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Abstract— It is customary to use open-system, trace-driven  The inability to influence throughput is an inherent problem
simulations to evaluate the performance of parallel-systa sched- jn open models. In our case, job throughput is probably the
ulers. As a consequence, all schedulers have evolved to pite pyagt ingicator for user productivity, but the metric simpsn-
the packing of jobs in the schedule, as a mean to improve th din th luation. Th lution is t
a number of performance metrics that are conjectured to be notbe u_se n eeva_ua |on. € common solution IS 1o use an
correlated with user satisfaction, with the premise that tis alternative set of metrics which on one hand can be affegted b
will result in a higher productivity in reality. We argue that the scheduler, and on the other be conjectured to correlttie w
these simulations suffer from severe limitations that leado sub-  yser satisfaction. More specifically, the jobs’ aversggponse-
optimal scheduler designs, and to even dismissing potenig e ang slowdownare frequently used in evaluations, with

good design alternatives. We propose an alternative simuian th ise that i ina th in simulati i Itz
methodology called site-level simulation, in which the wdtload € premise that improving them In simulation will resuftan

for the evaluation is generated dynamically by user-modelshat ~higher productivity in reality.

interact with the system. We present a novel scheduler calte We argue that these simulations suffer from severe limita-
CREASY that exploits knowledge on user behavior to directly tions, and that they lead the schedulers to focus on the pgcki
|m_p_rov:3 userk_satuzfactuémé:gg conr:pgr? itsvserforr]manfﬁ tto e  of jobs in the schedule as a mean to improve the average values
original, packing-base scheduler. We show that user . . X ; ; . .
productivity improves by up to 50% under the user-aware desgn, N simulation, which results in su_b-optlmal scheduler gas_l
while according to the conventional metrics, performance ray Ve also argue that the conventional performance metrics do

actually degrade. not necessarily correlate with user productivity, whichyma

Index Terms—Parallel job scheduling, trace-driven simula- €VEN result in dismissing potentially good design altéveat

tions, open-system model, user behavior, feedback. as poor.

As an alternative, we propose a novel simulation method-
ology namedsite-level simulationin which the workload is
generateahot from traces, but dynamically hyser-modelshat

N important goal of any parallel-system scheduler is timteract with the system, and whose behavior in simulation i

promote the productivity of its users. To achieve highimilar to the behavior of users in reality. We claim thattsuc
productivity the scheduler has to keep its users satisfied dmehavior can be extracted directly from traces of systemd, a
motivate them to submit more jobs. Due to the high costeith a level of detail that is sufficient to enable us to depelo
involved in deploying a new scheduler, it is uncommon treliable models of the users to be used in the simulations.
experiment with new designs in reality for the first time. Site-level simulations reproduce the fine-grained intoac
Instead, whenever a new scheduler is proposed, it is fitbat naturally exists between the users and the systemlityrea
evaluated in simulation, and only if it demonstrates sigaift This means that schedulers capable of motivating theirsuser
improvements in performance, it then becomes a candidate fo submit more jobs will actually cause the throughput of the
an actual deployment. The role of simulations is thus @iticjobs in the simulation to increase, and implies that screxgul
for the choices made in reality. can be designed to improve user satisfaction directly,esinc

The conventional simulations presently used to evaluate their effect on productivity will be reliably evaluated.
schedulers are trace-driven, and use an open-system mod&Ve present such a scheduler and namE€REASY Our
to play-back the trace and generate the workload for tiseheduler inherits its backfilling algorithm from the origl,
evaluation. This means that new requests get issued durpagking-based EASY scheduler, but uses a novel prioribizat
simulation solely according to the timestamps from thedracscheme that exploits knowledge on user behavior to improve
irrespective of the system state, and implies that as long @ger satisfaction. It uses the fact that some jobs are more
the system is not saturated, th@oughputof the scheduler critical to the users than others (hence “CR” stands for
being evaluated also gets dictated by the timestamps aist€Riticality) in the sense that delaying them too much may
of being affected by the actual performance of the scheduleause their owners to leave the system. It assigns higher

priorities to these jobs to reduce the likelihood for sessio
aborts, and to motivate the users to submit more jobs.
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We also compare the two schedulers according to the caelect jobs for execution. Some schedulers maintain a numbe
ventional performance metrics and show inconsistent t®subf queues and use, for example, the job’s runtime estimates t
the average job response-time under CREASY is 27% higlsaiect the right queue for the job [3]. Other schedulers taain
compared to EASY, while the average slowdown is 66% lowduturistic execution profile for the jobs; when a new jobaes,

We show that the increase in response time is the outcothey insert it into the profile in a location where it eitheredo
CREASY's tendency to prioritize short jobs at the expense abt conflict with any of the already existing jobs [4], or in a
longer ones that dominate the average, and that the decrgalaee where it delays some of these jobs by a small factor [5].
in slowdown is the result of the exact same trade-off, and thelt is difficult to determine which approach is the best, and in
fact that slowdown is affected mostly by the shorter jobs. fact some studies have indicated that the relative perfocma

This paper is organized as follows. Section Il provides tha&f schedulers may actually depend on the workload [4]. On
background: it gives examples of common schedulers desigtie other hand, there is one thing that schedulersshare
describes the conventional simulations and how they leadito common: they all focus on the packing of jobs in the
these designs. Section Il introduces site-level simotei schedule, which as we demonstrate below, may not be optimal
it describes our findings regarding the behavior of users fior productivity.
parallel systems, and the user models we use in our simulaConsider for example a loaded system, and three users
tions which are based on these findings. Section IV presentambered 1, 2 and 3, who submitted three jobs to their
CREASY and describes the simulation results. Section &theduler at 11:00am, 11:10am, and 11:55am, respectively.
surveys related work, and Section VI concludes the paper afissume that the time is 12:00pm and that neither of these

suggests future research directions. jobs had started executing yet. By this time, there is a high
probability that users 1 and 2 have given up waiting for their
Il. SHORTCOMINGS OFCONVENTIONAL SIMULATIONS jobs and that they have left the system already. On the other

There are different types of parallel systems, and e
requires a scheduler that is tailored to its own specific
chitecture. Though all schedulers are evaluated in sifoulat . . .
in a similar way, we chose to focus, without loss in geneyalit Figure 1 illustrates how three different schedulers would

on a specific type of system that is both common and easy ve treated these jobs. In all sub-figures, the system groce
describe sors are laid out vertically, and time is running from left to

Our system has a distributed memory model, in which eve ht, startlr_lg at 12:00pm. Qur three jobs are Iabeled_ 1@ an
processor in the system is associated with a private mem after their users. There is also one more job that is labele

and the processors are connected to each other using a . E‘I.nd is currently running, and enough free space beside that

network. A parallel job in such a system is a unit of worl® T:]O a(;corlnmodar:e(jolttl 2 'c:)_r B’gUt nolt:Job é d (FCES) i
that is composed of multiple processes that need to exemut?:i e simplest scheduler, First-Come-First-Served ( 5) |
igure 1(a), would simply execute the jobs in their arrival

parallel and communicate over the network.

