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Abstract

Locality is often expressed using working sets, defined by Denning tosbeettof distinct
addresses referenced within a certain window of time. This definition putseatiory blocks
in a working set on an equal footing. But in fact a dramatic differendstebetween the
usage patterns of frequently used data and those of lightly used dataek&®otl propose to
extend Denning’s definition with that @bre working sets, which identify the most important
subset of blocks in a working set — those that are most frequently atlofdongest time. We
survey the motivation and ramifications of this concept. In particular, wé asen underlying
unifying principle for many dual cache structures that attempt to identifypaodde special
treatment for highly used data elements based on their access patterns.

1 Introduction

The notion of a memory hierarchy is one of the oldest and masfitable in computer design,
dating back to the work of von Neumann and his associateserl@40’'s. The idea is that a
small and fast memory will cache the most useful items at argngime, with a larger but slower
memory serving as a backing store [17]. While processor caaleviate the speed gap between
the CPU and memory, this gap nevertheless continues to grotlveAame time increasing on-chip
parallelism threatens to stress caches more than eveebdfoese developments motivate attempts
for better utilization of cache resources, through thegtesif more efficient caching structures.
This design process relies on extensive analysis of memorkleads, and the development of
new analysis tools enabling a deeper understanding of dzedievior.

The essence of caching is to identify and store those daes iteat will be most useful in the
immediate future [1]. Caches predict future use of data basetthe principle of locality, which
states that at any given time only a small fraction of the whaaldress space is used, and that this
used part changes relatively slowly [4]. Denning formalitieis using the notion of working set,
defined to be those items that were accessed within a cedaiber of instructions. The goal of
caching is thus effectively to keep the working set in theheac



Locality is usually regarded as a combination of two digtproperties — locality in time and
locality in space — but is also a manifestation of the skewsttidution of thepopularity of dif-
ferent memory blocks, where some blocks are accessed neopgeintly than others [8]. In fact, as
we show below, it may be possible to partition the workingistt two sub-sets: those data items
that are very popular and accessed at a very high rate, asd that are only accessed intermit-
tently. This distinction contrasts with Denning’s defiaitiwhich puts all items in a working set
on an equal footing, and lies at the heart of our definitiorhefcbre of the working set.

The notion of a core leads to the insight that not all elemehtke working set are equally
important. The elements in the working set are not accessadhomogeneous manner. Thus
treating all the elements of the working set equally may keeslib-optimal performance. Rather,
it may be beneficial to try to identify the more important celements, and give them preferential
treatment.

One way to give preferential treatment to the more importkta elements is to usedaal
cache structure. Such structures partition the cachewadg@arts, and use them for data elements
that exhibit different behaviotsIn many cases, data elements can also move from one pas to th
other. For example, data may first be stored in a short-teffarpand only data that is identified
as important will be promoted into the long-term cache. Tdentification of a certain item as
important can be done based on the references it received inhthe short-term buffer: if it is
referenced again and again, it is identified as part of the and promoted.

We start our discussion by showing that many benchmarkeohbave a relatively well-defined
core (Section 2), and use this to define the core of a workih{Ssetion 3). We then use the con-
cept of a core to motivate dual cache structures based o tggass (Section 4), and show that
various previous proposals for dual cache structures cantégpreted as attempts to implement
improved support for caching the core working set (Sectjorsgction 6 presents our conclusions.

2 The Skewed Popularity of Memory Locations

Locality of reference is one of the best-known phenomenawofputer workloads. This is usually
divided into two types: spatial locality, in which we see egses to addresses that aear an
address that was just referenced, and temporal localitywhich we seeepeated references to
the same address. Temporal locality is actually the resuWwo distinct phenomena. One is the
skewed popularity of different addresses, where some &ecreced a lot of times, while others
are only referenced a few times [8]. The other is correlatiotme: accesses to the same address
are bunched together in a burst of activity, rather thanddiatributed uniformly throughout the
execution. While the intuition of what “temporal locality”eans tends to the second of these, the
first is actually the more important effect.

