
Trading off Quality for Throughput
Using Content Adaptation in Web Servers

Michael Gopshtein Dror G. Feitelson

School of Engineering and Computer Science, The Hebrew University,91904 Jerusalem, Israel

mgopshtein@gmail.com, feit@cs.huji.ac.il

Abstract

A basic problem in managing web servers is capacity
planning. A partial solution is to use content adaptation,
where the system automatically trades off quality for
throughput, e.g. by eliminating graphical decorations
and adjusting page layout. We evaluate this approach
based on a full implementation in Apache and increas-
ing load patterns. The implementation uses two alter-
native versions of the files, and employs URL rewrit-
ing rules to select which version to use. Triggering a
switch from one version to the other is done based on
readily available load metrics. The experiments show
that throughput can be increased by a factor of 2 to
4 at the price of minor to acceptable deterioration in
graphical quality. Increasing throughput by an order of
magnitude is also possible, but requires larger compro-
mises. Nevertheless, this is still achievable without a
real effect on content. Thus content adaptation is a vi-
able tool, but may be insufficient by itself for handling
huge surges in load such as flash crowds.

Categories and Subject Descriptors C.5.5 [COM-
PUTER SYSTEM IMPLEMENTATION]: servers; H.3.2
[INFORMATION STORAGE AND RETRIEVAL]: In-
formation Storage—File organization

General Terms Design, Measurement, Performance

Keywords Web server, Overload, Throughput, De-
graded service

c©ACM 2011. This is the suthor’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in SYSTOR 2011.

1. Introduction

The success of many web sites depends on the number
of visitors to the site, and on the ability of these users
to complete their intended transaction, be it a purchase
in an online store or reading an article on a news site.
This goal is reflected by the ability of the users to per-
form the whole sequence of HTTP requests required
for such a transaction. Failure of the user to get a proper
response in one of the steps will put the whole transac-
tions at risk and possibly lead to financial loss. web site
owners therefore spend considerable effort to be able
to serve every single request. This includes various op-
timization techniques implemented in the web servers,
and hardware overprovisioning which aims to provide
high availability and acceptable response times in cases
of peak load on the system.

Load fluctuations imply that a large fraction of the
available facilities are actually unused most of the time.
This is partly due to the normal periodic fluctuations in
the average load, which are a function of the time of
day. But a larger problem is the phenomenon of “flash
crowds”, where a very large number of web surfers
converge to one site and cause a surge in the load. A
possible cause for such flash crowds is theSlashdot
effect [16]. This occurs when a popular web site posts
a link to a smaller site, such that the number of users
following that link largely exceeds the usual load on
the smaller system, in some cases causing it to become
unavailable.

Exceptionally high loads can also occur as a result
of singular events. One rather extreme example is the
traffic buildup at CNN.com during the 9/11 tragedy
[9]. Measurements showed that traffic increased expo-
nentially, and the number of HTTP requests was dou-
bled every 7 minutes: it grew from less than 85,000
hits/second to 229,000 hits/second in just 15 minutes.

The description of the actions taken by CNN staff to
continue to serve all incoming requests is illuminat-
ing. Among them were increasing the number of web
servers from 10 to 52 in a short time interval, and shut-
ting down monitoring software to free additional re-
sources for the web server processes. In addition, the
content of the home page was reduced, until the whole
page consisted of only 1247 bytes of HTML, a logo,
and a small picture.

The most common solution to the load fluctuation
problem nowadays is to use a hosting service. The idea
is that when many independent web sites are hosted
together, it is unlikely that all of them would experi-
ence load surges at the same time. Thus the shared in-
frastructure can be partitioned in different ways based
on momentary requirements, reducing the required
overprovisioning. However, not all web sites use such
shared hosting services, and even large sites may suffer
from overload. For example, Facebook also reportedly
have builtin levers allowing site administrators to dis-
able peripheral features and focus on supporting core
features when performance problems occur [13]. This
is an example of Brewer’s “DQ Principle”, where large-
scale services are managed by manipulating either the
data-per-query or the queries-per-second [4].

Following these examples, our goal is to understand
to what degree manipulations of the structure of a web
page can be exploited to trade off quality for through-
put. In previous work, we analyzed how the structure
of a web page influences the work required to serve it
[7]. For example, this showed that with normal caching
the disk is not expected to be a bottleneck, and that re-
ducing the number of requests made is more important
than reducing the total size. We now use these findings
to guide content adaptation actions similar to those per-
formed by the administrators of CNN.com. Our main
contribution is in the experimental quantification of the
overheads involved and the performance benefits that
may be obtained. While our experiments are limited to
static pages, we note that the results nevertheless pro-
vide insights and data that are also applicable to the
dynamic creation of web pages on the fly.

2. Related Work

Obvious approaches to reduce web server overload are
to use caching and replication [14]. However, when
this is not enough, content adaptation may be neces-
sary. Most previous work on content adaptation empha-

sized functional transparency, where the appearance of
the page does not change and therefore there is no
loss of quality. For example, this is the case when
images are compressed or unified into a single file
(sprite) and then cropped for display. (see [15] and
http://www.websiteoptimization.com/ for sur-
veys of such techniques.) Such optimizations should al-
ways be used to reduce infrastructure costs, and there-
fore cannot help when coping with overload. Other
adaptations focus on improved accessibility. For exam-
ple, this may be done by CSS-restyling to remove back-
ground shading and increase font sizes [6]. As this just
changes the appearance of a page without changing the
amount of information that is transmitted, this has no
effect on server throughput.

