
Terminal I/O for Massively Parallel Systems

Dror G. Feitelson
IBM T. J. Watson Research Center

P. O. Box 218, Yorktown Heights, NY 10598

Abstract

To be useful, terminal I/O on massively parallel MIMD
machines must be able to differentiate between the I/O
streams from different tasks. This is done in the Vulcan
terminal I/O facility by providing a special control panel,
which allows an independent window to be opened for each
task. The controls look like LEDs, being color coded to in-
dicate status (e.g. output is available or the task is waiting
for input). Additional LEDs are provided as a new form
of output, allowing the application to report status visually
rather than by using text output. This is useful during pro-
gram development and debugging. A derivative of the de-
vices reported here has been incorporated in the AIX Par-
allel Environment on the new IBM SP1 multicomputer.

1 Introduction

Video data terminals are ill-suited to serve as I/O devices
for massively parallel computers, because they cannot dis-
play text from hundreds of processing elements (PEs) ef-
fectively. But this is just a symptom of the real problem,
which is that human users cannot digest such an influx of
data (left of Fig. 1). Humans by nature can only concentrate
on one data stream at a time. Therefore many multiproces-
sor users append PE identification tags to their output com-
mands, and then spend considerable time sifting through the
data to find the output from one specific PE in which they
are interested. Regrettably, it is difficult to create a men-
tal picture of the status of the whole machine based on this
type of output.

The dual problem of sending input to a specific PE is
sometimes even worse. In some systems, there is no way to
direct input from the terminal: it goes to whichever PE hap-
pened to send the first unsatisfied input request. It is then
again up to the programmer to deal with the unpredictable
outcome.

A legitimate question is whether terminal I/O is really
needed? In uniprocessors, it is sometimes used for actual
input and output from a program in production use. In mul-
tiprocessors, these functions are nearly always performed
using files. But terminal I/O is important during program0 c1994 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component ofthis work in
other works must be obtained from the IEEE.

control
and
filter

Figure 1: The mismatch between the I/O capabilities of
multiple processors and one user (left) can be rectified by
a facility to filter the desired data and control the display
(right).

development and debugging, mainly to report status and
show progress on all the PEs. When a new program mal-
functions, nearly everyone uses simple print statements to
find out what happened before invoking a debugger. In
some parallel systems, adequate debuggers simply do not
exist.

One solution to the problem of overwhelming users with
terminal I/O is to limit the patterns of I/O that are supported.
For example, the Express environment [11] encourages ei-
ther common I/O, where all the PEs output and/or input ex-
actly the same data, or interleaved I/O, where exactly one
data item relating to each PE is used, and its place in the se-
quence is determined by the PE’s number. However, forcing
all programs into such patterns may not always be suitable.

We suggest another approach: instead of restricting the
program, provide control over the display. This is done by
inserting a terminal I/O facility that mediates between the
multiprocessor and the user (Fig. 1 right). This facility is
used to filter the desired I/O, and store the rest for future
reference if needed. Its main attributes are the easy match-
ing of I/O with PE, control over what I/O activity is actu-
ally observed by the user, and support for simple and easily
comprehended status reporting. Such a facility has been im-
plemented as part of the Vulcan project at IBM T. J. Watson
Research Center. A derivative of this work has been incor-
porated in the runtime environment of the IBM SP1 product
line [5], where it is called the “program marker array”.

The idea is to use windows, and specifically, the X win-
dow system. In most multiprocessor systems, all the I/O is
done through the same window. Some systems, e.g. PASM,
allow separate windows to be opened to all the PEs [9]. We
improve on this by giving the user better control over which

PEs will have windows, and by providing cues when it is
beneficial to open additional windows.