While the skewed popularity of memory blocks is well-knowrhas seldom been quantified.
To do so we first need some definition. In the following we cstasitly define memory objects to
be 64 bytes long, because this is the most common size forhee dime. Popularity is measured
by the number of references to such a memory object in eadte residency, i.e. from the time

we differentiate this from aplit cache structure, where one part is used for data and thefothastructions, but
some authors use the terms interchangeably.



it is inserted into the cache until it is evicted. Thus if anea is referenced 100 times while in

the cache, is evicted, and then is inserted again and refdeanother 200 times, this is counted
as two residencies with popularities of 100 and 200 refargmespectively. This characterization
obviously depends on the cache design; the results shovenadnerfor a 16 KB direct mapped

cache.

Histograms of the distribution of residency lengths foeseEPEC2000 benchmarks are shown
in Fig. 1. These show the distribution of residency lengtitstae distribution of references to these
residencies, up to residency lengths of 250 referencesg imickets of size 10. All residencies
(and references therein) that are longer are bunched &gaetthe last bar on the right. This leads
to characteristic bimodal distributions, as examplifiedths wupwise and mesa benchmarks. In
them, residencies are seen to be short (typically up to 1@ eeferences, and seldom more than
50), but most references belong to residencies that aretadhgn 250 references. However, in
some cases the patterns are a bit different. Benchmark swam example of cases were the
residencies in the DL1 cache are all short, so the vast niyajokrireferences are also directed at
short residencies. Benchmark bzip2 is an example of an evenpglaenomenon, where practically
all residencies in the IL1 cache are long.

A more precise quantification is possible using mass-cogpidity plots, as demonstrated in
Fig. 2 [7]. These plots superimpose the CDFs of the same tvildisons used in the histograms
above. The first, which we call thewunt distribution, is the distribution of cache residencies] an
specifies how many references each residency received. FLhupswill represent the probability
that a cache residency is referencetimes or less. The second, called tiass distribution, is
the distribution of references; it specifies the populaoityhe residency to which the reference
pertains. Thug,,(z) will represent the probability that a referencepert of a residency that
receivesr references or less.

Mass-count disparity refers to situations where the twtridigions diverge from each other.
The figure shows examples for the wupwise and mesa benchinankshe SPEC 2000 suite. The
simplest metric for quantifying the disparity is th@nt ratio, which is the unique point in the
graphs where the sum of the two CDFs is unity (if the CDFs haves@ete mode, as sometimes
happens, the sum may be different). For example, in the ddbe mesa benchmark data stream,
the joint ratio is 10/90. This means that 90% of the memefgrences are directed at only 10% of
thecacheresidencies, whereas the remaining 90% of the residencies get only 1a#eotferences
— a precise example of the proverbial 10/90 principle. Thtypacal residency is only referenced
a rather small number of times (up to 10 or 20 in this case)y@dsea typical reference is directed
at a long residency (one that is referenced thousands o$}ime

Two other metrics that are especially important in the cdndé dual cache designs afg, »
andN, ;. TheW; , metric assesses the combined weight of the half of the nesieiethat receive
the fewest references. For mesa, these 50% of the residetagiether get only 2.05% of the
references. ThéV, , metric characterizes the other end of the distributionivég the fraction of
heavy-weight residencies needed to account for half ofdta teferences. For mesa, just 0.2% of
the residencies are enough.

Similar quantifications are possible for other SPEC2000 leacks [6]. For some bench-
marks, the graphs are not well-formed, being dominated laygeldiscrete step. In those that are
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Figure 1:Histograms of residency lengths for select SPEC benchmasksg the ref input.
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Figure 2: Mass-count disparity plots for memory accesses in seleEC3fenchmarks, using the
ref input.

well-formed, the actual values observed for the joint rateye in the range 10/90 to 33/67 for the
data stream, and 1/99 to 24/76 for the instruction streanmevwAdases are dominated by uniform
access (that is, a very large fraction of the blocks are aks®ed in the same way) and then there
was naturally little if any mass-count disparity.

3 Definition of Core Working Sets

Denning’s definition of working sets [3] is based on the pipie of locality, which he defined
to include three components [4]: a nonuniform popularitydidferent addresses, a slow change
in the reference frequency to any given page, and a cowalégtween the immediate past and
the near future. Our data strongly supports the first compiorieat of non-uniform access. But
it casts a doubt on the other two, by demonstrating the coatiraccess to the same high-use
memory objects, while much of the low-use data is only acmbésr very short and intermittent
time windows. In addition, transitions between phases efcthbmputation may be expected to be
sharp rather than gradual, and moreover, they will probaklyorrelated for multiple memory
objects. This motivates a new definition that focuses on #rsigtent high-usage data in each
phase, namely the core working set.



