Trading off Quality for Throughput
Using Content Adaptation in Web Servers

Michael Gopshtein Dror G. Feitelson

School of Engineering and Computer Science, The Hebrew Unive®4i®f)4 Jerusalem, Israel
mgopshtein@gmail.com, feit@cs.huji.ac.il

Abstract 1. Introduction

A basic problem in managing web servers is capacity The success of many web sites depends on the number
planning. A partial solution is to use content adaptation, of visitors to the site, and on the ability of these users
where the system automatically trades off quality for to complete their intended transaction, be it a purchase
throughput, e.g. by eliminating graphical decorations in an online store or reading an article on a news site.
and adjusting page layout. We evaluate this approachThis goal is reflected by the ability of the users to per-
based on a full implementation in Apache and increas- form the whole sequence of HTTP requests required
ing load patterns. The implementation uses two alter- for such a transaction. Failure of the user to get a proper
native versions of the files, and employs URL rewrit- response in one of the steps will put the whole transac-
ing rules to select which version to use. Triggering a tions at risk and possibly lead to financial loss. web site
switch from one version to the other is done based onowners therefore spend considerable effort to be able
readily available load metrics. The experiments show to serve every single request. This includes various op-
that throughput can be increased by a factor of 2 to timization techniques implemented in the web servers,
4 at the price of minor to acceptable deterioration in and hardware overprovisioning which aims to provide
graphical quality. Increasing throughput by an order of high availability and acceptable response times in cases
magnitude is also possible, but requires larger compro-of peak load on the system.
mises. Nevertheless, this is still achievable without a Load fluctuations imply that a large fraction of the
real effect on content. Thus content adaptation is a vi- available facilities are actually unused most of the time.
able tool, but may be insufficient by itself for handling This is partly due to the normal periodic fluctuations in
huge surges in load such as flash crowds. the average load, which are a function of the time of
day. But a larger problem is the phenomenon of “flash
crowds”, where a very large number of web surfers
converge to one site and cause a surge in the load. A
possible cause for such flash crowds is Shashdot
effect [16]. This occurs when a popular web site posts
General Terms Design, Measurement, Performance @ link to a smaller site, such that the number of users
following that link largely exceeds the usual load on
Keywords Web server, Overload, Throughput, De- the smaller system, in some cases causing it to become
graded service unavailable.

Exceptionally high loads can also occur as a result
of singular events. One rather extreme example is the
traffic buildup at CNN.com during the 9/11 tragedy
[9]. Measurements showed that traffic increased expo-

o , _ _ nentially, and the number of HTTP requests was dou-
e et ioobon e bled every 7 minutes: it grew from less than 85,000
definitive version was published in SYSTOR 2011. hits/second to 229,000 hits/second in just 15 minutes.

Categories and Subject Descriptors C.5.5 [COM-
PUTER SYSTEM IMPLEMENTATION]: servers; H.3.2
[INFORMATION STORAGE AND RETRIEVAL]: In-
formation Storage—File organization

The description of the actions taken by CNN staff to sized functional transparency, where the appearance of
continue to serve all incoming requests is illuminat- the page does not change and therefore there is no
ing. Among them were increasing the number of web loss of quality. For example, this is the case when
servers from 10 to 52 in a short time interval, and shut- images are compressed or unified into a single file
ting down monitoring software to free additional re- (sprite) and then cropped for display. (see [15] and
sources for the web server processes. In addition, thenttp://wuw.websiteoptimization.com/ for sur-
content of the home page was reduced, until the wholeveys of such techniques.) Such optimizations should al-
page consisted of only 1247 bytes of HTML, a logo, ways be used to reduce infrastructure costs, and there-
and a small picture. fore cannot help when coping with overload. Other
The most common solution to the load fluctuation adaptations focus on improved accessibility. For exam-
problem nowadays is to use a hosting service. The ideaple, this may be done by CSS-restyling to remove back-
is that when many independent web sites are hostedground shading and increase font sizes [6]. As this just
together, it is unlikely that all of them would experi- changes the appearance of a page without changing the
ence load surges at the same time. Thus the shared inamount of information that is transmitted, this has no
frastructure can be partitioned in different ways based effect on server throughput.
on momentary requirements, reducing the required To achieve a significant improvement in throughput
overprovisioning. However, not all web sites use such one must use more drastic content adaptation and do so
shared hosting services, and even large sites may suffeat the web server itself. The typical approach used is to
from overload. For example, Facebook also reportedly create dighter version of the original web site which
have builtin levers allowing site administrators to dis- will allow serving a larger number of users [1, 2, 12].
able peripheral features and focus on supporting coreTechniques to achieve this include “adaptation tags” in-
features when performance problems occur [13]. This serted manually into HTML files, image quality degra-
is an example of Brewer’s “DQ Principle”, where large- dation by lossy compression, and elimination of small
scale services are managed by manipulating either thecosmetic items from the page. Indeed, in our previous
data-per-query or the queries-per-second [4]. work we also found that reducing the number of ele-
Following these examples, our goal is to understand ments on a page is the most important optimization [7].
to what degree manipulations of the structure of aweb Similar methods for content adaptation have been
page can be exploited to trade off quality for through- developed in order to support mobile devices with lim-
put. In previous work, we analyzed how the structure ited bandwidth [11]. For example, it has been suggested
of a web page influences the work required to serve it that intermediary services adapt the content provided
[7]. For example, this showed that with normal caching by a server to the context of the user, e.g by reduc-
the disk is not expected to be a bottleneck, and that re-ing image sizes [10]. While the applied adaptations are
ducing the number of requests made is more importantsimilar, the motivation in this case is reversed, as the
than reducing the total size. We now use these findingsbandwidth bottleneck is related to the user rather than
to guide content adaptation actions similar to those per-to the server.
formed by the administrators of CNN.com. Our main In this paper, we present results of a full imple-
contribution is in the experimental quantification of the mentation of content adaptation based on the Apache
overheads involved and the performance benefits thatweb server, and demonstrate that throughput can be in-
may be obtained. While our experiments are limited to creased by a factor of 2 to 4 at the price of minor to
static pages, we note that the results nevertheless proacceptable deterioration in quality. This improvement
vide insights and data that are also applicable to theis much higher than that previously reported in [12],

dynamic creation of web pages on the fly. which was less than a factor of 2. It also improves on
the results of [2], who achieved improvements of up to
2. Related Work a factor of 7, but only for files of hundreds of kilobytes;

. for 64KB, theirimprovement was also less than a factor
Obvious approaches to reduce web server overload are) . .

