
Empirical Quantification of Opportunities
for Content Adaptation in Web Servers

Michael Gopshtein Dror G. Feitelson

School of Engineering and Computer Science
The Hebrew University, 91904 Jerusalem, Israel

mgopshtein@gmail.com, feit@cs.huji.ac.il

Abstract

A basic problem in the management of web servers is
capacity planning: you want enough capacity to be able
to serve peak loads, but not too much so as to avoid
excessive costs. It is therefore important to know the
load that web service places on the CPU, disk, and net-
work. We analyze these loads for representative web
sites, and find that with normal caching the disk is not
expected to be a bottleneck, and that reducing the num-
ber of requests made is more important than reducing
the total size. We then consider the option of trading
off quality for throughput, as may be necessary to han-
dle flash crowds. The suggested approaches include the
elimination of graphical decorations and previews, the
compression of large images, the consolidation of style
sheets and JavaScript code in the main HTML page,
and the removal of unimportant blocks from the de-
sign.

Categories and Subject Descriptors C.5.5 [COM-
PUTER SYSTEM IMPLEMENTATION]: servers; H.3.2
[INFORMATION STORAGE AND RETRIEVAL]: In-
formation Storage—File organization

General Terms Design, Measurement, Performance

Keywords Web server, Overload, Throughput, De-
graded service

c©2010 ACM. This is the suthor’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in SYSTOR 2010.

1. Introduction

The success of many commercial as well as non-profit
web sites depends on the number of visitors to the site
and on the ability of these users to complete their in-
tendedtransaction, be it purchase in an online store,
or reading an article on a news site. This goal is re-
flected by the ability of the users to perform the whole
sequence of HTTP requests required for such a transac-
tion. Failure of the user to get a proper response in one
of the steps will put the whole transactions at risk and
possibly lead to financial loss. web site owners there-
fore spend considerable effort to be able to serve every
single request. This includes various optimization tech-
niques implemented in the web servers, and hardware
overprovisioning which aims to provide high availabil-
ity and acceptable response times in cases of peak load
on the system.

Load fluctuations imply that a large fraction of the
available facilities are actually unused most of the time.
This is partly due to the normal periodic fluctuations in
the average load, which are a function of the time of
the day and day of the week. But a larger problem is
the phenomenon of “flash crowds”, where a very large
number of web surfers converge to one site and cause
a surge in the load. A possible cause for such flash
crowds is theSlashdot effect[19]. This occurs when a
popular web site posts a link to a smaller site, such that
the number of users following that link largely exceeds
the usual load on the smaller system, in some cases
causing it to become unavailable.

Exceptionally high loads can also occur as a result
of singular events. One rather extreme example is the
traffic buildup at CNN.com during the 9/11 tragedy
[12]. Measurements showed that traffic increased expo-
nentially, and the number of HTTP requests was dou-

1 2010/4/12

bled every 7 minutes: it grew from less than 85,000
hits/second to 229,000 hits/second in just 15 minutes.
The description of the actions taken by CNN staff to
continue to serve all incoming requests is illuminat-
ing. Among them were increasing the number of web
servers from 10 to 52 in a short time interval, and shut-
ting down monitoring software to free additional re-
sources for the web server processes. In addition, the
content of the home page was reduced, until the whole
page consisted of only 1247 bytes of HTML, a logo,
and a small picture.

Following this example, our goal is to understand
how the structure of a web page influences the work re-
quired to serve it. We start with a detailed analysis of
the costs of different types of HTTP requests, in terms
of resources consumed by the web server to process
them. This is augmented by a survey of a set of real
web sites in order to estimate the distribution of the
different types, both as a number of individual HTTP
requests and the total size of retrieved data. Next we
consider a number of techniques for content adapta-
tion, and estimate the overall performance gain of each,
based on the model of the costs as resulting from the
initial analysis. This can be used to create optimized
versions of web pages, and guide or even automate
actions like those performed by the administrators of
CNN.com. The scope of our current work is limited to
static resources and results do not automatically apply
to dynamically generated content, although some of the
conclusions are useful in the general case.

2. Related Work

Most of the research published so far on the subject
of improving the performance of web sites focuses
on functionally transparent optimization techniques,
which generally allow the servers to cope with higher
numbers of concurrent clients and to achieve lower re-
sponse times, while preserving the same level of con-
tent quality. Optimizations of this type usually aim to
reduce the resources needed to serve the expected load,
and are not used to handle peak loads. In particular,
it would be always beneficial to implement such op-
timization methods in the areas where they are appli-
cable. Sounders [18] summarizes some of these tech-
niques, including the following:

• Make fewer HTTP requests, by combining multiple
script files or multiple stylesheets into a single file.
It is also possible to pack several small images into a

Figure 1. Composite image containing multiple
graphical elements used to render the Google search
results page

single image file, and crop the required images from
it on the client side. For example, this is done by
Google: all the graphical elements needed to render
a results page are downloaded by the browser as a
single image file as shown in Figure 1.

• Add an “expires” header with a suitably long hori-
zon that allows the browser to cache the content
instead of requesting it again if the user returns to
the same page later. This is especially useful for re-
sources that are needed repeatedly, such as logos,
script files, and stylesheets.

• Compress components in order to reduce network
bandwidth. For example, compression typically re-
duces the size of textual content by 70%. On the
other hand, compression requires additional CPU
cycles on the servers, so it may not improve per-
formance of the server when the CPU is the system
bottleneck.

• Make JavaScript and CSS external to web pages, to
enable them to be cached and reused. This is more
efficient than embedding them in the HTML file.

