
Load Balancing for Minimizing Execution Time of a Target Job ona Network of Heterogeneous WorkstationsS.-Y. Lee and C.-H. ChoDepartment of Electrical and Computer EngineeringAuburn UniversityAuburn, AL 36849.sylee@eng.auburn.edu
AbstractA network of workstations (NOWs) may be employed for high performance computing whereexecution time of a target job is to be minimized. Job arrival rate and size are \random" on aNOWs. In such an environment, partitioning (load balancing) a target job based on only the�rst order moments (means) of system parameters is not optimal. In this paper, it is proposedto consider the second order moments (standard deviations) also in load balancing in orderto minimize execution time of a target job on a set of workstations where the round-robin jobscheduling policy is adopted. It has been veri�ed through computer simulation that the proposedstatic and dynamic load balancing schemes can signi�cantly reduce execution time of a targetjob in a NOWs environment, compared to cases where only the means of the parameters areused.

Key Words: Dynamic load balancing, Execution time, Network of workstation, Round-robin jobscheduling, Standard deviation, Static load balancing, Stochastic model

1 IntroductionA network of workstations (NOWs), or computers, is being employed as a high performance dis-tributed computing tool in an increasing number of cases [1] [2]. Accordingly, using a NOWse�ciently for speeding up various applications has become an important issue. In particular, loadbalancing has a signi�cant e�ect on performance one can achieve on a NOWs environment. Theissue of load balancing in general is not new. Many researchers have investigated various aspectsof load balancing for quite long a time [3][4][5][6][7][8][9][10].There were many parameters and characteristics considered in load balancing. They includeprocessor speed, job arrival rate and size, communication among jobs (or subtasks), homogeneity(or heterogeneity) of system, load balancing overhead, speci�c characteristics of a job, etc. Inmost of the previous work [11][12], only the means of such parameters were used in load balancing.However, a parameter may have the same mean for all workstations, but quite di�erent a varianceon a di�erent workstation in a heterogeneous environment. Also, in many cases [13][14][15], theemphasis was on balancing job distribution rather than minimizing execution time of a target job.There is a feature of NOWs, which distinguishes it from other high performance computing plat-forms, especially dedicated tightly-coupled multiprocessor systems, i.e., randomness of job arrivalon an individual workstation. This is mainly due to the fact that each workstation is usually sharedby multiple independent users who submit their jobs at any time. Also, the size of a job is random.This randomness in job arrival and size makes the number of jobs sharing (the processor on) aworkstation time-dependent. That is, the number of jobs on a workstation is to be modelled as arandom variable. When the processor is shared among jobs in a round-robin fashion, the amountof work completed in each job during a time interval depends on (e.g., inversely proportional to)the number of jobs (sharing the processor) in that interval. On a network of such workstations,distributing (load balancing) a target job considering only the mean of the number of jobs on eachworkstation does not achieve the minimum possible execution time. As will be shown later, notonly the mean but also the standard deviation of the number of jobs a�ects execution time of a jobon a workstation. Therefore, in order to minimize execution time of a target job, it is necessary totake into account the standard deviation of the number of jobs on each workstation in addition toits mean in load balancing.In this paper, as a �rst step toward developing an e�cient load balancing scheme, it is shownanalytically and demonstrated via simulation that the second order moments as well as the �rstorder moments of parameters are to be used to minimize execution time of a target job on anetwork of heterogeneous workstations. Workstations are considered to be heterogeneous when themean and standard deviation of the number of jobs vary with workstation. Each workstation istime-shared by multiple jobs. In this early study, it is assumed that a target job can be arbitrarilypartitioned for load balancing and communication is not required among subtasks.The main contributions of this work are (i) derivation of analytic formulas of performance1