. . of 2. We also show that if more extreme deterioration
to use caching and replication [14]. However, when

this is not enough, content adaptation may be neces-'s considered, the throughput improvement may reach

. . a factor of 10.
sary. Most previous work on content adaptation empha-

3. Operation Modes external tools. One such example is the utilization of
The web site optimization tool proposed in this work is worker threads, which is the percentage of threads that

composed of two parts: offline preparation of optimized &€ PUSY processing some user’s request at a given mo-
versions of the original static files, as described in [7], MeNt, out of the total number of such threads config-
and online monitoring of the web servers operation, ured on the server. ThIS information can also be used
leading to a switch between the normal and optimized &S & trigger for optimized mode.

versions of the content when required. In this section L

we focus on the indicators for performance of the web 3.2 Switching Between Modes

server, and how the transition between versions is per-When the system detects the need to boost the perfor-

formed. mance of the web server, as described in the previous
section, it should configure the server to serve opti-
3.1 Performance Indicators mized content of lower quality. Different methods to

Recall that our purpose is serving as many users asSWitch between alternative versions of the content may
possible. Thus a suitable metric can be direct measure€ appropriate for different web servers. In our work
ments of the number of HTTP requests per time unit the server chosen as a target platform is Apache HTTP

and the server response times. The main problem withS€Ver 2.2, running on the Linux operating system.
such metrics is that there is no immediate way to define Whenan HTTP requestis processed by aweb server,
thresholds on these values. For example, regarding thdhe URL is resolved to a filename, and, in case of static
number of requests, we will need to know the maximal files, the content of this file is sent back to the client.
number of requests that the server can handle concur-Th€ simplest implementation is to perform the URL-
rently. This data is usually unavailable, and moreover, {0-file mapping is as follows:

may depend on the specific requests. As for response ¢ The web site is associated with a certain directory in

time, this may be important for satisfying service-level the |ocal file system, referred to as the “web root”,
agreements. But server-side response time may be hard

to translate to user-perceived response time, due to net-
working effects. And in any case, it is again not clear
where to place the threshold. Like previous work on content adaptation [1], we as-

An alternative approach is to monitor system re- sume that an optimized version of static web content
sources, especially utilization of hardware components, is stored under a separate directory, which we will as-
under the assumption that service degradation is alwaysume is calledpt. Optimized files use the same rela-
caused by overload on some resource. Naturally, differ-tive paths as the original files have relative to the web
ent hardware and software configurations, coupled with root directory. For example, the optimized version of a
different workloads, may cause different resources to logo originally stored aitmages/logo.gif will be stored
become a bottleneck. However, since the total capac-atopt/images/logo.gif. Thus, to serve optimized con-
ity of each hardware resource is known, it is always tent, itis enough to change the configuration so that the
possible to define thresholds in terms of percentage ofopt directory becomes the new web root.
utilization of each resource, CPU time being the most However, we note that even static data can change
obvious example. over time, e.g. when new files are added, or existing

Monitoring hardware resources has the additional files are deleted or modified. There may then be a cer-
advantage that we can then choose an optimization altain delay between the creation or modification of the
gorithm which reduces the use of the specific hardwareoriginal data, and the generation of an optimized ver-
resource that is overloaded. This is based on the resultsion reflecting the changes. The system should there-
shown in [7], where some methods had a strong effectfore be able to serve the original data if an optimized
on CPU time consumption, while others affected the version does not exist or is out of date. This is not pos-
required network bandwidth. sible if the web root directory is simply switched.

In addition to monitoring hardware resources, most The desired functionality can be achieved by us-
web servers make their internal performance indica- ing Apache’smod_rewrite rule-based rewriting engine,
tors and “health” status available for administrators and which supports the definition of advanced URL-to-file

e The “file” portion of the URL is interpreted as a
relative path inside the web root directory.

2. The stored copy of the web site was configured as
the local site of an Apache web server.

3. In order to emulate simultaneous traffic from multi-
ple users, a series of HTTP requests were recorded
as a LoadRunner script [8].

= ol 4. An “optimized” version was created by adding a
symbolic link to the web site root directory. Thus
all the files remained the same both in the regular
and the optimized versions.

1200

1000

Number of Transactions

2856 2838 30 302 304 306 308 31 312

Response Time (sec 5. Based on the recorded LoadRunner script a load

was generated on the web servers, with half of the

Figure 1. Performance Overhead ofnod._rewrite virtual users connecting to the original web site, and
Rules. the other half to the optimized version, using the

mod_rewrite rules as explained above. The average
time to execute all requests in a single instance of

mapping instructions [3]. In particular, we can add _
the script was measured.

rules that will redirect requests to the optimized ver-
sion only provided that the following conditions are The results are shown in Figure 1. This shows that
met: the distributions of response times of the server are
practically the same for both the normal version of
the web site, and the one havimgod_rewrite rules
activated. We therefore find that the overhead of rewrite
rules is negligible, so we can use the method described
above safely.