• Configure ETags. These are part of the HTTP/1.1
specification, and allow to tag HTTP resources with
additional information such as version number or
checksum. Such information enables browsers to
verify whether they already have the latest version
of a page; in such cases the server is spared the need
to send the data again.

In addition to this general set of rules of thumb which
can be considered for any web site, all modern web
servers can be tuned using various configuration pa-
rameters to the best performance based on specific
hardware resources and functional requirements. The
configuration includes parametrization of in-memory
caching of resources by the server, operating system
objects (e.g. the number of processes and threads), net-
work parameters (TCP connection timeouts), enabling

2 2010/4/12

various HTTP protocol features (compression, keep-
alive connections), etc.

All the above optimizations are transparent to the
user. If this is not enough, two approaches are possi-
ble: admission control or content adaptation. Admis-
sion control reflects the notion that it is better to serve
only a subset of the clients, but maintain the quality
of service they each receive [5, 11, 13]. One approach
to do this is to use a model of the response time per-
ceived by the user, and how it relates to events that
can be monitored at the server [15]. If the model indi-
cates that response times are becoming unacceptable,
a fraction of the requests can be refused. However,
doing this at the level of individual requests may be
counter-productive, as users typically engage in ses-
sions that involve multiple requests, and moreover, the
longer sessions may be the more important ones. there-
fore session-based admission control should be consid-
ered [5].

Admission control may be required if service-level
agreements that mandate a certain quality of service
are in effect. However, it may be ill-advised in cases
where it is important not to reject any clients so as not
to lose business opportunities, as may be the case in e-
commerce applications. The alternative is therefore to
considertrading off quality for throughput. The danger
is that if this is not done explicitly, the server will be
overwhelmed and lose control over the level of service
it provides. A number of articles have suggested this
approach, using the notion of content adaptation. The
common feature of all these methods is the attempt to
create alighter version of the original web site which
will allow serving a larger number of users [1, 2, 17].

For example, a number of content adaptation tech-
niques are presented in [1], such asadaptation tags
inside HTML files, and image quality degradation by
lossy compression. The authors emphasize the impor-
tance of the number of embedded objects on the overall
site’s performance, and suggest eliminating small cos-
metic items from the page. Another technique is reduc-
tion in the number of internal links, thus making the
users consume less content from the given web site,
albeit it is debatable whether web-site owners would
adopt such a policy. The authors further present a com-
plete system for semi-automated content adaptation,
which includes measuring server response time as a
trigger to adaptation activation, and a content adapter

which creates a copy of the original directory tree while
replacing the content with adapted versions.

Our work also subscribes to this approach. Our con-
tribution is in measurement-based analysis of the con-
tents of web sites and the costs to serve them. The data
that we obtain can then be used to create effective adap-
tation schemes that achieve the best improvement in
throughput for the least degradation in quality.

3. Cost of Serving HTTP Requests

In this section we will estimate the system resources
required to serve an HTTP request by a web server.
These quantities are highly dependent on the properties
of the requested web object, e.g. the size of returned
data, computational resources for dynamic pages, etc.
Thus we will present a model of resource consumption
of HTTP requests as a function of the request’s param-
eters. The model will be used later in order to estimate
the expected benefits of various content modifications,
that are supposed to reduce resource usage.

3.1 Context and Assumptions

The system resources that we will measure are:

1. Network bandwidth

2. CPU time

3. Disk utilization

In addition, we will measure response time. Although
this quantity can’t be classified as a system resource, it
is important to include this parameter in the model for
a number or reasons:

• The response times experienced by the user largely
contributes to the perceived quality of the web site;

• Response time reflects the time a request spends
on the server, and can be used for estimating the
number of concurrent requests served by the server
as a function of total number of requests per time
unit.

At this stage we focus on the delivery of static web
content. While dynamic web sites that generate content
from databases are increasing in number, static content
is still prevalent. Moreover, our measurements for static
content can also be used to guide the scripts that cre-
ate dynamic content. The main difference is the need
to factor in the resources needed by the scripts them-
selves.

3 2010/4/12

Client Server

request

first response packet
time to 1st buffer

download time

last response packet

Figure 2. Elements of serving an HTTP request

For static web pages, images, etc. the most dominant
parameter would be the total size of the returned file,
e.g. the amount of resources required to serve a request
for a 5 KB image file is identical to that required to
serve a 5 KB HTML page. As such most of the resource
costs will be given as a function of the size of the
returned file.

The major exception to this rule is requests for tex-
tual files (HTML, CSS, etc.) when a data compression
algorithm is utilized by the server. The data can be
compressed on the fly for each request, or there can be
a cache of compressed content, allowing reducing the
CPU resources required for data compression. For ex-
ample, caching of compressed content for static pages
is available on IIS servers starting from version 6, and
is enabled by default for static content in version 7.

One of our major assumptions is that the site is
already optimized using methods which do not cause
quality degradations. In particular, we’ll assume that
for frequently accessed pages the content is already
compressed in advance and is stored in the cache. Thus
we’ll refer to the compressed size as the file’s size, and
ignore the issue of compression in the sequel.

3.2 Measuring Response Time

Our cost estimates are based on measuring the response
time for downloading various elements of web pages.
Figure 2 shows a high-level overview of a single HTTP
request and its response. In this example the time the
request is active on the server consists of

1. Time to 1st buffer

2. Download time

The time to 1st buffer is, generally, a measure for the
time it takes for the server to parse the request and to
locate the response content (a file for static web sites).
The download time is the time required to transfer the
file back to the client, and (given certain server’s state

and properties) is a function of the size of the file being
transferred, as well as of the quality of the network
connection between the server and the client. As seen
in the Figure, the download time can be effectively
measured on the client side, assuming that on average
the latency between the server and the client does not
significantly change in the course of a single response.