In addition, we provide a new type of output for status
reporting. Nearly all multiprocessors use LEDs1 mounted
on the front panel to report hardware status; the Connection
Machine is especially famous for its flashing red LEDs [4],
but they also proved useful on other machines, e.g. the IBM
RP3 and Delta Touchstone [10]. Software versions of such
displays have been used to show the output of monitoring
instrumentation [3, 8, 12]. We improve on this by provid-
ing unlimited user-definable LEDs, which can be used to
represent application status.

It should be noted that this terminal I/O facility is not a
graphical output in the usual sense. It makes use of a graph-
ical X terminal, but does not require any sophistication from
the programmer and also does not provide support for gen-
eral graphics. In particular, it is not suitable for visualizing
output except perhaps in simplest of cases (e.g. the game
of life). What we are dealing with is only an extension to
conventional, textual terminal I/O.

2 The Vulcan Terminal I/O Facility

2.1 Vulcan architecture

The Vulcan research multiprocessor is a MIMD, dis-
tributed memory, message passing machine [13]. There are
three types of nodes in the system: compute nodes, I/O
nodes, and host nodes. The compute nodes may be parti-
tioned into disjoint sets which are allocated to users upon
demand. Users have exclusive use of the compute nodes
in their user partition, and can use them to run parallel ap-
plications without interference from other applications be-
longing to other users. Each compute node executes exactly
onetask, which provides the software environment for the
computation.

I/O nodes are shared by all the users. These nodes pro-
vide secondary storage services to parallel applications by
allowing parallel access to multiple disks.

Host nodes are actually workstations which are con-
nected to the Vulcan network. Users log onto the host
nodes, and use them to acquire user partitions and execute
parallel programs on them. The host nodes provide an inter-
face between Vulcan and the outside world, including local
area networks. In particular, they provide a gateway for ter-
minal I/O, and link Vulcan to the user’s X station (Fig. 2).

All the Vulcan nodes are connected by a high-
performance multistage packet-switched network with cut-
through routing. The network provides high bandwidth
communication with low latency between any two nodes,
and fosters the illusion of a completely-connected network.
In addition, the network is used to distribute a synchronous
clock signal to all the nodes.1Light Emitting Diodes.

The Vulcan architecture is scalable up to a total of 32768
nodes, with a mix of compute nodes, I/O nodes, and hosts.
The total computing power of a full scale machine is on the
order of one TeraFLOP. A prototype with 16 compute nodes
and 4 I/O nodes with 8 disks each has been constructed. The
terminal I/O facility described here was implemented on a
software emulator, before the prototype became available.

2.2 Design of terminal I/O facility

The Vulcan terminal I/O facility is part of the Vulcan
Operating Environment [2]. It is based on an X-windows
display. The heart of the terminal I/O facility is the “LED
array” display. This is a rectangular window divided into
subrectangles, one for each task. The number of subrectan-
gles is equal to the size of the partition that is allocated to
the user (there may be a few extra, e.g. a partition of 10 may
have 12 subrectangles arranged in a3 � 4 array). Each of
these subrectangles may be considered as a button2 control-
ling the terminal I/O facilities of its task. Placing the mouse
on it and pressing the middle button causes a dedicated text
window to be opened for I/O with that task. Pressing the
button again causes the window to be closed. Pressing the
right mouse button causes a popup to appear, displaying the
task number.

The subrectangles representing the tasks are color-coded
to show their I/O status. The appearance of subrectangles
changing color at run time motivated the name “LED ar-
ray”. The following four colors are used:� Green: the task has sent output which has not been

seen yet. The window should be opened for the output
to be displayed.� Red: the task is waiting for input. The window should
be opened and some input typed in.� White: the task currently has an open window.� Gray: there is no I/O activity with this task.

In addition, two colors are used to indicate that this task is
actually not part of the application. These are� Black: this subrectangle does not represent any PE.� Dark gray: this subrectangle represents a PE in the

user’s partition, but there is no task running on this
PE.