There is no time-sharing nor preemption support in Olﬁ)lrder. Since job 1 must wait for job R to terminate before

system. This means that processors need to be allocated togfan start exgcutlng, a large space at the .beglnmn.g of the
edule remains un-utilized. Jobs 2 and 3 will start exegut

jobs using a one-to-one mapping — one processor for ev h der FCES. b \v after iob 1 ;
process of the job, and once allocated they remain dedicalggether under e ut only after Jo terminates.
The problem with FCFS is of course the poor system

to the job until it terminates. This scheme is often refetied "™ .
utilization. This led to the development of a new class of

as space-slicing. . .
b g hedulers that relax the strict execution order of the jobs

The role of the scheduler in such a system is to acce o ) L . .
the jobs from the users, to allocate processors and to axed(ltPTOve utilization. When the jobs reside in a wait queue in
eir arrival order, such schedulers pick small jobs from th

the jobs on the selected processors. For simplicity, Wer'ﬂgni] Kof th q h bef | iobs th
issues like network contention, heterogeneous node caafig acko t € queue, an e_xecute them be ore farger Jobs that
arrived earlier, tdill holes in the schedule. This behavior was

tions, and security. . th wackill
The system users submit their jobs by providing job descrig'—ven € name&ackiiing o .
Backfilling can be implemented in different ways. Figure

tions to the scheduler. For our type of system this typicall )
includes two important attributes: the number of process (®) |Ilqstrates .the schedule under the EAS.Y scheduler —
the job requires in order to execute, which is often refetced a classic backfilling scheduler that was originally develbp

as the job’ssize and an estimated upper bound on the runtin4t8r the IBM SP parallel system, anq IS l.Jseq Ever since as
of the job, to enable the scheduler to plan ahead. a reference for performance comparison in virtually any job
’ scheduling research [1].

) EASY prioritizes the waiting jobs according to their artiva
A. Common Scheduler Designs order, and uses the jobs’ runtime estimates to calculatenwhe
The behavior of the schedulers upon job arrival diffethe highest priority job — the earliest arriving job — will be
greatly. Most schedulers maintain a queue where the johis waldle to execute in the future. It then examines the remaining
for processors to become available [1], [2]. Whenever tatest jobs in descending priority order, and backfills any job that
of the system changes, either due to an arrival of a new jdhs into the currently free processors, as long as it will not
or a termination of a running job, they scan the queue ardnflict with the projected execution of the highest pripjitb.

a nd, there is a good chance that user 3 who had just submitted
IS job is still active at the system, and is excepting a fast
response.
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Fig. 1. Three different schedules for the jobs: (a) Pooresystitilization under FCFS, (b) Improved utilization but noter-optimal schedule under EASY,
and (c) User-aware schedule to motivate user 3 to submit jobee

Concentrating on the highest priority job is done to guarantmodel. The closed model ignores the timestamps and issues
the execution of all jobs: once this job starts executing, timew requests only after a previous job completes. The pmoble
next earliest-arriving job will become the highest prigijibb, is that it leads to extreme regularity: there are no burstcef
and it also will no longer be delayed. tivity in the workload which severely limits the optimizatis

In our example, job 1 is the earliest arriving job, so EASYhat can be performed by the scheduler, and there is no easy
determines that it will be able to execute only after job Rvay to manipulate the load for the evaluation.
terminates. It then examines job 2 that has the second-$tighe The open model on the other hand plays-back the trace
priority, and backfills that job since it will not conflict Witthe solely according to the timestamps, and issues new requests
execution of job 1. Finally it examines job 3 and determinéfrespectively of the system state. It supports bursts pe#ed
that there are not enough free processors to backfill that jop the timestamps, and the load can be easily manipulated by
too. Job 3 will therefore be delayed to a later time, and etéecunodifying the timestamps in the trace before the simulation
only after job 1 terminates. begins. Since real workloads often exhibit bursts and vayyi

At first glance it seems that EASY’s schedule is optimaload conditions, the conventional simulations adopted thi
the space beside job R has been utilized by job 2, and jolmbdel in generating the workload, but the choice is more of
will execute without delay — but this is just an impressioa compromise than an optimal selection, and it even seems to
that is based on a static view of the system. The problemHave affected the way schedulers are designed.
that by the time job 3 will terminate, there is a high prob@pil |5 gpen-system simulations, as long as the system is not
that user 3 will give up waiting for it and leave the systemyatyrated, thehroughputof the scheduler that is being evalu-
In other words, EASY backfilling may be apparently good fogted gets dictated solely by the timestamps from the trawk, a
utilization, but it is not optimal for the users. it is not affected by actual performance of the scheduler. A

Figure 1(c) illustrate a user-aware schedule in which ja:heduler capable of motivating its users to submit mors job
3 is backfilled before job 2, although it has arrived last. Thgill not cause more jobs to be submitted, and an inefficient
idea is to get job 3 to respond while its owner is still active &cheduler that ignores its users and causes them to leave the
the system, to motivate user 3 to continue the interactiah agystem will not decelerated the creation of additional work
submit more jobs. Though initially it seems less intuitis g jnapility to influence throughput is an inherent prable
schedule is in fact based on the anticipated dynamics of ti'iﬁeopen models in general. In our case, job throughput is

system and speculating about future user behavior, and$ho&obably the best indicator for user productivity, and impr

result in a higher productivity. ing it should therefore be an important goal for any parallel
system scheduler, but the metric simply cannot be used in