1. The web server is currently running in optimized
mode. In order to flag the operating mode one can
use an environment variable (global or internal to
the Apache server), or the existence of a special file
in a known location; both methods are supported by
the rules engine.

2. The optimized version of the requested file already
exists, and is up to date.

Experimental Validation

In this section we validate the methods proposed in the
previous sections by constructing a full implementa-
One of the advantages of this method for content redi- tion, and measuring the effects of the proposed opti-
rection is that the configuration files of the web server mization methods in a realistic environment.
are modified only once, when the system is integrated.
After this initial change the server continues operating 4.1 Experimental Setup
in its regular mode, and all further activations of op- The environment that was used for all performance
timized content are triggered by external componentstests was as follows.
and are made effective immediately. We used an Apache web server, version 2.2, run-
A possible problem with using URL rewriting is the ning on a Linux operating system (Fedora release 11,
overhead involved. We therefore measured the perfor-gernel 2.6.30.8). The hardware base was a Dell Opti-
mance of an Apache web server with and without URL pjex GX260, with an Intel Pentium 4 processor running
rewriting. The test was designed in the following way: 5t 2.4GHz, and 500 MB of memory. The web server
ran with all default configuration parameters, except as
| noted below in specific experiments.
The load on the web server was generated by the
¢ HP LoadRunner tool [8], version 9.50. Ti@antroller
is the central component of LoadRunner. It orchestrates
the generation of the load thypad Generators, and col-
lects statistical data which is finally analyzed with the
and Analysis tool. The controller was installed on an HP
* Allimages were copied too. Compagq 8510w, with an Intel Core 2 Duo CPU T7500,

1. A local copy of the web siteww.adagio.com (an
online tea shop) was created using the HTTrack too
(http://www.httrack.com/). The tool was con-
figured with all default settings, with the addition o
the following parameters:

e Maximal search depth was limited to 3 clicks,

running at 2.2 GHz, and 4 GB of memory. This ma- current group”, meaning that they should be fetched to-
chine was running Microsoft Windows Vista OS (En- gether, because they actually constitute the elements of
terprise edition, version 6.0.6001). This machine was a single page.

also used as one of the Load Generators. In addition In addition, it is possible to insert think times be-
there were three other Load Generators: tween requests in the script. Since we typically only
consider a single page request, think times are not
needed. Another parameter specifiespheing of re-
peated iterations of the whole script. The options for
this parameter are:

e Two identical to the web server, with Microsoft
Windows Server 2008 OS (Standard edition, ver-
sion 6.0.6001).

¢ An additional machine with an Intel Pentium 4 Pro- _ _ _
cessor at 3.2 Ghz, and 2 GB RAM, running Mi- 1. Repeat as soon as previous iteration ends.
crosoft Windows Vista OS (Ultimate edition, ver- 2. Repeat after a certain amount of time from éne
sion 6.0.6000). of the previous iteration, selected at random from a

range.
All computers are connected by a 100 Mb/sec Ethernet ¢) i
LAN via a Linksys WRT54G router. 3. Repeat after a certain amount of time from Hee

ginning of the previous iteration, selected at random
from a range. This can lead to executing the script at
a given average rate, regardless of the time needed
for each execution. However, if the previous itera-
tion takes too much time, the new one is delayed.

The load tests were performed on a local copy of
the Top500 sit@ttp: //www.top500.org/. The copy
was captured using the HTTrack tool, with all default
parameters, except for:

¢ The depth of the search (when following links) was o ¢ thi ter | lained below in th
limited to 3. This is sufficient as most of our experi- _ur use o 'S. parameter 1S explained below in the
different scenarios.

ments only accessed a page or two from the site, as oth tabl ¢ fthe LoadR -
is most common in flash crowd scenarios. includ:'r setiable parameters ot the Loadikunner scrip

e The instructions in theobots.txt file were ignored,
as this was not relevant for our use. e Simulation of the browser’s cache. If multlple HTTP

o _ . requests to the same URL appear in the script, the
All pages of this site include JavaScript code which a4 yest is actually sent only once.

is intended to randomize the order of appearance of
advertisementimages, by injecting external images into
static HTML content. These functions were removed
from all pages, and replaced with static images of the
same type.

To run a performance test, the LoadRunner con-
troller implements a scenario that specifies how many The analysis of performance results relate to trans-
Virtual Users (vusers) to create and when. These Vir- actions, which can be defined as any subset of instruc-
tual Users are simulated by the LoadRunner Load Gen-tions in the script. In our experiments the whole script
erators. The activity of each Virtual User is defined as was always considered a single transaction (and in most
a sequence of instructions listed in a script file, which cases this corresponds to downloading a single page).
are repeated multiple times. In addition, transactions may end with eitlsaccess or

Instructions may be either individual HTTP requests failure status. A failure can be caused by any an error,
or complete HTML requests, in which case embed- such as a new connection being refused by the server,
ded objects are also requested automatically. We usedy a timeout while waiting for server’s response, etc.
HTTP requests because this leads to better performance _ o
of Load Generators, as there is no need to parse HTML4-2 Basic Optimization Performance Tests
content of responses when replaying the script during aln order to evaluate the overall performance implica-
test. The HTTP requests are generated based on recordions of the suggested optimizations, and in particular
ing the activity during an actual interactive recording the potential increase in throughput (i.e. the ability to
session. Sets of requests can be designated as a “corserve more clients under loaded conditions), we need to

e Connection management. To emulate real browser
behavior, two connections to the server are opened
by each user, and concurrent groups of HTTP re-
quests are downloaded simultaneously on both of
them.

create optimized versions of the web site. In this section T5p1e 1. Summary of results for default Apache con-
we present results for basic optimizations and different figuration.