To achieve a significant improvement in throughput
one must use more drastic content adaptation and do so
at the web server itself. The typical approach used is to
create alighter version of the original web site which
will allow serving a larger number of users [1, 2, 12].
Techniques to achieve this include “adaptation tags” in-
serted manually into HTML files, image quality degra-
dation by lossy compression, and elimination of small
cosmetic items from the page. Indeed, in our previous
work we also found that reducing the number of ele-
ments on a page is the most important optimization [7].

Similar methods for content adaptation have been
developed in order to support mobile devices with lim-
ited bandwidth [11]. For example, it has been suggested
that intermediary services adapt the content provided
by a server to the context of the user, e.g by reduc-
ing image sizes [10]. While the applied adaptations are
similar, the motivation in this case is reversed, as the
bandwidth bottleneck is related to the user rather than
to the server.

In this paper, we present results of a full imple-
mentation of content adaptation based on the Apache
web server, and demonstrate that throughput can be in-
creased by a factor of 2 to 4 at the price of minor to
acceptable deterioration in quality. This improvement
is much higher than that previously reported in [12],
which was less than a factor of 2. It also improves on
the results of [2], who achieved improvements of up to
a factor of 7, but only for files of hundreds of kilobytes;
for 64KB, their improvement was also less than a factor
of 2. We also show that if more extreme deterioration
is considered, the throughput improvement may reach
a factor of 10.

3. Operation Modes

The web site optimization tool proposed in this work is
composed of two parts: offline preparation of optimized
versions of the original static files, as described in [7],
and online monitoring of the web server’s operation,
leading to a switch between the normal and optimized
versions of the content when required. In this section
we focus on the indicators for performance of the web
server, and how the transition between versions is per-
formed.

3.1 Performance Indicators

Recall that our purpose is serving as many users as
possible. Thus a suitable metric can be direct measure-
ments of the number of HTTP requests per time unit
and the server response times. The main problem with
such metrics is that there is no immediate way to define
thresholds on these values. For example, regarding the
number of requests, we will need to know the maximal
number of requests that the server can handle concur-
rently. This data is usually unavailable, and moreover,
may depend on the specific requests. As for response
time, this may be important for satisfying service-level
agreements. But server-side response time may be hard
to translate to user-perceived response time, due to net-
working effects. And in any case, it is again not clear
where to place the threshold.

An alternative approach is to monitor system re-
sources, especially utilization of hardware components,
under the assumption that service degradation is always
caused by overload on some resource. Naturally, differ-
ent hardware and software configurations, coupled with
different workloads, may cause different resources to
become a bottleneck. However, since the total capac-
ity of each hardware resource is known, it is always
possible to define thresholds in terms of percentage of
utilization of each resource, CPU time being the most
obvious example.

Monitoring hardware resources has the additional
advantage that we can then choose an optimization al-
gorithm which reduces the use of the specific hardware
resource that is overloaded. This is based on the results
shown in [7], where some methods had a strong effect
on CPU time consumption, while others affected the
required network bandwidth.

In addition to monitoring hardware resources, most
web servers make their internal performance indica-
tors and “health” status available for administrators and

external tools. One such example is the utilization of
worker threads, which is the percentage of threads that
are busy processing some user’s request at a given mo-
ment, out of the total number of such threads config-
ured on the server. This information can also be used
as a trigger for optimized mode.

3.2 Switching Between Modes

When the system detects the need to boost the perfor-
mance of the web server, as described in the previous
section, it should configure the server to serve opti-
mized content of lower quality. Different methods to
switch between alternative versions of the content may
be appropriate for different web servers. In our work
the server chosen as a target platform is Apache HTTP
Server 2.2, running on the Linux operating system.

When an HTTP request is processed by a web server,
the URL is resolved to a filename, and, in case of static
files, the content of this file is sent back to the client.
The simplest implementation is to perform the URL-
to-file mapping is as follows:

• The web site is associated with a certain directory in
the local file system, referred to as the “web root”,

• The “file” portion of the URL is interpreted as a
relative path inside the web root directory.

Like previous work on content adaptation [1], we as-
sume that an optimized version of static web content
is stored under a separate directory, which we will as-
sume is calledopt. Optimized files use the same rela-
tive paths as the original files have relative to the web
root directory. For example, the optimized version of a
logo originally stored atimages/logo.gif will be stored
at opt/images/logo.gif. Thus, to serve optimized con-
tent, it is enough to change the configuration so that the
opt directory becomes the new web root.

However, we note that even static data can change
over time, e.g. when new files are added, or existing
files are deleted or modified. There may then be a cer-
tain delay between the creation or modification of the
original data, and the generation of an optimized ver-
sion reflecting the changes. The system should there-
fore be able to serve the original data if an optimized
version does not exist or is out of date. This is not pos-
sible if the web root directory is simply switched.

The desired functionality can be achieved by us-
ing Apache’smod rewrite rule-based rewriting engine,
which supports the definition of advanced URL-to-file

Figure 1. Performance Overhead ofmod rewrite
Rules.

mapping instructions [3]. In particular, we can add
rules that will redirect requests to the optimized ver-
sion only provided that the following conditions are
met:

1. The web server is currently running in optimized
mode. In order to flag the operating mode one can
use an environment variable (global or internal to
the Apache server), or the existence of a special file
in a known location; both methods are supported by
the rules engine.

