin time control as a function of the
workload is always used in conjunction with the priority mechanism described
in section 4.

6 Experimental Results

In this section we present some simulation results that compares the performance
of a gang scheduler that uses the algorithms described in sections 4 and 5 with
another gang scheduler without such mechanisms, both of them using the same
packing strategy (first fit). The implementation of gang scheduler used in this
section is a simple one; our objective is to measure the benefits of using runtime
measurements and task classification information by comparing a given scheduler
that makes use of runtime information with another one that does not consider it.
First we describe our simulation methodology, and then we present and comment
the results obtained in our simulations.

6.1 Simulation Methodology

To perform the actual experiments we used a general purpose event driven sim-
ulator being developed by our research group for studying a variety of problems
(e.g., dynamic scheduling, load balancing, etc). This simulation was first de-
scribed in [23] and for the experiments of this section we used an improved
version that supports the change of the spinning time of a task during a simu-
lation.

We have modeled in our simulations a network of workstations connected by
a network characterized by LogP[6,5] parameters. The LogP parameters corre-
sponds to those of a Myrinet network, and they were the similar to the ones used
in [1], with Latency being equal to 10 us, and overhead to 8.75 us. We defined
the baseline spin time as being equal to a request-response message pair, which
in the LogP model is equal to 2L+40. Therefore, the baseline time is equal to
55 us. The number of processors considered were 8 and 16. I/O requests of a
job were directed to the local disk of each workstation, and consecutive requests



were executed on a first come first serve basis. Quantum size is fixed as being
equal to 200 ms and context switch time equal to 200 us.

The values of the o and # parameters used for simulations were o = 2 and
B = 0.3. As stated in proposition 1 the priority should vary inside the bounds
defined by « and § in order to a task be considered to reschedule.

For defining job inter arrival, time, job size and job duration we used a
statistical model proposed in [7]. This is model of the workload observed on a 322-
node partition of the Cornell Theory Center’s IBM SP2 from June 25, 1996 to
September 12,1996. The model is based on finding Hyper-Erlang distributions of
common order that match the first three moments of the observed distributions.
As the characteristics of jobs with different degrees of parallelism differ, the full
range of degrees of parallelism is first divided into subranges. This is done based
on powers of two. A separate model of the inter arrival times and the service
times (runtimes) is found for each range. The defined ranges are 1, 2, 3-4, 5-8,
9-16, 17-32, 33-64, 65-128, 129-256 and 257-322. For the simulations for a 16
processors machine we used 5 ranges, and for a 8 processors machine 4 ranges.
The time unit of the parameters found in [7] was seconds, and the duration of
all simulations was defined as being equal to 50000 seconds. A number of jobs
are submitted during this period in function of the inter arrival time, but not
necessarily all submitted jobs are completed by the end of simulation. A long
time was chosen in order to minimize the influence of start-up effects.

In order to avoid the saturation of the machine, we limited the number of
tasks that can be allocated to a node at a given moment of time to 10. If a job
arrives and there is no set of processors available with less than 10 tasks allocated
to them, the task waits until the required number of processors become available.

We use a mix of four types of synthetic applications in our experiments:

— I/O - This job type is composed of bursts of local computations followed by
bursts of I/O commands, as represented in figure 1. This pattern reflects the
I/0 properties of many parallel programs, where execution behavior can be
naturally partitioned into disjoint intervals, each of which consist of a single
burst of I/O with a minimal amount of computation followed by a single
burst of computation with a minimal amount of I/O [22]. The interval com-
posed of a computation burst followed by an I/O burst are know as phases,
and a sequence of consecutive phases that are statistically identical are de-
fined as a working set. The execution behavior of an I/O bound program is
therefore comprised as a sequence of I/O working sets. This general model of
program behavior is consistent with results from measurement studies [26,
27]. The time duration of the I/O burst was equal to 100 ms in average. The
ratio of the I/O working set used in simulations was 1/1, that is, for a burst
of 100 ms of I/O there was a burst of 100 ms of computation in average.
Observe that I/O requests from different jobs to the same disk are queued
and served by arrival order.

— Embarrassingly parallel - In this kind of application constituent processes
work independently with a small amount or no communication at all a-



mong them. Embarrassingly parallel applications require fair scheduling of
the constituent processes, with no need for explicit coordinated scheduling.

— Msg - In this type of synthetic application we model message passing job-
s, where messages are exchanged between two processes chosen at random.
Each process sends or receives a message every 10 ms in average. The com-
munication semantics used here were the same of the PVM system[4], that is,
asynchronous sends and blocking receives. For the modified version of gang
scheduler, the one that incorporates spin control and priority computation,
the spinning time of the receive call will be defined by the spin control mech-
anism described in section 5. The pure gang scheduler only implements the
spin only mechanism, since the original gang schedulers do not know what
to do if a task blocks.

— BSP - This type of application models Bulk Synchronous Parallel (BSP)
style jobs[28], where there is a sequence of supersteps, each superstep be-
ing composed of a mix of computation/communication statements, with all
processes being synchronized between two supersteps. In this type of appli-
cations, there is a synchronization call every 50 ms (in average) and all com-
munication/computation generated previous to the barrier call is completed
before the job proceeds in the next computation/communication superstep.
Again, there is a spin time associated with the barrier and communication
calls.