B. Simulations Effect on Design the evaluation. The common solution is to use an alternative

Though it is clear from the above example that schedulirsgt of metrics which on one hand can be affected by the
jobs without considering the users might not be optimascheduler, and on the other be conjectured to correlate with
virtually all schedulers would backfill, similar to EASY,j2  user satisfaction. More specifically, the jobs’ avereggponse-
ahead of job 3. We argue that the reason they do not explicitigne which is the time the jobs spent in the system from
consider the users is rooted in the way the conventiorgbmission to termination, and thedslowdownwhich is the
simulations are carried out to evaluate the performancaef tresponse time normalized by the actual runtime of the job, ar
schedulers. frequently used in evaluations. The premise is that imprgvi

In these simulations, the workload is usually generatédem in simulation will result in a higher productivity in
from tracesthat contain records of jobs that were submittetgality.
to real, production-use parallel systems over long permids Consequently, all schedulers evaluated using the conven-
time. Each record in the trace contains several attribdtas ttional simulations have evolved to consider the user of the
describe a job, and includestimmestampthat indicates when system only implicitly by trying to improve these metrics.
the job was originally submitted. They often try to optimize the packing of the jobs in the

There are two models for actually generating the workloamthedule, since tighter packing usually leads to lowerayer
from the trace, thelosed-systermodel, and the@pen-system values. We are not aware of any parallel-system scheduler



TABLE |
METHODOLOGICAL DIFFERENCE BETWEEN THE TWO TYPES OF SIMULATIN.

| Category | Conventional Simulationg  Site-Level Simulations |

Workload source System traces User models
Workload generatior] Open-system model Users-scheduler interactign
Load scaling Trace (de)-compression | Number of users
Performance metrics Response time, slowdown Throughput, session length

that considers its users explicitly, nor of any investigati L == oo
as to whether these seemingly “user-friendly” metrics adle ctc_sp2_cln
0.8 L| mm kth_sp2

correlate with higher productivity. 5§ 087" sdsc blue_cn |/
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Ill. SITE-LEVEL SIMULATIONS

As described above, the conventional simulations lead to
the design of schedulers that consider the system users only
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implicitly. To enable the design of truly user-aware schHer)

we propose to change the way simulations are carried out:

. . O L

instead of using traces to generate the workload, we suggest oh In 0+20m  +1h oh
to model the users of the system, and use these models Think time

in simulation todynamicallygenerate the workload for the

evaluation. We name these simulations, natural{e-level Fig. 2. CDF of think times in the five traces: negative valuedidate
simulations that sometimes users submit jobs without waiting for theevjpus jobs to

. . . . . L terminate. The steep climb in all curves which levels-offabibut twenty
Site-level simulations reproduce the fine-grained intB0ac minutes lead to defining the sessions think time thresholdeiotwenty-

that naturally exists between the users and their systemnimutes.

reality. This means tha_lt sche_dulers capable of motivatireg t TABLE Il
users to submit more jobs will actually cause the throughput
of the jobs to increase, and implies that schedulers can be
designed to improve user satisfaction directly, sincer thigéct

THE FIVE TRACES WE USED FOR OUR ANALYSISTOGETHER THEY
REPRESENT MANY YEARS OF ACTIVITY BY HUNDREDS OF USERS

on productivity will be reliably evaluated. Table | sumnzas ;rggec I Dlif/itsig; 12/1995Usefs o J%b3597o
: : : -Par- -2.1-cln — ,

the _methodologmal difference between the two types of sim- 22"<0o ' 00e™" on 5/1996.5/1997 679 77222

ulations. KTH-SP2-1996-2 9/1996-8/1997 214 28,489

The basic and most important elements in a site-level simu- SDSC-SP2-1998-3.1-cIn 4/1998-4/2000 437 59,725

SDSC-BLUE-2000-3.1-cln  4/2000-1/2003 468 243,314

lation are theuser-modelsand in fact our entire methodology

depends on the ability to understand the behavior of users

. S the first truly user-aware parallel-system scheduler desdr
and to capture this behavior in a model that can be us%aéSection IV. The simulation results of our scheduler réger

in simulation. One of the major contributions of our work i : . : .
. : in that same section were also obtained using Site-Sim.
is the analysis methodology we developed, that enabled us
to uncover the users’ behavior patterns directly from syste
traces, without conducting live experiments with real ase
In the following section we briefly describe our findings and In reality, users tend to submit several jobs one after the
focus only on those that directly pertain to our user model@ther in periods of activity that are known asssionsThe
The complete methodology is described in [6]. time between the termination of a job and the submission of
These findings form the basis for ttsmssion dynamics the next is gIobaIIy known as ththink time but the fact is that
model described below, which is the first of three modell the think time is too long, it may actually indicate a break
that together comprise the complete user model we use in &dtich is not part of the session. The question is thereforatwh
simulations. The dynamics model handles the dynamic aspeit the think time threshold that separates jobs that belong t
in the user behavior — the starting and the ending of usée same session from those that belong to the next.
sessions as a reaction to the performance of their jobs. Thelilber et al. answered the question by simply observing the
other two models are theb submission modéhat handles the distribution of the think times in different traces of p&hl
actual submission of jobs during the sessions, andattieity Systems [7]. Figure 2 shows the CDF of the think times in five

cycles modethat incorporates daily and weekly cycles int®f these tracés which are listed in Table Il. Two important
the simulation. observation can be made on this figure. The first is that think

Our user model is described in Section IlI-B. We impletimes can be negative, which means that sometimes users
mented and integrated it intSite-Sim— a framework we Submit jobs without actually waiting for their previous job
developed for site-level simulations to enable the retiaial- 10 terminate.
uation of user-aware schedulers. We used Site-Sim eX8MSIV 15 yaces are available from the Parallel Workloads Arehiat URL
to explore design alternatives as we developed CREASY htp://iwww.cs.huji.ac.illlabs/parallel/workload/.

IA. User Behavior Patterns



The second observation is the steep climb in all curves at
zero, which starts to level off at around twenty minutes.sThi
means that a large portion of the jobs are submitted within
twenty minutes from the completion of a previous job, and tha
beyond twenty minutes the think times are evenly distrithute
without any features indicating a natural threshold. Zilbe
al. therefore defined the threshold totlenty minutesabove
twenty minutes the think times are considered breaks, aad th
jobs that follow them are considered to belong to the next
session.