It is important to note that theperceivedresponse
time may include TCP connection establishment time,
as well as the time required for the browser to render
the web page. In addition, the client usually measures
the total time taken to download a whole page, includ-
ing all additional components. But we can avoid this by
designing a tool that just measures the time to down-
load specific files.

In order to analyze web server response times, an
automatic tool was created to measure download times
from a random sampling of web sites. Previous ap-
proaches to random sampling of the web use random
walks [3]. However, given the size of the web this is
strongly affected by where one starts. We therefore em-
phasize randomization of start points, as follows:

1. Select a random web site. This step is based on
the “Random article” link available on Wikipedia
(http:// en.wikipedia.org/wiki/Special:Random).
The title of the returned article is used as a search
term in Google. The first link is then chosen from
the results set, and only the “host” part of the URL
is taken, in order to make a request to the home page
of the site.

2. Request the home page of selected sites. The URL
selected in the 1st step is presented to Internet Ex-
plorer, which makes the request to the server, and
also performs all subsequent requests to additional
resources required to render the page.

3. Collect statistical data. The tool intercepts all sys-
tem calls made by the browser to open a connec-
tion to the server and send and receive data. This in-
formation is aggregated for each HTTP request and
processed to measure the required parameters. The
parameters collected for each request are:

• The requested URL

• The domain (“Host” HTTP header)

• The transfer data size (“Content-Length” HTTP
header or size of chunked response)

• The content type (“Content-Type” HTTP header)

4 2010/4/12

 0.0001

 0.001

 0.01

 0.1

 0.25

 1

 1 4 16 64 256 1K 4K 16K 64K 512K 2M

P
ro

ba
bi

lit
y

(s
iz

e
>

=
 X

)

Component size [bytes]

Component sizes
Single byte probability

Figure 3. HTTP component sizes distribution

• The download time (the time between the first
and last successful “read” operations on the TCP
socket)

4. Perform off-line analysis. The results of the previ-
ous step are stored in a database for further off-line
analysis.

We used this procedure to collect data from 95 web
sites. Figure 3 shows the log-log complementary dis-
tribution (LLCD) of sizes of files returned by these
servers (for each size the graph shows the probability
that files will be larger than this size). The tail of the
distribution of sizes is approximately straight, indicat-
ing a Pareto distribution. We also show the “single byte
probability”, i.e. for each sizex what is the probability
that a transferred byte belongs to a web-page compo-
nent that is larger thanx. This shows that about a quar-
ter of the total traffic bytes come from files larger than
about 200 KB, which have a probability of only about
0.2%. This information can be used as a hint later in the
work, as it shows that by eliminating a small number of
the largest files we can save a large percentage of the
required bandwidth.

Figure 4 shows the distribution of requests by con-
tent type. Textual content (including HTML, XML,
JavaScript, CSS and general text) is 44% out of the total
number of downloaded components, and the fraction of
multi-media files is 56%.

In order to see the response time as a function of
component size, we have to choose only the requests
made to the same web server, otherwise the differences
in network latency and bandwidth would affect the ac-
curacy of the results. Figure 5 shows results for servers
i.usatoday.netand image.timeinc.net(note: for some

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

JS Flash CSS Image HTML XML Text

T
ot

al
 S

iz
e

(K
B

)

Content Type

Figure 4. Distribution of content types

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5K 10K 20K 30K

D
ow

nl
oa

d
tim

e
(m

se
c)

i.usatoday.net

 0

 50

 100

 150

 200

 250

 300

5K 10K 20K 30K

D
ow

nl
oa

d
tim

e
(m

se
c)

size

image.timeinc.net

Figure 5. HTTP component download times

small objects the time appears as 0 msec; this happens
when all the data is received by the browser in single
read system call). The download times appear to have
values which are multiple of 18 msec. The reason for
this phenomena is unknown, but we assume it is re-
lated to scheduling mechanisms on the Windows oper-
ating system. Nevertheless, we can see the trend — as
expected, the download time is approximately a linear
function of the file size.

3.3 Bandwidth

As was shown in [16], the time required to route a
single IP packet from source to destination is hardly

5 2010/4/12

affected by the size of the packet. Therefore the more
relevant metric for content size is the number of packets
required to transfer it. One immediate implication is
that once the whole response can be sent in a single
packet, the bandwidth consumed by this request (as
well its response time) can’t be reduced any more by
reducing the size of the response. In order to estimate
the size of data which can be sent in the first response
packet, we should take into account:

1. The total size of packets that can be transmitted. As
servers are typically connected by Ethernet LANs,
this is 1538 bytes. This includes a 12-byte gap be-
tween successive packets.

2. The size of various headers. Ethernet itself requires
14 bytes of headers. IP/TCP require an additional 40
bytes.

3. The average size of HTTP response headers. Exam-
ples of HTTP header lengths in our measurements
of sites using the Apache web server are 280–325
bytes fromwww.cnn.com and 296–300 bytes from
www.top500.com.

Thus we can conclude that files under a size of 920
bytes are expected to be downloaded in a single packet.
The general formula for the maximal file size transmit-
ted inN packets would be920+(N −1)∗1258 bytes.
According to data shown in Figure 3, approximately
43% of the responses fit into a single response packet,
and an additional 24% fit into two packets.

3.4 Locality of Requests and Disk Utilization

Understanding the most common patterns of websites’
usage is crucial to our ability to produce realistic esti-
mates for consumption of resources by the web server.
Our goal is to derive guidelines for handling cases of
unexpectedly high peaks in the number of users visit-
ing the site; in cases when a site is continuously over-
loaded it probably means that it should perform a more
accurate sizing of the system.