. 1/0Bursts

Processors D Computation Bursts

200 500 800 1100

Fig. 1. I/O bound job with one I/O working set

Time (ms)

In all simulations, the same sequence of jobs were submitted to both a Gang
scheduler with the priority computation and spin time control mechanisms de-
scribed in section 4 and 5 and another gang scheduler without such mechanisms.
A different sequence is generated for each experiment. The packing strategy was
first fit without thread migration. Each workload was composed of a mix of the
4 types of jobs previously defined:



— IO- This workload was composed of I/O bound jobs only. As I/O bound
jobs suffer under gang scheduling, this workload was simulated in order to
evaluate the performance impact of the modified gang scheduler if compared
to a traditional gang scheduler.

— I0/Msg - This workload was composed of a mix of IO and Msg jobs. At each
job arrival, the job type was chosen according with a uniform distribution,
with a probability of 0.5 to both jobs

— I0/BSP - As in the previous workload, both job types had the same prob-
ability of being chosen at each job arrival.

— I0/Msg/Embarrassingly - Since the priority mechanisms intends to give bet-
ter service to I/O bound and Compute intensive bounds, we included the
Embarrassingly parallel type in the I0/Msg workload, to verify is there is
any improvements in throughput due to the inclusion of computing intensive
jobs.

— IO/BSP/Embarrassingly - Same case for the I0/BSP workload. As in pre-
vious cases, at each job arrival all three job types have equal probability to
be chosen.

— Emb/Msg and Emb/BSP - These workloads were added to evaluate the
impact of the priority mechanism over workloads that do not include I/O
bound jobs. They are composed of Embarrassingly parallel jobs with Msg
and BSP job types respectively. In this case the spin control is not activated
since it is conceived to provide better service to I/O bound and interactive
tasks only, as these are the type of jobs that have poor performance under
gang scheduling.

A second set of experiments were performed using the workloads I0/BSP
and I0/Msg to compare the performance of a gang scheduler with both the
priority computation and spin control mechanisms with another gang scheduler
having only the priority control mechanism in order to evaluate the impact of
the spin control in the results presented.

6.2 Simulation Results

Simulations results for the IO workload are shown in figure 2. In the utilization
column, the machine utilization (computed as a function of the total idle time of
the machine on each simulation) of the modified gang scheduler was divided by
the machine utilization of the non-modified version of the gang scheduler. In the
throughput column, the throughput of the modified gang scheduler (The number
of jobs completed until the end of the simulation, 50000 seconds) is divided by the
throughput in the original gang. We can see a very significant improvement of the
modified gang over the original gang scheduler, due to the priority mechanism.
To explain the reason of such improvement, tables 1 and 2 show the actual
results of simulations for 8 and 16 processors machines under the I/O bound
workload. In [22] , Rosti et al. suggest that that the overlapping of the I/O
demands of some jobs with the computational demands of other jobs may offer
a potential improvement in performance. The improvement shown in figure 2 is



due to this overlapping. The detection of I/O intensive tasks and the immediate
scheduling of one of these tasks when another task doing I/O blocks results in a
more efficient utilization of both disk and CPU resources. As we consider an I/0
working set composed by a burst of 100 ms of computation followed by another
burst of 100 ms of I/O, the scheduler implementing the priority mechanism
always tries to overlap the I/O phase of a job with the computation phase of
another, which explains the results obtained. In the ideal case, the scheduling
strategy will be able to interleave the execution of applications such that the ratio
of the per-phase computation and I/O requirements is maintained very close to
1, thus achieving a total overlapping of computation and I/O. For this workload,
since the utilization of the machine is doubled by using runtime information, we
can conclude that the overlap of I/O phase is almost 100%, since the duration
of the I/O phase is in average equal to the duration of the computation phase
and the utilization obtained for the gang scheduler without runtime information
is due only to the computation phase. The differences between throughput and
utilization are due to long-running jobs that have not yet completed by the
end of the simulation (50000 seconds). Another interesting point is that, in both
machines, about half of the completed jobs were 1 task jobs, since a large amount
of jobs generated by the workload model were 1 task jobs.
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Fig. 2. I/O bound workload with one I/O working set

Table 1. Experimental results - I/O intensive workload - 8 Processors

8 Processors Jobs Completed|Utilization (%)
With Runtime Information. 60 84
Without Runtime Information 40 42




Table 2. Experimental results - I/O intensive workload - 16 Processors

16 Processors Jobs Completed|Utilization (%)
With Runtime Information. 55 84
Without Runtime Information 36 43

For the I0/Msg workload, results are shown in figure 3. Again, the mod-
ified gang achieved better results for both throughput and utilization. Since
Gang schedulers have good performance for communication bound jobs, the im-
provement due the utilization of runtime measurements and task classification is
smaller if compared to the results obtained for the IO workload, as the machine
utilization of the gang scheduler without runtime information is better in this
case if compared to the results related to the previous workload. Tables 3 and
4 show the absolute machine utilization for the experiments using the 10/Msg
workload. As the machine utilization for the regular gang scheduler is around
60%, an improvement in utilization as observed with the IO workload is no longer
possible.
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Fig. 3. I0/Msg workload

