
Tony’s Law

Dror G. Feitelson

School of Computer Science and Engineering

The Hebrew University of Jerusalem

91904 Jerusalem, Israel

Somebody didn’t tighten the lid, and the ants got into the honey again. This can be prevented by

placing the honey jar in a saucer of water, but it’s a nuisance, takes more counter space, and one

must remember to replenish the water. So we try at least to remember to tighten the lid.

In the context of security, the software industry does not always tighten the lid. In some cases

it fails to put the lid on at all, leaving the honey exposed and inviting. Perhaps the most infamous

example of recent years is the WINvote voting machine, dubbed the worst voting machine in

America. A security analysis by the Virginia Information Technologies Agency in 2015 found,

inter alia, that the machines used the deprecated WEP encryption protocol, that the WEP password

was hardwired to “abcde”, that the underlying Windows XP (which had not been patched since

2004) administrator password was set to “admin” with no interface to replace it, and that the

votes database was not secured and could be modified [7]. These machines had been used in real

elections for more than 10 years.

Such cases constitute malpractice, and call for regulation. Regulation is necessary because not

everything can be trusted to market forces. There are many examples in diverse industries. The

sale of alcohol to minors is prohibited. Construction and housing cannot use asbestos and lead-

based paints due to public health concerns. The automotive industry is required to install seat belts

and report pollution levels. Aviation is strictly regulated, including airspace utilization (distances

between planes), aircrew work schedules, aircraft noise levels, and more. Advertisers are required

to add frightening warning labels on ads for cigarettes.

Computers are regulated in terms of electrical properties, such as the FCC regulations on radi-

ation and communication. But the software running on computers is not regulated. Nearly forty

years ago, in his Turing Award acceptance speech, Tony Hoare had the following to say about the

principles that guided the implementation of a subset of Algol 60 [2]:

The first principle was security. [...] A consequence of this principle is that every

occurrence of every subscript of every subscripted variable was on every occasion

checked at run time against both the upper and the lower declared bounds of the array.

Many years later we asked our customers whether they wished us to provide an option

to switch off these checks in the interests of efficiency on production runs. Unan-

imously, they urged us not to – they already knew how frequently subscript errors

1



Table 1: Changes in software and computing in the last 30 years.

1980s 2010s

C pointers Java garbage collection

Emacs Eclipse

Math library Frameworks

Ad hoc programming Agile methodology

Waterfall Evolution / continuous integration

Flowcharts UML

Write your own sort Copy from Stack Overflow

Computer room Computer in your pocket

Hard disk Cloud

Text terminals Touch screens

Email Internet of things

No regulation No regulation

occur on production runs where failure to detect them could be disastrous. I note with

fear and horror that even in 1980, language designers and users have not learned this

lesson. In any respectable branch of engineering, failure to observe such elemen-

tary precautions would have long been against the law. [emphasis added]

He said this when personal computers and the Internet were in their infancy, long before the world-

wide web, DDoS attacks, and data breaches. Indeed, a lot has changed during this time (Table

1). But one thing that has not changed is the lack of any meaningful regulation on the software

industry.

In retrospect, Hoare’s pronouncement exhibited great foresight. To this day buffer errors rep-

resent the single most common vulnerability1, even more so among high-severity vulnerabilities

(Figs. 1 and 2). Just imagine if a law requiring bounds checks had been enacted more than 40

years ago, and there were no buffer overflows today. As it stands, Microsoft for one instituted its

Security Development Lifecycle as a mandatory policy in 2004. This includes — among many

other features — the option to require compilation with flags that insert bounds checks and the

option to ban unsafe library functions. On the one hand this demonstrates that such practices are

just a matter of deciding to use them. On the other hand they are still not universally required, and

indeed even Microsoft products still occasionally suffer from buffer issues2.

Similar sentiments have been repeated several times since Hoare’s speech. Twelve years ago

David Patterson (then ACM’s president) put forward the “SPUR manifesto” [3], suggesting that

the development of 21st century computer (software) systems should focus on Security, Privacy,

1The NIST National Vulnerability Database uses 124 of the nearly 1000 types listed in the Common Weakness

Enumeration to categorize vulnerabilities. In 2015–1017 Buffer errors CWE-119 accounted for 15.2–18.4% of all

vulnerabilities each year. The next highest categories were Information leak/disclosure CWE-200 at 9.3–10.9%, Per-

missions, privileges, and access control CWE-264 at 8.2–10.0%, and Cross-site scripting CWE-79 at 7.3–11.2%.
2One recent example: Microsoft Office Equation Editor stack buffer overflow, 15 Nov 2017,

www.kb.cert.org/vuls/id/421280.