It is reasonable to expect that in cases of extreme
load the requests will show a high locality — the vast
majority of requests will map to a very small number of
web pages or files. The examples shown above support
this assumption: visitors of CNN.com during the events
on 9/11 were mainly interested in viewing the home
page of the site only, and when a peak is caused by
a Slashdot effect, the majority of visitors follow an
external link, leading to a specific page in the site.

Figure 6. Peak load distribution from the official site
of the World Cup ’98 games

In order to validate the assumption of locality, we’ve
analyzed web-logs collected from web servers serving
the official site of the World Cup ’98 soccer games in
France, which was created for a short time interval and
was dedicated to that event. Figure 6 shows the percent-
age of HTTP requests to the most frequent files from
the total number of requests to the site. The 15 most
frequent components make 13.4% of the total requests
during the normal load, compared to 24.2% during the
peak hours (the most frequent components might be
different in normal and peak loads). Starting from the
30th most popular component, the graphs begin to be
approximately parallel, which shows that frequencies
of non-top pages do not significantly change on peak
loads.

The most noticeable implication of locality of re-
quests is when caching of response data is applicable,
because a high percentage of cache hits may be ex-
pected even with moderate cache sizes. This has im-
plications especially for disk utilization. If we consider
the default configuration for IIS 6 server [14], it allo-
cates approximately half of available physical memory
for caching, while a size of a cached file is limited by
default to 256 KB. Assuming that a modern server is
equipped with at least 4 GB of memory, it can cache
more than 8,000 files of maximal size, and on average
the fraction of files larger than that size is only 1/3%.

Based on this data we conclude that the disk uti-
lization won’t be a bottleneck for performance of the
web server at peak loads, and it can be taken out of the
model.

3.5 CPU Utilization

As stated above, the type of file being requested does
not affect the amount of web server’s resources re-

6 2010/4/12

jiffies
C P T user syst total

New connection + 68 88 156
Large file (once) + + 11 403 414
Small file + + + 333 269 602
Medium file + + + 345 277 622
Non-existing file + + 335 250 585

Table 1. Summary of CPU consumption in test cases,
typically involving 10,000 repetitions. C=connection,
P=processing, T=transmission

quired to serve it. In order to reach a more accurate
model, there’s a need to break down the CPU time into
different components of a single HTTP request. The
major parts of request processing by a web server, when
referring to static files, are:

1. Opening a new TCP connection

2. Parsing request headers

3. Locating the requested file

4. Network communications: receive the request and
transmit the response

The first three are largely constant, but the last depends
on the file size.

To measure the different components, a number of
different load types were applied to a web server. For
each test case the total CPU time of all the server’s pro-
cesses was measured, and the difference in this time
before and after the load is considered as the CPU time
required by the server. The server used for the tests
was Apache 2.0 running on Red Hat Enterprise Linux
5.0. All httpd processes were monitored, and for each
of them the data was taken from the/proc/PID/stat
pseudo-file. In particular we usedutime and stime,
indicating the number of jiffies that the process has
been scheduled in user and kernel modes respectively.
Preliminary tests have shown that such measurements
show consistent results with only a slight differences
(up to 4%) between different tests with the same load
on the server. The client used in all tests was Internet
Explorer 7.0.

The measurement results are summarized in Table 1.
The test cases used are

1. Opening a new connection. The purpose of this test
is estimating the cost of opening a new connec-
tion by a client. In the final calculations we should
take into account that usually the same TCP connec-

tion is reused by the browser to download multiple
HTTP objects. In the test a new TCP connection was
opened to the server, and closed immediately after-
wards, repeated 10,000 times.

2. Downloading a big file. This test comes to estimate
the cost of processing time required for data transfer,
when the same TCP connection is used to deliver
large data volumes. In this test a single textual file
of 1GB was downloaded by the client.

3. Requesting a small file. In this case a small HTML
file (73 bytes) was requested 10,000 times. The sizes
of request and response HTTP headers were 315 and
253 bytes respectively, so a total of approximately
6.1 MB of traffic was transferred, and a new TCP
connection was opened for each HTTP request.

4. Requesting a medium file. This case is similar to
previous one, but a larger file was downloaded.

5. Requesting a non-existing file. This final test case
comes to measure the amount of CPU time needed
to return a “File not found” response (HTTP code
404). The server’s response also contains a short
HTML content describing the error to the user (287
bytes). The sizes of request and response headers
were 310 and 180 bytes respectively.

From comparison of test cases (3) and (4) we can
estimate the amount of CPU required to process the re-
quest and to deliver the file contents. We first eliminate
the cost of opening the new connections, by subtracting
the CPU time measured in test (1). The conclusion is
that the total CPU time required for 10,000 requests for
10 KB files is 466 jiffies, 446 of them (96%) to parse
and process the request, and only 20 (4%) to transfer
10 KB of cached data.

If we take into account the CPU time required to
open a TCP connection, we find that an HTTP request
for a 10 KB file requires 25% of its CPU time for
connection initiation, 72% to parse and process the
request, and the remaining 3% to transfer the response.
According to [7], the average number of requests per
connection is 27.6; taking this into account reduces
the relative weight of connection establishment and
leads to a CPU time distribution of 1% to establish the
connection, 95% for parsing and processing, and 4% to
transfer the response content.