If the system uses color coding of rectangles to indicate
status, why not allow the application to do the same? To
this end, each task’s subrectangle is further divided into a
number of squares. Each of these squares functions as an2These are not implemented as X “button” widgets. Everythingin Vul-
can must scale up to 32K PEs, and such a number of widgets wouldstrain
any X implementation. The subrectangles are therefore simply rectangu-
lar regions in a “drawarea” widget. Using the minimal size of2� 2-pixel
LEDs and 1-pixel boundaries, which is still large enough to be clicked on
by the mouse, there is enough space for 64K LEDs on a small X terminal.

Figure 2:Terminal I/O and
the Vulcan architecture.

wndw

and library
workstation

hostnetwork

Vulcan
I/O manager

(VVLed) LAN

X terminal

text
LEDs

processor

program

PPPPPPPPPPPPPPPPPP %%%%%%
independent LED. One of these LEDs is used for I/O status,
as described above. The application program can set the
colors of the other LEDs. For example, A particular color
could indicate that the task has reached a certain point in
the program. A whole spectrum of colors is provided, so
LEDs changing through a sequence of colors can show an
application’s progress. This immediate visual feedback can
be valuable in detecting endless loops and stuck situations,
and providing a comforting indication of progress when the
application is running properly. In many cases, this sort
of output can replace voluminous text output in a highly
efficient manner.

3 Implementation and Features

The terminal I/O facility is composed of two parts: a run-
time library that is linked with each of the application tasks,
and a separate manager, called “VVLed”, which runs on
the host workstation. The tasks communicate with VVLed
using the message passing facilities provided by the Viper
kernel, which is resident on all Vulcan nodes. VVLed com-
municates with the X server over a local area network using
the X protocol (Fig. 2).

3.1 Program interface

The program interface to the terminal I/O library in-
cludes the following eight functions:

VTerm Put Str(str)
Display the string in the task’s window. If it does not
have an open window, indicate that output is available
by coloring the I/O status LED green.

VTerm Get Str(buf, n)
Read input from the task’s window into the buffer, but
no more thann�1 characters (the last place is kept for
the terminating NULL character). If the task does not
have an open window, show that it is waiting for input
by coloring the I/O status LED red.

VTerm Open Window()
Open the task’s I/O window. This should be used
with care, so that too many windows do not flood the
screen.

VTerm Close Window()
Close the task’s I/O window. This should only be used
when it is certain that the user does not need this win-
dow anymore, e.g. at the end of an input dialogue.

VTerm Led On(led, color)
Color the specified LED in the specified color. A
spectrum of 100 colors is provided, going from black
through brown, green, blue, purple, red, orange, and
yellow to white. In addition, there are three shades of
gray. The program may also color the I/O status LED.
This should only be done by programs that do not per-
form any text I/O.

VTerm Led Off(led)
Turn the specified LED off, which means color it the
default gray color.

VTerm Get Led Num()
Query the number of user-defined LEDs per task.

VTerm Set Led Num(num)
Set the number of user-defined LEDs per task. This
causes the LED array window to resize according to
the new number.

This interface provides only the most basic text I/O.
However, the full capabilities of the normal formatted I/O
functions are available by dividing the I/O process into two
phases. For output, first format into a character array (e.g.
using thesprintf function in C), and then output the re-
sulting string. For input, first get a string, and then do a
formatted read from it (e.g. usingsscanf).

Alternatively, it is also possible to use the normal I/O
functions (e.g.printf andscanf) directly, and not use
the VTerm Get Str andVTerm Put Str functions at
all. This is implemented as follows. The compilers we
use are originally designed for an AIX environment. These
compilers link the program’s object module with runtime
libraries that translate high-level language directives into
low-level AIX system calls. In the case of formatted I/O,
the C runtime library does all the formatting and buffer-
ing, and translatesprintf, scanf and the like into AIX
write andread calls. The Fortran runtime library trans-
latesreads from unit 5 andwrites to unit 6 into the same
calls. Therefore all we have to do is catch the AIXread
andwrite entry points.

