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Abstract

A network of workstations (NOWSs) may be employed for high performance computing where
execution time of a target job is to be minimized. Job arrival rate and size are “random” on a
NOWs. In such an environment, partitioning (load balancing) a target job based on only the
first order moments (means) of system parameters is not optimal. In this paper, it is proposed
to consider the second order moments (standard deviations) also in load balancing in order
to minimize execution time of a target job on a set of workstations where the round-robin job
scheduling policy is adopted. It has been verified through computer simulation that the proposed
static and dynamic load balancing schemes can significantly reduce execution time of a target
job in a NOWSs environment, compared to cases where only the means of the parameters are
used.
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1 Introduction

A network of workstations (NOWSs), or computers, is being employed as a high performance dis-
tributed computing tool in an increasing number of cases [1] [2]. Accordingly, using a NOWs
efficiently for speeding up various applications has become an important issue. In particular, load
balancing has a significant effect on performance one can achieve on a NOWSs environment. The
issue of load balancing in general is not new. Many researchers have investigated various aspects
of load balancing for quite long a time [3][4][5][6][7][8][9][10].

There were many parameters and characteristics considered in load balancing. They include
processor speed, job arrival rate and size, communication among jobs (or subtasks), homogeneity
(or heterogeneity) of system, load balancing overhead, specific characteristics of a job, etc. In
most of the previous work [11][12], only the means of such parameters were used in load balancing.
However, a parameter may have the same mean for all workstations, but quite different a variance
on a different workstation in a heterogeneous environment. Also, in many cases [13][14][15], the
emphasis was on balancing job distribution rather than minimizing execution time of a target job.

There is a feature of NOWs, which distinguishes it from other high performance computing plat-
forms, especially dedicated tightly-coupled multiprocessor systems, i.e., randomness of job arrival
on an individual workstation. This is mainly due to the fact that each workstation is usually shared
by multiple independent users who submit their jobs at any time. Also, the size of a job is random.
This randomness in job arrival and size makes the number of jobs sharing (the processor on) a
workstation time-dependent. That is, the number of jobs on a workstation is to be modelled as a
random variable. When the processor is shared among jobs in a round-robin fashion, the amount
of work completed in each job during a time interval depends on (e.g., inversely proportional to)
the number of jobs (sharing the processor) in that interval. On a network of such workstations,
distributing (load balancing) a target job considering only the mean of the number of jobs on each
workstation does not achieve the minimum possible execution time. As will be shown later, not
only the mean but also the standard deviation of the number of jobs affects execution time of a job
on a workstation. Therefore, in order to minimize execution time of a target job, it is necessary to
take into account the standard deviation of the number of jobs on each workstation in addition to
its mean in load balancing.

In this paper, as a first step toward developing an efficient load balancing scheme, it is shown
analytically and demonstrated via simulation that the second order moments as well as the first
order moments of parameters are to be used to minimize execution time of a target job on a
network of heterogeneous workstations. Workstations are considered to be heterogeneous when the
mean and standard deviation of the number of jobs vary with workstation. Each workstation is
time-shared by multiple jobs. In this early study, it is assumed that a target job can be arbitrarily
partitioned for load balancing and communication is not required among subtasks.

The main contributions of this work are (i) derivation of analytic formulas of performance



measures used in load balancing, (i7) design of static and dynamic load balancing schemes for
minimizing execution time of a target job, and (i74) showing that a load balancing scheme utilizing
the standard deviations as well as the means of parameters can outperform those considering the
means only.

In Section 2, a stochastic model of workstations is described. In Section 3, a set of measures is
derived analytically on a single workstation, which are to be used for load balancing on multiple
workstations. In Section 4, the proposed static and dynamic load balancing strategies are described.
In Section 5, results from extensive computer simulation are discussed to validate the proposed

strategies. In Section 6, a conclusion is provided with remarks on the future directions.

2 A Stochastic Model of Workstations
Glossary
The following notations are adopted in this paper.

W the number of workstations

W,  workstation ¢

X the size of a target job to be distributed

X; the portion of X assigned to W;

a;  the number of jobs (random variable) arrived in an interval on W;

A;  the mean of q;

the standard deviation of q;

n;  the number of jobs (random variable) in an interval on W;, excluding those
arriving in the current interval

N;  the mean of n;

the standard deviation of n;

si  the size of job (random variable) arriving at W;

S;  the mean of s;

the standard deviation of s;

Wi  the service rate (computing power) of W;

t; execution time (random variable) measured in intervals on W;

T;  the mean of ¢;

the standard deviation of ¢;

O. overhead involved in checking load distribution

O, overhead involved in redistributing load

E[Z] expectation of Z

When a variable is to be distinguished for each time interval, a superscript with parentheses
()

will be used, e.g., a;”’ denotes a; for the jth interval. The subscript of a random variable, which



is used to distinguish workstations, is omitted when there is no need for distinction, e.g., a single

workstation or when it does not vary with workstation.