The CPU consumption for file transfer generally de-
pends on its size: the smaller it is, the lesser is the

7 2010/4/12

percentage of CPU cycles required for network trans-
fer out of total cycles used to process the request. We
have shown that for a 10 KB file the parsing required
24 times more CPU time than the transfer, so by ex-
trapolating this result, we conclude that in order for the
network transfer to take half of the total CPU consump-
tion, the size of a file should be 240 KB (24 times 10
KB). The analysis of HTTP component sizes from ran-
dom websites shown above (Figure 3) indicates that the
probability of a component to be larger than 10 KB is
less than 20%, and to be larger than 240 KB only 0.3%.
Thus we see that the lion’s share of the time is spent on
parsing and processing, and only a small part on trans-
fer. Therefore, when CPU utilization is the bottleneck,
we should look for ways to reduce the number of HTTP
requests made to the server, as the expected benefit of
this approach is significantly larger than that of reduc-
ing the size of individual components.

Note that these results were obtains for static web
pages. With dynamic web pages, the CPU consump-
tion is expected to be even higher. However, specific
optimizations related to the dynamic generation of web
pages are beyond the scope of this work.

4. Optimizations to Increase
Throughput

In this section we present different methods for opti-
mizing web pages in terms of server resources required
to handle all related HTTP requests. Each optimization
method is applicable to certain types of page compo-
nents. Using the results from the previous section, we
will estimate the expected impact of each optimization
on the utilization of each resource type. We also con-
sider the expected reduction in quality of the web page
as perceived by the end user. In order to perform calcu-
lation of the over-all effect of the suggested optimiza-
tions, we will consider a representative distribution of
component types in the page.

4.1 General Approach

Considering the focus on handling flash crowds that
converge on a limited number of pages that may be
cached by the server, we conclude that the bottleneck
resources are either the network bandwidth or the CPU.
For each component of the original web page, the fol-
lowing optimization approaches are possible:

1. Reduce the size of the returned file

2. Eliminate the HTTP request to the component

For small and medium file sizes we expect that re-
ducing the file size will lead to some positive effect
only on network bandwidth requirements, but not to
a significant reduction in CPU utilization, as most of
the processing resources are consumed by the server to
parse the request and locate the file to be sent as re-
sponse to the client. There’s a much higher motivation
to reduce the size of large files. As shown in Figure
3, large components, although being rare, are respon-
sible for a large portion of the total traffic, hence we
are interested in reducing their size as much as we can.
When transmitting a large file, the CPU consumption
also represents a considerable overhead.

Alternatively, by reducing the number of HTTP re-
quests made to the server, we can significantly reduce
the CPU time consumption, as was shown in the pre-
vious section. Depending on the size of the eliminated
component, total network bandwidth will also be re-
duced, as in the case of size reduction.

Although we make the assumption that websites are
generally optimized using techniques that are transpar-
ent to the users (i.e. do not reduce the quality of the web
page), observations show that optimization of the num-
ber of HTTP requests is rarely performed. For exam-
ple, it is relatively simple to consolidate multiple HTTP
requests into a single one by combining a number of
graphical elements into one large image, and cropping
the relevant areas on the client side using one of the
scripting technologies. The only site we know that per-
forms such an optimization iswww.google.com (Fig-
ure 1). This leads us to conclude that for most sites re-
moving visual elements from the web page will actu-
ally reduce the number of HTTP requests made by the
client while rendering the page.

A major issue with our suggested optimizations is
their effect on the perceived quality of the web site.
In general, our methods make a tradeoff between the
performance of the web server and the quality of the
web page. But how does one measure this quality?
In order to be able to measure the impact of certain
content changes, we first have to identify the main
features by which the user judges the quality of the site.

The literature contains several papers that attempt to
identify parameters that correlate with perceived qual-
ity. One class of parameters is those relating to speed
and responsiveness [4]. In particular, one can break
down the time needed to retrieve and render a page
into contributions by the server, the network and the

8 2010/4/12

browser. Our optimizations all reduce the amount of
work done and the amount of data transferred. While
the focus is on reducing the load on the server, this
has the byproduct of also reducing the work required
of the network and browser. Based on this we can con-
clude that from the “response time” perspective, the
user-perceived quality will only increase when apply-
ing optimization methods as suggested here.

Another dimension of quality of a web site is the
quality of its contents. Quality aspects include [10]

1. Accuracy of the information and the qualifications
of the author relative to the given subject

2. Authority and standing of the publisher or institution
who host the site

3. Objectivity of the provided information

4. Currency of the information, as reflected by the last
update time and validity of outgoing links

5. Coverage and linking to additional information

All of the aspects listed above refer to the textual con-
tent of the page, which is not altered by our suggested
optimizations, so we can deduce that the quality, as re-
flected by these considerations, is preserved.

Finally, the most elusive quality indicators are re-
lated to design of the page, including the use of text,
links, and graphical elements to create a design that
supports information delivery, navigation, and pro-
motes a positive user experience [9]. Optimizations dis-
cussed in the current work preserve the general layout
of a web page, including links and text formatting, but
introduce various changes to non-textual content ele-
ments, from elimination of some of them to reduction
the quality of the others. The subject of visual quality is
rather subjective, so for us the guideline was to try and
make the optimized version look as close as possible
to the original page. Below we show examples of both
acceptable and unacceptable optimizations.

4.2 Images

Image files make up about a half of a website’s content
total size, thus becoming a prime target for optimiza-
tion. In order to select the best optimization method for
each image, we have first to classify all images accord-
ing to their function. Based on previous works on the
subject, and observation of different websites, we iden-
tify the following classes of images [8]:

Figure 7. Classification of images from
www.cnn.com: (a) story, (b) preview, (c) host, (d)
logo, (e) decoration, (f) commercial

Story : along with related textual information, such
images form a central part of the web page, being an
illustration for an article, or in some cases becoming
the main content.

Preview : has a similar purpose as the previous item,
but is used with references to a different content, e.g.
linking to another article on the same site.