In our work we adopted this definition, but also tried to 0 10 20 30 40 50 60 70 80 90
understand what may cause the users to continue their sessio Job response time [m]
or to take breaks. We found that in all traces, there is a gtron (@) Original trace data
correlation between the response times of the jobs and the
think times: the longer the response, the higher the thmlkgi
that follow the jobs. This led us to speculate that user biehav
is affected by the response times of their jobs — that short
response times encourage the users to quickly submit more
jobs, and that longer ones may cause them to abort their
sessions. Similar observations regarding the relatiowdst
job response and user behavior were reported through the use
of live-experiments in [8].

Due to the large variance that naturally exists in the traces o
we divided the jobs into classes according to their response 0 10 20 30 40 50 60 70 80 90
times, and for each class we calculated the percentage of Job response time [m]
jobs that were submitted below the twenty minutes think time (b) Data combined and curve smoothened
threshold. The result was a mapping between the response _ _
times of the jobs and the probabilty for the users to coreind, % Joc% resperse e sfec o user behaor & bents e onger
their sessions, which indicates that the longer the respti®s and (b) Trace data combined and resulting curve smoothened.
lower the probability for the users to continue and submiteno
jobs. The mapping is illustrated in Figure 3(a) and it forims t the performance of the system. Second, since the length of
basis for session dynamics model described in Section.llI-Bthe sessions directly affects the throughput metric, saleesl

It is important to note that the response times of jobs &an try to influence this decision as a mean to improve
only one of many factors that affect the users, and that uggoductivity. In other words, the accurate modeling of this
behavior in reality is far more involved than what our cutrerdlecision is essential for both the evaluation and the design
model depicts. However, for the purpose of demonstratitger-aware schedulers.
the effect of simulations on the design of the schedulers,The session dynamics model is responsible for taking these
our simple models suffice. In the conclusions section wiecisions for the user models during simulation, and based o
provide suggestions as to how to enhance the models to furttfee outcome to determine when will they submit more jobs
improve the accuracy of the evaluation. to the system. In its essence, the dynamics model handles
the dynamic starting and the ending of user sessions during
simulation.

To model the decision, we first combined the data from

Our user model is composed of three sub-models that it five traces of Figure 3(a) and smoothened the resulting
teract with each other during simulation to simulate a stiali curve, as shown in Figure 3(b). We found that the curve can
user behavior. Theession dynamics modétejob submission be roughly described by Equation 1. Next, during simulation
mode] and theactivity cycles modedre described in detail in whenever jobj terminates, we calculate the response time
the following sections. In section 11I-B.4 we provide exéde® of the job, and use Equation 1 to determine the probability
as to how these models interact during simulation. p_cont(j) that the user who submitted the job will continue

1) Session Dynamics ModeAs described above, one ofhis session with the system.
the important factors that affect user behavior is the raspo
times of their jobs: the longer the response, the lower the p-cont(j) = 0'8, : (1)
probability for the users to continue their sessions. Thisins 0.05 x resp_time(j) + 1
that response times in effect, affect the users’ decision toTo make the final call we perform a single Bernoulli trial,
continue or abort their interactive sessions with the sgste with probability p_cont(j) for success and — p_cont(j) for

There are two reasons why it is extremely important t@ilure. If the trial ends in a success, the user will congitnis
accurately model this decision. First, it is an integraltpasession with the system, otherwise he will take a break. The
in the behavior of users, representing their satisfactigh wtrial is summarized in Equation 2.
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B. Complete User Model
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Fig. 4. The two think time distributions in the traces: (apsdtthink times Fig. 5. CDF of job sizes and runtimes in the traces: (a) sizes modal
are used for sessions that continue, and (b) longer thinkstiare used for distribution with most jobs using power-of-two processasd (b) runtimes
breaks. is rather skewed distribution, dominated by small runtiratues.

in a realistic manner.
decision — { continue session  with probabilify.cont(j) ~ To generate the attributes, we once again used distritsition
abort session with probability — p_cont(j) that are based on empirical data from the traces. The CDFs
) ) ) of the job sizes and runtimes are shown in Figure 5. The

Once we know whether its session continues or not, the ngx&; js a modal distribution with most jobs using power-of-
step is to determine when will the user submit his next job. Ago processors, and the second is a rather skewed distributi
described above, jobs within the same session are submiligthinated by small runtime values, usually in the order of a
with up to twenty-minutes of think time from the completionyinyte or less. Similar observation regarding size andmest
of a previous job, whereas between sessions the think timgs,e reported in several studies [9].

are I_ong_er a.nd are_conmdere_d br_eaks. we therefore_need tW?hough the above distributions are based on empirical data,
distributions: one with short think times to be used for Erss using them “as-is” will still not generate a truly realistic

that continue, and the other with longer think times to beluSq,,yjoad. The reason is that in reality, users tend to sutiait

for breaks. o . same jobs over and over again, which means that successive
We used distributions that are based on empirical data \Wg,g by the same user tend to be similar to each other. This

extracted from the same five traces of Table Il. In these HaC?Emporal locality in the workload will therefore be lost ifew

breaks may sometimes be as long as several months, S'Qi?ﬁply sample these distributions in the course of simoati
real users do not necessarily use the system contmuousl}fhe solution is to use a two-level sampling process, with

throughout the year. To avoid such long pauses in user t;ctiv{ e top level generating the attributes for the fobsnd the

during simulation, we limited the breaks to a maximum ottom level repeating them to generate effects of locality

eight hours by filte_ring-ogt longer think times_ during tracTzlo]_ For the bottom level, we chose the jolsizesto be the
analysis. The two distributions as they appear in the rates leading distribution, and extracted the number of timessjob

shown in _thelr CDF format in Flgurg 4. For thg S|mulat|pnsof the same size appear successively in the traces. The CDF
we combined the data from all five traces into a singl

. o &f size repetitions in the different traces is shown in Fgur
representative distribution.

. ] _ . 6(a). Again, we combined all traces into a single represizeta
2) Job Submission ModelThe session dynamics model istribution for use in the simulation.

described above does not handle the actual submission®f jo
Th'_s is the role Of. the job 5me|3_5|0n m(_)del: it generates thexriner accuracy can be achieve be considering the ciorelaetween
attributes for the jobs, and submits the jobs to the schedud&e and runtime.