measures used in load balancing, (ii) design of static and dynamic load balancing schemes forminimizing execution time of a target job, and (iii) showing that a load balancing scheme utilizingthe standard deviations as well as the means of parameters can outperform those considering themeans only.In Section 2, a stochastic model of workstations is described. In Section 3, a set of measures isderived analytically on a single workstation, which are to be used for load balancing on multipleworkstations. In Section 4, the proposed static and dynamic load balancing strategies are described.In Section 5, results from extensive computer simulation are discussed to validate the proposedstrategies. In Section 6, a conclusion is provided with remarks on the future directions.2 A Stochastic Model of WorkstationsGlossaryThe following notations are adopted in this paper.W the number of workstationsWi workstation iX the size of a target job to be distributedXi the portion of X assigned to Wiai the number of jobs (random variable) arrived in an interval on WiAi the mean of ai�ai the standard deviation of aini the number of jobs (random variable) in an interval on Wi, excluding thosearriving in the current intervalNi the mean of ni�ni the standard deviation of nisi the size of job (random variable) arriving at WiSi the mean of si�si the standard deviation of si�i the service rate (computing power) of Witi execution time (random variable) measured in intervals on WiTi the mean of ti�ti the standard deviation of tiOc overhead involved in checking load distributionOr overhead involved in redistributing loadE[Z] expectation of ZWhen a variable is to be distinguished for each time interval, a superscript with parentheseswill be used, e.g., a(j)i denotes ai for the jth interval. The subscript of a random variable, which2

is used to distinguish workstations, is omitted when there is no need for distinction, e.g., a singleworkstation or when it does not vary with workstation.Service PolicyA time interval is a unit of time for scheduling jobs (sharing the processor) on a workstation. Alltime measures are expressed in intervals. It is assumed that each workstation adopts a round-robinscheduling policy. A workstation (processor) spends, on each job in an interval, an amount of timewhich is inversely proportional to the number (ni) of jobs in that interval. That is, �ini is allocatedfor each job in an interval on workstation i (denoted by Wi) where �i is the service rate of Wi.Those jobs arrived in an interval start to be serviced (processed) in the following interval withoutany distinction depending on their arrival times (as long as they arrive in the same interval). It isto be noted that ni includes all jobs arrived but not completed by Ii�1.Job ArrivalJobs are submitted at random time instances and, therefore, the number of jobs arriving in aninterval may be modelled by a random variable denoted by ai. The mean and standard deviationof ai are denoted by Ai and �ai , respectively.Job SizeThe size of a job varies with job and may have a certain distribution with a mean (Si) and astandard deviation (�si). It is assumed that the job size is independent of the job arrival rate.OverheadsLoads on workstations are checked to determine if load balancing is to be done. It is assumed that,given a number of workstations, there is a �xed amount of overhead, Oc, for checking informationsuch as the remaining portion of Xi on Wi, and also a constant overhead, Or, for redistributing theremaining X over workstations when it is decided to perform load balancing.The job arrival rate and job size will be referred to as system parameters. The distributions ofthe system parameters may be known in some cases. Or their means and standard deviations canbe estimated from a given network of workstations. Also, ni can be directly monitored in practice.It needs to be noted that the proposed load balancing schemes do not assume any particulardistribution of each of the system parameters.3 Performance Measures on a WorkstationIn this section, certain (performance) measures on a single workstation, to be used in the proposedload balancing schemes for multiple workstations, are derived.3

The job of which execution time is to be minimized is referred to as target job. When the loadcharacteristics (more speci�cally, the means and standard deviations of the system parameters) donot vary with time on a workstation, it is said that the workstation is in \steady state". Whenthey vary with time, the workstation is said to be in \dynamic state".3.1 Number of JobsThe number of jobs, n(j), may be related to the job arrival rate, a(j), as follows.n(j) = 1 + a(j�1) + (n(j�1) � 1)p(j�1) (1)where p(j�1) is the probability that a job in the (j � 1)th interval is carried over to the jthinterval and the �rst term (of 1) corresponds to the target job.Noting that E[n(j)] = E[n(j�1)] = N , and letting P denote the steady state value of p(j) whichdepends on � and the distributions of a(j) and s(j), from Equation 1,N = 1 + A1 � P (2)Also, the standard deviation of n(j) can be derived as follows.�n = qE[(n(j) � N)2] = �a1 � P (3)3.2 Execution TimeIn the jth interval, the target job (any job) is processed by the amount of �n(j) for all j. If it takest intervals to complete the target job, tXi=1 �n(i) = X: (4)Let's express n(j) as N + �n(j). Then, E[�n(j)] = 0 since E[n(j)] = N , and E[(�n(j))2] = �2n.Then, 1n(j) can be approximated by ignoring the higher order terms beyond the second order termas follows. 1n(j) = 1N + �n(j) � 1N 0@1 � �n(j)N + �n(j)N !21A (5)By taking E[] (expectation) on both sides of Equation 4 with Equation 5 incorporated into,the mean of execution time of the target job, T , can be derived.4