Commercial : used in advertisements or links to spon-
sors of the site.

Host : a photo of the content’s author, used in the main
content, in links to other articles, in blogs, etc.

Logo : the logo of the website, usually containing the
publisher’s trade mark.

Decoration : images used as elements of the website’s
design, e.g. drawing a frame or serving as bullets for
a list of items

Navigation : a special class of decorations used on
navigational buttons.

Text : such images contain text in graphically en-
hanced formats, usually used for short text se-
quences such as titles or menu items.

Figure 7 shows examples of different image classes.
In order to assess the potential for eliminating or re-

ducing the sizes of images, we need a database of clas-
sified images found on different web sites. To obtain
this a special interactive tool was created, with the fol-
lowing functionality:

9 2010/4/12

Figure 8. Image types distribution

1. Open and display the home page of a random web-
site (using the methodology of Section 3.2).

2. Find and highlight the first image, which can appear
in the HTML code as an tag, or as a back-
ground of other tags.

3. The user clicks on a shortcut key to select one of
the classification types, which describes the current
image most accurately.

4. The class of the image, as well as the following
parameters, are stored in the database:

• HTML tag

• Image source URL

• ALT property of the image (if present)

• Image file format (GIF, PNG, BMP, JPEG)

• Number of colors (for GIF images only)

• URL of the link associated with the image (if
any)

• Size of the image in the browser after rendering

• Size of the original image file

• Number of times this image appears on the page

5. This process is repeated for all images on the web
page, and then the next website is chosen.

Using this tool, 959 images from 30 sites were an-
alyzed. 50% of them were classified as decoration,
18% as preview, 11% as commercial, and 21% as other
types, see Figure 8.

Considering these results and the semantics of each
image type, we can define the strategy we would like to
apply to images while optimizing a website.

Decorationandpreviewimages are the best candi-
dates to be removed from the page, as it will not affect
the main content, and the expected number of such im-
ages constitutes about 70% of the total number of im-
ages on the page. This will lead to significant savings
of both CPU and network capacity.

At the same time, we would like to preserve allnavi-
gation images, as the functionality of the page depends
on them. The same is true regardingtext images, al-
though in principle such images can be replaced with a
text box containing the same information, but embed-
ded in HTML code and thus not requiring any addi-
tional HTTP requests to be made. We would also like
to assure thatlogo andstory images are not removed
from the page because of their semantic importance.

The handling ofcommercial image content is an
open question, and depends on the site. On one hand,
these images are not an integral part of the content of
the website. But on the other, profitability of the site
may depend on them. It therefore seems advisable to
leave this decision to the administrator of the website,
making it a configurable parameter in the process of
optimization.

The alternative to removal is reduction in size. All
large images that are not removed should be made
smaller by reducing the resolution and/or using lossy
compression. This is especially relevant for story im-
ages, preview images, and commercial images, which
tend to be big. As shown by [1], a reduction by a factor
of 10 may be quite possible with little noticeable effect
on aesthetics.

In order to apply the above strategies, one needs to
correctly identify the function of each image. Doing
it manually as we did for our research is not a viable
option. We therefore attempt to define a set of rules
which can be used to identify certain classes of images
based on their observable properties. We will start from
defining and validating some single-parameter associ-
ation, and will then derive a combined definition that
produces the best results. The suggested initial associ-
ations are as follows:

1. Most decoration images are encoded inGIF format.
Specifically, there were 523 GIF images overall. 312
(60%) of them are decorations, covering 66% of all
decorations, but producing 40% of false positives.

10 2010/4/12

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 200 400 600 800 1000 1200 1400 1600

H
ei

gh
t (

px
)

Width (px)

Decoration
Commercial

Preview
Other

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

H
ei

gh
t (

px
)

Width (px)

Decoration
Commercial

Preview
Other

1:1
16:9

Figure 9. Image sizes distribution and zoom in on
smaller sizes

2. Mainly decoration images appear in HTML tags
other than IMG. There were a total number of 312
such images. 266 (82%) are decorations (56% of all
decoration images).

3. The same decoration image can appear more than
once on the same page. 148 images had multiple
copies on the same page, 139 (94%) out of them
were decorations (29% of all Decorations).

4. Tests for presence of an ALT property for images, or
for presence of a link associated with the image, did
not produce meaningful results.

The next set of associations is related to geometri-
cal properties of images: pixel width and height of the

Figure 10. Image sizes: original file vs. HTML

original image file and of the area covered by the im-
age in the rendered page. We pay special attention to
the aspect ratio between the width and the height, and
to how this metric changes from the original file to its
final manifestation on the web page. Figure 9 shows
the distribution of image sizes as a function of im-
age type. Figure 10 shows how the size of the image
changes when rendered by the browser, both horizon-
tally and vertically, for different image classes. The size
of the “bubble” is proportional to the number of images
falling into a given bucket: the central square refers to
the images whose size is the same both in original file
and in the HTML page, next cell on the right includes
images that were enlarged horizontally by the factor of
up to 1.5, and so on. For the images falling into the
main diagonal the aspect ratio between the width and
the height is preserved.

As we can estimate based on the charts, most of the
images that are enlarged significantly relative to their
original size are decorations. Another noticeable fea-
ture is the large number of Preview images which are
compressed inside the HTML page, while preserving
the original aspect ratio. This can be explained by the
fact that in some cases the same image file is used in its
full size as a story image in one page, and as a preview
image in another. It also shows that a large number of

11 2010/4/12

preview images could be reduced in size without any
reduction of the quality of the hosting web page.

Based on these observations, we can make additional
assumptions regarding expected geometrical properties
of different image types, and validate them against the
images database.