2



1995 2000 2005 2010 2015

v
u
ln

e
ra

b
ili

ti
e
s

0

2000

4000

6000

8000

10000

12000

other vulnerabilities

buffer related

Figure 1: The number of software vulnerabilities cataloged by the NIST National Vulnerability

Database skyrocketed in 2017, and the fraction of vulnerabilities involving buffers (either catego-

rized as “buffer error” or containing the keyword “buffer”) kept pace.

2007 2009 2011 2013 2015 2017

p
e
rc

e
n
t 
c
a
te

g
o
ri
z
e
d
 a

s
 "

b
u
ff
e
r 

e
rr

o
rs

"

0

5

10

15

20

25

30

35

of all

vulnerabilities

of high severity

vulnerabilities

Figure 2: According to the National Vulnerability Database, since the beginning of the decade

around 15% of all vulnerabilities have been related to buffer errors, and this rises to between a

quarter and a third of the vulnerabilities if only those with a high severity score are considered

.

3



Usability, and Reliability. The goal should be to be as safe as 20th century banking, as low-

maintenance as 20th century radio, and as reliable as 20th century telephony. But twelve years

have passed, and it seems that the focus on low cost, multiple features, and above all time to

market is as strong as ever. Manufacturers of home appliances compete, inter alia, by offering

superior warranties for their products. The software industry, in contradistinction, has been getting

away with software that comes “without warranty of any kind, expressed or implied, including, but

not limited to, the implied warranties of merchantability and fitness for a particular purpose”.

Indeed, lectures such as Patterson’s are typically either ignored, or else they stir up a chorus

of naysayers. The typical arguments are the perceived monetary costs, the difficulties or even the

impossibility of implementation, and the fear of reduced innovation and technological progress.

Schneider, in a recent viewpoint, also notes the need for a detailed cost/benefit analysis to as-

certain what society is wiling to pay for improved security, where the costs also include reduced

convenience (due to the need for authentication) and functionality (due to isolation) [4]. And in-

deed all regulations are, by definition, limiting. But do we really need to wait for a large-scale

security catastrophe, possibly including significant loss of life, before we act at all? As the Mi-

crosoft example shows, extensive technological solutions and best practices actually already exist.

It is just a matter of making their use pervasive.

So why are software security faults tolerated? A possible explanation is that software deficien-

cies have so far been less tangible than those of traditional industries. Many people install multiple

locks on their doors and would consider holding intruders to their homes at gunpoint, but fail to

take sufficient safeguards to protect their home computers from hackers. The problems resulting

from identity theft are much more common but also much more bureaucratic, boring, and less

visual relative to the problem of exploding gas tanks in pickup trucks.

But above all else, it seems that there is a market failure in incentivizing the industry to take the

required actions [1, 6]. Buyers will not pay a premium for value (security) they cannot measure,

and which in many cases does not affect them personally and directly. Approaches suggested by

economists to measure the value of protection don’t help because the cost of a security catastrophe

is up to anyone’s imagination. This has prevented an insurance industry for software producers

from emerging, and as Anderson and Moore write, “if this were the law, it is unlikely that Microsoft

would be able to buy insurance” [1]. In practice, the reduction in stock value after disclosing a

vulnerability is less than 1% [5]. The abstract danger of large-scale attacks leading to financial

loss and even loss of human life is not enough to change this.

At the same time, we are inundated by increasing numbers of reports of data breaches and hack-

ers infiltrating into various systems (see Table 2 for prominent recent examples). Some of these

incidents demonstrate that extensive physical civil infrastructures are at peril across the globe —

including hospitals, power plants, water works, transportation systems, and even nuclear facili-

ties. And the root cause at least in some cases is the failure of the software to take appropriate

precautions.

The software systems in a modern car — not to say a passenger plane or a jet fighter — are

of a scope and complexity that rivals any operating system or database produced by the traditional

software industry. Indeed, every industry is now a software industry. And the products of every

4



Table 2: Notable security incidents from the last decade.