T = NX� �1 + �2nN2� (6)Note that T depends on not only N but also �n both of which in turn depend on the standarddeviations as well as the means of the system parameters, A, �a, S, and �s (and of course �). Notethat execution time of a target job on a workstation with a round-robin job scheduling decreasesas variation (�n) in the number of jobs increases.In order to derive the standard deviation of execution time, let �X(j) denote a portion of Xthat is processed (completed) in the jth interval. Then �X(j) = �N + �n(j) . Following the similarapproximation used to obtain T , the standard deviation, ��X , of �X can be shown to be ��nN2 .Now, assuming \uncorrelatedness" of �X(j) between intervals, the standard deviation, �X , of theamount of target job processed over T intervals (which is the mean execution time of the targetjob) can be easily shown to be pT��X . Finally, the standard deviation of execution time of atarget job may be derived (approximated) by dividing �X by the mean processing speed which isXT and using Equation 6. That is,�t = �XTX = pT �nNq1 + �2nN2 (7)4 Load Balancing over Heterogeneous Workstations4.1 Static Load BalancingIn the proposed static load balancing scheme, a target job is partitioned such that the fraction ofX assigned to Wi for i = 1; � � � ;W is inversely proportional to the expected execution time of Xon Wi where W is the number of workstations available for X. Let Ti denote execution time of thetarget job on Wi (i.e., when Wi only is employed for the entire X). Then,Ti = NiX�i �1 + �2niN2i � for i = 1; � � � ;W: (8)Let Xi denote the size of the portion of X to be assigned to Wi. Then, Xi is determined asfollows. Xi = XTiPWi=1 1Ti (9)Note that, even when Ni is the same for all i, X would not be distributed evenly unless �niis constant for all i. This load balancing strategy assigns more work to a workstation with a5

larger variation in the number of jobs on it when the average number of jobs is the same for allworkstations. Suppose that N1 = N2 = 2, �n1 = 0, and �n2 > 0 (say, n2 alternates between 1and 3). Then, a target job would be processed at the average rate of �2 on W1 while at the averagerate of �1 + �3 = 2�3 on W2. Therefore, a larger portion of the target is to be assigned to W2 whichhas a larger variation in the number of jobs.4.2 Dynamic Load BalancingTwo essential issues in dynamic load balancing are how load should be redistributed (redistributionof a target job) and how frequently load distribution is to be checked (determination of checkingpoint).RedistributionLet Xi:rem denote the size of the remaining portion of a target job on Wi before load balancing ata checking point. If load balancing (redistribution) is not done at the checking point, the expectedcompletion time of the target job would be maxif Ti:rem g where Ti:rem is computed using Equation6. That is, Ti:rem = NiXi:rem�i �1 + �2niN2i � for i = 1; � � � ;W (10)Now, if load balancing is to be done at the checking point, the total remaining job, of which size isXrem =PI Xi:rem, is redistributed overWi according to Equation 9. That is, X 0i:rem = XremTi:remPWi=1 1Ti:remwhere X 0i:rem is the size of target job (portion) to be assigned to Wi after load balancing. Theexpected execution time of X 0i:rem on Wi is denoted by T 0i:rem. Then, note that T 0i:rem = T 0j:remfor all i; j since load has been balanced.The expected reduction, �T , in execution time of the target job can be expressed as�T = maxif Ti:rem g � T 01:rem � Or (11)where Or is the overhead for redistribution.Load balancing (redistribution) is carried out only when the expected bene�t (reduction inexecution time, �T) exceeds a certain threshold, i.e., �T � Threshold.Determination of Checking PointIn order to minimize execution time of a target job, it is necessary to minimize the duration inwhich any Wi is idle (does not work on the target job) before the target job is completed on all6