2. The optimized version of the requested file already
exists, and is up to date.

One of the advantages of this method for content redi-
rection is that the configuration files of the web server
are modified only once, when the system is integrated.
After this initial change the server continues operating
in its regular mode, and all further activations of op-
timized content are triggered by external components
and are made effective immediately.

A possible problem with using URL rewriting is the
overhead involved. We therefore measured the perfor-
mance of an Apache web server with and without URL
rewriting. The test was designed in the following way:

1. A local copy of the web sitewww.adagio.com (an
online tea shop) was created using the HTTrack tool
(http://www.httrack.com/). The tool was con-
figured with all default settings, with the addition of
the following parameters:

• Maximal search depth was limited to 3 clicks,
and

• All images were copied too.

2. The stored copy of the web site was configured as
the local site of an Apache web server.

3. In order to emulate simultaneous traffic from multi-
ple users, a series of HTTP requests were recorded
as a LoadRunner script [8].

4. An “optimized” version was created by adding a
symbolic link to the web site root directory. Thus
all the files remained the same both in the regular
and the optimized versions.

5. Based on the recorded LoadRunner script a load
was generated on the web servers, with half of the
virtual users connecting to the original web site, and
the other half to the optimized version, using the
mod rewrite rules as explained above. The average
time to execute all requests in a single instance of
the script was measured.

The results are shown in Figure 1. This shows that
the distributions of response times of the server are
practically the same for both the normal version of
the web site, and the one havingmod rewrite rules
activated. We therefore find that the overhead of rewrite
rules is negligible, so we can use the method described
above safely.

4. Experimental Validation

In this section we validate the methods proposed in the
previous sections by constructing a full implementa-
tion, and measuring the effects of the proposed opti-
mization methods in a realistic environment.

4.1 Experimental Setup

The environment that was used for all performance
tests was as follows.

We used an Apache web server, version 2.2, run-
ning on a Linux operating system (Fedora release 11,
Kernel 2.6.30.8). The hardware base was a Dell Opti-
Plex GX260, with an Intel Pentium 4 processor running
at 2.4GHz, and 500 MB of memory. The web server
ran with all default configuration parameters, except as
noted below in specific experiments.

The load on the web server was generated by the
HP LoadRunner tool [8], version 9.50. TheController
is the central component of LoadRunner. It orchestrates
the generation of the load byLoad Generators, and col-
lects statistical data which is finally analyzed with the
Analysis tool. The controller was installed on an HP
Compaq 8510w, with an Intel Core 2 Duo CPU T7500,

running at 2.2 GHz, and 4 GB of memory. This ma-
chine was running Microsoft Windows Vista OS (En-
terprise edition, version 6.0.6001). This machine was
also used as one of the Load Generators. In addition
there were three other Load Generators:

• Two identical to the web server, with Microsoft
Windows Server 2008 OS (Standard edition, ver-
sion 6.0.6001).

• An additional machine with an Intel Pentium 4 Pro-
cessor at 3.2 Ghz, and 2 GB RAM, running Mi-
crosoft Windows Vista OS (Ultimate edition, ver-
sion 6.0.6000).

All computers are connected by a 100 Mb/sec Ethernet
LAN via a Linksys WRT54G router.

The load tests were performed on a local copy of
the Top500 sitehttp://www.top500.org/. The copy
was captured using the HTTrack tool, with all default
parameters, except for:

• The depth of the search (when following links) was
limited to 3. This is sufficient as most of our experi-
ments only accessed a page or two from the site, as
is most common in flash crowd scenarios.

• The instructions in therobots.txt file were ignored,
as this was not relevant for our use.

All pages of this site include JavaScript code which
is intended to randomize the order of appearance of
advertisement images, by injecting external images into
static HTML content. These functions were removed
from all pages, and replaced with static images of the
same type.

To run a performance test, the LoadRunner con-
troller implements a scenario that specifies how many
Virtual Users (vusers) to create and when. These Vir-
tual Users are simulated by the LoadRunner Load Gen-
erators. The activity of each Virtual User is defined as
a sequence of instructions listed in a script file, which
are repeated multiple times.

Instructions may be either individual HTTP requests
or complete HTML requests, in which case embed-
ded objects are also requested automatically. We used
HTTP requests because this leads to better performance
of Load Generators, as there is no need to parse HTML
content of responses when replaying the script during a
test. The HTTP requests are generated based on record-
ing the activity during an actual interactive recording
session. Sets of requests can be designated as a “con-

current group”, meaning that they should be fetched to-
gether, because they actually constitute the elements of
a single page.

In addition, it is possible to insert think times be-
tween requests in the script. Since we typically only
consider a single page request, think times are not
needed. Another parameter specifies thepacing of re-
peated iterations of the whole script. The options for
this parameter are:

1. Repeat as soon as previous iteration ends.

2. Repeat after a certain amount of time from theend
of the previous iteration, selected at random from a
range.

3. Repeat after a certain amount of time from thebe-
ginning of the previous iteration, selected at random
from a range. This can lead to executing the script at
a given average rate, regardless of the time needed
for each execution. However, if the previous itera-
tion takes too much time, the new one is delayed.

Our use of this parameter is explained below in the
different scenarios.

Other settable parameters of the LoadRunner script
include:

• Simulation of the browser’s cache. If multiple HTTP
requests to the same URL appear in the script, the
request is actually sent only once.

