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Abstract

Locality is often expressed using working sets, defined by Denning to be the set of distinct
addresses referenced within a certain window of time. This definition puts allmemory blocks
in a working set on an equal footing. But in fact a dramatic difference exists between the
usage patterns of frequently used data and those of lightly used data. We therefore propose to
extend Denning’s definition with that ofcore working sets, which identify the most important
subset of blocks in a working set — those that are most frequently and for the longest time. We
survey the motivation and ramifications of this concept. In particular, we useit as an underlying
unifying principle for many dual cache structures that attempt to identify andprovide special
treatment for highly used data elements based on their access patterns.

1 Introduction

The notion of a memory hierarchy is one of the oldest and most profitable in computer design,
dating back to the work of von Neumann and his associates in the 1940’s. The idea is that a
small and fast memory will cache the most useful items at any given time, with a larger but slower
memory serving as a backing store [17]. While processor caches alleviate the speed gap between
the CPU and memory, this gap nevertheless continues to grow. At the same time increasing on-chip
parallelism threatens to stress caches more than ever before. These developments motivate attempts
for better utilization of cache resources, through the design of more efficient caching structures.
This design process relies on extensive analysis of memory workloads, and the development of
new analysis tools enabling a deeper understanding of cachebehavior.

The essence of caching is to identify and store those data items that will be most useful in the
immediate future [1]. Caches predict future use of data basedon the principle of locality, which
states that at any given time only a small fraction of the whole address space is used, and that this
used part changes relatively slowly [4]. Denning formalized this using the notion of aworking set,
defined to be those items that were accessed within a certain number of instructions. The goal of
caching is thus effectively to keep the working set in the cache.
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Locality is usually regarded as a combination of two distinct properties — locality in time and
locality in space — but is also a manifestation of the skewed distribution of thepopularity of dif-
ferent memory blocks, where some blocks are accessed more frequently than others [8]. In fact, as
we show below, it may be possible to partition the working setinto two sub-sets: those data items
that are very popular and accessed at a very high rate, and those that are only accessed intermit-
tently. This distinction contrasts with Denning’s definition which puts all items in a working set
on an equal footing, and lies at the heart of our definition of thecore of the working set.

The notion of a core leads to the insight that not all elementsof the working set are equally
important. The elements in the working set are not accessed in a homogeneous manner. Thus
treating all the elements of the working set equally may leadto sub-optimal performance. Rather,
it may be beneficial to try to identify the more important coreelements, and give them preferential
treatment.

One way to give preferential treatment to the more importantdata elements is to use adual
cache structure. Such structures partition the cache into two parts, and use them for data elements
that exhibit different behaviors1. In many cases, data elements can also move from one part to the
other. For example, data may first be stored in a short-term buffer, and only data that is identified
as important will be promoted into the long-term cache. The identification of a certain item as
important can be done based on the references it received while in the short-term buffer: if it is
referenced again and again, it is identified as part of the core and promoted.

We start our discussion by showing that many benchmarks indeed have a relatively well-defined
core (Section 2), and use this to define the core of a working set (Section 3). We then use the con-
cept of a core to motivate dual cache structures based on cache bypass (Section 4), and show that
various previous proposals for dual cache structures can beinterpreted as attempts to implement
improved support for caching the core working set (Section 5). Section 6 presents our conclusions.

2 The Skewed Popularity of Memory Locations

Locality of reference is one of the best-known phenomena of computer workloads. This is usually
divided into two types: spatial locality, in which we see accesses to addresses that arenear an
address that was just referenced, and temporal locality, inwhich we seerepeated references to
the same address. Temporal locality is actually the result of two distinct phenomena. One is the
skewed popularity of different addresses, where some are referenced a lot of times, while others
are only referenced a few times [8]. The other is correlationin time: accesses to the same address
are bunched together in a burst of activity, rather than being distributed uniformly throughout the
execution. While the intuition of what “temporal locality” means tends to the second of these, the
first is actually the more important effect.