server configurations. In the next section we consider parameter normal optimized

a more extreme optimization, and a workload scenario avg. resp. time _ 66.5 sec 31.9 sec

that simulates a flash crowd. successful 12,709 27,530
failed 4,510 7,955

4.2.1 Workload Scenario

Given that our load is generated by LoadRunner, we
can emulate an optimized site by modifying the Load- = o R R s
Runner script rather than modifying the site itself. To

do so, we simply delete certain requests from the Load-
Runner script, specifically those representing decora- ¢ *
tion images and blocks of HTML that are to be re-
moved. The modified script then downloads the same
files as a browser directed to the optimized version
of the site would, albeit the content of these files is

not changed or compressed. Using this approach on ¢
manually-adapted version of the Top500 site leads to

480
460
440
420
400
380
360
340
320
300
280
260
240
220
200
180

m

S13ENA J0 J3GUINY

Average Response T

160
140
120
100
80
&0
2

20

the following changes:
e The number of HTTP requests is reduced from 81 Bzt 2 TR =
R Average Transaction Response Time - Running Vusers
in the original script to 43 in the optimized one " =
(reduced by 47%). o
e The total size of downloaded files is reduced from =
702KB in the original script to 570KB in the opti- o
mized one (reduced by 22%). P o E
In order to investigate the effect of load and how ¢ - = f
much the server can support, we chose to create < = -
scenario in which the load on the system — as reflected .. T
by the number of users — grows with time. Thisisdone ~ * .
in three phases, enabling the system to stabilize eact
. . Elapsed scenario time hh:mm
time before the load continues to grow. Moreover, at g, | = e -
-H nnnnn a Wusers 1 Run 8 343675 520 382 135.783

the higher loads the rate of growth is reduced. These
considerations led to the following profile:

Figure 2. Average response times for default Apache
configuration, in relation to the number of vusers. Top:

* In phase one, starting at the beginning of the test, yormaf script. Bottom: script reflecting optimized site.
200 vusers are created at a rate of one new user every

2 seconds. _
_ _ _ 4.2.2 Default Apache Settings
e In phase two, starting at 30 minutes into the test, an

additional 200 users are added at a rate of one use
every 5 seconds.

e Finally, in phase three, starting at 1 hour into the
test, the last 200 users are added at a rate of one us
every 12 seconds.

[he first test was conducted on the web server with all
the default settings, as it was first installed. The results
in Table 1 are based on the first 1:20 hours of the sce-
nario. These results show a 52% reduction in average
etrransaction response time, and 106% increase in total
number of completed transactions during the same time
This profile of increasing users is shown in Figures 2 interval. This makes sense given that the number of
and 3. The pacing parameter was set to use random inHTTP requests per transaction was nearly reduced to
tervals in the range between 15 and 25 seconds betweehalf; it also demonstrates that the total volume of data
iterations of the script for each vuser. is less important than the number of requests. Detailed

response times are shown in Figure 2. This shows that
with the normal site response times start to grow at less
than 4 minutes (around 100 vusers), and with higher
loads become erratic in the range of 30 seconds to 2
minutes. With the optimized version they only start to
grow at about 6 minutes (around 160 vusers), and even
under high loads remain in the rang of 30-60 seconds.
Note that in both cases the system does not seerr
to become saturated. This is a result of how LoadRun-
ner's Load generators operate. Recall that vusers are
scheduled to execute the script once every 20 second:

Average Respanss Time (seconds)

Average Transaction Response Time - Running Vusers

183N, J0 JaqUINY

40
E 20

Elapsed scenario time hh:mm

on average. But if the previous iteration did not termi- e
nate yet, the next one is delayed. Thus we can see the™

load being generated as an open system while the re-
sponse times are low, and as a closed system once re
sponse times start overflowing the configured time in-
tervals between successive iterations.

4.2.3 Enhanced Apache Settings

The default Apache setting are very conservative. We
therefore conducted another set of tests with the fol-
lowing enhancements to the configuration.

Average Respanss Time (seconds)

e Keep-Alive connections. By default the server does

nsac
Running users

¥ Graph's Std De:
0104 12543 1383 8548 15.209
7 2353 430 353 130482

Average Transaction Response Time - Running Vusers

a0
2 480
28 460
40
20
24 400
2 360
2 360
360
fazo
8 300
7 280
260
260
13 220
2 200
n 180
180
140
120
100

188N J0 JBGUINY

canwrno e

1 »
00:05:00 00:10:00 0:15:00 00:20:00 002500 00:30:00 00:35:00 00:40:00 00:45:00 DO:50:00 00:E5:00 01:00:00 01:05:00 01:10:00 01:15:00
Elapsed scenario time hh:mm

not enable the Keep-Alive feature, and as a result a Bmwsw=s 5" RN TR R 1

Color Giaph Scale Measuemert t Graph's MinimumGraph's Averags Graph's Masimun Graph's Median G1aph's Std. De

ction_Transaction o7z 4.864 20188 0228 502

new TCP connection is opened for each HTTP re- Figure 3. Average response times for enhanced
quest. With such a configuration any reduction in Apache configuration. Top: normal script. Bottom:
the number of HTTP requests has a very large ef- script reflecting optimized site.

fect, which might cause our results to be overly op-
timistic. To be more realistic, we activated this fea-
ture by adding the configuration likgepAlive On.
MaxKeepAliveRequests was left at the default value
of 1000, andKeepAliveTimeout at 10 seconds.

e Caching. In-memory caching is also disabled in the
default configuration. As a result the server reads the

default configuration, so requests may be delayed
waiting for one of the threads to become available
or for the creation of a new one. We increased the
number of processes allowed to 1500 using\the-
Clients directive.

content from the disk on each HTTP request. This All other configuration options were left at their de-
leads to longer response times and increased lockiayt values, e.gLoglLevel info. In a real deployment it

contention between the server's worker threads. Wewould be beneficial to adjust all these parameters auto-
therefore enabled in-memory caching by uncom- matically to optimize performance, for example as sug-

menting the section for th@od_mem_cache mod- gested in [5].
cache size is 4 MB. the enhanced Apache configuration (and the number of