• Connection management. To emulate real browser
behavior, two connections to the server are opened
by each user, and concurrent groups of HTTP re-
quests are downloaded simultaneously on both of
them.

The analysis of performance results relate to trans-
actions, which can be defined as any subset of instruc-
tions in the script. In our experiments the whole script
was always considered a single transaction (and in most
cases this corresponds to downloading a single page).
In addition, transactions may end with eithersuccess or
failure status. A failure can be caused by any an error,
such as a new connection being refused by the server,
by a timeout while waiting for server’s response, etc.

4.2 Basic Optimization Performance Tests

In order to evaluate the overall performance implica-
tions of the suggested optimizations, and in particular
the potential increase in throughput (i.e. the ability to
serve more clients under loaded conditions), we need to

create optimized versions of the web site. In this section
we present results for basic optimizations and different
server configurations. In the next section we consider
a more extreme optimization, and a workload scenario
that simulates a flash crowd.

4.2.1 Workload Scenario

Given that our load is generated by LoadRunner, we
can emulate an optimized site by modifying the Load-
Runner script rather than modifying the site itself. To
do so, we simply delete certain requests from the Load-
Runner script, specifically those representing decora-
tion images and blocks of HTML that are to be re-
moved. The modified script then downloads the same
files as a browser directed to the optimized version
of the site would, albeit the content of these files is
not changed or compressed. Using this approach on a
manually-adapted version of the Top500 site leads to
the following changes:

• The number of HTTP requests is reduced from 81
in the original script to 43 in the optimized one
(reduced by 47%).

• The total size of downloaded files is reduced from
702KB in the original script to 570KB in the opti-
mized one (reduced by 22%).

In order to investigate the effect of load and how
much the server can support, we chose to create a
scenario in which the load on the system — as reflected
by the number of users — grows with time. This is done
in three phases, enabling the system to stabilize each
time before the load continues to grow. Moreover, at
the higher loads the rate of growth is reduced. These
considerations led to the following profile:

• In phase one, starting at the beginning of the test,
200 vusers are created at a rate of one new user every
2 seconds.

• In phase two, starting at 30 minutes into the test, an
additional 200 users are added at a rate of one user
every 5 seconds.

• Finally, in phase three, starting at 1 hour into the
test, the last 200 users are added at a rate of one user
every 12 seconds.

This profile of increasing users is shown in Figures 2
and 3. The pacing parameter was set to use random in-
tervals in the range between 15 and 25 seconds between
iterations of the script for each vuser.

Table 1. Summary of results for default Apache con-
figuration.

parameter normal optimized
avg. resp. time 66.5 sec 31.9 sec
successful 12,709 27,530
failed 4,510 7,955

Figure 2. Average response times for default Apache
configuration, in relation to the number of vusers. Top:
normal script. Bottom: script reflecting optimized site.

4.2.2 Default Apache Settings

The first test was conducted on the web server with all
the default settings, as it was first installed. The results
in Table 1 are based on the first 1:20 hours of the sce-
nario. These results show a 52% reduction in average
transaction response time, and 106% increase in total
number of completed transactions during the same time
interval. This makes sense given that the number of
HTTP requests per transaction was nearly reduced to
half; it also demonstrates that the total volume of data
is less important than the number of requests. Detailed

response times are shown in Figure 2. This shows that
with the normal site response times start to grow at less
than 4 minutes (around 100 vusers), and with higher
loads become erratic in the range of 30 seconds to 2
minutes. With the optimized version they only start to
grow at about 6 minutes (around 160 vusers), and even
under high loads remain in the rang of 30–60 seconds.

Note that in both cases the system does not seem
to become saturated. This is a result of how LoadRun-
ner’s Load generators operate. Recall that vusers are
scheduled to execute the script once every 20 seconds
on average. But if the previous iteration did not termi-
nate yet, the next one is delayed. Thus we can see the
load being generated as an open system while the re-
sponse times are low, and as a closed system once re-
sponse times start overflowing the configured time in-
tervals between successive iterations.

4.2.3 Enhanced Apache Settings

The default Apache setting are very conservative. We
therefore conducted another set of tests with the fol-
lowing enhancements to the configuration.

• Keep-Alive connections. By default the server does
not enable the Keep-Alive feature, and as a result a
new TCP connection is opened for each HTTP re-
quest. With such a configuration any reduction in
the number of HTTP requests has a very large ef-
fect, which might cause our results to be overly op-
timistic. To be more realistic, we activated this fea-
ture by adding the configuration lineKeepAlive On.
MaxKeepAliveRequests was left at the default value
of 1000, andKeepAliveTimeout at 10 seconds.

• Caching. In-memory caching is also disabled in the
default configuration. As a result the server reads the
content from the disk on each HTTP request. This
leads to longer response times and increased lock
contention between the server’s worker threads. We
therefore enabled in-memory caching by uncom-
menting the section for themod mem cache mod-
ule, while leaving all its default values. The default
cache size is 4 MB.

• Working Processes. Apache allows configuring the
maximal numbers of server processes, and the max-
imal number of worker threads per process. In addi-
tion the configuration defines the maximal allowed
number of idle threads, before some of them are
closed. All these parameters have low values in the

Figure 3. Average response times for enhanced
Apache configuration. Top: normal script. Bottom:
script reflecting optimized site.

default configuration, so requests may be delayed
waiting for one of the threads to become available
or for the creation of a new one. We increased the
number of processes allowed to 1500 using theMax-
Clients directive.