Wi. Hence, the load distribution is to be checked before any of Wi becomes idle while the othersstill work on the target job.The standard deviation, �t0i:rem , of execution time to complete X 0i:rem can be derived usingEquation 7. A reasonable estimate of the \highly likely" earliest completion time on Wi may beapproximated to be T 0i:rem � h�t0i:rem where h is a tuning factor close to 1.Then, the next checking point, Tcheck, measured with respect to the current checking point isset as follows. Tcheck = minif T 0i:rem � h�t0i:rem g (12)That is, in the proposed dynamic load balancing scheme, it is attempted to check load distribu-tion before any of Wi completes its execution of target job (X 0i:rem). Note that once aWi completesX 0i:rem it will not be utilized for the target job at least until next checking point.5 Simulation Results and DiscussionAn extensive computer simulation has been carried out in order to verify the reduction in executiontime of a target job, which can be achieved by considering the second order moments (standarddeviations) as well as the means of system parameters for load balancing on a network of hetero-geneous workstations.5.1 SimulationIn this simulation, three di�erent distributions, i.e., exponential, uniform, and truncated Gaussiandistributions, have been considered for each of the job inter-arrival time and the job size. Sincesimilar trends have been observed for all three distributions, only the results for the (truncated)Gaussian distribution are provided in this paper. The proposed load balancing schemes have beentested for a wide range of each parameter. The program was run multiple times in each test case,each with a di�erent seed, and then results (execution time of a target job) were averaged.The proposed static and dynamic load balancing schemes (\S P" and \D P" which reads\static proposed" and \dynamic proposed", respectively) are compared to other approaches, i.e.,\S E" (Static Even) which distributes a target job evenly in the static load balancing and \S M"(Static Mean) and \D M" (Dynamic Mean) which use only the means (Ni) of the number of jobsin the static and dynamic load balancing, respectively.In the cases of dynamic load balancing, the overhead, Oc, for checking load distribution is addedto the execution time for each checking point. If load is redistributed, Or (redistribution overhead)is also added (for each redistribution).
7

5.2 Results and DiscussionExecution time is measured in intervals. In addition to execution time of a target job, the measureof \relative improvement" is used in comparison, which is de�ned as RI S = TS M � TS PTS M for thestatic load balancing where TS M and TS P are execution times of a target job achieved by S M andS P, respectively. Similarly, the relative improvement is de�ned for the dynamic load balancing asRI D = TD M � TD PTD M where TD M and TD P are execution times of a target job achieved by D Mand D P, respectively.Results for cases where workstations are in the steady state are discussed �rst.In Figure 1, execution time of a target job on a single workstation is plotted as a function of�n for di�erent N in a steady state. Obviously, T increases as N increases. More importantly, asdiscussed in Section 3.2, T clearly shows its dependency on �n and decreases as �n increases.In Figure 2, (parallel) execution time of a target job in steady states on two workstations iscompared among the �ve load balancing schemes mentioned above. First, it can be seen that, asexpected, the proposed load balancing schemes (S P and D P) work better than the other schemes,con�rming that the second order moments of the system parameters are to be considered in loadbalancing in order to minimize the execution time of a target job. Second, it needs to be noted thatS P achieves shorter execution times than D P. This is due to the fact that in a steady state the loadcharacteristics do not vary in the long term and therefore the one-time initial load balancing (byS P) is good enough, and that D P pays the overhead of checking and balancing during execution.Third, an increase in �a leads to a shorter execution time (Figure 2-(a)) while that in �s to a longerexecution time (Figure 2-(b)). This is because an increase in �a causes a larger increase in �n thanin N , leading to a shorter execution time (refer to Equation 6). However, increasing �s has anopposite e�ect.In Figure 3, dependency of execution time on the load checking and redistribution overheads isanalyzed in a steady state. As shown in the �gure, when the overheads are relatively low, D P canstill achieve a shorter execution time than that by S P. However, as the overheads become larger,they start to o�set the gain by the dynamic load balancing and eventually make D P perform worsethan S P.The relative improvement by S P over S M is considered in Figure 4-(a), and that by D P overD M in Figure 4-(b). It can be seen in both cases that the relative improvement increases as thedi�erence in �a or �s between two workstations becomes larger. This is due to the fact that thelarger the di�erence is, the less accurate the load balancing by S M becomes.E�ects of the number of workstations, W , are analyzed for steady states in Figure 5 where�a gi and �s si are �a and �s of the ith group of workstations. It can be observed that the relativeimprovement by S P over S M increases with the number of workstations. It increases more rapidlywhen the di�erence in either �a or �s is larger. Again, these observations stem from the fact thatthe load balancing by S P becomes more (relatively) accurate than that by S M as the di�erencein the second order moments between groups of workstations grows.8