Year Incident Significance

2007 Massive DDoS attacks on organizations

and infrastructure in Estonia

First demonstration of extensive country-

wide disruptions, possibly in connection

to international relations

2010 The Stuxnet cyber-weapon is used to dis-

able physical centrifuges used in Iran’s

nuclear program

Demonstration of potential impact on

computer-controlled physical infrastruc-

ture, and demonstration of cyber-weapons

that jump air-gaps and remain undetected

for long periods

2013 Yahoo is hacked and data about all 3 bil-

lion user accounts is stolen

Biggest data breach of its kind

2016 Hackers break into DNC computers and

disseminate confidential documents

Strategic hacking with possible effect

on the outcome of the US presidential

elections

2016 DDoS attacks using a botnet of some 1.5

million IoT devices (ironically, mainly se-

curity cameras)

Demonstration of new vulnerabilities re-

sulting from technological progress and

insufficient consideration of security

2017 The WannaCry ransomware infects more

than 200,000 computers in 150 countries,

causing disruptions such as the closing

down of 16 hospitals in the UK

Demonstration of global-scale cyber

crime and putting human lives at risk

industry are vulnerable due to software defects. In such a context, required software regulation

includes:

• Transparency: the obligation to report all exploits including their technical details.

• The prohibition of dangerous practices, such as not using type-safe languages and appropri-

ate encryption.

• Holding companies accountable for their unsafe practices.

These requirements need the backing of legal regulations, because market forces compel industry

not to invest in security too much. The market promotes a race to the bottom: except in niche

applications, whoever is faster to market and cheaper wins, and whoever is tardy due to exces-

sive investment in security loses. Regulation is the only way to level the playing field, forcing

everybody to invest in what they know to be needed but think they can’t afford to do when the

competition doesn’t.

Of course, it won’t be easy to implement these ideas and agree on the myriad details that need

to be settled. Who gets to decide what is a “dangerous practice”? How do we deal with installed

5



systems and legacy code? Who is charged with enforcing compliance? Moreover, it is not clear

how to make this happen at the political level. And in addition, no single country has jurisdiction

over all software production. So a system of certification is required to enable software developers

to identify reliable software, and to perform due diligence in selecting what other software to use.

International frameworks already exist that show that these issues can be solved. The EU Gen-

eral Data Protection Regulation (GDPR), which concerns the rights of individuals to control how

their personal information is collected and processed, is an encouraging example. Another example

is the Common Criteria for Information Technology Security Evaluation, an international frame-

work for the mutual recognition of secure IT products. But this covers only high-level desiderata

for security, not the regulation of low-level technicalities. This gap is partly filled by the Motor In-

dustry Software Reliability Association (MISRA), which has defined a set of suggested safe coding

practices for the automotive industry. However, these are not required by any formal regulations.

Protracted discussions on what to do and what we are willing to pay for it are counterpro-

ductive. Such things can not be planned in advance. Instead we should learn from the iterative

approach to constructing software: try to identify the regulations that promise the highest reward

for the lowest cost, work to enact them, learn from the process and the results, and repeat.

On the bottom line, regulation is in the interest of the long-term prosperity of the software in-

dustry no less than in the interest of society as a whole. Software vendors with integrity should stop

resisting regulation and instead work to advance it. The experience gained will be all-important in

discussing and enacting further regulations, both in a preemptive manner and, God forbid, in the

aftermath of a security catastrophe.

References

[1] R. Anderson and T. Moore, “The economics of information security”. Science 314(5799), pp.

610–613, 27 Oct 2006, DOI: 10.1126/science.1130992.

[2] C. A. R. Hoare, “The emperor’s old clothes”. Comm. ACM 24(2), pp. 75–83, Feb 1981, DOI:

10.1145/358549.358561.

[3] D. A. Patterson, “20th century vs. 21st century C&C: The SPUR manifesto”. Comm. ACM

48(3), pp. 15–16, Mar 2005, DOI: 10.1145/1047671.1047688.

[4] F. B. Schneider, “Impediments with policy interventions to foster cybersecurity”. Comm. ACM

61(3), pp. 36–38, Mar 2018, DOI: 10.1145/3180493.

[5] R. Telang and S. Wattal, “An empirical analysis of the impact of software vulnerability an-

nouncements on firm stock price”. IEEE Trans. Softw. Eng. 33(8), pp. 544–557, Aug 2007,

DOI: 10.1109/TSE.2007.70712.

[6] M. Y. Vardi, “Cyber insecurity and cyber libertarianism”. Comm. ACM 60(5), p. 5, May 2017,

DOI: 10.1145/3073731.

6



[7] Virginia Information Technologies Agency, “Security assessment of WINvote vot-

ing equipment for department of elections”, 14 Apr 2015. https://www.wired.com/wp-

content/uploads/2015/08/WINVote-final.pdf.

7