All other configuration options were left at their de-
fault values, e.g.LogLevel info. In a real deployment it
would be beneficial to adjust all these parameters auto-
matically to optimize performance, for example as sug-
gested in [5].

The average transaction response times when using
the enhanced Apache configuration (and the number of
running vusers) are shown in Figure 3. During the first
35–40 minutes both versions of the script achieved sta-
ble transaction times, with the regular version running
at 270 msec per transaction, while the optimized one
required only 138 msec — a reduction of 49% in aver-
age response time. At the same time the maximal num-

Figure 4. Completed transactions rate.

ber of supported vusers grows from about 260 to about
340.

Starting from certain point in time (about 36 minutes
for the regular version and 42 for the optimized one) we
see a sharp growth in the average response time, which
stabilizes only when the load on the system becomes
constant. This is most probably caused by contention
for some system resource, causing requests to wait
as was the case for the default Apache configuration.
By looking at the number of completed transactions
per second (Fig. 4), we find that the regular script
stabilizes on a rate of about 16 transactions/second at
the peak, while the optimized version reached around
20 transactions/second. However, the average response
time of transactions is much lower for the optimized
version.

These results suggest that with the optimized Apache
version the CPU is less of a problem, and the network
may become the bottleneck. Thus in the optimized ver-
sion of the script the number of HTTP requests is re-

duced by 47%, and this indeed causes a nearly-factor-
of-2 reduction in the response time, but it doesnot
double the achieved throughput. On the other hand the
total size of downloaded content is reduced by 22%
only, and the throughput indeed grows by a similar fac-
tor. When any single resource saturates, the throughput
depends on the saturated bottleneck and not on the po-
tential service rate.

As explained above, these tests have the property
of converging to a “closed system” once the load on
the server was high enough. In the next section we
overcome this limitation and create a scenario in which
the number of new users trying to access the site does
not depend on current performance of the server.

4.3 Flash Crowd Simulation

In the previous section we described performance tests
aimed to compare the behavior of the server on regular
and optimized content. However, the workload did not
stress the server too much because of a feedback effect:
longer response times cause longer delays before addi-
tional requests were made. In this section we describe
a series of tests with the goal of simulating a slash-
dot effect. Thus we create an “open system”, where
new users continuously arrive at the web site at a cer-
tain rate, regardless of the current performance of the
server. Apache was configured in the enhanced mode
as above.

As is typically the case for flash crowds, all simu-
lated users make a request for a single page, so in this
case basically page=transaction=script. The load gen-
erators do not simulate any think time, as they are sup-
posed to be simulating independent new users.

4.3.1 Optimization Levels

The simulation was repeated using three versions of the
LoadRunner scripts, representing three possible levels
of content adaptation at the server:

• Regular

• Moderate optimization

• Extreme optimization

Regular A slashdot effect, in its usual form, is caused
by a link to the web site being posted on another, much
more popular site, such that a large number of readers
of the popular site follow this link. The workload gen-
erated in this use case is expected to show high local-
ization. In particular, we expect a large volume of users

to request a single page from the site (including all its
embedded components). Note that this is not necessar-
ily the home page, but rather whatever internal page
was pointed to by the link.

To emulate this behavior, the LoadRunner script
records a request to a single article on a local copy of
the www.top500.org site. Overall the script opens 2
TCP connections, makes 59 HTTP requests and down-
loads a total of 322 KB of content.

Moderate optimization An optimized version of the
script was based on the regular script, and was created
by eliminating requests to decoration images and ad-
vertisements. In addition, two images (the logo and a
“story” image) were compressed by reducing the qual-
ity of the image in JPEG lossy format. As result the
script issued 29 HTTP requests, and the total size of
the content was 188 KB. It still opened 2 TCP connec-
tions.

Extreme optimization Given the slashdot effect sce-
nario, we decided to also test the system under a more
extreme optimization scheme, which would be more
aggressive in eliminating components of a page than
the one used in the previous section. This was achieved
by applying the following techniques:

• Removed all images except for:

Logo (compressed from 30 KB GIF to 3 KB
JPEG);

“Story” image (JPEG, compressed from 7.4 KB
to 2.4 KB).

• Removed all JavaScript references.

• Removed all references to stylesheet files, but copied
the content of some of the CSS files to the body of
the main HTML file, in order to preserve the ba-
sic formatting of the page. As result the size of the
HTML page grew from 37.9 KB to 55.2 KB.

• The script was modified so that it makes all requests
on a single TCP connection. It’s possible to make
the browser reuse the same connection for all re-
quests by injecting a JavaScript code which will re-
quest all relevant images synchronously, after hav-
ing the HTML page completely downloaded. This
is advisable to reduce load as it reduces the number
of opened connections.

See Figure 5 for a visual comparison of the regular and
extreme optimized versions of the page.

Figure 5. Article from www.top500.org. Top: original
version. Bottom: extreme optimized version. Note how
the tabs at top-right are rendered sequentially due to
simplified CSS usage.