0 10 20 30 40 50 60
10

15

20

25

30

35

40

45

σ
n
 (%)

E
xe

cu
tio

n
tim

e

N=2 (A=1, S=20)
N=3 (A=2, S=10)
N=4 (A=3, S=5)

Figure 1: Execution time of X on one workstation where �=100 and X=1000.

0 20 40 60 80 100
22

24

26

28

30

32

34

σ
a2

 (%)

E
xe

cu
tio

n
tim

e

S_E
S_M
S_P
D_M
D_P

0 20 40 60 80 100
22

24

26

28

30

32

34

36

σ
s2

 (%)

E
xe

cu
tio

n
tim

e
S_E
S_M
S_P
D_M
D_P

(a) (b)Figure 2: Parallel execution time on two workstations where �=100, A1=1, A2=2, S1=10,S2=20, and X=2000. (a) �a1=53%, �s1=30%, �s2=48%, (b) �a1=53%, �a2=45%, �s1=30%Now, a case where a system parameter varies with time is considered, i.e. dynamic state. InFigure 6, �a1 varies with time such that its deviation from the value used by S P is changed (largerfor Case i with larger i). As expected, the dynamic schemes (D P and D M) perform better thanthe static schemes (S P and S M). Also, it is noted that D P which takes �a1 into account achievesa shorter execution time compared to D M. The improvement by D P over D M tends to increasewith the deviation.6 Conclusion and Future StudyIn this paper, it has been proposed that the second order moments (standard deviations) as wellas the �rst order moments (means) of system parameters be taken into account for load balancingon a time-shared heterogeneous parallel/distributed computing environment. These load balancingschemes which attempt to minimize execution time of a target job have been tested via computersimulation. It has been veri�ed that considering the second order moments also in both static and9

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
30

32

34

36

38

40

42

44

46

O
c
, O

r

E
xe

cu
tio

n
tim

e

S_E
S_M
S_P
D_M
D_P

Figure 3: Parallel execution time on two workstations where �=100, A1=1, A2=2, S1=20,S2=30, X=2000, �a1=90%, �a2=0%, �s1=96%, �s2=96%.

0 20 40 60 80 100
0

2

4

6

8

10

12

σ
a2

 (%)

R
el

at
iv

e
im

pr
ov

em
en

t (
%

)

σ
s2

=1 %
σ

s2
=47 %

σ
s2

=95 %

0 20 40 60 80 100
3

4

5

6

7

8

9

10

11

12

13

R
el

at
iv

e
im

pr
ov

em
en

t (
%

)

σ
a_2

 (%)

σ
s2

=1 %
σ

s2
=46 %

σ
s2

=96 %

(a) (b)Figure 4: (a) Relative improvement, RI S, by S P over S M on two workstations. �=100,A1=0:5, A2=0:5, S1=40, S2=40, X=3000, �a1=0%, �s1=100%, (b) Relative improvement,RI D, by D P over D M on two workstations. �=100, A1=2, A2=2, S1=20, S2=20, X=16000,�a1=0%, �s1=96%, Oc =0:1, Or=0:1.dynamic load balancing can lead to a signi�cant reduction in execution time of a target job on aNOWs with a round-robin job scheduling policy adopted in each workstation. The improvement(reduction in execution time of a target job) becomes larger as the di�erence in the second ordermoments between workstations or groups of workstations increases. The similar observations havebeen made for all of the three distributions considered for each system parameter. The proposedschemes are simple and general, and therefore are believed to have a good potential for wideapplication.The future study includes consideration of communication among subtasks and job granularity,performance analysis for real workloads on a NOWs, etc.
10