While the skewed popularity of memory blocks is well-known, it has seldom been quantified.
To do so we first need some definition. In the following we consistently define memory objects to
be 64 bytes long, because this is the most common size for a cache line. Popularity is measured
by the number of references to such a memory object in eachcache residency, i.e. from the time

1We differentiate this from asplit cache structure, where one part is used for data and the otherfor instructions, but
some authors use the terms interchangeably.
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it is inserted into the cache until it is evicted. Thus if an object is referenced 100 times while in
the cache, is evicted, and then is inserted again and referenced another 200 times, this is counted
as two residencies with popularities of 100 and 200 references respectively. This characterization
obviously depends on the cache design; the results shown here are for a 16 KB direct mapped
cache.

Histograms of the distribution of residency lengths for select SPEC2000 benchmarks are shown
in Fig. 1. These show the distribution of residency lengths and the distribution of references to these
residencies, up to residency lengths of 250 references, using buckets of size 10. All residencies
(and references therein) that are longer are bunched together in the last bar on the right. This leads
to characteristic bimodal distributions, as examplified bythe wupwise and mesa benchmarks. In
them, residencies are seen to be short (typically up to 10 or 20 references, and seldom more than
50), but most references belong to residencies that are longer than 250 references. However, in
some cases the patterns are a bit different. Benchmark swim isan example of cases were the
residencies in the DL1 cache are all short, so the vast majority of references are also directed at
short residencies. Benchmark bzip2 is an example of an even rarer phenomenon, where practically
all residencies in the IL1 cache are long.

A more precise quantification is possible using mass-count disparity plots, as demonstrated in
Fig. 2 [7]. These plots superimpose the CDFs of the same two distributions used in the histograms
above. The first, which we call thecount distribution, is the distribution of cache residencies, and
specifies how many references each residency received. ThusFc(x) will represent the probability
that a cache residency is referencedx times or less. The second, called themass distribution, is
the distribution of references; it specifies the popularityof the residency to which the reference
pertains. ThusFm(x) will represent the probability that a reference ispart of a residency that
receivesx references or less.

Mass-count disparity refers to situations where the two distributions diverge from each other.
The figure shows examples for the wupwise and mesa benchmarksfrom the SPEC 2000 suite. The
simplest metric for quantifying the disparity is thejoint ratio, which is the unique point in the
graphs where the sum of the two CDFs is unity (if the CDFs have a discrete mode, as sometimes
happens, the sum may be different). For example, in the case of the mesa benchmark data stream,
the joint ratio is 10/90. This means that 90% of the memoryreferences are directed at only 10% of
thecache residencies, whereas the remaining 90% of the residencies get only 10% ofthe references
— a precise example of the proverbial 10/90 principle. Thus atypical residency is only referenced
a rather small number of times (up to 10 or 20 in this case), whereas a typical reference is directed
at a long residency (one that is referenced thousands of times).

Two other metrics that are especially important in the context of dual cache designs areW1/2

andN1/2. TheW1/2 metric assesses the combined weight of the half of the residencies that receive
the fewest references. For mesa, these 50% of the residencies together get only 2.05% of the
references. TheN1/2 metric characterizes the other end of the distribution: it gives the fraction of
heavy-weight residencies needed to account for half of the total references. For mesa, just 0.2% of
the residencies are enough.

Similar quantifications are possible for other SPEC2000 benchmarks [6]. For some bench-
marks, the graphs are not well-formed, being dominated by a large discrete step. In those that are
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Figure 1:Histograms of residency lengths for select SPEC benchmarks, using the ref input.
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Figure 2:Mass-count disparity plots for memory accesses in select SPEC benchmarks, using the
ref input.

well-formed, the actual values observed for the joint ratiowere in the range 10/90 to 33/67 for the
data stream, and 1/99 to 24/76 for the instruction stream. A few cases are dominated by uniform
access (that is, a very large fraction of the blocks are all accessed in the same way) and then there
was naturally little if any mass-count disparity.