1 ; ‘ workloads, but also since they introduce periodic intes\
s . low loads that enable the scheduler to stabilize the statieeof
s 08 system and prepare for the next interval of high load [11].
-§ Figure 8(a) shows the distribution of job submissions dyrin
L 06— the 24-hoursdaily cycle in the traces. Not surprisingly, all
< 04 traces indicate higher levels of activity during the dagim
‘—E sdsc_sp2_oin comp_ared to the _n|ghtt_|me. What is mterestlng_tho_ugh is
E o2 ctc_Sp2_cln - ] the high level of similarity among the traces, which in fact
=1 kth_sp2 .
@) sdsc_blug cln e enables us to roughly define a boundary between day and
0 __sdsc_par95 cln. night. Accordingly, we defined daytime to be from 7:30am
1 2 3 4 5 6 to 17:30pm, and nighttime from 17:30pm to 7:30am the next
Job size repetitions morning. Our analysis indicates that approximately 70%llof a
(a) Size repetitions job are submitted during the 10 hours of daytime, and the rese
1 ‘ ‘ ‘ during the nighttime.
- | Similarly, Figure 8(b) shows the distribution of submisso
e — during theweeklycycle. As expected, weekdays Monday to
_.§ Friday are busier than weekends, accounting for 80% of all
o 06 submissions. The remaining 20% occur during the weekends,
o Saturday and Sunday.
-% 0.4 The role of the activity cycles model is to incorporate these
E! S ap oo daily and weekly cycles into the simulation. At simulation
3 02 sdse lﬁwg_sgﬁ e | start, it performs two Bernoulli trials for each user modke
sdsc_par95_cln first to determine whether the user will be active during the
0 1 2 3 4 5 6 day or the nighttime, and the second to determine its days of
Batch width activity — weekdays or weekends. The probabilities we used
(b) Batch widths in these trials are 70% and 80%, respectively. This effebtiv

divides the user population into four classes: (a) daytime-
Fig. 6 C_DF of job size‘ repetitions and batch vv_idths in thg{:etsg for weekdays, (b) daytime-weekends, (C) nighttime-week(myﬂ;,
the simulations, we combined the data from all five traces mtsingle . .
representative distribution. (d) nighttime-weekends, and guarantees that the levels of
activity in the simulated workload will be similar to those

To actually submit the jobs, we closely examine Figure und in reality.
and observe that a large fraction of the think times in the The model then continuously monitors the time of day and
traces — more than 50% in some cases — are in fact negatitree day of week during the simulation, and determines foheac
This stems from the definition of think time as the time fronuser model, based on its class, whether it should continbe to
the termination of a job to the submission of the next, arattive or be temporarily suspended. For tatime-weekday
indicates that sometimes users submit jobs without waitingers for example, if a job terminates after 17:30pm, theehod
for their previous jobs to terminate. will determine it is sleep time for these users, and susplesid t

An effective way to model this behavior is to ubatches activity until the next morning, or even until the next weald
which are groups of jobs submitted asynchronously to oifet is already a weekend.
another, without being affected by the performance of pnesi  To prevent bursts of activity at shift transition, the cycle
jobs. Sessions will thus consist of series of one or momodel also attaches a random number between -60 and 60
batches, each containing one or more jobs, and the sesdmreach user model, and uses this number to personalize the
dynamics model described above will only be used to deriuser’s window of activity. For example, if the number 20
the think time from the last job in a batch, to the first job ie thwas attached to a certain daytime user, the cycles model will
following batch. The relationship between sessions, leatchshift its window of activity by 20 minutes from the “official”
and think times is illustrated in Figure 7. The jobs markedaytime window. This means that the user will submit his first
with an X are those used to derive the think time. job at 7:50am and be suspended at 17:50pm.

The CDF of thewidth of the batches — the number of 4) Models Interaction During SimulationThe three mod-
jobs submitted asynchronously within batches — is shown éts described above interact with each other in order to
Figure 6(b). As can be seen, the distributions are reaspnabimulate a realistic user behavior. We provide two examples
similar in all traces which indicates that our data is repnes for this interaction, both for thelaytime-weekdaysers. The
tative of job submission behavior in general. first happens entirely during the day, and demonstrate how

3) Activity Cycles Model:Daily and weekly cycles are sessions start and end dynamically during simulation. & th
universal human traits. Most users arrive to work in thsecond example, the cycles model intervenes, and suspends
morning and leave for home in the evening. Normally, thehe user until the next morning. In both cases, we assume the
work during week-days, and rest over weekends. Incorpayatiuser only submits a single job at a time.
these cycles of activity in the simulation is important, just The first example is illustrated on the left side of Figure
because they constitute a fundamental characteristic af r8. Our user arrives to work at 7:30am sharp, and the job
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Fig. 7. Sessions, batches, and think times: the jobs markitdan X are those used by the session dynamics model to derive thie tthie until the next
job.

01— S This time, the job responds after a whole hour, so the dynamic
@ ctc_sp2_cln model determines that the session showdtd continue, and
2 008 [ MISPZ o decides on a long, three hours break for the user. Three hours
é’ sdsc_parg5/ain later, at 12:10pm, the cycles model verifies the time once
g 006 again, and our user submits the fourth job, and so forth.
ug 0.04 The second example is illustrated on the right side of the
s figure. Our user submit a job at 17:10pm that responds five
'§ 0.02 | minutes later. The time is verified, and the dynamics model
i decides on a think time of 10 minutes until the next job.
o L At 17:25pm our user submits one more job that responds at
Oam 6am  12pm 18pm  23pm 17:35pm. This time the cycles model determines that it is lat
Time of day for the user, and send him on a long sleep of 13 hours and 55
(a) Daily Cycles minutes, until 7:30am the next morning.
@ IV. USER-AWARE SCHEDULING
% Site-level simulations allow user-aware schedulers to be
g reliably evaluated and effectively designed. We develcueh
2 a scheduler and compared its performance, in simulation,
G to the original EASY scheduler which is not user-aware.
IS — sdsc_sp2_cn We present our scheduler and its simulation results in the
g 00 e seadn following sections.
L || e sdsc_blue_cin
0 sdsc_par95 cin - .
Sun  Mon Tue Wed Thu Fri Sat A. Criticality of Jobs
Day of week Our scheduler is similar to the EASY scheduler from Sec-