Service Policy

A time interval is a unit of time for scheduling jobs (sharing the processor) on a workstation. All
time measures are expressed in intervals. It is assumed that each workstation adopts a round-robin
scheduling policy. A workstation (processor) spends, on each job in an interval, an amount of time
which is inversely proportional to the number (n;) of jobs in that interval. That is, ’1;—: is allocated
for each job in an interval on workstation 4 (denoted by W;) where p; is the service rate of W.
Those jobs arrived in an interval start to be serviced (processed) in the following interval without
any distinction depending on their arrival times (as long as they arrive in the same interval). It is

to be noted that n; includes all jobs arrived but not completed by I;_;.

Job Arrival

Jobs are submitted at random time instances and, therefore, the number of jobs arriving in an
interval may be modelled by a random variable denoted by a;. The mean and standard deviation

of a; are denoted by A; and o,;, respectively.

Job Size

The size of a job varies with job and may have a certain distribution with a mean (S;) and a

standard deviation (o). It is assumed that the job size is independent of the job arrival rate.

Overheads

Loads on workstations are checked to determine if load balancing is to be done. It is assumed that,
given a number of workstations, there is a fixed amount of overhead, O, for checking information
such as the remaining portion of X; on W;, and also a constant overhead, O,, for redistributing the
remaining X over workstations when it is decided to perform load balancing.

The job arrival rate and job size will be referred to as system parameters. The distributions of
the system parameters may be known in some cases. Or their means and standard deviations can
be estimated from a given network of workstations. Also, n; can be directly monitored in practice.
It needs to be noted that the proposed load balancing schemes do not assume any particular

distribution of each of the system parameters.

3 Performance Measures on a Workstation

In this section, certain (performance) measures on a single workstation, to be used in the proposed

load balancing schemes for multiple workstations, are derived.



The job of which execution time is to be minimized is referred to as target job. When the load
characteristics (more specifically, the means and standard deviations of the system parameters) do
not vary with time on a workstation, it is said that the workstation is in “steady state”. When

they vary with time, the workstation is said to be in “dynamic state”.

3.1 Number of Jobs

The number of jobs, n9), may be related to the job arrival rate, a?), as follows.

n) =1 4 aU=1 4 (U= —1)pt-1 (1)

where pU—Y is the probability that a job in the (j — 1)th interval is carried over to the jth
interval and the first term (of 1) corresponds to the target job.
Noting that E[n()] = E[nU—Y] = N, and letting P denote the steady state value of p{/) which

depends on p and the distributions of ¢9) and s(), from Equation 1,

A
1 - P

N =1+ 2)

Also, the standard deviation of n9) can be derived as follows.

3.2 Execution Time

In the jth interval, the target job (any job) is processed by the amount of % for all 5. If it takes

t intervals to complete the target job,

’(‘i) - X. (4)
1 n

t

)

Let’s express nl/) as N + Anl). Then, E[AnY)] = 0 since E[n\)] = N, and E[(An())?] = o2.
Then, ﬁ can be approximated by ignoring the higher order terms beyond the second order term

as follows.

1 1 1 An() An@\?
S I i (5)
n) N + AnW) N N N

By taking E[ ]| (expectation) on both sides of Equation 4 with Equation 5 incorporated into,

the mean of execution time of the target job, T, can be derived.



- NXY (6)

2
Ay
Note that T' depends on not only N but also g, both of which in turn depend on the standard
deviations as well as the means of the system parameters, A, o4, S, and o4 (and of course ;). Note
that execution time of a target job on a workstation with a round-robin job scheduling decreases
as variation (o,) in the number of jobs increases.

In order to derive the standard deviation of execution time, let AX) denote a portion of X

that is processed (completed) in the jth interval. Then AX() = m. Following the similar
approximation used to obtain T, the standard deviation, oax, of AX can be shown to be ‘j\%

Now, assuming “uncorrelatedness” of AX (9) between intervals, the standard deviation, oy, of the
amount of target job processed over T intervals (which is the mean execution time of the target
job) can be easily shown to be v/Toay. Finally, the standard deviation of execution time of a
target job may be derived (approximated) by dividing ox by the mean processing speed which is

% and using Equation 6. That is,

4 Load Balancing over Heterogeneous Workstations
4.1 Static Load Balancing

In the proposed static load balancing scheme, a target job is partitioned such that the fraction of
X assigned to W; for 2 = 1,---, W is inversely proportional to the expected execution time of X
on W; where W is the number of workstations available for X. Let T; denote execution time of the

target job on W; (i.e., when W; only is employed for the entire X). Then,

N; X
2
i <1 + i?é)

Let X; denote the size of the portion of X to be assigned to W;. Then, X; is determined as

follows.

