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Abstract—Intuitively, it seems that understanding how the
performance of a system affects its users requires research in
psychology and the conducting of live experiments. We demon-
strate that it is possible to uncover the effect from traces of
the system. In particular, we found that the behavior of users
of parallel systems is correlated with the response time of their
jobs, not the slowdown as was previously assumed. We show
that response times affect the decision of users to continue or
abort their interactive session with the system, and that this may
relate to expectations the users develop. Although this research
was conducted in the context of parallel systems, we believe
our results are more general and may pertain to other types
of systems as well.

I. INTRODUCTION

Understanding how the performance of a system affects the
behavior of its users helps improve system design. In the
context of parallel systems, for example, it will allow the
design of better job schedulers, with the goal of satisfying
users by exploiting knowledge about user behavior to better
plan future actions.

Intuitively, it seems that exploring user behavior requires
research in psychology and the conducting of live experiments
with real users. The problem is that live experiments are often
impractical to conduct; few users have the time or patience to
actually record the reasons for their behavior patterns.

We suggest a novel methodology to uncover the effect on
users from traces of the system. The traces we use contain
records of jobs that were actually submitted by the users,
scheduled, and finally executed on real, production-use parallel
systems. We show that using these traces we are even able
to reason about user motivation, not just about the causal
relationship between performance and behavior.

The performance of the system can be measured using
different metrics, all which are assumed to be important to the
users. In particular, the response time of jobs (the time from
submission to termination), and the slowdown (the response
time normalized by the actual execution time) are two metrics
often used in performance evaluations. The first question is
therefore, which of these metrics is most important to the users
in the sense that it affects their subsequent behavior.

Intuitively, the slowdown of jobs is important to users
because it reflects the degree to which the performance they

actually observed from the system met their expectations. For
example, it may be fine for a 10-minute job to wait 5 minutes
in the queue (a slowdown of 1.5), but for a 1-minute job to be
delayed 14 minutes (same response time of 15 minutes, but
slowdown of 15), may be considered unacceptable. Somewhat
surprisingly, we found that user behavior is strongly correlated
with the response time of their jobs, not the slowdown. This
finding calls for a reassessment of suggestions that jobs should
be prioritized according to their slowdown [6].

The next question is how exactly response times affect the
behavior. In reality, users tend to submit several jobs one after
the other in periods of activity that are known as sessions.
Previous work had already discovered how session data can
be identified and extracted from the traces [17]. We found
that the decision of the users to continue submitting jobs, or
alternatively to abort their session, is affected by the response
time of their jobs. Specifically, we show that the higher the
response time, the higher the probability for the user to abort
his interactive session with the system.

The third and final question we answer in this paper is why
this happens. It is well known that user behavior is affected by
expectations [13], but unfortunately, such informations does
not appear explicitly in the traces. Instead, we show that
it is possible to isolate specific scenarios in the traces. In
particular, we examined the scenario where response times
met the expectations of the users, and the scenario where they
did not. We found that although the users’ perception and
motivation are different in the two cases, their actual behavior
happens to be very similar.

The paper is organized as follows. Section II describes
the traces we used for our analysis. Section III answers the
question of which performance metric is most important to
the users. Section IV answers the question of how that metric
affect their behavior, and Section V answers the question of
why this happens. Section VI discusses related work, and
Section VII concludes the paper.

II. TRACE DATA

The data we used for our analysis come from traces that
contain records of jobs that were submitted and executed on a
variety of large-scale parallel machines over periods ranging



TABLE I
THE FIVE TRACES WE USED FOR OUR ANALYSIS: TOGETHER, THEY
REPRESENT MANY YEARS OF ACTIVITY BY HUNDREDS OF USERS.
Trace Duration Users Jobs
SDSC-Par-1995-2.1-cln 1/1995–12/1995 98 53,970
CTC-SP2-1996-2.1-cln 6/1996–5/1997 679 77,222
KTH-SP2-1996-2 9/1996–8/1997 214 28,489
SDSC-SP2-1998-3.1-cln 4/1998–4/2000 437 59,725
SDSC-BLUE-2000-3.1-cln 4/2000–1/2003 468 243,314

from one to three years. Each job record contains several
fields, four of which are relevant for our study: the user who
submitted the job, the time of submission, the job’s wait time
in the scheduler queue, and the job’s actual execution time,
once it got started. The first field allows us to analyze the
data on a user basis. The other three fields allow us to find
when each job terminated, and to calculate its response time,
its slowdown, and the think time between the termination and
the submission of the next job by the same user.