(b) Weekly Cycles tion II-A in the sense that they both use backfilling to impgov
Fig. 8. Daily and weekly cycles in the traces: (a) 70% of thbsjare performance. Furthermore, our scheduler actuaherits its
submitted during daytime, 7:30am to 17:30pm, and (b) 80%eint are are backfilling algorithm from the EASY scheduler. In fact, the
submitted during week-days, Monday to Friday. only difference between the two schedulers is in the way
they prioritize the waiting jobs: while EASY accounts only
submission model is immediately called to submit the firbt jofor the jobs’ arrival order in the interest of fairess [18yr
to the scheduler. When the job responds five minutes later, #theduler tries to assess tiéicality of the jobs for the users,
activity cycles model is called to determine whether the isse and assigns its priorities accordingly. We therefore named
still active at work. Since 7:35am is just the beginning of thscheduler CREASY, with “CR” standing for CRiticality, and
workday for our daytime-weekday user, the session dynamigsASY” to denote the backfilling algorithm internally used.
model is called to determine if its session should continue o The criticality of a job is determined by the way it affects
not. the behavior of its owner. We already know that user behavior
The dynamics model determines that five minuets of r& affected by the response times of the jobs. A closer look at
sponse are satisfactory, and decides on a short think timeFigure 3 also reveals that the mapping between the response
10 minutes following this job. Ten minutes later at 7:45amimes and user behavior is non-linear: the probability fegens
the activity cycles model is called once again to verify thin continue their sessions drops rapidly as response times
time, and the submission model is called to submit the secoindrease for short response times, and continues to drop mor
job by the user. When this job responds 10 minutes later, tslewly for higher response times.
cycles model verifies the time again, and the dynamics modelsThis means that jobs with short response times rateh
decides on a 15 minutes think time until the next job. more critical to the users in the sense that any delay incurred
At 8:10am our user submits the third job to the scheduldyy these jobs, even the smallest one, dramatically incsghse
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Fig. 9. Two examples for the models interaction during satiah: active user sessions are shown in the dark gray.

chances for a session abort. We therefore defined the dtiticapriority job.

of jobs using Equation 3, which is ttaerivativeof Equation While this is true under EASY’s original prioritization

1 in absolute values, and hence accurately accounts foe thesheme, it is not guaranteed in our case since according to
differences in criticality: it assigns high values to jobghnv Equation 3, senior jobs whose response time is already long
short response times, and near-zero values to those whedenever become more critical than short executing jotst th
effect on user behavior is marginal. This differs from plaikeep getting submitted. In other words, the combination of
shortest-job-first scheduling in the sense that short jabs a@riticality-based prioritization and EASY backfilling mégad
given high priorities only provided that they have not beeto starvation.

delayed too much. The solution is to combine seniority factor in the priority
I 0.04 calculation, as shown in Equation 4: the criticality part on
criticality(j) = the left is taken directly from Equation 3, and the seniority

(0.05 x estimated_response_time(j) + 1:22 s ) i _ e -
(3) factor is simply the time, in minutes, that the job is waiting

Note that in the denominator of Equation 3 we only use dar execution in the scheduler’s queue. Finally, the weight
estimatefor the response time of the job, since exact responiseused to set the relative importance of the two factors én th
times can only be determined after the jobs terminate. Fer tbalculation, and at the same time to adjust the differentisuni
estimate we sum the time the job had already spent waitinged.
in the scheduler’'s queue, and the time it is expected to run,
which is based on the user estimate. Together, the two values
represent the total time the job is expected to spend in thef o = 0, jobs will be prioritized solely according to
system, from submission to termination. their seniority, resulting in a prioritization scheme wihics

If Equation 3 will be used to prioritize the jobs, it will effectively identicalto EASY’s original scheme. Non-zer@
increase the chances for critical jobs to execute beforerotlvalues on the other hand will cause the criticality factor to
jobs, which should reduce the likelihood for sessions abotéake an increasing effect, and performance to improve as we
and motivate the users to submit more jobs. The problemdsmonstrate below. However, since the largest possiblesval
that this isnotenough, because the EASY algorithm internallgf the criticality factor according to Equation 33494, and the
used to backfill the jobs can guarantee the execution ofladl joseniority of jobs steadily increases with time, it is guaesa
only if everywaiting job will eventually become the highestthat for anya value that we choose, senior jobs will eventually

priority(j) = a x criticality(j) + seniority(j)  (4)
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reach higher priorities, and their execution will be guaead 80

. —— EASY (a=0)
by the EASY algorithm. CREASY (0=1500)
70 | .ww CREASY (1=3000) “
-B+ CREASY (0=4500) -
) ) 60 | CREASY (a=6000) FE——
B. Simulation Results e S

We used Site-Sim to run site-level simulations of CREASY,
and compared its performance to the performance of the
original EASY scheduler. As described above, settindgo
0 in Equation 4 results in a prioritization scheme which is
effectively identical to EASY’s original scheme, which nmsa

Throughput [Jobs/Hour]

that the behavior of the two schedulers becomes identical. W 50 100 150 200 250
therefore didn't even need to explicitly implement EASY — Number of Users
we simply simulated it using CREASY. (a) Average job throughput

We found thatx values of1500, 3000, 4500 and6000 have

a noticeable and a progressive effect on the performance of
our scheduler. Whemx = 1500 its performance is closest
to EASY’s, and beyond;000 changes in performance are 5
marginal. In total, we experimented with five schedulers: th @
original EASY scheduler (simulated using CREASY with i
a = 0), and the four variants of CREASY, each with one P
of the above non-zera values. § s Eggég‘f(‘gzlsoo)
To compare the performance of the schedulers under dif- || »m~ CREASY (a=3000)
ferent loads we ran five simulations of each scheduler, using o CREASY 53;;‘388;
a different number of users models in each run. We uged ' 100 150 200 250
users to simulate low loads and gradually increased the size Number of Users
of the site by adding0 users each time, until we reached (b) Average session length

250 user models. In each run we simulated six months of

user activity, which produces enough data to allow us to baS@: 10. Average job throughput and session length: theehnige value of
. . e «, the higher the throughput (a), and the milder the drop irsieaslength

our conclusions on statistically significant results. Weoal ().