Our versions ofread andwrite are very simple. Their
main function is to check the file descriptor that is given as
a parameter. A file descriptor of 0 is standard input; the call
is then turned into an input request form VVLed. A file de-
scriptor of 1 is standard output; the call is then turned into
an output message to VVLed. In all other cases, the nor-
mal function is preserved. For standard error, this resultsin
messages from all tasks appearing in the host window. Note
that we make an implicit assumption that the program does
not modify its file descriptors withdup, open, or close
calls. Of course, these calls could also be caught, and then
we could follow any changes in the use of the standard file
descriptors. This mechanism is used successfully to support
formatted I/O in both C and Fortran. The main problem en-
countered is that in Cfflush(stdout) has to be called

Figure 3: A LED array for nine PEs, each with five user-
defined LEDs. left: square mode, right: rows mode. The
proportions of the two modes are not always the same as
they are in this case.

to cause the output to actually be sent.

3.2 VVLed and the X interface

VVLed buffers two asynchronous entities: the user and
the program. It does so by polling both in turn. The user is
polled by checking for any new X events. The program is
polled by performing a non-blocking receive of any type of
Viper message coming from any task.

When the X input focus is on the LED array window,
the mouse can be used to open and close dedicated I/O win-
dows to the different tasks. This is done by pressing the
middle mouse button when the pointer is located on any
LED representing the task. Pressing the right button pops
up a small window identifying the task in question. Nat-
urally, the normal X operations are also supported. The
user may use the mouse to interact directly with the win-
dow manager and move, resize, or close the LED array and
I/O windows.

In addition, the following commands which relate to the
whole I/O system can be typed:

m Toggle the display mode. There are two display modes
(Fig. 3): square, where the LEDs of each task are ar-
ranged in a squarish rectangle and the tasks themselves
are also arranged in a squarish rectangle, androws,
where the LEDs of each task are arranged in a row
and the tasks are arranged in a column, one above the
other. If there is not enough space in the screen, more
than one column may be used.

b Open a broadcast window. Text typed in this window
will be sent to all the tasks. In addition, it is echoed in
the private windows of all the tasks.

c Clear the text from all the windows and extinguish all
the LEDs (i.e. color them gray).

- Close all open text windows. The text itself is saved
and will be displayed again if a window is opened
again (unless everything was cleared in the meantime).

h Display a help message.

The square display mode is better for massively parallel
systems, where each task has a very small number of LEDs
(e.g. only one). It allows the user to immediately pick out
those tasks with abnormally colored LEDs, which indicate
a problem condition. The rows mode is better for smaller
machines, especially if each task has many different LEDs,
because the same LEDs from all the tasks are aligned one
above the other (Fig. 3 (b)). A possible third mode, which
was not implemented, is to display “LED planes”. This is
similar to square mode, except that the LEDs are grouped
by their serial numbers rather than by the tasks to which
they belong.

Some of the commands typed in the host window also
affect the LED display. For example, areset command
causes all the text to be cleared and all the LEDs to be ex-
tinguished. A command to change the partition size resizes
the LED array window accordingly.

3.3 Window placement

Opening a large number of windows to different tasks
poses the question of how to handle screen real estate. One
option is to leave this problem to the window manager.
While this option is supported, it is not recommended: the
window manager does not have enough information about
the use of the different windows, so it cannot implement any
sophisticated placement policy. The Motif window man-
ager places each new window with a large overlap over the
previous window, so effectively only the last window can
be seen (Fig. 4).

The VVLed placement policy mimics a tiled window
manager. The default window size is rather small,400�250
pixels, so that some ten windows may be fitted into rel-
atively small screens. Other sizes may be defined in the
user’s .Xdefaults file. In any case, scroll bars are provided
to scroll the text both vertically and horizontally. The LED
array display is never occluded unless it fills the screen to
such a large degree that there is no space for the text win-
dows besides it. The text windows are placed side by side
across the whole screen, until there is no more space. If
additional windows are opened, they are placed on top of
previous windows, but still do not occlude the LED array.
If the LED array is moved or resized, this is taken into ac-
count when new windows are subsequently opened.