3 Definition of Core Working Sets

Denning’s definition of working sets [3] is based on the principle of locality, which he defined
to include three components [4]: a nonuniform popularity ofdifferent addresses, a slow change
in the reference frequency to any given page, and a correlation between the immediate past and
the near future. Our data strongly supports the first component, that of non-uniform access. But
it casts a doubt on the other two, by demonstrating the continued access to the same high-use
memory objects, while much of the low-use data is only accessed for very short and intermittent
time windows. In addition, transitions between phases of the computation may be expected to be
sharp rather than gradual, and moreover, they will probablybe correlated for multiple memory
objects. This motivates a new definition that focuses on the persistent high-usage data in each
phase, namely the core working set.
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The definition of a working set by Denning is the set ofall distinct blocks that were accessed
within a window ofT instructions [3]. We augment this definition by defining thecore working set
to be those blocks that appear in the working set and are reused “a significant number of times”.
The simplest interpretation of this definition is based on counting the number of references to a
block during a single cache residency. The number of references needed to qualify can be decided
upon based on data such as that presented in Figs. 1 and 2. For example, we can set the threshold
so that for most benchmarks it will identify no more than 5% ofthe residencies, but more than 50%
of the references. Given the typically skewed distributionof residency lengths, such a threshold
should be in the range between 100 and 1000 references.

In fact, the highly-skewed distributions imply a partitioning of the residencies into two distinct
groups: very many residencies that together receive only a small fraction of the references, and a
small group of residencies that together account for the vast majority of references — the ones we
call the core working set. Many dual cache structures attempt to capture this division. The moti-
vation is straightforward. The lightly used residencies donot benefit very much from the caching,
and should not be allowed to pollute the cache. Rather, the caches should be used preferentially to
store heavily used data items, such as the small number of blocks that together account for half of
all references. The dual structure helps in identifying andhandling the two types correctly.

While the skewed distribution of popularity is a major contributor to temporal locality, one
should nevertheless acknowledge the fact that references do display a bursty behavior. To study
this, we looked at how many different blocks are referenced between successive references to a
given block. The results indicate that the majority of inter-reference distances are indeed short. We
can then define bursts to be sequences of references to a blockthat are separated by references to
less than say 256 other blocks. Using this we can study the distribution of burst lengths, and find
them to be generally short, ranging up to about 32 referencesfor most benchmarks. However, they
are long enough to prohibit the use of a low threshold to identify blocks that belongs to the core
working set with confidence. The core members, in turn, exhibit extremely long bursts; these are
actually blocks that are used continuously, and therefore do not have long gaps between successive
accesses, so all their accesses will seem to be one long burst.

The effect of the above definitions is illustrated in Fig. 3. Using the SPEC gcc benchmark as an
example, the top graph simply shows the access pattern to thedata. Below it we show the Denning
working set for a window of 1000 instructions, and the core working set as defined by a threshold
of 16 references to a block (denoted 16B in the legend). As we can easily see, the core working
set is indeed much smaller, typically being just 10–20% of the Denning working set. Importantly,
it eliminates all of the sharp peaks that appear in the Denning working set. Nevertheless, as shown
in the bottom graph, it routinely captures about 60% of the memory references.

4 Cache Bypass

We have established that memory blocks can be roughly divided into two groups: the core working
set, which includes a relatively small number of blocks thatare accessed a lot, and the rest, which
are accessed only a few times in a bursty manner. The questionthen is how this can be put to use
to improve caching.
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Figure 3:Examples of memory access patterns and the resulting Denning and core working sets.

The principle behind optimal cache replacement is very simple: when space is needed, replace
the item that will not be used for the most time in the future (or never) [1]. In particular, it should
be noticed that it is certainly possible that the optimal algorithm will decide to replace thelast item
that was brought into the cache, if all other items will be accessed before this item is accessed
again. This would indicate that this item was only inserted into the cache as part of the mechanism
of performing the access; it was not inserted into the cache in order to retain it for future reuse.

By analyzing the reference streams of SPEC benchmarks it is possible to see that this sort of
behavior does indeed occur in practice. For example, we found that if the references of the gcc
benchmark were to be handled by a 16 KB fully-associative cache, 30% of insertions would belong
to this class; in other benchmarks, we saw results ranging from 13% to a whopping 86%. Returning
to gcc, if the cache is 4-way set associative the placement ofnew items is much more restricted, and
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a full 60% of insertions would be immediately removed by the optimal algorithm. These results
imply that the conventional wisdom favoring the LRU replacement algorithm is debatable.

It is especially easy to visualize why LRU may fail by considering transient streaming data.
When faced with such data, the optimal algorithm would dedicate a single cache line for all of it,
and let the data stream flow through this cache line. All othercache lines would not be disturbed.
Effectively, the optimal algorithm thus partitions the cache into the main cache (for core non-
streaming data) and a cache bypass for the streaming component (non-core). The LRU algorithm,
by contradistinction, would do the opposite and lose all thecache contents.