4.3.2 LoadRunner Configuration

As noted above, load runner delays additional request
iterations if previous ones have not ended yet, leading
to a “closed system” scenario. In order to simulate an
“open system” with the LoadRunner tool, the following
configuration was required:

• Connection establishment time was limited to 10
seconds;

• Download time for each HTTP request was limited
to 12 seconds;

• Overall transaction response time was limited to 25
seconds. In the case that the transaction could not be
completed within this time interval, it was aborted
and marked as “failed”. This behavior matches a

 0

 20

 40

 60

 80

 100

 120

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 24:00 27:00 30:00 33:00

N
um

be
r

of
 T

ra
ns

ac
tio

ns
 (

/s
ec

on
d)

Time (minutes:seconds)

Transaction Success Percentage (regular)

Failed Transactions
Succeeded Transactions

Figure 6. Transaction success rate for regular script.

real-life case of a user waiting for a web page, and
aborting the download it it takes too long;

• Each virtual user’s thread was configured to start a
new transaction every 40 seconds (randomized in
the range [37, 43] seconds). Considering the limit
on total transaction time mentioned above we are
assured that each new iteration starts within the re-
quested interval, and is not affected by server’s re-
sponse times;

• The number of such user threads was incremented in
steps of 500-1000 users followed by a constant load
for three minutes. At the peak the number of threads
reached 5,000;

At the peak load 5,000 user threads were generating
a load of 125 transaction attempts per second (each
thread initiating a transaction once in 40 seconds).

4.3.3 Results

Figures 6, 7 and 8 show the success rate of attempted
transactions for regular, optimized, and extremely opti-
mized scripts respectively.

Figure 9 summarizes the data for success rates of
transactions and provides a comparison between dif-
ferent versions of the script (and thus different levels
of optimization). We can make the following observa-
tions:

1. The regular version of the site successfully serves a
load up to 23 transactions per second, the optimized
version reaches 35 transactions per second, and the
extremely optimized — more than 100 transactions
per second.

 0

 20

 40

 60

 80

 100

 120

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 24:00 27:00 30:00 33:00

N
um

be
r

of
 T

ra
ns

ac
tio

ns
 (

/s
ec

on
d)

Time (minutes:seconds)

Transaction Success Percentage (optimized)

Failed Transactions
Succeeded Transactions

Figure 7. Transaction success rate for optimized
script.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 24:00 27:00

N
um

be
r

of
 T

ra
ns

ac
tio

ns
 (

/s
ec

on
d)

Time (minutes:seconds)

Transaction Success Percentage (extreme)

Failed Transactions [client]
Succeeded Transactions

Figure 8. Transaction success rate for extremely opti-
mized script.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100 120 140 160 180

N
um

be
r

of
 A

tte
m

pt
ed

 T
ra

ns
ac

tio
ns

 (
/s

ec
on

d)

Number of Succeeded Transactions (/second)

Transaction Success Percentage (summary)

Regular Script
Optimized Script

Extremely Optimized Script
100%

Figure 9. Summary of transaction success rates.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 20 40 60 80 100 120 140

A
ve

ra
ge

 T
ra

ns
ac

tio
n

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

Number of Attempted Transactions (/second)

Transaction Success Percentage (summary, zoomed)

Regular Script
Optimized Script

Extremely Optimized Script

Figure 10. Average transaction response time.

2. Starting from 45 transactions per second the regu-
lar version shows better success rate than the opti-
mized one. We assume this is caused by the settings
of connection establishment timeout (10 seconds),
which creates an effect of “admission control”, al-
lowing fewer simultaneous active transactions in the
regular scenario compared to the optimized version.
And for both versions of the site the success rate is
lower than 50% at such workload.

Figure 10 shows the average transaction response
times (of successful transactions), comparing different
versions of the script. When the load on the server is
relatively low, the average response times are:

• Regular script: around 100 msec.;

• Optimized script: around 40 msec. (reduced by
60%);

• Extremely optimized: 13 msec. (reduced by 87%).

Response times for the regular script start to increase
when the load is as low as 15 transactions per second,
and reach a value of 1 second at a load of 25 transac-
tions per second. The optimized one reaches this value
at 37 transactions per second, and the extremely opti-
mized one at a load of 110 transactions per second.

4.4 Switching Between Modes

The goal of this test is to validate the automatic mecha-
nism for switching the web server between normal and
optimized modes.

4.4.1 Performance Indicators

The algorithm which controls the running mode of the
server is based on the following performance counters:

1. CPU Utilization;

2. Number of incoming TCP connections per second;

3. Status of running processes of the Apache web
server.

The CPU utilization was collected using the “sar”
utility, available as an optional package for Linux dis-
tributions. It collects certain cumulative activity coun-
ters from the operating system, and performs the re-
quired calculations in order to generate the requested
data. Specifically, the commandsar -u 5 1 was used to
show the average CPU utilization during the last five
seconds.

The total accumulated number of incoming TCP
connections can be found in the/proc/net/snmp vir-
tual file, which is available in a default installation
of Fedora Linux, using the attribute nameTcp: Pas-
siveOpens. It’s possible to calculate the average num-
ber of new TCP connections per second based on two
values, when taken with regular time intervals (in our
scripts an interval of 5 seconds was used).

The Apache web server includes amod status mod-
ule, which, once enabled, allows collecting various
statistics regarding the current state of the server by ac-
cessing thehttp://server/server-status page (http://
server/server-status?auto provides the same informa-
tion in machine-readable format). One of the parame-
ters available on the status page is the current state of
each process of the web server. Our script uses this data
to collect the total number ofidle processes.