2 4 6 8 10 12
0

5

10

15

20

25

W

R
el

at
iv

e
im

pr
ov

em
en

t (
%

)

σ
a_g2

=50 %, σ
s_g2

=0 %
σ

a_g2
=50 %, σ

s_g2
=96 %

σ
a_g2

=76 %, σ
s_g2

=0 %
σ

a_g2
=76 %, σ

s_g2
=96 %

Figure 5: Relative improvement, RI S, by S P over S M on multiple workstations where �=100,Ag1=0:5, Ag2=0:5, Sg1=40, Sg2=40, X=1500, �a g1=50%, �s g1=96%.

1 2 3 4
25

30

35

40

45

50

E
xe

cu
tio

n
tim

e

Case

S_E
S_M
S_P
D_M
D_P

Figure 6: Parallel execution time on two workstations where �=100, A1=1, A2=2, S1=20, S2=30,X=2000, �a1=24%, �a2=0%, �s1=0%, �s2=20%. �a1 varies with time where its deviation fromthe value used by S P is larger for Case i with larger i.References[1] D. Culler, \Parallel Computer Architecture", Morgan Kaufman, 1999.[2] Pf, \In Search of Clusters".[3] G. Cybenko, \Dynamic Load Balancing for Distributed Memory Multiprocessors", J. Paralleland Distributed Computing, vol. 7, pp279-301, 1989.[4] C. Polychronopoulos and D. Kuck, \Guided Self-Scheduling Scheme for Parallel Supercomput-ers", IEEE Transactions on Computers, vol. 36, no.12, pp1,425-1,439, December 1987.[5] S. Ranka, Y. Won, and S. Sahni, \Programming a Hypercube Multicomputer", IEEE Software,pp69-77, September 1988. 11

[6] M. Maheswaran and H. Siegel, \A Dynamic Matching and Scheduling Algorithm for Hetero-geneous Computing Systems", Proc. Heterogeneous Computing '98, pp57-69, 1998.[7] M. Cierniak, W. Li, and M.J. Zaki, \Loop Scheduling for Heterogeneity", Proc. of the 4thIEEE International Symposium High-Performance Distributed Computing, pp78-85, August1995.[8] A. Gerasoulis and T. Yang, \On the Granularity and Clustering of Directed Acyclic taskgraphs", IEEE Transactions on Parallel and Distributed Systems, vol. 4, no.6, pp686-701,1993.[9] S. M. Figueira and F. Berman, \Modeling the Slowdown of Data-Parallel Applications inHomogeneous Clusters of Workstations", Proc. Heterogeneous Computer Workshop, pp90-101,1998.[10] J.C. Jacob and S.-Y. Lee, "Task Spreading and Shrinking on Multiprocessor Systems andNetworks of Workstations", IEEE Transactions on Parallel and Distributed Systems, vol. 10,no. 10, pp1082-1101, October 1999.[11] E.P. Makatos and T.J. Leblanc, \Using Processor A�nity in Loop Scheduling on Shared-Memory Multiprocessors", IEEE Transactions on Parallel and Distributed Systems, vol. 5,no.4, pp379-400, April 1993.[12] S. Subramaniam and D.L. Eager, \A�nity Scheduling of Unbalanced Workloads", Proc. Su-percomputing '94, pp214-226, 1994.[13] M.-Y. Wu, \On Runtime Parallel Scheduling for Processor Load Balancing", IEEE Transac-tions on Parallel and Distributed Systems, vol. 8, no.2, pp173-186, February 1997.[14] X. Zhang and Y. Yan, \Modeling and Characterizing Parallel Computing Performance On Het-erogeneous Networks of Workstations", Proc. of the 7th IEEE Symp. Parallel and DistributedProcessing, pp25-34, October 1995.[15] B.-R. Tsai and K. G. Shin, \Communication-Oriented Assignment of Task Modules in Hyper-cube Multicomputers", Proc. of the 12th International Conference on Distributed ComputingSystems, pp 38-45, 1992.
12