The definition of a working set by Denning is the se&dfdistinct blocks that were accessed
within a window ofT" instructions [3]. We augment this definition by defining toee working set
to be those blocks that appear in the working set and aredéassgnificant number of times”.
The simplest interpretation of this definition is based oantmg the number of references to a
block during a single cache residency. The number of reée®needed to qualify can be decided
upon based on data such as that presented in Figs. 1 and drople, we can set the threshold
so that for most benchmarks it will identify no more than 5%h&f residencies, but more than 50%
of the references. Given the typically skewed distributddmesidency lengths, such a threshold
should be in the range between 100 and 1000 references.

In fact, the highly-skewed distributions imply a partiting of the residencies into two distinct
groups: very many residencies that together receive ontyadl $raction of the references, and a
small group of residencies that together account for thenaagority of references — the ones we
call the core working set. Many dual cache structures attéonpapture this division. The moti-
vation is straightforward. The lightly used residenciesxdbbenefit very much from the caching,
and should not be allowed to pollute the cache. Rather, tHeesahould be used preferentially to
store heavily used data items, such as the small number cifbtbat together account for half of
all references. The dual structure helps in identifying haddling the two types correctly.

While the skewed distribution of popularity is a major colodrtior to temporal locality, one
should nevertheless acknowledge the fact that referercessglay a bursty behavior. To study
this, we looked at how many different blocks are referenoetsvben successive references to a
given block. The results indicate that the majority of inteierence distances are indeed short. We
can then define bursts to be sequences of references to atbédake separated by references to
less than say 256 other blocks. Using this we can study thebdison of burst lengths, and find
them to be generally short, ranging up to about 32 refereioce@sost benchmarks. However, they
are long enough to prohibit the use of a low threshold to ifiebtocks that belongs to the core
working set with confidence. The core members, in turn, exbiiremely long bursts; these are
actually blocks that are used continuously, and therefonead have long gaps between successive
accesses, so all their accesses will seem to be one long burst

The effect of the above definitions is illustrated in Fig. i) the SPEC gcc benchmark as an
example, the top graph simply shows the access pattern ttathe Below it we show the Denning
working set for a window of 1000 instructions, and the corekia set as defined by a threshold
of 16 references to a block (denoted 16B in the legend). Asameeasily see, the core working
set is indeed much smaller, typically being just 10—-20% eft®nning working set. Importantly,
it eliminates all of the sharp peaks that appear in the Deywiorking set. Nevertheless, as shown
in the bottom graph, it routinely captures about 60% of thenmgy references.

4 Cache Bypass

We have established that memory blocks can be roughly divitde two groups: the core working
set, which includes a relatively small number of blocks tr@taccessed a lot, and the rest, which
are accessed only a few times in a bursty manner. The quékgaris how this can be put to use
to improve caching.
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Figure 3: Examples of memory access patterns and the resulting Dgganithcore working sets.

The principle behind optimal cache replacement is very Bmphen space is needed, replace
the item that will not be used for the most time in the futurer(ever) [1]. In particular, it should
be noticed that it is certainly possible that the optimabatfym will decide to replace thiast item
that was brought into the cache, if all other items will beesmsed before this item is accessed
again. This would indicate that this item was only inserted the cache as part of the mechanism
of performing the access; it was not inserted into the catloeder to retain it for future reuse.

By analyzing the reference streams of SPEC benchmarks itssilge to see that this sort of
behavior does indeed occur in practice. For example, wedfdat if the references of the gcc
benchmark were to be handled by a 16 KB fully-associativeeaB0% of insertions would belong
to this class; in other benchmarks, we saw results rangamg 3% to a whopping 86%. Returning
to gcc, if the cache is 4-way set associative the placemer@witems is much more restricted, and



a full 60% of insertions would be immediately removed by tipéiroal algorithm. These results
imply that the conventional wisdom favoring the LRU replaeat algorithm is debatable.