The default size of the text windows typically does not
divide the available space evenly. This can be handled in ei-
ther of two ways: keep all windows the same size and leave
unused space around the edges, or create smaller windows
if there is less space. VVLed implements both options, by
allowing the user to define the minimal allowed window

Figure 4: Text window placement by the Motif window
manager. The LED array has 4 LEDs for each of 16 tasks,
in the square display mode. 3 of the LEDs are user-defined,
and the fourth is used for I/O status.

size in the .Xdefaults file. If the minimal size is the same
as the default size, all windows will be the same. If it is
smaller, then smaller windows will be created to better uti-
lize the leftover space (Fig. 5).

When the minimum is smaller than the normal, the sys-
tem is allowed some freedom in choosing the window size.
To control the window placement, the screen excluding the
LED array is divided into four areas: above, to the left of, to
the right of, and below the LED array. Only areas that are
bigger than the minimal window size are considered. The
algorithm for selecting a window size is as follows. In each
dimension independently, check if there is enough place for
at leasttwonormal size windows. If so, use the normal size
in this dimension. If not, check if there is enough space
for two minimal size windows. If so, use half the space,
and leave the other half for the next window that will be
opened. If this failed too, check if there is enough space for
one minimal window. If so, use the minimum between the
available space and the normal window size. If not, then
there is no more space in this area, so go to the next one.

This algorithm was chosen for two reasons. First, it tries
to respect the user’s default size by creating normal size
windows before resorting to smaller ones. Second, it al-
lows the full screen to be utilized without leaving any un-
used space. To achieve this effect, the minimal size in each
dimension should be one half of the normal size (the default
minimal size is200�125 pixels). Its main drawback is that
the windows may have radically different sizes. An alterna-
tive algorithm is to divide the space in each dimension into
one more than the number of normal size windows that fit
into it. This results in all windows in the area having equal
sizes.

Figure 5: By allowing windows that are as small as half
the normal size in each dimension, the whole screen can be
tiled.

When a window is closed, its geometry is recorded and
reused if it is subsequently opened again — users were un-
comfortable with windows that come up in new locations
each time they are opened. Note that by recording the ge-
ometry only when the window is closed, we take any move-
ments and resizings performed with the mouse into account.
A possible future improvement is to allow the whole setup
to be recorded in a file, and reload it in subsequent sessions.

3.4 File redirection

While the VVLed facility is primarily intended to sup-
port I/O through independent windows to the different
tasks, it also supports file redirection. Either standard in-
put and/or standard output may be redirected to a file when
a program is loaded. Normally, the I/O from all the tasks is
interleaved into one stream in order of arrival. If the given
file name ends with the suffix ‘.T’, a separate file is used
for each task, with the task number serving as a suffix. For
standard input, the file name may also end with a ‘.C’ suf-
fix. This means that each task will receive a copy of the
whole file. VVLed keeps track of the independent offsets
belonging to the different tasks.

Files are only opened on demand, to reduce overhead
and save space in system tables. If VVLed runs out of file
descriptors, it closes all the open files and only opens them
again if additional I/O operations are performed.

4 Discussion

Having described the Vulcan terminal I/O facility as im-
plemented, we now turn to discuss its usefulness and how it
can be extended to provide additional functionality.

4.1 Scrolling in time

The terminal I/O facility described here achieves a sepa-
ration between the data streams from different tasks. How-
ever, this comes at the price of loosing the relative timing
information that is implicit in the way these streams are in-
terleaved when displayed in a single window. Such infor-
mation may be just as important to users as the displayed
text itself.