1. Decoration images tend to be small. We checked the
number of images having pixel size of original file
(width×height) less than 100. The results were that
162 such images found, and 156 of them (96%) were
decorations (making 33% of all decorations).

2. A large change in an image’s aspect ratio implies
that it will be distorted. This would be unaccept-
able for a picture, but perfectly OK for a decoration
that just provides background shading or a separat-
ing line. Therefore we expect the value of “file as-
pect ratio” / “HTML aspect ratio” to be in the range
of 2/3 - 3/2 for most of the images, except for dec-
orations. Indeed, of 235 images with large differ-
ences between aspect ratios in original file compared
to that of rendered inside HTML page, 210 (89%)
of them are decorations (44% of all decorations).
Other image types with non-standard aspect ratios
included text and commercial images.

In conclusion, we can define the following rule to
identify decoration images:

• Appears more than once on the same page

• Pixel size of image file is less that 100

• The aspect ratio is changed by more than 2/3 when
comparing that of original image with the aspect
ratio of the image as it appears in the HTML page.

When applying these criteria on the image set, we
achieve the following results. A total of 322 images
passed this test. Of them, 289 (90%) are decorations
(constituting 61% of all decoration images). Of the
false positives, 12 are text (21% of all text images),
11 are commercial (11%), 4 are preview (2%), 3 are
navigational (7%), 2 are logo (4%) and 1 is story (3%).

As shown in Figure 10, Preview images can be iden-
tified by the following factors:

• Aspect ratio of the image is preserved.

• The image is compacted by a factor of 2 to 10 times.

This identifies 71 images in total, 66 of which are
preview (93%, and 37.5% of all preview images). Of

Figure 11. Same page with and without style sheets

the others 3 are commercials (3% of all commercials)
and 2 decorations.

4.3 Auxiliary Content

In addition to images, web pages lead to downloads of
two additional types of files: style sheets and JavaScript
files. Web style sheets are a form of separation of pre-
sentation and content for web design, where the style is
defined in an external stylesheet file using a language
such as CSS or XSL. This also allows the same style
to be easily applied to all the pages in a site. JavaScript
is a scripting language used to enable development of
enhanced user interfaces and dynamic websites.

In order to estimate the importance of style sheets
for the quality of a web site, we took a sample page, re-
moved all style sheet files and compared to the original

12 2010/4/12

version of the page. As shown in Figure 11, removal
of style sheets caused the whole structure of the page
to be lost. We can conclude that style sheets may play
an important part in defining the layout and format of
a web page, and as such our optimization cannot elim-
inate these files.

JavaScript can be employed for making dynamic
HTTP requests in response to certain client-side events,
e.g. loading a new image when the mouse is moved
over a graphical element. In some such cases we may
prefer to disable this JavaScript functionality in order to
reduce the number of HTTP requests when running in
optimized mode. However, the analysis of JavaScript
code is beyond the scope of the current work, and no
JavaScript optimizations will be proposed.

It should be noticed, however, that HTML supports
embedding auxiliary content inside the HTML file it-
self, in addition to having a reference to a separate file.
Thus in order to reduce the number of HTTP requests
it may be advisable to embed all auxiliary content in-
side an optimized version of the HTML page, even if it
would enlarge the size of the file.

The principle of locality should also be taken into
consideration. The main advantage (from a perfor-
mance perspective) of having CSS and JavaScript code
as separate files is in the ability of web browsers to
reuse these files for different pages that are viewed by
the client, as this content is usually static and can be
effectively cached. In cases of a peak load, the average
number of pages in a single user’s session is usually
smaller than that of regular browsing of a site, thus
the rule of separating CSS and JavaScript content from
HTML is less applicable in this scenario.

4.4 Textual Content

Hyper-Text Markup Language (HTML) is the predom-
inant markup language for web pages. The markup tags
affect both the formatting and the layout of the dis-
played page. Formatting includes visual cues such as
making headings larger with a boldface font. Layout
includes elements like menu bars and blocks of naviga-
tional links.

In the context of our work, an interesting option is to
rewrite source pages in a way that certain parts of the
page are eliminated. This is especially relevant when
the page uses a modular layout [6], where the content
is arranged inside vertical and horizontal shapes. More-
over, in a typical website there are a number of prede-

fined layouts, and each page follows one of them, e.g.
locating a navigation pane on the left column of each
page. When generating an optimized version of the site,
some of these layout modules can be eliminated from
all relevant pages, such that all components of those
areas are effectively removed and the total number of
HTTP requests required to render an optimized page is
reduced.

Automatic semantic classification of different areas
of a web page is a hard problem and out of the scope
of the current work. Indeed, [1] suggest that web page
designers include special tags in their designs, point-
ing out parts of the page that are important to retain
and parts that may be eliminated. However, any such
scheme that relies on added burden on developers risks
not being used in practice. In addition, modern web de-
velopment tools put the feasibility of such a solution
to question, because in many cases designers are not
required to type HTML Markup manually, but rather
generate it automatically using a visual tool.

A closely-related alternative is to rely on existing
markup. In many cases, the layout is defined in a cen-
tralized HTML file, and the content resides in differ-
ent HTML pages which are loaded as frames in the
main page. This makes it easy to control the presence
of whole frames in the web page. In addition, many
tools and layouts use tag names or IDs that have impor-
tant semantic content. Thus we can base our optimiza-
tions on eliminating certain tags (with all internal struc-
ture) based on tag name and ID. For example, in case
of thewww.top500.org site we can configure the tool
to hide DIV tags having “sidebanners” as an ID, and
the whole right-side pane containing advertisement im-
ages will be removed in all pages. The structure of the
www.cnn.com site is also controlled by DIV tags, hav-
ing meaningful IDs and class names, making it possi-
ble to define appropriate optimization rules. The advan-
tage of this method, compared to insertion of special
marks into the HTML file, is in its non-intrusiveness
— there’s no need to modify the original pages or to
introduce any changes to a regular workflow of updates
to the content of the site.