The advantage of a cache bypass mechanism can be formalized as follows, using a simple,
specific example cache configuration. Assume a cache withn

2 + n cache lines, organized into
eithern or n+1 equal sets. In either case, the address space is partitionedinto n equal-size disjoint
partitions (assumingn is a power of 2) using the memory address bits. The two organizations are
used as follows.

Set associative: there aren sets ofn + 1 cache lines each, and each serves a distinct partition of
the address space. This is the commonly used approach.

Bypass: there aren sets ofn cache lines each, and each serves a distinct partition of theaddress
space, as in the conventional approach. Then + 1st set can accept any address and serves as
a bypass.

These two designs expose a tradeoff: in the set associative design, each set is larger by one, re-
ducing the danger of conflict misses. In the bypass design, the extra set is not tied to any specific
address, increasing flexibility.

Considering these two options, it is relatively easy to see that the bypass design has the advan-
tage. Formally this is shown by two claims.

Claim 1 The bypass design can simulate the set associative design.

Proof: While each cache line in the bypass set can hold any address from the address space, we are
not required to use this functionality. Instead, we can limit each cache line to one of the partitions
in the address space. Thus the effective space available forcaching each partition becomesn + 1,
just like in the set associative design.

The conclusion from this claim is that the bypass design neednever suffer more cache misses
than the set associative design. At the same time, we have thefollowing claim that establishes that
it actually has an advantage.

Claim 2 There exist access patterns that suffer arbitrarily more cache misses when served by the
set associative design than when served by the bypass design.

Proof: An access pattern that provides such an example is the following: repeatedly access2n
addresses from any single address space partition in a cyclic mannerm times. When using the set
associative design, only a single set withn cache lines will be used. At best, an arbitrary subset
of n − 1 addresses will be cached, and the othern + 1 will share the remaining cell, leading to
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Figure 4:Operation of an LRU cache is implicitly based on the notion that core elements will be
reused before they drop out of the cache.

a total ofO(nm) misses. When using the bypass design, on the other hand, all2n addresses will
be cached by using the original set and the bypass set. Therefore only the initial2n compulsory
misses will occur. In this sense, a bypass mechanism can potentially relieve pressure on specific
cache sets resulting from bursty conflict misses. By extending the length of this pattern (i.e. by
increasingm) any arbitrary ratio can be achieved.

More generally, the number of sets and the set sizes need not be the same. The size of the
bypass set need also not be the same as that of all the other sets.

5 Dual Cache Structures

The design of caches is implicitly based on the skewed distribution of references. The well-known
LRU scheme inserts raferenced blocks at the top of a logical stack, and evicts the block from the
bottom of the stack to make room when needed. Core blocks are not evicted because they are
referenced again and again, buming them back to the top of thestack each time (Fig. 4). If the
cache is big enough, transient blocks that enjoy a burst of activity can also be retained till this
activity ends.

LRU over the whole cache is not practical in processor caches. Rather, set-associative designs
are used, with typical set sizes of 4 or 8. Here either LRU can be used on each set, or the eviction
can be random. Random eviction works because if you select a cache residency at random, it is
most probably a short residency. Long residencies are rarer, so have a smaller probability of being
evicted.

Nevertheless, core residencies may indeed be evicted by mistake. The desire to reduce such
mistakes is one of the motivations for using dual cache structures. Again, this is based on the
skewed distribution of residency lengths. Defining the corebased on the intensity of memory
references naturally leads to a dual design, where one part of the cache is used for the core data,
while the more transient data is served by another part. In effect this filters non-core data and
prevents them from polluting the cache structure used for core data. This is a generalization of the
cache bypass considered above.
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Many similar schemes have been proposed in the literature [16]. Many of them are based on
an attempt to identify and provide support for blocks that display temporal locality — in effect, the
more popular blocks that are reused time and again. For example, Rivers and Davidson propose to
tag cache lines with a temporal locality bit [14]. Initially, lines are stored in a small non-temporal
buffer (in our terminology, this is the bypass area). If theyare reused, the temporal bit is set
indicating that, in our terminology, these lines should be considered as core elements. Later, when
a line with the temporal bit set is fetched from memory, it is inserted into the larger temporal cache.