The source of the problem is that the windows represent-
ing different tasks are completely independent, and specifi-
cally, each can be scrolled independently of the others. The
relative timing information can be retained by coupling the
scrolling mechanisms of the different windows. Rather than
having an independent vertical scroll bar for each window,
we can have a single global vertical scroll bar. As each line
of text is added to a window, it is tagged internally with a
timestamp. The global scroll bar can then be used to scroll
time backwards, always maintaining a synchronized view
across all the windows. Similar mechanisms exist in sev-
eral graphical display systems that show multiple views of
program execution traces [8, 7].

The text windows preserve historical context in the form
of previous text. It is possible to create two large windows,
and compare the text that appeared in them across a certain
time span. The LEDs display is inherently different from
the text windows, in that it can only show a snapshot. There
is no way to display how a certain LED changed colors over
a time interval (this is analogous to limiting text windows to
have only one line). However, the LEDs may also be linked
with a global scrolling mechanism, such that when time is
scrolled backwards the snapshot for that time is displayed.

While global scrolling adds relative timing information
to the display, it should be noted that this timing informa-
tion is not necessarily correct in absolute terms. It just re-
flects the sequence of events as observed by the terminal I/O
facility. Nonuniform delays and message reordering in the
network may cause I/O events to be displayed in a different
sequence from the one in which they were generated at the
tasks.

4.2 Scalability

The current design is scalable up to 32K tasks. With
larger numbers, it would be impossible to represent each
task by an independent LED. Luckily, users would not be
able to assimilate the information in so many independent
LEDs anyway. Actually, users only need to see those that
are different from the general behavior. Therefore it is pos-
sible to scale to ever larger numbers by using a condensed
representative panel, where each LED represents a large
number of tasks, and its color is determined by the minority
value rather than by the majority consensus. Thus all extra-
ordinary tasks will show up. The user would then be able to

zoom in on those tasks to investigate their status in greater
detail.

Another aspect of scalability is the communication band-
width and the processing power required by the terminal I/O
facility. When operating over a network, it takes a couple of
milliseconds to color a LED. Coloring each of 32K LEDs
once takes an order of one minute. If 32K tasks were to
generate such events at a rate of more than one per minute,
the system would be flooded. Handling text I/O takes even
longer, as it requires buffering and increases the chance of
paging. Thus the supportable I/O rate per processor is in-
versely proportional to the system size, and might be quite
low for large systems.

The problem of a limited I/O rate can be alleviated to
some degree by a number of means. One is to postulate
programming practices that limit the amount of I/O traffic.
For example, a good practice is to use only the LEDs under
normal conditions (to indicate execution progress), and re-
sort to text I/O only in error handlers that are invoked when
an exception condition is detected. Another is to imple-
ment a lazy display mechanism rather then an eager one.
Under such a mechanism, output text would be buffered
at the tasks rather than at the terminal facility. Whenever
a window is opened by the user, the text for that window
would be requested explicitly from the task. If no window
is opened, the text would never be sent at all.

4.3 Other uses

The LED array is currently used only for terminal I/O.
The same facility may be used to provide additional fea-
tures. For example, additional system LEDs can be used to
provide an indication of CPU utilization, cache miss ratio,
or the ratio of system time to user time. Mouse control can
be used for selective activation of tracing and for setting de-
bugger breakpoints. Thus a uniform interface could be used
for various instrumentation tools.

4.4 Experience so far

A number of parallel programs have used the Vulcan ter-
minal I/O facility since its implementation. The following
three case studies illuminate different aspects of the useful-
ness of this tool.

Dining philosophers test program

This program is a classical test case for parallel systems.
In the Vulcan implementation, there is a philosopher task
on each of the user’s processors. Each philosopher picks
up the left chopstick and then the right one; deadlock is
avoided by releasing the left chopstick and doing an expo-
nential backoff if the right one is not available.