4.4.2 Server Modes

The optimized version of the site is activated by redi-
recting all requests to an alternative file tree, in which
the modified content is stored. To implement this, the
following lines were added to thehttpd.conf configu-
ration file:

RewriteEngine On

RewriteCond /var/www/html/opt.do -f

RewriteRule ^/top500(.*) \

/var/www/html/opt/top500$1

The first line turns themod rewrite module on. The
second line is the condition, which should be satis-
fied in order to actually activate the path-rewriting
rule; in this case we want to test for existence of the
/var/www/html/opt.do file. The last line redirects all
requests for thetop500 site to the/var/www/html/opt/

top500 directory, in which the optimized versions of
the original files are located.

Once the Apache server is started with the new con-
figuration, we can instantly switch to optimized mode
by creating the/var/www/html/opt.do file, and can
switch back to normal mode by deleting this file.

We should also pay a special attention to configura-
tion of the caching algorithm used by the server. The
Apache server supports two major modes of caching:
URL-based and path-based. URL-based mode is not
appropriate for our purpose, as once a URL is cached,
any subsequent requests to that URL would bypass all
rewriting rules, and the same version of the file will be
served until this cache entry expires. The URL-based
mode can be used in our context only if the cache can
be cleared as part of the transition between normal and
optimized modes. In our tests we used the path-based
caching scheme, in which the files are cached in the
memory according to their physical location in the file
system.

4.4.3 Switching Algorithm

We have created a rather simple Perl script which con-
trols the operation mode of the web server, and initi-
ates a change of the mode when a need is detected. The
script runs in an infinite loop, which performs the fol-
lowing set of commands every five seconds:

1. Collect performance measurements as explained
above.

2. While in theNormal mode record the throughput of
incoming TCP connections per second, and keep the
highest value as an indicator for a “safe” load on the
server.

3. When in theNormal mode, switch toOptimized
mode if the CPU utilization exceeds a threshold of
85%, by writing the/var/www/html/opt.do file.

4. When in theOptimized mode, switch back toNor-
mal when all of the following conditions are met
three times in a row:

• CPU utilization is below 85%;

• There’s at least one idle server process;

• The rate of incoming TCP connections is lower
that the maximal “safe” rate which was stored
while running in theNormal mode.

The switch back toNormal mode is done by deleting
the previously created/var/www/html/opt.do file.

Figure 11. Average Number of Transactions per Sec-
ond

At the same time also reduce the “safe” value of
number of connections per second by 30%.

The script uses the number of concurrent connec-
tions as a measure for the number of active users in the
system. We can’t rely on the number of requests per
second, as the number of components in a single page
is different for normal and optimized versions of the
site, so the average number of requests per transaction
is also different.

Note that the number of TCP connections per user
changes too. With the regular site each client usually
opens two simultaneous connections to the server, but
we assume that a single connection will be opened for
an optimized version. This behavior is taken into ac-
count, and the number of connections per second is
normalized when comparing connection rates ofNor-
mal andOptimized modes.

4.4.4 Results

The script always starts a transaction by requesting the
same HTML page: one of the articles available on the
top500 site. It then searches for a certain string in the
content, in order to identify which version of the page
was returned by the server. According to the version
of the page, the script decides what set of HTTP re-
quests to send to simulate loading additional compo-
nents of the page. This way the set of requests gener-
ated by LoadRunner is identical to that of a real web
browser, and depends on the mode in which the server
is currently running.

Figure 11 shows the load imposed on the server
during this test. In the first 10 minutes the users were
arriving in a constant rate of 15 transactions per second
on average. At that time the load started increasing

Figure 12. CPU Utilization and Running Mode

sharply, and reached the rate of 85 transactions per
second within 1:45 minutes. The high load remained
for 10 minutes, and then dropped back to the initial rate,
in which it remained till the end of the test.

The average CPU utilization is shown in Figure 12,
along with an indicator of the server’s running mode (0
for normal mode, 1 for optimized). As the graph shows,
at time of 10:16 minutes the server already started
running in the optimized mode, a mere 16 seconds after
the beginning of the peak load, triggered by high CPU
utilization (the spike in the CPU time at time 10:16
had a value of 86%, but the graph shows a lower value
of 75% as result of calculation of time buckets). We
can also learn the following properties from the CPU
utilization graph:

• While serving the optimized version during the peak
load, the CPU utilization of the server was lower
than that of the original version under a regular load
(25% compared to 50%). This indicates that it might
be possible to process even higher load peaks, from
a CPU utilization perspective.

In particular, if we define efficiency as the ratio of
transactions per CPU percent, we find the following.
The original efficiency was15

50
= 0.3. The efficiency

of the enhanced version was85
25

= 3.4. Thus the
efficiency of using the CPU improved by a factor
of 11.3. Barring other bottlenecks, this indicates the
maximal possible improvement in throughput.

• There are spikes in the CPU utilization both at the
beginning and at the end of the load peaks. We as-
sume that this is a result of creation and destruction
of a large number of server processes in a course of
a short time interval.

Figure 13. Average Transaction Response Time

The number of transactions per seconds started to
decline at 21:30 minutes, and the server switched back
to the normal version of the site at 22:45 minutes.
We can also see that at time of 25:00 minutes the
server entered the optimized mode again for a short
time period, as a result of a short spike in the CPU
utilization value.

The average transaction response time is shown in
Figure 13. As in the previous tests, the average re-
sponse times for the optimized version are lower than
response times of an unmodified page.