It is especially easy to visualize why LRU may fail by considg transient streaming data.
When faced with such data, the optimal algorithm would dedieasingle cache line for all of it,
and let the data stream flow through this cache line. All otfaehe lines would not be disturbed.
Effectively, the optimal algorithm thus partitions the bacinto the main cache (for core non-
streaming data) and a cache bypass for the streaming comipooa-core). The LRU algorithm,
by contradistinction, would do the opposite and lose alldhehe contents.

The advantage of a cache bypass mechanism can be formatiZetloavs, using a simple,
specific example cache configuration. Assume a cachewith n cache lines, organized into
eithern orn+ 1 equal sets. In either case, the address space is partiiitioedequal-size disjoint
partitions (assuming is a power of 2) using the memory address bits. The two org#nizs are
used as follows.

Set associative: there aren sets ofn + 1 cache lines each, and each serves a distinct partition of
the address space. This is the commonly used approach.

Bypass: there aren sets ofn cache lines each, and each serves a distinct partition aGfdtieess
space, as in the conventional approach. #helst set can accept any address and serves as
a bypass.

These two designs expose a tradeoff: in the set associasigrd each set is larger by one, re-
ducing the danger of conflict misses. In the bypass desigrexira set is not tied to any specific
address, increasing flexibility.

Considering these two options, it is relatively easy to saettie bypass design has the advan-
tage. Formally this is shown by two claims.

Claim 1 The bypass design can simulate the set associative design.

Proof: While each cache line in the bypass set can hold any addresstiaddress space, we are
not required to use this functionality. Instead, we cantlimaich cache line to one of the partitions
in the address space. Thus the effective space availabb@ébing each partition becomest 1,
just like in the set associative design. [

The conclusion from this claim is that the bypass design mesdr suffer more cache misses
than the set associative design. At the same time, we havellbwing claim that establishes that
it actually has an advantage.

Claim 2 There exist access patterns that suffer arbitrarily more cache misses when served by the
set associative design than when served by the bypass design.

Proof: An access pattern that provides such an example is the follpwepeatedly access:
addresses from any single address space partition in & egalnnenn times. When using the set
associative design, only a single set witltache lines will be used. At best, an arbitrary subset
of n — 1 addresses will be cached, and the other 1 will share the remaining cell, leading to
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a total of O(nm) misses. When using the bypass design, on the other harih, atldresses will
be cached by using the original set and the bypass set. Bhnerafly the initial2n compulsory
misses will occur. In this sense, a bypass mechanism cantfilg relieve pressure on specific
cache sets resulting from bursty conflict misses. By extenthe length of this pattern (i.e. by
increasingn) any arbitrary ratio can be achieved. [

More generally, the number of sets and the set sizes needenibiebsame. The size of the
bypass set need also not be the same as that of all the other set

5 Dual Cache Structures

The design of caches is implicitly based on the skewed Higion of references. The well-known
LRU scheme inserts raferenced blocks at the top of a logiaaksand evicts the block from the
bottom of the stack to make room when needed. Core blocks drevizied because they are
referenced again and again, buming them back to the top dftduk each time (Fig. 4). If the
cache is big enough, transient blocks that enjoy a burst tfitgccan also be retained till this
activity ends.

LRU over the whole cache is not practical in processor cadRather, set-associative designs
are used, with typical set sizes of 4 or 8. Here either LRU @anded on each set, or the eviction
can be random. Random eviction works because if you seleatteeaasidency at random, it is
most probably a short residency. Long residencies are, sovdrave a smaller probability of being
evicted.

Nevertheless, core residencies may indeed be evicted ligkmisThe desire to reduce such
mistakes is one of the motivations for using dual cache &iras. Again, this is based on the
skewed distribution of residency lengths. Defining the dossed on the intensity of memory
references naturally leads to a dual design, where one ptré @ache is used for the core data,
while the more transient data is served by another part. fecethis filters non-core data and
prevents them from polluting the cache structure used far data. This is a generalization of the
cache bypass considered above.



Many similar schemes have been proposed in the literatéje Many of them are based on
an attempt to identify and provide support for blocks thaptiy temporal locality — in effect, the
more popular blocks that are reused time and again. For deaRpers and Davidson propose to
tag cache lines with a temporal locality bit [14]. Initigllines are stored in a small non-temporal
buffer (in our terminology, this is the bypass area). If tteg reused, the temporal bit is set
indicating that, in our terminology, these lines should bestdered as core elements. Later, when
a line with the temporal bit set is fetched from memory, inisdarted into the larger temporal cache.