The program includes extensive print statements which
report events like chopstick acquisition, chopstick release,

and backoff. Originally, all this output appeared in the
host window with processor identification tags. When the
stream of output stopped, users had to scroll back to ensure
that all the processors had indeed terminated successfully,
and that the output did not stop because of a deadlock situ-
ation.

With the new terminal I/O facility, the messages from
different philosophers appear in different windows. Thus
it is enough to open all the windows, and check that the
last message in each one indicates successful termination.
When LED status indication was added, it was no longer
necessary to open the windows at all: LEDs changing color
between yellow (thinking), orange (has one chopstick), and
red (eating), and finally turning black (terminated), provide
all the information. The screen dump shown in Fig. 2 is
from a run of this program with 16 philosophers, where 4
have open windows.

Molecular dynamics application

This is a real scientific application [6] ported to the Vul-
can environment, and executed on a set of interconnected
RS/6000 nodes. The LED array was used to display
progress according to the following color coding:

Initialization green
Read input data blue
Compute atomic interactions yellow
Combine and broadcast partial results red
Concatenate and broadcast partial results orange
Perform graphical output (from node 0) purple

By observing the color changes as the program ran, it was
immediately obvious that computation and communication
were unbalanced: the LEDs were red and orange much
longer than they were yellow. This indicated that the imple-
mentation of collective communication was inefficient, and
would have to be improved in order to achieve the desired
speedup. A new implementation was indeed undertaken,
and it performed well.

Implementation of the Vesta parallel file system

The design and implementation of the Vesta parallel file
system also started as part of the Vulcan project [1]. Files
and metadata in this file system are distributed across all
the Vulcan I/O nodes. User applications access the files by
calling library functions. These functions send messages to
the appropriate I/O nodes, where they are handled by the
file system code.

The Terminal I/O facility was used extensively during
the early development and debugging of Vesta. During test-
ing, the test program is loaded onto one node, and the file
system code is loaded onto a few other nodes in the same
user partition (rather then being loaded onto I/O nodes,

which are not designed to have user interaction, and there-
fore do not provide terminal I/O facilities). The test pro-
gram is interactive and menu-driven. It uses the I/O window
to receive instructions from the tester and display responses
from the file system. These responses include both data and
error messages.

Each task uses a LED to represent its message-passing
activity: the LED is turned yellow when sending a message,
and orange when receiving (or waiting for the message to
arrive). The LED is off (gray) when the task is busy. Ini-
tially, all the tasks representing I/O nodes are orange, as
they await incoming instructions, and the test program is
off, as it awaits user input. Once the user enters a com-
mand, the test program sends it (yellow) to the appropriate
I/O node task. The I/O node task receives the command and
works on it (gray); sometime later it sends a response (yel-
low) and then waits for the next command (orange). Some
commands require the test program to communicate with
more than one I/O node. by watching the pattern in which
the LEDs change colors, the tester can see if the system
is behaving as expected. A situation where all nodes are
orange indicates deadlock with all nodes waiting for mes-
sages.

One of the available commands in the test program menu
is to dump the metadata for inspection. To implement this,
the test program sends a “dump” message to all the I/O
nodes. Each I/O node then uses its I/O window to dump
its metadata. This allows the tester to conveniently inspect
the metadata on each node independently, or to compare
metadata on different nodes.

5 Conclusions

As massively parallel MIMD machines become more
commonplace, there is increasing need for facilities that
would allow users to interact with these machines effec-
tively. One such facility is that for terminal I/O. Our de-
sign allows the user to open an independent window to each
task (or processor) in the system. In addition, we support
LED output which provides easily comprehensible status
information about the whole machine without using text.
The programming interface is trivial and does not require
the programmer to write any code dealing with windows or
graphics. A similar facility would be useful in any multi-
computer, not just the IBM SP1.