We used five traces to ensure that our results are not par-
ticular to a certain location and time: together, they represent
many years of activity by hundreds of users. They are listed in
Table I, and are available on-line from the Parallel Workloads
Archive [4]. When available, we use the cleaned versions of
the traces, where flurries and other extraordinary activity have
been removed.

III. METRICS CORRELATION WITH USER BEHAVIOR

When a user submits a job for execution, this is typically not
an isolated event. Rather, users tend to submit several jobs one
after the other. In many cases there is a dependency between
successive jobs: when a job terminates, the user examines
its result, makes corrections and adjustments, and submits
another job. The time between the completion of a job and
the submission of the next job is known as the think time.

The system scheduler, in turn, accepts these jobs from the
users and places them in its wait queue. When resources
become available, it scans the queue and selects jobs for
execution according to some prioritization criteria, and subject
to possible reservation constraints.

Obviously, the scheduler’s actions depend on the jobs
submitted by the users, but user behavior is also dependent
on feedback from the scheduler. An efficient scheduler that
streams jobs through the system at a high rate encourages users
to submit more jobs, while an inefficient scheduler that causes
resources to be wasted and jobs to be delayed discourages the
submittal of additional work [12].

While existence of such a feedback to the users is intuitively
clear, the effect on their behavior is not. The performance of
the system can be measured using different metrics, all which
may be assumed to be important to the users. The challenge
is to find the metric that is really important to the users in the
sense that it affects their subsequent behavior.

We focus on the response time and slowdown of the jobs.
The response time of a job is the time elapsed from its submis-
sion to termination; it is the sum of the time it spent waiting
in the scheduler’s queue and the time it actually executed.
Intuitively, response time is important to users because they

TABLE II
RESPONSE TIME BINS (RANGES ARE IN MINUTES).

Resp. time bin R1 R2 R3 R4 R5
Resp. time range 0–5 5–15 15–45 45–135 135–∞

TABLE III
SLOWDOWN BINS.

Slowdown bin S1 S2 S3 S4 S5
Slowdown range 1–1.41 1.41–2 2–4 4–16 16–∞

must wait for their jobs to terminate before they can examine
the results and submit more jobs.

Slowdown is the response time normalized by the actual
execution time. It is also intuitively important to users because
it reflects the degree to which the performance they actually
observed from the system matched their expectations: A
slowdown value that is near 1 indicates that the job response
time was close to its execution time, whereas a high slowdown
value indicates that response time had lengthened far beyond
what would have been expected based on the job’s actual
runtime.

Finding a metric that reflects the behavior of the users is
more challenging. Metrics like the average job submission
rate are not useful because averages necessarily mix multiple
effects with multiple responses. Instead, we propose to use the
think times that follow jobs in the traces. The rationale is that
think times capture the user’s immediate response to the job
that has just terminated. A short think time indicates that the
user was waiting for his job to complete, that he is satisfied
with performance, and intends to continue the interaction.
A long think time indicates that the user was probably not
waiting for the job, possibly because he had given up on using
the system.

Because different jobs receive different levels of service,
and different users react differently to their jobs, the response
times, slowdowns, and think times of the jobs in the traces
exhibit large variance. Tabulating the interaction on an indi-
vidual job basis in this case is not useful. Instead, we partition
the jobs into classes that represent different levels of feedback
to the users, and study the aggregate user reaction to the jobs
in each class.