compared key attributes of the resulting data to their pabi

distributions from the traces to validate the correctndssuo  Session length is defined as the number of jobs the users

simulations. submit during their sessions of activity with the systemd an

1) User Productivity: Improving productivity is an im- hence it serves as a good indicator for user satisfaction.
portant goal for any parallel system scheduler, and the besFigure 10(b) shows the average session length under the
indicator for user productivity is the throughput — the nuemb five schedulers, as a function of the size of the site. Under
of jobs the users submit to the system over a period of timghe EASY scheduler, session length drops significantly from

Figure 10(a) shows the average job throughput under the f¥€9 jobs/session on average for the sm&l users site, to
schedulers as a function of the size of the site. As seen in thg3 jobs/session for thé50 users site — a 36% drop. The
figure, for the smallest site of 50 users, all schedulersoperf drop becomes milder with higher values, and it is hardly
similarly since the load is too low for any optimization t&éa noticeable whem = 6000.
effect. Only when the load begins to increase, the diffeeéenc The reason session length drops is rooted in the core design
in performance become noticeable. of the schedulers. The original EASY scheduler doed

For the largest site we simulated, of 250 users, the througfonsider the critically of the jobs. As a consequence, when
put under the EASY scheduler is 47 jobs/hour, while undéhte load begins to increase more and more users under EASY
CREASY with « = 6000 it is 71 jobs/hour which is an abort their sessions as a result of their jobs being delayed b
exceptional improvement of more than 50%. Improvement ike scheduler. This causes average session length to gecrea
milder but is still very significant for CREASY with lower and explains the poor throughput of the scheduler in Figure
a values: 21%, 36%, and 44% fars of 1500, 3000, and 10(a).

4500, respectively. A similar improvement is seen in the As we increase the value af the chances for critical jobs to
measured system utilization, which increased from 57% &xecute before other jobs also increase: the higher the wdlu
85% for the largesty value. This happens since the tway, the higher the priority of critical jobs, and the more et
metrics are strongly correlated: as long as the system is faibs that respond in time, which causes more users to cantinu
saturated, increasing throughput directly leads to areem® their sessions with the system, and the overall job throughp
in utilization. to improve.

To understand this exceptional improvements in throughputFinally, whena = 6000, the drop in session length is
we need to examine the behavior of the users under the fhardly noticeable even under the highest loads. This means
schedulers. We chose to focus on the users sessions anthét CREASY was capable of virtually isolating the inteneet
particular on the length of their sessions with the systemsers from the load conditions that exist in the system, suc-
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Fig. 11. Inconsistency according to the conventional rogtrthe schedulers Fig. 12. Per-class performance comparison of the two sébedua) the
with the lower o values outperform the ones with the higher values accordirj’% increase in the average response is the outcome CREASYency to
to the response-time metric (a), but according to the slawmgahe ones with prioritize short jobs at the expense of longer ones that dateithe average,
the higher values have significantly better performance (b). and (b) the 66% decrease in the average slowdown is the wstiie exact

same trade-off, and the fact that the metric is affected indst the shorter

cessfully providing them with a highly responsive enviramh Jobs.

even under the most extreme load conditions.

2) Conventional Performance Metricstvhile throughput the throughput metric of Figure 10(a). Obviously, this i no
remains the best indicator for user productivity, therecaher, the case, and the response-time metric is in fact inversely
more conventional metrics that can be measured in sité-lef@related with productivity.
simulations as well. Figure 11 shows the performance of ourTo understand the reason for this inconsistency, we divided
five schedulers according to two of the most commonly uséde jobs into classes according to their runtimes, and exadhi
metrics: the average job response time and the slowdown.the average response-time and slowdown in each class. We

Similar to Figure 10, we see that the differences in perfoghose to use three classes: one for short jobs of up to 1
mance between the schedulers become significant only whBlute of runtime, the second for medium jobs whose runtime
the load begins to increase. In contrast from Figure 10 thpuds between 1 and 10 minutes, and the third for longer jobs that
it is the schedulers with thiswer o values that outperform execute for more than 10 minutes. We chose these boundaries
the ones with the higher values, but only according to tH@sed on the distribution of runtimes from Figure 5(b), idear
response-time metric of Figure 11(a). The ones withhiigaer to create classes of approximately the same size.
values still have significantly better performance acaugdd Figure 12 compares the performance of the EASY scheduler
the slowdown. with CREASY usinga = 6000, under the highest, 250-user

Under the highest 250 users load for example, the averdgad, on a per-class basis. For the response time metric in
job response time under the EASY schedulefgsminutes, Figure 12(a), we see that under both schedulers the response
while under CREASY witha = 6000 it is 99 minutes, times of the jobs is correlated with their runtimes: the leigh
which is a27% degradation in performance for CREASYthe runtimes, the higher the average response time in tes.cla
On the other hand, the average job slowdown under EASYThe difference, though, is that under EASY the increase
is 71, while under CREASY it isonly 24, which is a66% in the average response time is rather moderate, while under
improvement. CREASY it is more extreme. Furthermore, in the class with the

The above results are surprising. We would expect perfahort jobs the average under CREASY is 8BMver than the
mance to improve with highes values according to both average under EASY, in the class with the medium runtimes
metrics, since the metrics are conjectured to be correlatéds only 44% lower, while in the third class, the average
with user satisfaction, and thus should improve along witlesponse under CREASY is 81ktgher compared to EASY.
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80% V. RELATED WORK

R N S Slowdow. Traditionally, parallel-systems schedulers are evatliate

ﬁfJ ““““““““““““““ /W ing trace-driven simulations [5], [4], [13], [14], [3], [2]The

g 40% e — e alternative but less common approach is to use models to
.2 20% generate the workload for the simulations, but the earlyetsd

g were too simplistic and failed to capture important proje®

S OhrT of the workload such as self-similarity, locality, and @slof

5 20% e A P activity [9], [15], [16], [17], [18].