This design has been implemented as part of the Vulcan
project. Both C and Fortran environments are supported,
including their various flavors of formatted I/O. The user
interface is based on the X window system and the Mo-
tif widget set. In some cases this proved to be somewhat
problematic, as the Motif window manager was not always
happy to give up its control of the user’s screen. Indeed,
the majority of the code written deals with the X interface.

As windowing system continue to develop and higher-level
interfaces are introduced, the implementation of such I/O
facilities is expected to become much simpler. This will
encourage the addition of more features and possible inte-
gration with various monitoring and debugging tools.

Acknowledgements

The idea of using mouse operations on a control panel to
control the opening of dedicated windows is due to Blake
Fitch and Mark Giampapa. The support for formatted I/O
through catching the AIXread andwrite calls was de-
signed and implemented with the help of Mark Giampapa.
The rows display mode was suggested by Dror Zernik.
Miron Livny pointed out the time-related difference be-
tween text windows and LEDs.

References

[1] P. F. Corbett, S. J. Baylor, and D. G. Feitelson, “Overview
of the Vesta parallel file system”. In Proc. IPPS ’93 Work-
shop on I/O in Parallel Computer Systems, pp. 1–16, Apr
1993. (Reprinted inComput. Arch. News21(5), pp. 7–14,
Dec 1993).

[2] B. G. Fitch and M. E. Giampapa, “The Vulcan Operating
Environment: a brief overview and status report”. In 5th
Workshop on Use of Parallel Processors in Meteorology, Eu-
ropean Centre for Medium-Range Weather Forecasts, Nov
1992.

[3] R. R. Glenn and D. V. Pryor, “Instrumentation for a mas-
sively parallel MIMD application”. J. Parallel & Distributed
Comput.12(3), pp. 223–236, Jul 1991.

[4] W. D. Hillis, “ The connection machine”. Scientific American
256(6), pp. 86–93, Jun 1987.

[5] IBM Corp., IBM AIX Parallel Environment: Operation and
Use. Sep 1993. Order number SH26-7230-0.

[6] J. F. Janak and P. C. Pattnaik, “Protein calculations on paral-
lel processors. I: parallel algorithm for the potential energy”.
J. Comput. Chemistry13(4), pp. 533–538, 1992.

[7] C. Kilpatrick and K. Schwan, “ChaosMON — application-
specific monitoring and display of performance information
for parallel and distributed systems”. In Proc. ACM/ONR
Workshop on Parallel & Distributed Debugging, pp. 57–67,
May 1991.

[8] D. N. Kimelman and T. A. Ngo, “The RP3 program visual-
ization environment”. IBM J. Res. Dev.35(5/6), pp. 635–
651, Sep/Nov 1991.

[9] J. E. Lumpp, Jr., S. A. Fineberg, W. G. Nation, T. L. Casa-
vant, E. C. Bronson, H. J. Siegel, P. H. Pero, T. Schweder-
ski, and D. C. Marinescu, “CAPS: a coding aid for PASM”.
Comm. ACM34(11), pp. 104–117, Nov 1991.

[10] W. Myers, “Faster... Caltech dedicates world’s most power-
ful supercomputer”. Computer24(7), pp. 96–97, Jul 1991.

[11] ParaSoft Corp.,Express C Reference Guide. 1990.
[12] D. G. Shea, W. W. Wilcke, R. C. Booth, D. H. Brown,

Z. D. Christidis, M. E. Giampapa, G. B. Irwin, T. T. Mu-
rakami, V. K. Naik, F. T. Tong, P. R. Varker, and

D. J. Zukowski, “The IBM Victor V256 partitionable multi-
processor”. IBM J. Res. Dev.35(5/6), pp. 573–590, Sep/Nov
1991.

[13] C. B. Stunkel, D. G. Shea, B. Abali, M. M. Denneau,
P. H. Hochschild, D. J. Joseph, B. J. Nathanson, M. Tsao,
and P. R. Varker, “Architecture and implementation of Vul-
can”. In Intl. Parallel Processing Symp., Apr 1994.