Park et al. also use a spatial buffer to observe usage [13{vekier, they do so at different
granularities: when a word is referenced, only a small subihcluding this word is promoted to
the temporal cache. A more extreme approach is the bypadsamem of Johnson et al. [9]. This
is based on a memory address table (MAT) which counts aczésshfferent areas of memory.
Then, if a low-count access threatens to displace a caclgbddount datum, it is simply loaded
directly to the register file and bypasses the cache altegeffinother scheme is the Assist cache
used in the HP PA 7200 CPU [2], which filters out streaming (ap#tbcality) data based on
compiler hints.

A minimalistic, bypass-only approach, is McFarling’s dgmia exclusion cache [12]. Here
cache lines are augmented with just two state bits, thehiasit and the sticky bit. In particular,
the sticky bit is used to retain a desirable cache line rathan evicting it upon a conflict; the
conflicting line is served directly to the processor withbatng cached. However, this approach
is limited to instruction streams and specifically to caséene typically only two instructions
conflict with each other.

The above schemes have the drawback of requiring histarit@mation to be maintained
for each cache lines. But filtering can also be done withoutrtesy to the use of such data.
For example, Walsh and Board propose a dual design with atdirapped main cache and a
small fully associative filter [18]. Referenced data is firged in the filter, and only if it is
referenced again it is promoted to the main cache. This avpalluting the cache with data
that is only referenced once; however it is limited to digtiishing only between blocks that are
used once or more, and our data indicates that a much higteshthild may be needed. Filtering
with higher effective thresholds may be achieved by usingloaized sampling, based on the
skewed popularity distributions described above [5]. Tdwaiis that every reference to data in
the filter is sampled with a low probability, and only memotgdks that come up in the sampling
are promoted to the main cache. Due to the mass-count dispésenomenon, this effectively
identifies those memory blocks that are accessed a very tangder of times — but without
requiring historical data to be maintained.

A somewhat different approach is provided by Jouppi’s matiache, which works on evicted
blocks rather than on newly accessed blocks. Specificaltlg, victim cache is a small auxiliary
cache used to store cache lines that were evicted from the caghe [10]. This helps reduce
the adverse effects of conflict misses, because the victifertis fully associative and therefore
effectively increases the size of the most heavily usedeaets. In this case the added structure is
not used to filter out transient data, but rather to recoves data that was accidentally displaced
by transient data. By virtue of being applied after lines asieted, this too avoids the need to
maintain historical data. Blocks that are referenced winilthe victim cache are simply returned
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to the main cache.

Interestingly, dual structures are not used only to impqedormance. Sahuquillo et al. [15]
proposed a filter cache, in which a relatively small buffeused for the most highly accessed
elements, in order to reduce bus traffic in multiprocessetesys. A similar design by Kin at al.
[11] was proposed in order to reduce energy consumptionlldyiag the main cache to remain in
power save mode most of the time. Some of the dual structessitded above also reduce power
consumption, by virtue of using a direct-mapped design &ot pf the cache [13, 5]. Thus they
can lead to a win-win situation, where both performance awdep characteristics are improved,
instead of having to trade them off against each other.

6 Conclusions

Processor caches have been an area of active researchddedetevertheless, additional work
is still important due to the continuing gap between prooesand memory. In fact, the problem is
expected to intensify with the advent of multicore processdue to the replication of L1 caches
for each core and the increased pressure on shared L2 caches.

One way to continue and improve is by taking cues from wortlpatterns. We have shown
that memory references display mass-count disparity, avithlatively small fraction of memory
blocks receiving a relatively large fraction of the refezes. But this skewed distribution is at
odds with the classic homogeneous definition of working, ¢kt puts all memory blocks in the
working set on an equal footing. We therefore propose the warking set framework as an
extension and refinement of Denning’s working set. This &aork makes a distinction between
the more important (that is, more heavily used) subset ad#te and the rest. Such a distinction, in
turn, motivates dual cache structures that handle core angtore data differently. By matching
the handling to the access pattern, one can even achievewiwsituation, which provides both
performance improvements and power reduction.
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