The classes are obtained by dividing the jobs into five
bins, once according to the response time metric, and again
according to the slowdown. The levels of feedback represented
by the response time bins are “very fast response”, “reasonably
fast response”, “medium response”, etc. and the levels of
feedback represented by the slowdown bins are “very low
slowdown”, “low slowdown”, and so on. The boundary points
between the bins are roughly logarithmic, as shown in Tables
II and III. This has the advantage of resulting in classes of
approximately the same sizes in terms of the number of jobs
assigned to each.

Once the jobs are grouped in bins, we can analyze the think
times that follow the jobs on a per-bin basis, and examine
reaction of the users to the different classes of feedback. Figure
1 shows the median think times for the five response time bins,
and the five slowdown bins.

In the case of response time, the relationship between per-
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Fig. 1. Correlation of performance metrics with user behavior: Top: high
response times correlate with longer think times. Bottom: for slowdown there
is only a weak correlation.

formance and subsequent user behavior is clear and consistent
for all five traces studied. Jobs in bin 1, which had response
times of up to 5 minutes, have the smallest median think time
— also about five minutes. The median think time is larger —
up to 20 minutes — for bin 2, 20 to 60 minutes for bin 3, etc.
This means that users’ subsequent behavior is correlated with
the response time of their jobs: the faster their jobs respond,
the quicker users submit additional jobs.

In the case of slowdown, on the other hand, the relationship
is much less clear. First, the results for the different traces
are highly dispersed, with the highest median think time a
factor of 20 or 30 larger than the lowest one for each bin.
Second, the order of the traces varies too; for example, the
SDSC SP2 trace exhibits the lowest think time median for
bin 2, and the highest median for bin 4. Finally, some of the
results are non-monotonic: in the SDSC Paragon trace, the
think times following jobs in slowdown bin 4 are lower than
those following jobs in bins 1, 2, and 3. Consequently, there
is no easy and general way to characterize the relationship
between the jobs’ slowdown and the subsequent user behavior.

In the above, we considered the response time bins to be
homogeneous but in reality, different jobs in the same bin may
have far different wait and execution times. This means that
the slowdown of the jobs within the same response bin exhibit
a large variance. For example, a 15-minutes job that waited
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Fig. 2. Graphical illustration of the bins: The response bins are bounded
between the solid lines, and the slowdown bins are bounded between the
dashed lines.

TABLE IV
MEDIANS OF THINK TIMES FOR SUB-BINS.
Bin S1 S2 S3 S4 S5
R1 3.6 6.6 8.2 8.8 8.9
R2 9.5 14 18 19 18
R3 17 49 50 41 40
R4 119 149 159 195 119
R5 524 600 652 712 702

5 minutes in the queue and a 1-minute job that waited 19
minutes both belong to the same response bin R3, since both
responded in 20 minutes. The question is whether these two
jobs indeed trigger a similar user behavior, even though the
first has a slowdown of 1.33 and the second has a slowdown
of 20.

To answer this question, we need to examine our response
bins more closely. The natural way to do this is to simply
divide each bin into sub-bins based on the slowdown metric.
We used the same ranges as for the original slowdown bins.

Figure 2 illustrates these bins graphically. The horizontal
axis represents the jobs’ wait time, and the vertical axis
represents their execution time. The response bins are bounded
between the solid lines, and create diagonal regions going
from top-left to bottom-right. The slowdown bins are bounded
between the dashed lines, and create radial regions emanating
from the origin. The intersections of the two types of regions
represent the sub-bins. We named these sub-bins according
to response and slowdown bins their jobs belong to, so
for example sub-bin R3S1 holds jobs whose response time
belongs to response bin R3, and whose slowdown belongs to
slowdown bin S1, etc.

Table IV shows the median think time following the jobs in
each of the sub-bins, using data combined from all five traces.
As expected, this exhibits a strong dominant effect of the
response times. In each column, we see that the median think
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Fig. 3. CDF of think times for the five traces: Negative values indicate
that one job started before the previous one completed. Session boundary is
defined to be twenty minutes.

time grows dramatically and monotonically with the response-
time bin. Looking at rows does not reveal any such pattern for
slowdown. However, jobs with the very lowest slowdowns do
consistently tend to lead to lower think times than the other
jobs with the same response time.