¢ Working Processes. Apache allows configuring the running vusers) are shown in Figure 3. During the first
maximal numbers of server processes, and the max-35—40 minutes both versions of the script achieved sta-
imal number of worker threads per process. In addi- ble transaction times, with the regular version running
tion the configuration defines the maximal allowed at 270 msec per transaction, while the optimized one
number of idle threads, before some of them are required only 138 msec — a reduction of 49% in aver-
closed. All these parameters have low values in the age response time. At the same time the maximal num-

“ T duced by 47%, and this indeed causes a nearly-factor-
of-2 reduction in the response time, but it dosst
double the achieved throughput. On the other hand the
total size of downloaded content is reduced by 22%
only, and the throughput indeed grows by a similar fac-
tor. When any single resource saturates, the throughput
depends on the saturated bottleneck and not on the po-
tential service rate.

As explained above, these tests have the property

of converging to a “closed system” once the load on

the server was high enough. In the next section we
s i G T overcome this limitation and create a scenario in which

014z
] 11936 1875 11.25 453

: the number of new users trying to access the site does

Transactions per Second - Running Vusers

= not depend on current performance of the server.

MNumber of Transactions
198N J0 JaqUIny

. 4.3 Flash Crowd Simulation

In the previous section we described performance tests
aimed to compare the behavior of the server on regular
and optimized content. However, the workload did not
stress the server too much because of a feedback effect:
longer response times cause longer delays before addi-
T tional requests were made. In this section we describe

80

c a series of tests with the goal of simulating a slash-

00:05:00 00:10:00 00:15:00 00:20:00 00:25:00 "Euzlgzu""szi::nnnnﬂfn";fﬁ:n[m"" 00:50:00 00:55:00 01:08:00 01:05:00 01:10:00 01:15:00 dot eﬁ:ect. Thus we Create an “open System”, Where

Seale
erl

5

L

Murmber of Transactions
198N, J0 JaqUINY

Graph's Minimum Graph's Aveiage Graph's MaximunGraph's Median Giaphs Std. De
0

N — new users continuously arrive at the web site at a cer-

- tain rate, regardless of the current performance of the
Figure 4. Completed transactions rate. server. Apache was configured in the enhanced mode
as above.

As is typically the case for flash crowds, all simu-
lated users make a request for a single page, so in this
case basically page=transaction=script. The load gen-
erators do not simulate any think time, as they are sup-
r{Josed to be simulating independent new users.

ber of supported vusers grows from about 260 to about
340.

Starting from certain point in time (about 36 minutes
for the regular version and 42 for the optimized one) we
see a sharp growth in the average response time, whic
stabilizes only when the load on the system becomes; 31 Optimization Levels
constant. This is most probably caused by contention
for some system resource, causing requests to wai
as was the case for the default Apache configuration.
By looking at the number of completed transactions
per second (Fig. 4), we find that the regular script e Regular
stabilizes on a rate of about 16 transactions/second ate Moderate optimization
the peak, while the optimized version reached around
20 transactions/second. However, the average response
time of transactions is much lower for the optimized Regular A slashdot effect, in its usual form, is caused
version. by a link to the web site being posted on another, much

These results suggest that with the optimized Apachemore popular site, such that a large number of readers
version the CPU is less of a problem, and the network of the popular site follow this link. The workload gen-
may become the bottleneck. Thus in the optimized ver- erated in this use case is expected to show high local-
sion of the script the number of HTTP requests is re- ization. In particular, we expect a large volume of users

The simulation was repeated using three versions of the
oadRunner scripts, representing three possible levels
of content adaptation at the server:

Extreme optimization

to request a single page from the site (including all its
embedded components). Note that this is not necessar
ily the home page, but rather whatever internal page
was pointed to by the link.

To emulate this behavior, the LoadRunner script
records a request to a single article on a local copy of
the www.top500.org site. Overall the script opens 2

TCP connections, makes 59 HTTP requests and down+ =

loads a total of 322 KB of content.

Moderate optimization An optimized version of the

script was based on the regular script, and was create(
by eliminating requests to decoration images and ad-
vertisements. In addition, two images (the logo and a

ssssss

Innovation that
matters.

e

“story” image) were compressed by reducing the qual-
ity of the image in JPEG lossy format. As result the

script issued 29 HTTP requests, and the total size of
the content was 188 KB. It still opened 2 TCP connec-
tions.

Extreme optimization Given the slashdot effect sce-
nario, we decided to also test the system under a more
extreme optimization scheme, which would be more
aggressive in eliminating components of a page than
the one used in the previous section. This was achieved
by applying the following techniques:

¢ Removed all images except for:

500

PROJECT LISTS STATISTICS RESOURCES N

Whie Inte was hoiding the IDF

u
s

* Logo (compressed from 30 KB GIF to 3 KB
JPEG);

= “Story” image (JPEG, compressed from 7.4 KB
to 2.4 KB).

¢ Removed all JavaScript references.

¢ Removed all references to stylesheet files, but copied
the content of some of the CSS files to the body of
the main HTML file, in order to preserve the ba-
sic formatting of the page. As result the size of the
HTML page grew from 37.9 KB to 55.2 KB.

¢ The script was modified so that it makes all requests
on a single TCP connection. It's possible to make
the browser reuse the same connection for all re-
guests by injecting a JavaScript code which will re-
guest all relevant images synchronously, after hav-
ing the HTML page completely downloaded. This

Figure 5. Article from www.top500.0rg. Top: original
version. Bottom: extreme optimized version. Note how
the tabs at top-right are rendered sequentially due to
simplified CSS usage.