5. Conclusions

Content adaptation serves users with a degraded ver-
sion of the requested web page when the server is
overloaded and cannot afford to serve the full data.
Using guidelines for content adaptation based on data
collected from a random selection of web sites [7],
we have conducted an empirical study of a complete
content adaptation implementation. We have shown
how the different elements of content adaptation can
be supported easily by an Apache web server, using
themod rewrite rule-based rewriting engine to select
normal or optimized versions of pages, and a set of
three readily-available performance metrics to trigger
the switch between modes. This facilitates automatic
content adaptation with extremely short delay between
the onset of overload and the switch to optimized mode.

To test our implementation we used the HP Load-
Runner tool. Several load generators were used to cre-
ate increasing load levels until the system saturated.
This demonstrated that the optimized version of the site
could sustain loads that were about 2–4 times higher

than those sustained with the normal version — using
the same hardware and infrastructure, and without op-
erator intervention. If a larger improvement in through-
put is needed, larger compromises of quality are re-
quired (but still possible without affecting the actual
content of the page). Thus content adaptation may be
limited to an intermediate range of load fluctuations.
Really large load surges would likely overwhelm even
the most optimized version of the contents.

A byproduct of our experiments is to emphasize the
need for careful evaluations. There are many pitfalls
where one needs to configure the Apache server and
load generating scripts correctly in order to obtain re-
liable results. It should also be noted that achieving
the best possible absolute throughput numbers depends
on correctly setting available Apache configuration set-
tings.

The current work used optimized versions tailored
by hand based on predefined guidelines. But in large
and dynamic web sites, there is a need for automatic
generation of optimized versions of new or updated
pages. In future work we intend to implement this
mainly based on removing decoration images and em-
bedding scripts in the main HTML page.

Another avenue for additional work is to improve the
mode switching algorithm, and especially the consider-
ation of different performance indicators. The current
implementation focuses on the CPU as the main po-
tential bottleneck. However, it is possible that the net-
work or even the system bus may become a bottleneck
too. Identifying such situations and using them as trig-
gers for mode switching will again improve the system
throughput and reduce the danger of clients who do not
receive service.

Acknowledgments

This research was supported by a grant from the Israel
Internet Association.

References
[1] T. F. Abdelzaher and N. Bhatti, “Web content

adaptation to improve server overload behavior”.
Comput. Networks 31(11-16), pp. 1563–1577, May
1999.

[2] T. F. Abdelzaher, K. G. Shin, and N. Bhatti,
“Performance guarantees for web server end-systems:
A control-theoretical approach”. IEEE Trans. Parallel
& Distributed Syst. 13(1), pp. 80–96, Jan 2002.

[3] Apache Software Foundation, “Apache module
mod rewrite”. URL
httpd.apache.org/docs/2.2/mod/modrewrite.html,
2009. (visited 6 May 2010).

[4] E. A. Brewer, “Lessons from giant-scale services”.
IEEE Internet Comput. 5(4), pp. 46–55, Jul/Aug 2001.

[5] Y. Diao, J. L. Hellerstein, S. Parekh, and J. P. Bigus,
“Managing web server performance with AutoTune
agents”. IBM Syst. J. 42(1), pp. 136–149, 2003.

[6] U. Erra, G. Iaccarino, D. Malandrino, and V. Scarano,
“Personalizable edge services for web accessibility”.
Universal Access Inf. Soc. 6(3), pp. 285–306, Nov
2007.

[7] M. Gopshtein and D. G. Feitelson, “Empirical
quantification of opportunities for content adaptation
in web servers”. In 3rd Ann. Haifa Experimental Syst.
Conf., May 2010.

[8] “ HP LoadRunner software”. URL
https://h10078.www1.hp.com/cda/hpms/display/main/
hpmscontent.jsp?zn=bto&cp=1-11-126-17ˆ84000
100 , 2010. (visited 6 May 2010).

[9] W. LeFebvre, “CNN.com: Facing a world crisis”.
;Login: 27(1), p. 83, Feb 2002. (summary of invited
talk at LISA 2001).

[10] D. Malandrino, F. Mazzoni, D. Riboni, C. Bettini,
M. Colajanni, and V. Scarano, “MIMOSA:
Context-aware adaptation for ubiquitous web access”.
Personal & Ubiquitous Copmut. 14(4), pp. 301–320,
May 2010.

[11] B. Noble, “System support for mobile, adaptive
applications”. IEEE Personal Comm. 7(1), pp. 44–49,
Feb 2000.

[12] R. Pradhan and M. Claypool, “Adaptive content
delivery for scalable web servers”. In Intl. Network
Conf., Jul 2002.

[13] Royal Pingdom Blog, “Exploring the software behind
Facebook, the world’s largest site”. URL
http://royal.pingdom.com/2010/06/18/the-software-
behind-facebook/, 18 Jun 2010. (Visited 27 Sep
2010).

[14] S. Sivasubramanian, G. Pierre, M. van Steen, and
G. Alonso, “Analysis of caching and replication
strategies for web applications”. IEEE Internet
Comput. 11(1), pp. 60–66, Jan-Feb 2007.

[15] S. Sounders, “High-performance web sites”. Comm.
ACM 51(12), pp. 36–41, Dec 2008.

[16] Wikipedia, “Slashdot effect”. URL
http://en.wikipedia.org/wiki/Slashdoteffect. (visited
31 Jan 2010).