Table 3. Experimental results - I0/Msg workload - 8 Processors

8 Processors Jobs Completed |Utilization (%)
With Runtime Information. 50 82
Without Runtime Information 43 63

Results for the I0/Msg/Emb workload are shown in figure 4. The greater
flexibility of the modified gang algorithm to deal with I/O intensive and embar-



Table 4. Experimental results - I0/Msg workload - 16 Processors

16 Processors Jobs Completed|Utilization (%)
With Runtime Information. 53 79
Without Runtime Information 40 62

1,2
1,1—

0,97
0,87
0,77—
0,67
0,57
0,47—
0,37
0,27
0,17—

[18 Processors
Il 16 Processors

Utilization Throughput

Fig. 4. I0/Msg/Emb workload

rassingly parallel jobs results in an increase in throughput and utilization. It is
worth noting, however, that the influence of idle time due to I/O bound jobs is
reduced, with the regular gang scheduler having even better machine utilization
if compared to results for the I0/Msg workload, as shown in tables 5 and 6.

Table 5. Experimental results - I0/Msg/Emb workload - 8 Processors

8 Processors Jobs Completed|Utilization (%)
With Runtime Information. 47 83
Without Runtime Information 40 72

When we substitute the Msg workload for the BSP workload in the previ-
ous experiments, results are similar in both relative and absolute values. The
reason is that both types of jobs are communication/synchronization inten-
sive, taking advantage of the gang scheduling strategy. Results for I0/BSP and
I0/BSP/Emb workloads are shown in figures 5 and 6 respectively. As in pre-
vious cases, there is improvement over the gang scheduler without the priority
computation and spin control mechanisms in both utilization and throughput.
Again, the combination of the priority and spin control mechanisms explains the
better results obtained by the scheduler using runtime measurements for both
workloads.

To evaluate the impact of the spin control mechanism in the total perfor-
mance of the modified gang scheduler, we compared the performance between
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Table 6. Experimental results - I0/Msg/Emb workload - 16 Processors

16 Processors Jobs Completed|Utilization (%)
With Runtime Information. 61 81
Without Runtime Information 51 70

a modified gang with both the priority and spin control mechanisms and other
version of the modified gang where only the priority computation was active.
Results for workloads I0/Bsp and I0/Msg are shown in figures 7 and 8 respec-
tively. In figures 7 and 8 the performance of the scheduler with spin control and
priority mechanism is divided by the performance of the gang scheduler with the
priority computation only. The gain in throughput is due to the better service
provided to I/O bound jobs, while in utilization gang scheduling with only the
priority mechanism has slightly better performance. This can be explained by
the fact the I/O bound jobs run for some time and then block again, while BSP
and Msg jobs keep spinning and runs again after receiving the message. As said
before, the objective of the spin control mechanism is to achieve a compromise in
order to have a better performance for I/O intensive tasks, because these tasks
suffer under gang scheduling. In gang scheduling with spin control and priority,
this compromise is achieved by given a better a service to I/O bound jobs, having
as consequence a reduction in the spin time of synchronization/communication
intensive tasks.
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Fig. 8. Evaluation of the spin control mechanism - I0/Msg Workload

To evaluate the performance impact for workloads with no I/O intensive jobs,
we have simulated two workloads composed of embarrassingly parallel jobs with
Msg and BSP jobs respectively. Comparative results are displayed in figures 9
and 10. Since gang scheduling has a good performance for both synchronization
and communication intensive jobs, the improvement is reduced if compared to



the previous workloads. Observe that the performances of both the regular gang
scheduler and the gang scheduler using runtime information are quite similar.
The main improvement in these cases is in utilization and its due mainly to the
scheduling of tasks belonging to embarrassingly parallel jobs on idle slots in the
Ousterhout matrix[21], that is, those time slices where a processor do not has a
parallel task to schedule.
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Fig. 9. Emb/Msg workload
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Fig.10. Emb/BSP workload

7 Conclusion

In this paper we present some possible uses of runtime measurements for im-
proving throughput and utilization in parallel job scheduling. We believe that



incorporating such information in parallel schedulers is a step in the right di-
rection, since with more information available about running jobs in a given
moment, of time a scheduler will be able to do a intelligent choice about many
events in parallel task scheduling, such as what task should have higher priority
as a function of the base scheduling algorithm used, how to change operating
systems parameters in order to improve machine utilization, etc. The increase in
throughput and utilization is confirmed by the experimental results we obtained.

However, there a number of possibilities not explored in this paper that
are subject of our current and future research. For instance, questions that we
are investigating are the use of runtime information and task classification to
improve parallel /distributed scheduling without explicit coordination, the effects
of the utilization of runtime measurements on other implementations of gang
scheduling such as the distributed hierarchical control algorithm, the utilization
of task classification to identify gangedness of an application, and other ways of
using task classification information to improve parallel job scheduling.
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