The conclusion of the above discussion is that the response
time metric is the one most important to the users since it
has the strongest correlation with their subsequent behavior.
The question that immediately follows is therefore how exactly
response times affect the behavior. We show in the next
section that it affects users’ decision to continue or abort their
interactive session with the system.

IV. JOBS RESPONSE TIME AND USER SESSIONS

Sessions are periods of continuous activity by the users.
This does not mean that their jobs must be continuously active
throughout the session. A job may complete, and the user
may think for a while before submitting the next job. If the
think time is too long, on the other hand, it may well indicate
that the user took a break. In this case, subsequent jobs will
belong to a different session. The question is, therefore, how
to distinguish between jobs that are separated by actual think
times and belong to the same session, from jobs that belong
to different sessions.

Zilber et al. answered this question by examining the dis-
tribution of think times in the traces [17]. Figure 3 reproduces
part of their data (they used two additional traces in addition
to our five), showing the CDF of the think times in the traces.
We first observe that think times can be negative. This stems
from the definition that think time is the time between the
completion of a job and the submission of the next job, and
indicates that sometimes users submit jobs without waiting for
their previous jobs to complete. Such jobs are often submitted
in batches — one after the other with very short gaps between
the successive submissions, and without being affected by
feedback from previous jobs [12]. Consequently, the negative
think times are not useful for our study of feedback to the
users, and we therefore ignore them for the rest of this paper.

Focusing on the positive think times, we see a steep climb
in the CDF curve of all traces for think times of a few minutes,
which levels off at about twenty minutes. This means that a
large portion of the jobs are submitted within twenty minutes
of the completion of a previous job, which is an indication
for continuous activity periods by the users. Furthermore,
beyond twenty minutes the think times are evenly distributed,
without any features indicating a natural threshold. Zilber et
al. therefore defined the sessions’ think time boundary to be
twenty minutes; jobs submitted after a think time that is longer
than twenty minutes are considered to start a new session. In
our work we adopt this definition.

We remain focused on the response time bins of the previous
section, but this time we expand our analysis, and consider not
only the median think times, but the entire distribution of think
times following the jobs in each bin

The CDF of think times for the different bins is shown
in Figure 4. The immediate impression is that the five sub-
figures that represent the different traces are very similar. In
all traces, there is a noticeable and a similar gap between the
CDF curves of the different bins. Furthermore, for all traces,
the curves follow the same vertical order: response bin R1 has
the highest CDF, bin R2 has the second-highest CDF, etc.

A closer examination of the figure also reveals that in all
traces, all bins exhibit the same steep climb in the CDF up-to
the session’s twenty-minutes think time boundary, and beyond
that point, all curves level off. In fact, the major difference
between the curves is in the percentage of the jobs that
were submitted below the session boundary, and it is this
difference that determines the vertical order of the curves.
For the SDSC-SP2 trace, for example, 72% of the subsequent
jobs for response-bin R1 were submitted below the session
boundary. For response bin R2, only 55% of the jobs were
submitted below this boundary, and so on. The higher the bin
number, the lower the percentage of jobs that were submitted
below the session boundary.

Figure 5 summarizes these results for all five traces. For
each bin we extracted the percentage of subsequent jobs that
were submitted below the session boundary, using the CDF
of think times of the bin. We also calculated the median of
response time of the jobs in the bin, and used the median to
represent the bin. We then plotted one against the other. The
result is a mapping between the jobs response times, and the
probability for the users to continue their sessions. We see
that for all traces, the higher the response time of the jobs,
the lower the probability for users to continue submitting jobs
within the same session. The mapping itself is non-linear; the
probability to continue the session initially drops rapidly as
response-time increases, and continues to drop more slowly
for higher response times.