4.3.2 LoadRunner Configuration

As noted above, load runner delays additional request
iterations if previous ones have not ended yet, leading
to a “closed system” scenario. In order to simulate an
“open system” with the LoadRunner tool, the following
configuration was required:

e Connection establishment time was limited to 10
seconds;

e Download time for each HTTP request was limited
to 12 seconds;

is advisable to reduce load as it reduces the number

of opened connections.

See Figure 5 for a visual comparison of the regular and
extreme optimized versions of the page.

e Overall transaction response time was limited to 25
seconds. In the case that the transaction could not be
completed within this time interval, it was aborted
and marked as “failed”. This behavior matches a

Transaction Success Percentage (regular)
120 T

T T T T T T T
Failed Transactions ==

Succeeded Transactions 120
100
100
80
80

60

40 -

Number of Transactions (/second)

40

Number of Transactions (/second)
@
3

20

ol) i |
00:00 03:00 06:00 09:00 12:00 15:00 18:.00 21:00 24:00 27:00 30:00 33:00
Time (minutes:seconds)

Figure 6. Transaction success rate for regular script.

Transaction Success Percentage (optimized)

T T T T
Failed Transactions ===

Succeeded Transactions

0 L L |11]
00:00 03:00 06:00 09:00 12:00 15:00 1800 21:00 24:00 27:00 30:00 33:00
Time (minutes:seconds)

Figure 7. Transaction success rate for optimized

script
real-life case of a user waiting for a web page, and
aborting the download it it takes too long;

e Each virtual user’s thread was configured to start a 160
new transaction every 40 seconds (randomized in 160
the range [37, 43] seconds). Considering the limit
on total transaction time mentioned above we are
assured that each new iteration starts within the re-
guested interval, and is not affected by server’s re-
sponse times;

e The number of such user threads was incremented in
steps of 500-1000 users followed by a constant load
for three minutes. At the peak the number of threads 2
reached 5,000;

140

120

100

80

Number of Transactions (/second)

Transaction Success Percentage (extreme)

T T T T
Failed Transactions [client] m====1

Succeeded Transactions

0
00:00

03:00 06:00 09:00

12:00
Time (minutes:seconds)

15:00

18:00

21:00

24:00

27:00

At the peak load 5,000 user threads were generatingFi
a load of 125 transaction attempts per second (eachm
thread initiating a transaction once in 40 seconds).

4.3.3 Results

Figures 6, 7 and 8 show the success rate of attempted
transactions for regular, optimized, and extremely opti-
mized scripts respectively.

Figure 9 summarizes the data for success rates of
transactions and provides a comparison between dif-
ferent versions of the script (and thus different levels
of optimization). We can make the following observa-
tions:

160

140

120

100

80

Number of Attempted Transactions (/second)

1. The regular version of the site successfully servesa =

Transaction Success Percentage (summary)

gure 8. Transaction success rate for extremely opti-
ized script.

load up to 23 transactions per second, the optimized oLt

T T
Regular Script

Optimized Script
Extremely Optimized Script
100%

T
—_—

——

version reaches 35 transactions per second, and the

20 40 60

Number of Succeeded Transactions (/second)

80

100

L
120

140

160

180

extremely optimized — more than 100 transactions Figure 9. Summary of transaction success rates.

per second.

Transaction Success Percentage (summary, zoomed) 1 . C P U Utl I | Zat' O n ,

" o | | Etm.y8§f'§§§: 3 2. Number of incoming TCP connections per second;
g =l | 3. Status of running processes of the Apache web
; “T .] server.
: " - ’ The CPU utilization was collected using the “sar”
m .l 1 .] utility, available as an optional package for Linux dis-
’ oL 4 x 1 tributions. It collects certain cumulative activity coun-
; o1l) * | ters from the operating system, and performs the re-
E I xx | quired calculations in order to generate the requested
o data. Specifically, the commanak -u 5 1 was used to
% 2 w = % w e show the average CPU utilization during the last five
Number of Attempted Transactions (/second)
seconds.
Figure 10. Average transaction response time. The total accumulated number of incoming TCP

connections can be found in thieroc/net/snmp vir-

2. Starting from 45 transactions per second the regu-tual file, which is available in a default installation
lar version shows better success rate than the opti-of Fedora Linux, using the attribute narfiep: Pas-
mized one. We assume this is caused by the settingsiveOpens. It's possible to calculate the average num-
of connection establishment timeout (10 seconds), ber of new TCP connections per second based on two
which creates an effect of “admission control”, al- values, when taken with regular time intervals (in our
lowing fewer simultaneous active transactions in the scripts an interval of 5 seconds was used).
regular scenario compared to the optimized version. The Apache web server includesnad_status mod-

And for both versions of the site the success rate isule, which, once enabled, allows collecting various
lower than 50% at such workload. statistics regarding the current state of the server by ac-

Figure 10 shows the average transaction responsé€SSing thenttp://server/server-status page fttp://
times (of successful transactions), comparing different server /server-status?auto provides the same informa-

versions of the script. When the load on the server is o in machine-readable format). One of the parame-
relatively low, the average response times are: ters available on the status page is the current state of

each process of the web server. Our script uses this data

* Regular script: around 100 msec.; to collect the total number oflle processes.
e Optimized script: around 40 msec. (reduced by
60%); 4.4.2 Server Modes

* Extremely optimized: 13 msec. (reduced by 87%). The optimized version of the site is activated by redi-
Response times for the regular script start to increase'€cting all requests to an alternative file tree, in which
when the load is as low as 15 transactions per second,the modified content is stored. To implement this, the
and reach a value of 1 second at a load of 25 transacollowing lines were added to thiettpd.conf configu-
tions per second. The optimized one reaches this valudation file:
at 37 transactions per second, and the extremely opti-RewriteEngine On
mized one at a load of 110 transactions per second. RewriteCond /var/waw/html/opt.do —f