T, = for i=1,---,W. (8)

Xi = w1 (9)

Note that, even when N; is the same for all ¢, X would not be distributed evenly unless oy,

is constant for all 7. This load balancing strategy assigns more work to a workstation with a



larger variation in the number of jobs on it when the average number of jobs is the same for all
workstations. Suppose that Ny = Ny = 2, 0,, = 0, and 0,,, > 0 (say, no alternates between 1
and 3). Then, a target job would be processed at the average rate of § on W; while at the average
rate of & + % = %” on Ws. Therefore, a larger portion of the target is to be assigned to Wy which

has a larger variation in the number of jobs.

4.2 Dynamic Load Balancing

Two essential issues in dynamic load balancing are how load should be redistributed (redistribution
of a target job) and how frequently load distribution is to be checked (determination of checking

point).

Redistribution

Let X, em denote the size of the remaining portion of a target job on W; before load balancing at
a checking point. If load balancing (redistribution) is not done at the checking point, the expected
completion time of the target job would be maz;{ T} yem } Where T; ;ep, is computed using Equation
6. That is,

for i=1,---,W (10)

Tirem = T 7 2\
i <1 + ]\?2)

Now, if load balancing is to be done at the checking point, the total remaining job, of which size is

Xrem
T,

Xrem = 2.1 Xirem, is redistributed over W; according to Equation 9. That is, X = ——plrem—

z.rem 1
2 i1 Trpem

is the size of target job (portion) to be assigned to W; after load balancing. The

where X!

1.rem

expected execution time of X[, ., on W; is denoted by T7,,,,. Then, note that T}, = T},
for all 4, 7 since load has been balanced.

The expected reduction, AT, in execution time of the target job can be expressed as

AT = maxi{ Tivem } — 11 ,em — Or (11)

where O, is the overhead for redistribution.
Load balancing (redistribution) is carried out only when the expected benefit (reduction in
execution time, AT') exceeds a certain threshold, i.e., AT > Threshold.

Determination of Checking Point

In order to minimize execution time of a target job, it is necessary to minimize the duration in

which any W; is idle (does not work on the target job) before the target job is completed on all



W;. Hence, the load distribution is to be checked before any of W; becomes idle while the others
still work on the target job.

The standard deviation, oy . of execution time to complete X/ ,em can be derived using
Equation 7. A reasonable estim.ate of the “highly likely” earliest completion time on W; may be
approximated to be T, — hat/i e where h is a tuning factor close to 1.

Then, the next checking point,. Teheck, measured with respect to the current checking point is

set as follows.

Teheek = mlnz{ Ti,.rem - hgt’- } (12)

1.Tem

That is, in the proposed dynamic load balancing scheme, it is attempted to check load distribu-

!
r.rem

tion before any of W; completes its execution of target job (X ). Note that once a W; completes

X! it will not be utilized for the target job at least until next checking point.

z.rem

5 Simulation Results and Discussion

An extensive computer simulation has been carried out in order to verify the reduction in execution
time of a target job, which can be achieved by considering the second order moments (standard
deviations) as well as the means of system parameters for load balancing on a network of hetero-

geneous workstations.

5.1 Simulation

In this simulation, three different distributions, i.e., exponential, uniform, and truncated Gaussian
distributions, have been considered for each of the job inter-arrival time and the job size. Since
similar trends have been observed for all three distributions, only the results for the (truncated)
Gaussian distribution are provided in this paper. The proposed load balancing schemes have been
tested for a wide range of each parameter. The program was run multiple times in each test case,
each with a different seed, and then results (execution time of a target job) were averaged.

The proposed static and dynamic load balancing schemes (“S_P” and “D_P” which reads
“static proposed” and “dynamic proposed”, respectively) are compared to other approaches, i.e.,
“S_E” (Static_Even) which distributes a target job evenly in the static load balancing and “S_M”
(Static.Mean) and “D_M” (Dynamic_Mean) which use only the means (NN;) of the number of jobs
in the static and dynamic load balancing, respectively.

In the cases of dynamic load balancing, the overhead, O, for checking load distribution is added
to the execution time for each checking point. If load is redistributed, O, (redistribution overhead)

is also added (for each redistribution).