The conclusion is that the jobs’ response times affect the
users decision to continue or abort their interactive session
with the system. In the next section we show that this decision
may stem from expectations the users develop regarding the
response time of their jobs.
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Fig. 4. CDF of think-times for the five response-bins: The five sub-figures
that represent a different trace each are very similar. In all, the higher the
bin number, the lower the percentage of jobs that were submitted below the
twenty-minutes session boundary.
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V. USER PERFORMANCE EXPECTATIONS

It is well known that user behavior is affected by expec-
tations [13]. Live experiments conducted in the context of
the web have found that users’ tolerance to server delays is
strongly affected by their expectations regarding the duration
of the delay [1]. Accordingly, one would expect users of
parallel systems to also develop expectations regarding the
time frame by which their jobs should respond. The question is
how these expectations affect their behavior, and what happens
when response times lengthen beyond their expectations.

To answer this question we focus on a subset of our previous
results. Specifically, we define two bins, so that one holds jobs
that had a short wait, and the other holds jobs that had a short
execution. Assuming that users expectations would be related
to the execution time of their jobs, and not the wait times which
are an artifact of certain conditions that existed in the system,
these two bins actually represent two different scenarios: the
one with the short waits represents the scenario where response
times met their expectations, and the other represents the case
where they expected a quick response, but it got lengthened
because of long waits in the scheduler’s queue. The threshold
we chose for the bins is five-minutes of wait, and five-minutes
of execution, respectively.

Due to the nature of the bins, the response times of the jobs
they hold exhibit a large variance. The bin with the short waits
for example, may hold two jobs that waited only a minute for
execution, but the first executed for a few seconds, and the
other for several hours. We therefore divided our bins into sub-
bins, based on the response time metric, and using the same
ranges we used before as indicated in Table II. This enabled
us to examine the user behavior under the two scenarios, while
also considering the effect of the response time of their jobs.

Figure 6 illustrates these bins graphically. Again, the hor-
izontal axis represents the jobs’ wait time, and the vertical
axis represents their execution time. Our two bins are bounded
between the two solid lines: the vertical bin holds the jobs
with the short waits, and the horizontal bin holds the jobs
with the short execution. The dashed diagonal lines represent
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the boundaries of the response bins, which intersect with our
main bins and define the sub-bins. The sub-bins with the
short waits carry the prefix ‘W’, and the ones with the short
execution carry the prefix ‘E’. All carry a suffix that identifies
the response bin to which their jobs belong to, e.g., R1, R2,
etc.

For each sub-bin we extracted the percentage of jobs that
were submitted below the session twenty-minutes boundary,
and plotted this percentage against the median of response
time of the jobs in the sub-bin. The result is shown in Figure
7. The two curves represent the probability for the users to
continue their session as a function of the response time of
their jobs. One curve represents the scenario where response
times met their expectations, and the second represents the
case where they did not.

In accordance with our previous results, we see that in both
scenarios the probability for users to continue their session de-
creases as response time increases. What is surprising though
is the high level of similarity between the curves, despite of
the fact that they represent two essentially different scenarios.

Our proposed explanation to this difficulty is that the users’
perception and motivation are indeed different in the two cases,
but that their actual behavior just happens to be very similar. In
the first scenario, response times meet users expectation. The
fact that the probability to continue the sessions decreases as
response times increase is then a straightforward result of the
fact that users expect long response times, and therefore tend
not to wait for their jobs. The longer they expect the response
time to be, the higher the probability for them to discontinue
their sessions.

In the second scenario execution times are short and users
expect a quick response. They start to wait for their jobs,
but when response times lengthens beyond their expectation
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Fig. 7. Performance expectations and user behavior: The probability for
users to continue their sessions decreases as the response time of their jobs
increases, regardless of whether they expected that response or not.

because the jobs wait for long time in the scheduler’s queue,
they tend to lose their patience and abort their sessions. In this
case the user behavior is indeed affected by the performance
of the scheduler, but it happens in such a way that makes the
end result appear similar to the behavior had they anticipated
the long response time in advance.

We can also examine the bins with respect to the slowdown
metric. In the bin with the short waits, slowdown decreases
as response time increases. In the bin with the short execution
times on the other hand, slowdown increases with the response
time of the jobs. Still, the behavior of the users appears to
be similar in both cases. This corroborates the results from
Section III, and indicates that response time is a much more
reliable predictor of user behavior than slowdown.