Park et al. also use a spatial buffer to observe usage [13]. However, they do so at different
granularities: when a word is referenced, only a small sub-line including this word is promoted to
the temporal cache. A more extreme approach is the bypass mechanism of Johnson et al. [9]. This
is based on a memory address table (MAT) which counts accesses to different areas of memory.
Then, if a low-count access threatens to displace a cached high-count datum, it is simply loaded
directly to the register file and bypasses the cache altogether. Another scheme is the Assist cache
used in the HP PA 7200 CPU [2], which filters out streaming (spatial locality) data based on
compiler hints.

A minimalistic, bypass-only approach, is McFarling’s dynamic exclusion cache [12]. Here
cache lines are augmented with just two state bits, the last-hit bit and the sticky bit. In particular,
the sticky bit is used to retain a desirable cache line ratherthan evicting it upon a conflict; the
conflicting line is served directly to the processor withoutbeing cached. However, this approach
is limited to instruction streams and specifically to cases where typically only two instructions
conflict with each other.

The above schemes have the drawback of requiring historicalinformation to be maintained
for each cache lines. But filtering can also be done without resorting to the use of such data.
For example, Walsh and Board propose a dual design with a direct-mapped main cache and a
small fully associative filter [18]. Referenced data is first placed in the filter, and only if it is
referenced again it is promoted to the main cache. This avoids polluting the cache with data
that is only referenced once; however it is limited to distinguishing only between blocks that are
used once or more, and our data indicates that a much higher threshold may be needed. Filtering
with higher effective thresholds may be achieved by using randomized sampling, based on the
skewed popularity distributions described above [5]. The idea is that every reference to data in
the filter is sampled with a low probability, and only memory blocks that come up in the sampling
are promoted to the main cache. Due to the mass-count disparity phenomenon, this effectively
identifies those memory blocks that are accessed a very largenumber of times — but without
requiring historical data to be maintained.

A somewhat different approach is provided by Jouppi’s victim cache, which works on evicted
blocks rather than on newly accessed blocks. Specifically, The victim cache is a small auxiliary
cache used to store cache lines that were evicted from the main cache [10]. This helps reduce
the adverse effects of conflict misses, because the victim buffer is fully associative and therefore
effectively increases the size of the most heavily used cache sets. In this case the added structure is
not used to filter out transient data, but rather to recover core data that was accidentally displaced
by transient data. By virtue of being applied after lines are evicted, this too avoids the need to
maintain historical data. Blocks that are referenced while in the victim cache are simply returned

10



to the main cache.
Interestingly, dual structures are not used only to improveperformance. Sahuquillo et al. [15]

proposed a filter cache, in which a relatively small buffer isused for the most highly accessed
elements, in order to reduce bus traffic in multiprocessor systems. A similar design by Kin at al.
[11] was proposed in order to reduce energy consumption, by allowing the main cache to remain in
power save mode most of the time. Some of the dual structures described above also reduce power
consumption, by virtue of using a direct-mapped design for part of the cache [13, 5]. Thus they
can lead to a win-win situation, where both performance and power characteristics are improved,
instead of having to trade them off against each other.

6 Conclusions

Processor caches have been an area of active research for decades. Nevertheless, additional work
is still important due to the continuing gap between processors and memory. In fact, the problem is
expected to intensify with the advent of multicore processors, due to the replication of L1 caches
for each core and the increased pressure on shared L2 caches.

One way to continue and improve is by taking cues from workload patterns. We have shown
that memory references display mass-count disparity, witha relatively small fraction of memory
blocks receiving a relatively large fraction of the references. But this skewed distribution is at
odds with the classic homogeneous definition of working sets, that puts all memory blocks in the
working set on an equal footing. We therefore propose the core working set framework as an
extension and refinement of Denning’s working set. This framework makes a distinction between
the more important (that is, more heavily used) subset of thedata and the rest. Such a distinction, in
turn, motivates dual cache structures that handle core and non-core data differently. By matching
the handling to the access pattern, one can even achieve a win-win situation, which provides both
performance improvements and power reduction.
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