5.2 Results and Discussion

Execution time is measured in intervals. In addition to execution time of a target job, the measure
of “relative improvement” is used in comparison, which is defined as RI_S = TS-]‘{FS# for the
static load balancing where Ts_j; and Ts_p are execution times of a target job achieved by S_M and
S_P, respectively. Similarly, the relative improvement is defined for the dynamic load balancing as
RI_D = W where Tp_pr and Tp_p are execution times of a target job achieved by D_-M
and D_P, respectively.

Results for cases where workstations are in the steady state are discussed first.

In Figure 1, execution time of a target job on a single workstation is plotted as a function of
op, for different N in a steady state. Obviously, T increases as N increases. More importantly, as
discussed in Section 3.2, T clearly shows its dependency on o, and decreases as o, increases.

In Figure 2, (parallel) execution time of a target job in steady states on two workstations is
compared among the five load balancing schemes mentioned above. First, it can be seen that, as
expected, the proposed load balancing schemes (S_P and D_P) work better than the other schemes,
confirming that the second order moments of the system parameters are to be considered in load
balancing in order to minimize the execution time of a target job. Second, it needs to be noted that
S_P achieves shorter execution times than D_P. This is due to the fact that in a steady state the load
characteristics do not vary in the long term and therefore the one-time initial load balancing (by
S_P) is good enough, and that D_P pays the overhead of checking and balancing during execution.
Third, an increase in o, leads to a shorter execution time (Figure 2-(a)) while that in oy to a longer
execution time (Figure 2-(b)). This is because an increase in o, causes a larger increase in o, than
in N, leading to a shorter execution time (refer to Equation 6). However, increasing o has an
opposite effect.

In Figure 3, dependency of execution time on the load checking and redistribution overheads is
analyzed in a steady state. As shown in the figure, when the overheads are relatively low, D_P can
still achieve a shorter execution time than that by S_P. However, as the overheads become larger,
they start to offset the gain by the dynamic load balancing and eventually make D_P perform worse
than S_P.

The relative improvement by S_P over S_M is considered in Figure 4-(a), and that by D_P over
D_M in Figure 4-(b). It can be seen in both cases that the relative improvement increases as the
difference in o, or o5 between two workstations becomes larger. This is due to the fact that the
larger the difference is, the less accurate the load balancing by S_M becomes.

Effects of the number of workstations, W, are analyzed for steady states in Figure 5 where
Oa_gi and o,_g; are o, and oy of the ith group of workstations. It can be observed that the relative
improvement by S_P over S_M increases with the number of workstations. It increases more rapidly
when the difference in either o, or oy is larger. Again, these observations stem from the fact that
the load balancing by S_P becomes more (relatively) accurate than that by S_M as the difference

in the second order moments between groups of workstations grows.
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Figure 1: Execution time of X on one workstation where ;=100 and X=1000.
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Figure 2: Parallel execution time on two workstations where p=100, A;=1, A,=2, S1=10,
S2=20, and X=2000. (a) o04,=53%, 0s,=30%, 05,=48%, (b) 04,=53%, 04,=45%, 05,=30%

Now, a case where a system parameter varies with time is considered, i.e. dynamic state. In
Figure 6, 0,, varies with time such that its deviation from the value used by S_P is changed (larger
for Case 7 with larger 7). As expected, the dynamic schemes (D_P and D_M) perform better than
the static schemes (S_P and S_M). Also, it is noted that D_P which takes o,, into account achieves
a shorter execution time compared to D_M. The improvement by D_P over D_M tends to increase

with the deviation.

6 Conclusion and Future Study

In this paper, it has been proposed that the second order moments (standard deviations) as well
as the first order moments (means) of system parameters be taken into account for load balancing
on a time-shared heterogeneous parallel/distributed computing environment. These load balancing
schemes which attempt to minimize execution time of a target job have been tested via computer

simulation. It has been verified that considering the second order moments also in both static and
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Figure 4: (a) Relative improvement, RI_S, by S_P over S_M on two workstations. =100,
A1=0.5, Ay=0.5, S1=40, S3=40, X=3000, 04,=0%, o05,=100%, (b) Relative improvement,
RI_D, by D_P over D_M on two workstations. p=100, A;=2, A;=2, 5§7=20, S2=20, X=16000,
04, =0%, 05,=96%, O, =0.1, O,=0.1.

dynamic load balancing can lead to a significant reduction in execution time of a target job on a
NOWSs with a round-robin job scheduling policy adopted in each workstation. The improvement
(reduction in execution time of a target job) becomes larger as the difference in the second order
moments between workstations or groups of workstations increases. The similar observations have
been made for all of the three distributions considered for each system parameter. The proposed
schemes are simple and general, and therefore are believed to have a good potential for wide
application.

The future study includes consideration of communication among subtasks and job granularity,

performance analysis for real workloads on a NOWs, etc.
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