RewriteRule ~/top500(.*) \

4.4 Switching Between Modes
/var/www/html/opt/top500$1

The goal of this test is to validate the automatic mecha-
nism for switching the web server between normal and The first line turns thenod_rewrite module on. The

optimized modes. second line is the condition, which should be satis-
_ fied in order to actually activate the path-rewriting
4.4.1 Performance Indicators rule; in this case we want to test for existence of the

The algorithm which controls the running mode of the /var/www /html/opt.do file. The last line redirects all
server is based on the following performance counters:requests for theop500 site to the/var/www/html/opt/

top500 directory, in which the optimized versions of }
the original files are located. :

Once the Apache server is started with the new con-
figuration, we can instantly switch to optimized mode
by creating the/var/www/html/opt.do file, and can
switch back to normal mode by deleting this file.

We should also pay a special attention to configura-
tion of the caching algorithm used by the server. The
Apache server supports two major modes of caching:
URL-based and path-based. URL-based mode is not
appropriate for our purpose, as once a URL is cached
any subsequent requests to that URL would bypass allFigure 11. Average Number of Transactions per Sec-
rewriting rules, and the same version of the file will be ond
served until this cache entry expires. The URL-based
mode can be used in our context only if the cache can At the same time also reduce the “safe” value of
be cleared as part of the transition between normal and number of connections per second by 30%.
optimized modes. In our tests we used the path-based
caching scheme, in which the files are cached in the
memory according to their physical location in the file
system.

Number of Transactions

1500
Elapsed scenario time mm:ss

The script uses the number of concurrent connec-
tions as a measure for the number of active users in the
system. We can't rely on the number of requests per
second, as the number of components in a single page
4.43 Switching Algorithm is different for normal and optimized versions of the_

_ _ _ site, so the average number of requests per transaction
We have created a rather simple Perl script which con-js 3150 different.
trols the operation mode of the web server, and initi- Note that the number of TCP connections per user
ates a change of the mode when a need is detected. Thgnanges too. With the regular site each client usually

script runs in an infinite loop, which performs the fol- gpens two simultaneous connections to the server, but

lowing set of commands every five seconds: we assume that a single connection will be opened for
1. Collect performance measurements as explained®” optimized version. This behavior is taken into ac-
above count, and the number of connections per second is

normalized when comparing connection rates\of-

2. While in theNormal mode record the throughput of mal andOptimized modes.

incoming TCP connections per second, and keep the
highest value as an indicator for a “safe” load onthe 4 4 4 Results

server. The script always starts a transaction by requesting the

3. When in theNormal mode, switch toOptimized same HTML page: one of the articles available on the
mode if the CPU utilization exceeds a threshold of 14,500 site. It then searches for a certain string in the

85%, by writing the/var/www /html/opt.do file. content, in order to identify which version of the page
4. When in theOptimized mode, switch back t&or- was returned by the server. According to the version
mal when all of the following conditions are met of the page, the script decides what set of HTTP re-
three times in a row: guests to send to simulate loading additional compo-
e CPU utilization is below 85%: nents of the page. This way the set of requests gener-

ated by LoadRunner is identical to that of a real web
browser, and depends on the mode in which the server
is currently running.

Figure 11 shows the load imposed on the server
during this test. In the first 10 minutes the users were
The switch back ttNormal mode is done by deleting arriving in a constant rate of 15 transactions per second
the previously createdvar/www/html/opt.do file. on average. At that time the load started increasing

e There’s at least one idle server process;

¢ The rate of incoming TCP connections is lower
that the maximal “safe” rate which was stored
while running in theNormal mode.

CPU Utilization and Running Mode Average Transaction Response Time

se Time

CPU Utilization (%)

{peziwndo=| "fewuon=n) #pay Buluny

Average Respon
2
®

"

00:00 05:00 10:00 15:00 20:00 2500 30:00 0.04-
Elapsed scenario time mm:ss O

000 Bot00906000000000 00000606 00000000,

00:00 05:00 10:00 15:00 20:00 25:00 30:00

Figure 12. CPU Utilization and Running Mode Elspoed soeers e s
Figure 13. Average Transaction Response Time

sharply, and reached the rate of 85 transactions per

second within 1:45 minutes. The high load remained _ _ _ _
for 10 minutes, and then dropped back to the initial rate, decline at 21:30 minutes, and the server switched back

in which it remained till the end of the test. to the normal version of the site at 22:45 minutes.
The average CPU utilization is shown in Figure 12, We can also see that at time of 25:00 minutes the

along with an indicator of the server's running mode (0 Server entered the optimized mode again for a short
for normal mode, 1 for optimized). As the graph shows, ime period, as a result of a short spike in the CPU
at time of 10:16 minutes the server already started Ulilization value. _ o _
running in the optimized mode, a mere 16 seconds after 1h€ average transaction response time is shown in
the beginning of the peak load, triggered by high cpu Figure 13. As in the previous tests, the average re-
utilization (the spike in the CPU time at time 10:16 SPONse tm1_es for the optlmlz.e_d version are lower than
had a value of 86%, but the graph shows a lower value "€SPONSe times of an unmodified page.

of 75% as result of calculation of time buckets). We .

can also learn the following properties from the CPU 5. Conclusions

utilization graph: Content adaptation serves users with a degraded ver-
sion of the requested web page when the server is
overloaded and cannot afford to serve the full data.