VI. RELATED WORK

In the context of parallel system scheduling, we could not
find any references that discuss the direct effect of the sched-
uler performance on the users’ behavior. In fact, virtually in
all the publications, the schedulers are evaluated in simulation
using an open model, which means that the arrival rate of the
jobs is already given, and is not affected by feedback from the
scheduler [15], [10], [14], [16], [8], [11]. Works on modeling
parallel workloads either try to mimic the arrival process found
in workload traces [7], [2], [9], or simply use a Poisson model
[5], [3].

There is no single consensus regarding the performance
metric that is most important to users. More than 35 years ago,
Brinch Hansen suggested to prioritize jobs using the slowdown
metric [6], but since then many scheduling policies have been
proposed and evaluated differently, as shown in Table V. All
believe their metric is the most important, but none had ever
investigated why.

In previous work, we investigated the importance of feed-
back from the scheduler to the generated workload for the
accuracy of the evaluation, and suggested that the workload
should be generated by user models that react to the response
of their previous jobs [12]. In this model, think times for
the jobs were drawn from the same distribution, irrespective



TABLE V
SCHEDULING POLICIES AND METRICS USED FOR THEIR EVALUATION: ALL
BELIEVE THEIR METRIC IS THE ONE THAT IS MOST IMPORTANT TO USERS,

BUT NONE HAD EVER INVESTIGATED WHY.
Year Scheduling policy Metrics
1999 Slack based backfilling [15] Wait time
2001 EASY and conservative backfilling [10] Response, Slowdown
2002 Selective reservation backfilling [14] Slowdown, Turnaround
2002 Relaxed backfilling [16] Total wait time
2002 Multiple queue backfilling [8] Slowdown
2005 Lookahead based backfilling [11] Response, Slowdown

of how previous jobs were handled by the scheduler. Conse-
quently, the model didn’t include any notion of aborting a user
session as a result of poor performance.

Bouch et al. investigated users tolerance to web server
delays and found that it is influenced by various factors, in-
cluding the type of task they perform, and the cumulative time
they interact with the server [1]. They used live experiments
to extract the mapping between the duration of the delay, and
the users perception of that delay.

Zilber et al. [17] examined the distribution of think times
in traces of parallel system schedulers, and found that a large
portion of the jobs were submitted within twenty-minutes of
the completion of a previous job. Consequently, they defined
sessions to be sets of jobs submitted within twenty minutes
from the completion of previous jobs, a definition that we
adopt in this paper.

VII. CONCLUSIONS

A good scheduler should increase the throughput of its
users, but this requires an understanding of the users’ behav-
ior. Surprisingly, in virtually all performance evaluations, the
effect of the scheduler on the users is ignored. The common
methodology is to simply use a trace to generate the workload,
but in the trace the arrival rate of the jobs is already given, and
is not affected by feedback from the scheduler. Furthermore,
the metrics by which schedulers are compared vary from one
evaluation to the other. Each analyst believes their metric is
the one that is most important to users, but this is not justified.

In this paper we investigated the effect of the performance
of the scheduler on the behavior of the users, and found that
their behavior correlates best with the response time of their
jobs, not the slowdown as was previously sometimes assumed.
We continued to investigate the actual type of the effect, and
found that response times affect the users’ decision to continue
of abort their sessions, and that the higher the response times
of the jobs, the lower the probability for users to continue
submitting jobs within the same session. Finally, we’ve shown
that the decision to abort the session may stem from certain
performance expectation that the users develop, regarding the
time frame by which their jobs should respond.

We did not reach these findings using live experiments.
Instead, all we did was to examine traces that contain raw data
on jobs that were submitted to real, production-use parallel
systems. We are not the first to examine these traces. In fact,
some of the older traces were first analyzed more than ten
years ago. We are though the first to take a different, slightly
less obvious look at things. An important conclusion of this

work is that a lot of interesting observations are still out there
in the traces. All it takes is different angle and a fresh way of
thinking to extract them.
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