5. Conclusions

The only way to serve a flash crowd of users who flood
a web server is to trade off quality for performance.
This means that each user will receive a degraded
version of the requested web page, but the server’s

13 2010/4/12

throughput will be improved enough so that at least
they will all receive a relevant page. Such an intentional
degradation of web pages is called content adaptation.

We have conducted an empirical study, based on data
collected from a random selection of web sites, in order
to establish guidelines for what types of adaptation
may be expected to provide the most benefit in terms
of reducing the load on the server. The following list
summarizes the major potential areas for optimization:

• Elimination of decoration images. Decorations con-
stitute roughly half of all images in a page, and can
be identified with high accuracy by an automatic
tool.

• Resizing large images. Large image files can be
compressed to create a lower quality version with
reduced file size.

• Consolidating textual content. It’s possible to embed
JavaScript files and style sheets into HTML code,
thus reducing the total number of components of a
page.

• Hiding whole blocks in a page layout. Based on rel-
atively simple manual configuration, whole blocks
can be removed from original pages, including all
contained resources.

These optimizations reduce the number of HTTP re-
quests, which is crucial in order to reduce CPU load.
They also reduce the volume of data that needs to be
sent, thereby reducing network load.

A verification of the effect of these recommenda-
tions requires a full implementation and experimental
evaluation. We leave this to another paper.

Acknowledgments

This research was supported by a grant from the Israel
Internet Association.

References
[1] T. F. Abdelzaher and N. Bhatti, “Web content adap-

tation to improve server overload behavior”. Comput.
Networks31(11-16), pp. 1563–1577, May 1999.

[2] T. F. Abdelzaher, K. G. Shin, and N. Bhatti, “Per-
formance guarantees for web server end-systems: A
control-theoretical approach”. IEEE Trans. Parallel &
Distributed Syst.13(1), pp. 80–96, Jan 2002.

[3] E. Baykan, S. de Castelberg, and M. Henzinger, “A
comparison of techniques for sampling web pages”. In
3rd Workshop on Information Integration on the Web,
May 2006.

[4] N. Bhatti, A. Bouch, and A. Kuchinsky, “Integrating
user-percieved quality into web server design”. Com-
put. Networks33(1-6), pp. 1–16, Jun 2000.

[5] L. Cherkasova and P. Phaal, “Session-based admission
control: A mechanism for peak load management of
commercial web sites”. IEEE Trans. Comput.51(6),
pp. 669–685, Jun 2002.

[6] L. Francisco-Revilla and J. Crow, “Interpreting the lay-
out of web pages”. In 20th Conf. Hypertext and Hyper-
media, pp. 157–166, Jun 2009.

[7] R. Hariharan and N. Sun, “Workload characterization
of SPECweb2005”. In SPEC Benchmark Workshop,
Jan 2006.

[8] J. Hu and A. Bagga, “Categorizing images in web doc-
uments”. IEEE Multimedia11(1), pp. 22–30, 2004.

[9] M. Y. Ivory and M. A. Hearst, “Improving web site de-
sign”. IEEE Internet Comput.6(2), pp. 56–63, Mar/Apr
2002.

[10] J. Kapoun, “Teaching undergrads web evaluation: A
guide for library instruction”. College & Research Li-
braries News59(7), pp. 522–523, Jul/Aug 1998.

[11] D. Kumar, D. P. Olshefski, and L. Zhang, “Connec-
tion and performance model driven optimization of
pageview response time”. In 17th Modeling, Anal. &
Simulation of Comput. & Telecomm. Syst., Sep 2009.

[12] W. LeFebvre, “CNN.com: Facing a world crisis”. ;Lo-
gin: 27(1), p. 83, Feb 2002. (summary of invited talk at
LISA 2001).

[13] N. Mi, G. Casale, Q. Zhang, A. Riska, and E. Smirni,
“Autocorrelation-driven load control in distributed sys-
tems”. In 17th Modeling, Anal. & Simulation of Com-
put. & Telecomm. Syst., Sep 2009.

[14] Microsoft TechNet, “Global registry entries (IIS
6.0)”. URL http://www.microsoft.com/technet/
prodtechnol/WindowsServer2003/Library/IIS/60a90c91-
a8d0-43b6-89db-a431d0ea0cb4.mspx?mfr=true.
(Visited 1 Feb 2010).

[15] D. Olshefski and J. Nieh, “Understanding the manage-
ment of client percieved response time”. In SIGMET-
RICS Conf. Measurement & Modeling of Comput. Syst.,
pp. 240–251, Jun 2006.

[16] K. Papagiannaki, S. Moon, C. Fraleigh, P. Thiran, and
C. Diot, “Measurement and analysis of single-hop de-
lay on an IP backbone network”. IEEE J. Select Areas
in Commun.21(6), pp. 908–921, Aug 2003.

[17] R. Pradhan and M. Claypool, “Adaptive content deliv-
ery for scalable web servers”. In Intl. Network Conf.,
Jul 2002.

[18] S. Sounders, “High-performance web sites”. Comm.
ACM 51(12), pp. 36–41, Dec 2008.

[19] Wikipedia, “Slashdot effect”. URL
http://en.wikipedia.org/wiki/Slashdoteffect. (vis-
ited 31 Jan 2010).

14 2010/4/12