.) Using guidelines for content adaptation based on data
than that of the original version under a regular load . .
collected from a random selection of web sites [7],

0 0 N L
(25% compared to 50%). This indicates that it might we have conducted an empirical study of a complete

Zeciojsljg:ii;%ggopcsrzzgzﬁ\?eh'gher load peaks, fromcontent agaptation implementation. We have' shown
' how the different elements of content adaptation can
In particular, if we define efficiency as the ratio of pe supported easily by an Apache web server, using
transactions per CPU percent, we find the following. the mod_rewrite rule-based rewriting engine to select
The original efficiency wagg = 0.3. The efficiency normal or optimized versions of pages, and a set of
of the enhanced version wg§ = 3.4. Thus the three readily-available performance metrics to trigger
efficiency of using the CPU improved by a factor the switch between modes. This facilitates automatic
of 11.3. Barring other bottlenecks, this indicates the gntent adaptation with extremely short delay between
maximal possible improvement in throughput. the onset of overload and the switch to optimized mode.
e There are spikes in the CPU utilization both at the To test our implementation we used the HP Load-
beginning and at the end of the load peaks. We as-Runner tool. Several load generators were used to cre-
sume that this is a result of creation and destruction ate increasing load levels until the system saturated.
of a large number of server processes in a course ofThis demonstrated that the optimized version of the site
a short time interval. could sustain loads that were about 2—4 times higher

The number of transactions per seconds started to

¢ While serving the optimized version during the peak
load, the CPU utilization of the server was lower

than those sustained with the normal version — using [3] Apache Software FoundationApache module

the same hardware and infrastructure, and without op- ~ mod.rewrite’. URL .

erator intervention. If a larger improvement in through- httpd.apache.org/docs/2.2/mod/metvrite.html,

put is needed, larger compromises of quality are re- " éOiQ.B(wsned“? May 20f10). o al "

. A. brewer, Lessons from giant-scale services
quired (but still possible without affecting the actual
. IEEE Internet C t. 5(4), pp. 46-55, Jul/Aug 2001.

content of the page). Thus content adaptation may be nternet Comput. 5(4), pp iAug

limited . di f 1oad f . [5] Y. Diao, J. L. Hellerstein, S. Parekh, and J. P. Bigus,
imited to an intermediate range of load fluctuations. “Managing web server performance with AutoTune

Really large load surges would likely overwhelm even agents. 1IBM Syst. J. 42(1), pp. 136—149, 2003.

the most optimized version of the contents. [6] U. Erra, G. laccarino, D. Malandrino, and V. Scarano,
A byproduct of our experiments is to emphasize the “Personalizable edge services for web accessihility

need for careful evaluations. There are many pitfalls Universal Access Inf. Soc. 6(3), pp. 285-306, Nov

where one needs to configure the Apache server and 2007.

load generating scripts correctly in order to obtain re- [7] M. Gopshtein and D. G. Feitelsoni=fpirical .

liable results. It should also be noted that achieving duantification of opportunities for content adaptation

the best possible absolute throughput numbers depends in web servers In 3rd Ann. Haifa Experimental Syst.

| . ilabl h f . Conf., May 2010.
?n correctly setting available Apache configuration set- [8] “ HP LoadRunner softwateURL
ings.

o _ _ https://h10078.www1.hp.com/cda/hpms/display/main/
The current work used optimized versions tailored hpmscontent.jsp?zn=bto&cp=1-11-126-17480Q

by hand based on predefined guidelines. But in large 100__, 2010. (visited 6 May 2010).
and dynamic web sites, there is a need for automatic [9] W. LeFebvre, CNN.com: Facing a world crisls
generation of optimized versions of new or updated ;Login: 27(1) p. 83, Feb 2002. (summary of invited
pages. In future work we intend to implement this talk at LISA 2001).
mainly based on removing decoration images and em-[10] D. Malandrino, F. Mazzoni, D. Riboni, C. Bettini,
bedding scripts in the main HTML page. M. Colajanni, and V. ScaranoMIMOSA:
o) . Context-aware adaptation for ubiquitous web actess

Anothe_ra_/enuefor'addltlonal Work_lsto |mprove_the Personal & Ubiquitous Copmut. 14(4), pp. 301320,
mode switching algorithm, and especially the consider- May 2010.
ation of different performance indicators. The current [11] B. Noble, “System support for mobile, adaptive

implementation focuses on the CPU as the main po- application. |EEE Personal Comm. 7(1), pp. 44-49,

tential bottleneck. However, it is possible that the net- Feb 2000.
work or even the system bus may become a bottleneck12] R. Pradhan and M. ClaypoolAtaptive content
too. Identifying such situations and using them as trig- ~ delivery for scalable web servérsn Intl. Network

Conf., Jul 2002.

t[13] Royal Pingdom Blog, Exploring the software behind
Facebook, the world’s largest sitéJRL
http://royal.pingdom.com/2010/06/18/the-software-
behind-facebook/, 18 Jun 2010. (Visited 27 Sep

Acknowledgments 2010).

[14] S. Sivasubramanian, G. Pierre, M. van Steen, and

G. Alonso, “Analysis of caching and replication

gers for mode switching will again improve the system
throughput and reduce the danger of clients who do no
receive service.

This research was supported by a grant from the Israel

Internet Association. strategies for web applicatiohd EEE Internet
Comput. 11(1), pp. 60-66, Jan-Feb 2007.

Referen [15] S. Sounders,High-performance web sitesComm.

erences _ ACM 51(12) pp. 36—41, Dec 2008.
[1] T. F. Abdelzaher and N. BhattiWeb content [16] Wikipedia, “Slashdot effect URL

adaptation to improve server overioad behavior http://en.wikipedia.org/wiki/Slashdaffect. (visited
Comput. Networks 31(11-16) pp. 1563-1577, May 31 Jan 2010).
1999.

[2] T. F. Abdelzaher, K. G. Shin, and N. Bhatti,
“Performance guarantees for web server end-systems:
A control-theoretical approathlEEE Trans. Parallel
& Distributed Syst. 13(1), pp. 80-96, Jan 2002.