= . Zilber et al. were the first to present a comprehensive study

-40% of the traces based on users and sessions [7]. Similarlynbut i
a=0 a=1.5k a=3k a=4.5k a=6k . . . i
Seniority _ Backfilling behavior _Crticalty a different context, Arlitt presented a session-basedyaisal
of web server logs [19]. Both studies can be used to develop
Fig. 13. Improvements in performance for CREASY relativethte original more realistic models of the workload based on users and
EASY scheduler: performance improves with highevalues according to the sessions. but they lack a description of how the users react t
throughput, session-length, and the slowdown metricsdégtades according ’
the response-time metric. the performance observed from the system.
While the mechanics of using traces during simulation
are straightforward, there is more than one way to model
These differences are, once again, rooted in the core desligh users that generate the workload. Haugerud and Straum-
of the schedulers. Short jobs have naturally more bacldillirsnes used user models that have different characteristits a
opportunities than jobs with longer runtimes. While thisri,e  whose behavior is affected solely by the time of the day,
under both schedulers, the effect is intensified under CREA%0 simulate the workload of an interactive computer system
as it further prioritizes the short jobs which are also muden [20]. Hlavacs et al. suggested a layered user model made of
critical to the users. The outcome is a large reduction in tis€ssions, appl|cat|on., and gommands, and de_monstra@mhts
response of the short jobs, at the expense of an increasénirflriving network simulations [21]. Shmueli and Feitelson
response for the longer jobs — a trade-off resulting in a 27¥sed two interdependent models: a job-submission model and
higher average response-time for CREASY, because the Ighipb characteristics model, that together generate thicloat
jobs dominate the average. for job-scheduling simulations [22]. In these cases alseru

The slowdown metric in Figure 12(b) behaves exactly thI[(Jeeh"j“/.lor was mqlependent of the performa.mce of the sy;tem.
Until recently, it was assumed that studying user reaction t

opposite: the average slowdown is inversely correlatedh wit : . . ;
the runtimes, decreasing under both schedulers as th fi performance requires live experiments with real users.cBou

increase. But this time, the decrease is steep under EASY, (’E\ert1 al. for example, used live experiments to |n\{es_t|gate the
olerance of users to web server delays [23]. Similarly, Lee
very small under CREASY.

and Snavely examined user satisfaction live, at the SandDieg
Slowdown is the response time normalized by the actuglipercomputer Center [8]. Recent studies on the other hand
runtime, which causes the metric to be affected mostly by thgve shown that it is possible to uncover user behavior tlijrec
shorter jobs. This means that although the relative diffees from traces of the system. Tran et al. developed a model of
in the average slowdown between EASY and CREASY in eagleb surfers reaction to network congestion just by anatyzin
class are similar to the differences in the average respon$ETP packet-traces [24]. Similarly, Chen et al. developed a
time, the absolute values of the metric are intensified in theodel of Skype’s users satisfaction purely from their VoIP
class of the short jobs, and lessened in the class of theflonggces [25].
jobs. This changes the relative contribution of each cldss o |n the context of parallel job scheduling, we were the first
jobs to the overall average, and results in a 66% lower al¥solgp characterize user behavior. Using a novel trace analysis
average slowdown for CREASY. methodology that we developed we have found that user

Figure 13 summarizes the improvements in performance dhehavior is correlated with the response times of their jobs
der CREASY for all four metrics: the average job throughput6l: This enabled us to develop the session-dynamics model
session length, the average job slowdown, and the avera@@ectlon [1I-B.1 that depicts the users reaction to thebs;
response times. The results were measured under the highed® SJF scheduling algorithm is well-known to produce

250-users load, and are all relative to the performanceef fPtimal average response times, and variants have been in-
original EASY scheduler. corporated in several parallel schedulers [26], [27]. Haeve

our prioritization differs from SJF in that we consider the

Whena = 0, th_ere areé no gains or Ios;es In performan.qgsponse time rather than just the job’s execution time.sThu
under CREASY since its behavior is identical to the behaw%r

ur scheduler is not equivalent, or even similar, to thoserot
of the EASY scheduler. When the value®increases, perfor- parallel schedulers.
mance improves under CREASY but only for the first three
metrics; for the response time metric performance degrades VI. CONCLUSIONS
with higher o values. In either case, both improvements or For more than two decades parallel-systems schedulers are
degradations are not linear, and the curves begin to ldfel-being evaluated using simulations that suffer from severe

at the right side of the scale. limitations. In particular, the inability of these simutats
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to reproduce the fine-grained interaction that naturalligtex [3] B. G. Lawson and E. Smimi, “Multiple-queue backfillingteduling
between the users and the system, led to the design of with priorities and reservations for parallel systemS/GMETRICS

. . Perform. Eval. Rey.vol. 29, no. 4, pp. 40-47, 2002.
schedulers that focus SOIEIV on the packlng of ]Obs as a me@ﬁ A. W. Mu'alem and D. G. Feitelson, “Utilization, predatility, work-

to improve a number of performance metrics that are only loads, and user runtime estimates in scheduling the IBM SRE w

conjectured to be correlated with user satisfaction. gigkfg'(i)%glf' IEEE Trans. Parallel Distrib. Systvol. 12, no. 6, pp. 529~
In this paper we have shown that the conventional, packings p. Talby and D. G. Feitelson, “Supporting priorities aimdproving uti-

based approach to scheduling is far from optimal, and demon- lization of the IBM SP scheduler using slack-based baakgjlliin IPPS

strated the potential in user-aware designs. We have atsersh ~ '99/SPDP '99: Proceedings of the 13th Intemnational Synipms on

. . . . Parallel Processing and the 10th Symposium on Parallel arsdributed
that the conventional metrics do not necessarily correldtte Processing Washington, DC, USA: IEEE Computer Society, 1999, p.
user productivity, which means that it is even difficult to  513.
identify good designs under these simulations. [6] E. Shmueli and D. G. Feitelson, “Uncovering the effect syfstem

. . . . performance on user behavior from traces of parallel systeimn
Site-level simulations allow user-aware designs to be eX- 15t Modeling, Anal. & Simulation of Comput. & Telecomm. tSys

plored and their performance to be reliably evaluated, toey t (MASCOTS)Oct 2007, pp. 274-280.

_ ; 7] J. Zilber, O. Amit, and D. Talby, “What is worth learningoim parallel
rely on user-models to generate the workload, which, as OIB workloads? a user and session based analysig?tac. 19th intl. conf.

posed to traces, will always be open for interpretation.ugio SupercomputingJun 2005, pp. 377—386.
we feel we have clearly demonstrated their advantage, we &lg@ C. B. Lee and A. Snavely, “On the user-scheduler dialogbidies

; ; ; At of user-provided runtime estimates and utility functidnisit. J. High
also aware of the fact that we relied on major simplifications Perform. Comput. Applvol. 20, no. 4. pp. 495-506, 2006.
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